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Preface

The project developed for this thesis was a result of working in the Wireless Accessment of Res-

piratory and circulatory Distress (WARD) project - a collaborate research between two hospitals in the

Capital Region of Denmark (Bispebjerg Hospital and Rigshospitalet) and the Biomedical Signal Process-

ing Research Group at the Technical University of Denmark . This thesis presents the results obtained

in the development of a cuffless blood pressure estimation algorithm at the Technical University of Den-

mark, Department of Health Technology. It was carried out from February the 3rd to August the 3rd

2020.
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Abstract

Blood pressure (BP) is an important factor in the monitoring of patients admitted to the general ward,

which is the focus of the Wireless Assessment of Respiratory and Circulatory Distress (WARD) clin-

ical support system. Current practice relies on intermittent cuff based measurements, based on the

oscillometric method. This method has major drawbacks such as the low frequency of evaluation and

discomfort for the patients. Continuous cuffless blood pressure estimation methods have been explored

in the literature as solutions for these problems. This master thesis aims at addressing cuffless blood

pressure estimation using a data-driven method based on a machine learning algorithm (Random For-

est).

Several morphological features and pulse arrival time features were extracted from the photoplety-

mogram (PPG) waveform, its derivative and second derivative and from the ECG waveform. The set of

features was used to train two Random Forest Regression models to estimate systolic blood pressure

(SBP) and diastolic blood pressure (DBP), respectively. The BP estimation algorithm was fist trained

and tested on data publicly available at the Multi-Parameter Intelligent Monitoring for Intensive Care II

(MIMIC II) database. On a second stage, the solution was applied to data from the WARD project.

Although signal quality created difficulties in achieving results that compare to those in the literature,

in a small subset of high quality data from the MIMIC II database, it was possible to obtain SBP and

DBP estimations with a mean error of 5.20±5.13mmHg and 1.70±7.98mmHg, respectively. The results

obtained in the WARD data suggest the signal pre-processing and cleaning pipeline should be improved

to meet the clinical standards. Despite the limitations, a machine learning method based on PPG and

ECG features shows potential for the estimation of blood pressure without a cuff.
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Resumo

A pressão arterial é um fator importante na monitorização de doentes em enfermaria e é um dos

sinais fisiológicos avaliados pelo sistema Wireless Assessment of Respiratory and Circulatory Distress

(WARD) de apoio clı́nico. Atualmente, a monitorização é intermitente, e realizada com recurso a um

esfigmomanómetro. Este método apresenta várias desvantagens, nomeadamente a baixa frequência

das medições e o desconforto causado aos doentes. Diversos métodos alternativos foram estudados

na literatura para a medição da pressão sanguı́nea de forma contı́nua e sem recurso a uma braçadeira

insuflável. Esta dissertação visa abordar estes mesmos estudos e implementar um método de obtenção

da pressão arterial com base num algoritmo de aprendizagem automática.

Um conjunto de features morfológicas e temporais foram calculadas dos sinais de PPG e ECG e

posteriormente usadas para treinar dois modelos de Random Forest Regression para estimar a pressão

arterial sistólica e diastólica, respetivamente. Os modelos foram treinados e testados em primeiro lugar

a partir da base de dados pública Multi-Parameter Intelligent Monitoring for Intensive Care II (MIMIC II).

Posteriormente, a solução desenvolvida foi aplicada aos dados do projeto WARD.

Embora a insuficiente qualidade dos sinais tenha dificultado a obtenção de resultados comparáveis

aos da literatura, foi ainda assim possı́vel obter valores de pressão arterial sistólica e diastólica com

erro médio de 5.20 ± 5.13mmHg e 1.70 ± 7.98mmHg, respetivamente, num subconjunto de dados da

base de dados MIMIC II. Os resultados obtidos com os dados do projeto WARD sugerem que as etapas

de remoção de ruı́do e artefactos e pré-processamento dos sinais devem ser melhoradas de modo

a respeitar os padrões clı́nicos. Apesar das limitações, um algoritmo de aprendizagem automática

baseado nos sinais de PPG e ECG demonstra potencial para a medição indireta da pressão arterial.

Palavras Chave

Pressão Arterial, Monitorização de doentes, Fotopletismografia, Eletrocardiograma, Aprendizagem Au-

tomática
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1
Introduction

1.1 Problem Definition

Blood Pressure (BP) is a key hemodynamic variable, since subtle changes of its values, together with

changes in other biosignals, are early signs of clinical deterioration eventually leading to adverse events

[13]. Blood pressure is often monitored continuously in critically ill patients. It is common procedure to

monitor Arterial Blood Pressure (ABP) by means of an arterial catheter during high-risk surgery, in the

postoperative and in the Intensive Care Unit (ICU). The advantages of this monitoring technique include

instantaneous detection of pressure changes and accuracy [14], as this is the gold standard method to

monitor blood pressure [15]. However, this procedure is invasive, and may lead to complications so it

is not suitable for general ward. Alternatively, blood pressure is often monitored using auscultation or

oscillometry methods, which are non-invasive methods that employ an inflatable cuff [15].

Blood pressure is one of the biosignals being monitored in the Wireless Assessment of Respiratory

and Circulatory Distress (WARD) project, which aims at developing a clinical monitoring system for

early detection of patient deterioration and concerns general ward patients. In this project, signals are

continuously measured from inpatients in the post operative period after major surgery and patients
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admitted due to Chronic Obstructive Pulmonary Disease (COPD) exacerbation, using wear and forget

devices. The biosignals acquired include Electrocardiogram (ECG), Photoplethysmogram (PPG) and

blood pressure, among others.

Currently in the WARD project, Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP)

are measured every 30 or 15 min during daytime and every hour or half hour from 10PM to 7AM using a

cuff-based ambulatory blood pressure monitor. However, these measurements may cause discomfort to

the patients and are disruptive during sleeping. A cuffless system for blood pressure estimation would

allow unobtrusive and continuous measurements, providing more information about blood pressure vari-

ation.

Several systems have been proposed for continuous and cuffless blood pressure estimation. Many

rely on Pulse Arrival Time (PAT) or Pulse Transit Time (PTT) measures, which consist of time differences

obtained from two simultaneously acquired pulse signals representing the activity of the heart [15]. The

electrocardiogram and photopletismogram waveforms acquired in the scope of the WARD project are

commonly used to obtain such measures. Other systems which rely on features from the ECG and

PPG waveforms separately have also been proposed. However, integration into clinical practice has not

yet been achieved, possibly because the methods proposed either lack accuracy or validation over a

sufficiently large population [16] [17]. Therefore, it is important to further improve and test these blood

pressure estimation methods.

1.2 Project Goals

The main aim of the project is to investigate a method to estimate systolic and diastolic BP based on

biosignals acquired in the scope of the WARD project, in a continuous or semi-continuous and unobtru-

sive manner. To do so, several goals were defined:

• Conduct state of the art research regarding existing cuffless blood pressure estimation methods

and evaluate their outcomes based on existing standards for blood pressure devices, namely

Advancement of Medical Instrumentation (AAMI) standard;

• Implement different state-of-the-art approaches for cuffless blood pressure estimation and test

them on data available at the MIMIC database;

• Propose and test improvements to the current methods and compare the proposed method to

reference methods for BP measurements;

• Apply the methods implemented to the large patient data set acquired in the WARD project, pro-

viding a more reliable validation compared to state of the art methods (which lack sufficient patient

data for validation)
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• Discuss the value of the development of a cuffless blood pressure device

1.3 Thesis Outline

Chapter 2: Presents a description of the WARD project including signal acquisition devices and data flow,

and the research conducted. The relevance of continuous blood pressure estimation for this project is

also discussed.

Chapter 3: Describes theory behind blood pressure measurements, including currently used meth-

ods and devices. Other concepts which are also useful for the understanding of this thesis are also

described, namely the ECG and PPG signals and alternative and metrics from which blood pressure

can potentially be estimated.

Chapter 4: Presents current state of the art in the field of continuous cuffless blood pressure es-

timation. This includes both methods based on physiological models and data-driven methods, using

machine learning techniques. The most relevant literature methods found are discussed in detail.

Chapter 5: Describes the methods used in development of the blood pressure estimation algorithm.

This includes data description and selection, signal processing, feature extraction and regression algo-

rithm.

Chapter 6: Presents the obtained blood pressure estimation results obtained with one state of the art

method implemented and the improved method developed. The two sets of data available are analysed

and intermediate results obtained are also presented.

Chapter 7: Discusses the obtained results and performance of the blood pressure estimation meth-

ods, as well as and possible sources of error.

Chapter 8: Concludes the thesis and summarizes the most notable observations. In addition, future

improvements are proposed and briefly discussed.
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2
The WARD project

In this chapter, a description of the WARD project is presented. It includes signal acquisition devices

and data flow, and the research conducted. The relevance of continuous blood pressure estimation for

this project is also discussed.

2.1 Introduction

The Wireless Accessment of Respiratory and Circulatory Distress (WARD) project is a collaboration

between the Technological University of Denmark (DTU), Rigshospitalet and Bispebjerg hospital which

aims at conducting a continuous fully automatic assessment of vitals signal being monitored in high-risk

patients.

The patients’ biosignals are recorded using wear and forget devices and transmitted to a server in

real time. Automatic signal processing algorithms then analyse these signals in order to detect abnormal

values and access whether there is an event which could develop into a complication. In case of patient

deterioration, the system notifies medical staff, so that it is possible to intervene at an early stage [1].

Currently, patients are monitored based on point wise measurements analysed according to the
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Early Warning Score (EWS) standard [1]. However, the intermittent nature of this monitoring protocol

potentiates undetected events, which could be detected by a continuous automatic monitoring system.

2.2 Early Warning Score protocol

This protocol consists of monitoring patients’ vital signs at intervals that start at 12 hours and can be

decreased in case there are abnormal values (called micro events) in the vital signs [18]. The vital

signals measurements are scored on a scale from 0 to 3, and when one of the patient’s parameters

scores 3 or the patient has a cumulated score of more than 5, a specialist’s clinical assessment is

required, according to the algorithm used in the Capital Region of Denmark [19]. However, patients may

deteriorate between measurements, meaning that deterioration will go undetected for hours, which may

cause complications due to delay in diagnostic and intervention.

2.3 Continuous 24/7 monitoring

In a first stage of the project, continuous monitoring of vital signals was evaluated against EWS mea-

surements in patients who had undergone major abdominal cancer surgery. The aim of this study was to

compare the number of micro events identified by continuous monitoring to those detected by the stan-

dardized EWS. Peripheral Oxygen Saturation (SpO2), Heart Rate (HR), Respiratory Rate (RR) were

monitored by wearable devices in 50 patients. The results revealed that using continuous monitoring

resulted in more severe micro events being detected compared to those detected by EWS [18].

In the automated response system developed by the WARD-project, 14 event classes have been de-

fined by the medical doctors, including hypotension, circulatory failure and hypertension, among others.

These events are based on abnormalities present in the vital signals for a predefined amount of time

and should require intervention or assessment of the patient by a specialist [1].

The events can be used for two purposes. The first one is to trigger an alarm that alerts medical staff

about the deterioration. The second is to use them as input of machine learning algorithms which aims at

differentiating events that require medical interventions from those which do not require intervention. [1]

This second approach was studied in the scope of the WARD project by Olsen et al. [20], in which

events were classified in groups: event requiring no attention; event requiring attention if repeated and

event requiring immediate attention and correction. The goal of the classification algorithm developed

in this study was to detect early signs of deterioration using peripheral blood oxygenation, arterial blood

pressure, perfusion index, heart rate and respiratory rate signs collected continuously. Compared to

the alarm system based on single parameters, this algorithm resulted in a decreased number of false

alarms and decreased missed early signs of deterioration [20].
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At this point, 500 patients in the post operative period after abdominal cancer surgery and 200

patients admitted due to chronic COPD exacerbation have been monitored with WARD system’s wear

and forget devices, meaning that a large dataset is now available as a basis for algorithm development.

2.3.1 WARD equipment and data flow

The devices in the WARD system include an ECG sensor, a pulse oximeter, a BP monitor and a wrist-

band sensor described in table 2.1.

ECG sensor
Lifetouch Blue ECG (10 seconds each minute)

RR interval
QRS amplitude
HR (one minute average)
respiration rate (RR)

Pulse Oximeter
Nonin WristOx2 Oxygen Saturation

PPG (10 seconds pr. minute)
Pulse rate (PR)

BP monitor
TM2441 SBP and DBP

1 measure every 15/30 min
(daytime/nighttime) OR
1 measure every 30/60 min
(daytime/nighttime)

Wristband sensor
Empatica E4 electrodermal activity (EDA)

Peripheral temperature
3D-acceleration
PPG

Table 2.1: Devices included in the WARD system and respective signals measured. The pulse oximeter, BP monitor
and device to acquire ECG are provided by Isansys.

Data from the sensors are wirelessly transmitted by bluetooth low energy (BLE) to the gateway, which

sends the data to a server, as shown in figure 2.1. In the server data is then stored in a SQL-database,

from which it can be extracted and processed. [1]

2.3.2 Continuous cuffless BP estimation

Some event classes, namely hypotension, circulatory failure and hypertension, are based on BP values.

However, these measurements are currently performed intermittently using a cuff-based ambulatory

blood pressure monitor (TM2441). During daytime measurements are performed once every 15 min
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Figure 2.1: WARD system data flow. The signals are transmitted via Bluetooth to a table acting as gateway, from
which data is sent to a local server at Rigshospitalet, where it is stored in a SQL database [1].

(or 30 min if uncomfortable for the patient) and from 10PM to 7AM BP is measured once every 30 min

(or every hour if uncomfortable for the patient). However, the aim of the WARD system is to provide

continuous monitoring which is not being achieved regarding blood pressure measurements with the

current device.

The PPG and ECG signals are currently acquired each minute by the WARD system devices and

several literature studies have shown that features extracted from these waveforms are promising for

estimating blood pressure continuously [17] [16]. Therefore, using such blood pressure estimation meth-

ods would allow measurements of blood pressure to be performed on a minute basis. This continuous

or more frequent blood pressure monitoring will allow events to be detected earlier and allow a faster

intervention of the medical staff.

In addition, cuff based devices are cumbersome and uncomfortable for the patient, particularly during

nighttime. In some cases, blood pressure measurements are even performed less often due to patient

discomfort. Given that alternative methods to estimate blood pressure have been based on the PPG

and ECG signals collected by the WARD system, replacing the ambulatory blood pressure monitor by

these would decrease the apparatus required to monitor the patients.

The goal of this project is therefore to use the large dataset already acquired by the WARD devices

to develop an algorithm for BP estimation based on alternative signals and test it against the cuff-based

blood pressure monitor measurements.
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3
Background Concepts

This chapter describes theory behind blood pressure measurements, including currently used methods

and devices. Other concepts which are also useful for the understanding of this thesis are also de-

scribed, namely the ECG and PPG signals and alternative and metrics from which blood pressure can

potentially be estimated.

3.1 Blood Pressure

3.1.1 Definition

Blood pressure (BP) is the force exerted by the blood against any unit area of the vessel wall, and it

is commonly expressed in millimeters of mercury (mmHg). This measurement unit originated from the

measurements with the mercury manometer invented in 1846 by Poiseuille, which has since then been

used as reference for measuring pressure. For instance, a pressure of 80mmHg means that the force

exerted by the blood will push the column of mercury against gravity up to 80mm high [21].

Blood pressure consists of a series of pulse waves that correspond to heart cycles. The lowest point
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of each pulse is called Diastolic Blood Pressure (DBP) and the pressure at the top of each pulse is the

Systolic Blood Pressure (SBP). The difference between systolic and diastolic pressures is called Pulse

Pressure (PP). [17] These points and the blood pressure waveform are represented in figure 3.1

Blood pressure is an important factor in the evaluation and diagnosis of multiple conditions such

as stroke and cardiovascular disease, since hypertension is the most important modifiable risk factor

for these diseases [22]. Therefore, several organizations have defined BP classifications to allow risk

stratification. According to the American College of Cardiology [10], these categories are defined as in

table 3.1.

Figure 3.1: Representation of systolic, diastolic and mean blood pressures together with pulse pressure in the
different portions of the circulatory system [2]

BP Category SBP DBP
Normal < 120 mmHg AND < 80 mmHg
Elevated 120− 129 mmHg AND < 80 mmHg
Stage 1 Hypertension 130− 139 mmHg OR 80− 89 mmHg
Stage 2 Hypertension > 140 mmHg OR > 90 mmHg

Table 3.1: Categories of BP in Adults [10]

3.1.2 Pulse pressure

In a healthy young adult, pulse pressure is around 40 mmHg [21]. However, it is commonly higher

in healthy people following strenuous exercise or at an older age, when people frequently suffer from

arteriosclerosis. Pulse pressure can also be lower than normal, in patients with congestive heart failure,

stenosis of the aortic valve, or significant blood loss following trauma.

The pulse pressure is affected by two major factors, namely the stroke volume output of the heart and
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the compliance (total distensibility) of the arterial tree [21]. A greater stroke volume output means that

the pressure rise and fall during the cardiac cycle will be greater, and therefore the pulse pressure will

be larger. On the contrary, pulse pressure is inversely proportional to the compliance of the arterial tree.

The less compliant the arterial vessels are, the greater the rise in pressure for a given stroke volume

of blood pumped into the arteries. Therefore, conditions such as arteriosclerosis, in which the arteries

become hardened, cause an increase in the pulse pressure. [21]

3.1.3 Mean arterial pressure

The Mean Arterial Pressure (MAP) is the average of the arterial pressures measured over a cardiac

cycle [17]. Since the portion of the cardiac cycle spent in diastole is larger than the period of systole, the

arterial pressure remains closer to the diastolic pressure for longer than it remains close to to systolic

pressure. For that reason, MAP is 60 percent determined by the diastolic pressure and 40 percent by

the systolic pressure [21]. The mean arterial pressure is defined as:

MAP =
2DBP + SBP

3
(3.1)

3.1.4 Methods to measure blood pressure

3.1.4.A Invasive Measurements

Arterial catheters, from which arterial blood pressure (ABP) waveforms are obtained, provide a direct

measurement of blood pressure. Intra-arterial catheters are the standard of care for critically ill patients

when it is necessary to perform continuous blood pressure monitoring and are commonly used during

surgeries or in the ICU. This method consists of using an invasive catheter with an incorporated pressure

transducer in fluid contact with blood at an arterial site, such as the radial artery or aorta. [17] [15]

The advantages of this invasive method are its accuracy and the fact that it provides continuous mea-

surements and is clinically accepted. It is also accepted as a reliable reference method for validating

new BP measurement technologies by regulatory agencies. [17] However, they are invasive and uncom-

fortable for the patient, and there is a possible risk of complications, such as infection and bleeding.

In addition, experts are required to place and monitor the catheter site, and patients should be mostly

stationary during monitoring [17].

3.1.4.B Auscultation

Auscultation is the standard clinical method for measuring blood pressure [15]. This method measures

systolic and diastolic BP by occluding blood flow in an artery with a manual cuff and detecting the Ko-

rotkoff sounds using a stethoscope and manometer during cuff deflation [15]. Although auscultation is
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accurate, clinically accepted and noninvasive its measurements are not continuous, and can be uncom-

fortable [17].

Figure 3.2: Illustration of auscultatory method for measuring systolic and diastolic arterial pressures: on the bottom
the sounds heard throuhg a stethoscope placed over the antecubital artery are represented, together
with the corresponding value of the arterial blood pressure (red curve) and cuff pressure (grey line) over
time [2]

3.1.4.C Oscillometry

Oscillometry is an automatic technique based on the principle of occluding blood flow with an inflatable

cuff with a pressure sensor inside it [17] [15].

The cuff is first inflated to a target pressure, which is typically between 160 mm Hg and 180 mm

Hg on devices intended for adult use [23]. Once the cuff is inflated to the target pressure, its pressure

is decreased in a controlled way up to a point below the DBP, as observed it the top trace on figure

3.3. At the same time, a series of small pressure pulses is being recorded [23]. The amplitude of these

oscillometric pressure pulses is modulated by the difference between the MAP and the pressure applied

in the cuff: it increases when the applied pressure is between the patient’s diastolic blood pressure and

MAP and decreases when the applied pressure is between MAP and systolic blood pressure [17]. This

can be observed on the bottom trace in figure3.3.

Taking advantage of the waveform that results from varying the pulse amplitudes with applied pres-

sure, SBP and DBP can be determined using empirically derived methods, such as the empirical fixed-

ratios principle [15]

This method has some advantages when compared to auscultation. Namely, it easy to use and can

easily be performed in ambulatory, it can be used in patients with muted Korotkoff sounds and it is less

affected by external noise [3]. Additionally, it is not invasive, clinically accepted, with some oscillometric

devices achieving BP errors within the AAMI limits of 5 mmHg bias and 8 mmHg precision [15]. How-
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ever,these devices can be uncomfortable (particularly for frequent measurements), and inaccurate if not

correctly used or not thoroughly validated [17].

Figure 3.3: Representation of the oscillometric method. The top trace represents the cuff pressure and the bottom
trace represents the oscillations in cuff pressure with respect to time. The maximal oscillation occurs at
a pressure of 108 mm Hg, the mean arterial pressure. Adapted from [3].

3.1.4.D Volume Clamp

The volume clamp method is also known as vascular unloading or the method of Pẽnáz and it provides

a noninvasive, continuous measurement of blood pressure [17]. It requires a finger cuff connected to

a high-speed servo pump, together with a PPG sensor assembled on the finger, used to determine the

total finger volume under an unloading cuff [24]. The high-speed servo controls the pressure applyed

by the cuff, so that it cancels out the change of blood volume in the fingers with each cardiac cycle,

maintaining it at a constant level. A continuous blood pressure waveform can then be obtained using an

oscillometric calibration and empirical models [17].

An example of this technology is the Finapres non-invasive blood pressure (BP) monitor, which was

introduced in the early 1980s [25]. It is based on the volume-clamp method, allowing a continuous beat-

by-beat measurement of the arterial pressure waveform [17]. It measures the cuff pressure electronically

and displays a signal corresponding to the arterial pressure waveform [24].

Volume clamp methods are noninvasive, continuous and automatic and have been used in research

[15]. However, they can be inaccurate if not used correctly and the finger cuff can be uncomfortable for

patients [17].
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3.1.4.E Tonometry

Arterial tonometry provides a continuous and non invasive measurement of blood pressure and it does

not require an inflatable cuff [17]. This method works by applying a transducer (manometer-tipped probe)

on an artery and applying pressure so that the artery is flattened and the its wall tension is perpendicular

to the transducer [15]. The transducer then measures the changes in arterial pressure with each cardiac

cycle and these measurements are used to compute blood pressure.

Tonometry has been used in research [15] but it is very sensitive to motion, requires precise place-

ment of the probe and frequent calibration, making it difficult to be used for routine measurements.

Despite being noninvasive continuous blood pressure measurement techniques, both tonometry and

volume clamp techniques are intrusive because both require the application of external pressure or force

on cuff during the entire course of the monitoring, which leads to discomfort and motion artifacts [17].

3.2 Photoplethysmography

PPG is a method for measuring the amount of light that is absorbed or reflected by blood vessels in

living tissue [16].

The PPG device uses a light source, that emits light into the tissue, and a photodetector, which

is the receptor of light that has interacted with the tissue. The PPG sensor can have two different

configurations: in reflective mode, the photodetector is placed adjacent to the light source in reflection,

whereas in transmission mode the photodetector is placed on one side of the tissue and the light source

in the opposite side, as illustrated in figure 3.4. In this configuration, the emitted light is transmitted

through the tissue, modulated by the underlying vasculature and then detected at the other side. This

configuration is common in pulse oximeters designed to measure fingers and ear lobes [17].

The light source emits at a specific wavelength, which depends on final goal. Green light (565 nm) is

commonly used for reflective PPG sensors, because the the maximum pulsatile component of reflected

light occurs approximately in the range between 510 and 590 nm [9]. The red (680 nm) or near-infrared

(810 nm) light is more commonly used for transmissive PPG devices, since it has more penetration

depth. Since penetration depth is higher for infrared light compared to green light, it is more commonly

used, as it reflects deep tissue blood pulse [9]. The use of PPG at multiple wavelengths is also routinely

used in pulse oximetry, because the optical absorption of hemoglobin is a function of oxygenation, being

different for oxyhemoglobin and deoxyhemoglobin [9].

The PPG signal has two major components, an AC component, also called pulsatile, and a DC

component or non-pulsatile, as shown in figure 3.4. The AC component is related to blood volume

variation that arises from heartbeats, whereas the DC component is a function of the stationary blood

volume present in the tissue. This last component is influenced by respiration cycle, sympathetic nervous
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system and thermoregulatory processes [25], that cause low frequency changes in the signal.

Figure 3.4: Illustration of instrumentation for PPG acquisition and PPG signal components. [4]

The AC component of the PPG waveform can be divided in two portions concerned respectively with

systole and diastole. The rising edge, between the foot and the systolic peak of the pulse waveform

is called anachrotic phase and is mainly connected with the contraction of the heart and therefore with

systole [26]. The falling edge, also known as catacrotic phase, is concerned with diastole and wave

reflections from the periphery [25]. A dicrotic notch can usually be identified in catacrotic phase of

subjects with healthy compliant arteries [25]. The temporal delay between the systolic peak and diastolic

peak in the PPG signal, as well as the temporal position of the dicrotic notch are influenced by several

factors, such as the large artery stiffness, that normally is higher in older people. Due to this factor, the

PPG waveform has slight differences between subjects, as exemplified in figure 3.5.

Figure 3.5: Changes in the PPG pulse characteristics with increasing age. ∆T is the temporal delay between the
systolic peak and diastolic peak [5]

3.3 Electrocardiogram

An electrocardiogram is a recording of the electrical activity of the heart. The normal electrocardiogram

is composed of a P wave, a QRS complex, and a T wave, as shown in figure 3.6. The QRS complex is

typically composed by three distinct waves: the Q wave, the R wave, and the S wave [21]. Before atrial
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contraction starts, the atria depolarize creating electrical potentials which give rise to the P wave. When

the ventricles depolarize before contraction, electrical potentials are also generated and these generate

the QRS complex. So, both the QRS complex components and the P wave are named depolarization

waves, as they result from the spread of depolarization waves. The T wave is caused by potentials

generated in the ventricular muscle after depolarization. Therefore the T wave is a repolarization wave.

[21]

Figure 3.6: Normal electrocardiogram with waves and intervals represented.

3.4 Pulse Transit Time

Pulse Transit Time (PTT) is defined as the time that an arterial pressure wave requires to propagate

along the walls of a given segment of the arterial tree [17]. It indirectly approximates Pulse Wave

Velocity (PWV), the velocity at which an arterial pressure wave propagates along the walls of the arterial

tree [17].

PWV reflects the properties of the arterial wall, namely arterial stiffness, and therefore varies with

arterial pressure. PWV can be measured using the arrival time of a pressure wave propagating through

the arterial tree in a certain distance between the proximal and distal arterial sites, in the form of PWV

= L/PTT, where L is the distance between the proximal and distal sites. However, due to difficulties in

the measurement of the distance L, PTT is used as a reciprocal measure. PTT can be derived from two

pulse signals, including ECG and PPG [17].

The standard method to calibrate PTT estimates to BP values requires the definition of a mathe-

matical model that relates PTT to BP in terms of unknown parameters. These parameters can then be

obtained by measuring multiple pairs of PTT and BP values for each subject, allowing the construction

of a calibration curve. [15]

The mathematical relationship between PTT and BP has been defined using empirical regression

models and physical models. The first assume that the PTT is related to BP by means of a linear
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function, quadratic function or other nonlinear functions. In the second case, the model is based on the

theory of wave propagation in arteries.

3.4.1 Arterial Wave Propagation Models

The relationship between PTT and BP is based on two main equations for arterial wave propagation,

the Moens–Korteweg equation and the relationship between the Young’s modulus (E) and the arterial

pressure (P) [17]. This last relation is given by:

E = E0e
−λP (3.2)

where E0 is the Young’s modulus at zero pressure, and λ is a coefficient that depends on the particular

vessel.

The Moens–Korteweg equation determines the pressure’s pulse wave velocity (PWV) as function of

the the elasticity of arteries, and is given by:

PWV =

√
Eh

ρd
(3.3)

where E is the Young’s modulus, h is the arterial wall thickness, d is the artery’s internal diameter, and ρ

is the blood density.

The relationship between P and PWV can be derived by the Bramwell–Hill equation, which is ob-

tained by combining equations 3.2 and 3.3 [17]:

PWV =
L

PTT
=

√
hE0e−λP

ρd
(3.4)

where L is the length of the path traveled by the pulse wave. Several mathematical models have then

been based on these equations to approximate the relationships between BP and the PTT. A popular

example is to take the logarithmic relationship between BP and PTT from the the Bramwell–Hill equation,

obtaining [27]:

P =

(
− 2

λ

)
log(PPT ) +

(
1

λ

)
log

(
ρdL2

hE0

)
(3.5)

The previous equation can be simplified as:

BP = A log(PTT ) +B (3.6)

Where A and B are subject-specific constants that can be obtained through the calibration procedure.

Other studies have presented models that linearly relate 1/PTT with BP, such as that given by [15]:
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BP =
A

PTT
+B (3.7)

One of the concerns regarding the application of a mathematical model is it is necessary to vary the

BP over a considerable range to obtain the curve that can relate PTT to BP [17]. This curve can be

constructed under different conditions that cause BP variations, such as exercising, hydrostatic posture,

Valsalva maneuver, and medication [17]. Another problem is that, both PWV and PTT are not only

affected by blood pressure but also by other factors, making this technique non-specific [17].

3.5 Pulse Arrival Time

Pulse arrival time (PAT) is defined as the time at which an arterial pressure wave arrives at a certain

point of the arterial tree [17]. In other words, it corresponds to the time delay between the electrical

activity of the heart and a peripheral pulse measured further down the arterial tree [17]. Therefore, PAT

measurements require the measure of the electrical activity of the heart (typically using an electrocar-

diogram) and some measure of a mechanical activity of the pulse wave. The latter is typically performed

using a photoplethysmogram, but it is also possible to use ballistocardiogram (BCG), seismocardiogram

(SCG), and phonocardiogram (PCG) waveforms. [17]

Typically, PAT measurements consider as initial time reference the R-Wave of an ECG and as final

reference a characteristic point of the PPG, such as the systolic peak.

The PAT interval includes the PTT interval plus the Pre-Ejection Period (PEP) delay [16]:

PAT = PTT + PEP (3.8)

PEP is the pre-ejection period, which corresponds to the time needed to convert the electrical signal

of the heart into a mechanical pumping force and isovolumetric contraction to open the aortic valve [17].

3.5.1 PAT vs. PTT

Estimating BP using PAT became popular because it is easy to obtain by referencing the ECG R wave,

which is precise and easy to get. The disadvantage is the introduction of the PEP variable, especially

when PTT is small and the distal measurement point is close to the core body. Although some studies

have claimed that PAT is a better indicator of SBP due to its dependency on both ventricular contraction

and vascular function, it is generally thought that PTT has higher correlation with SBP, DBP, and MAP

than PAT [17].
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3.6 Pulse Wave Analysis

Pulse Wave Analysis (PWA), is a technique which consists of the morphological analysis of the pressure

pulse waveform. Its shape reflects information about the properties of the arterial wall and the state of

ventricular ejection [17]. Several PWA features have been linked to indicators of cardiovascular health

and diseases in many clinical studies.

In addition, this technique and can provide an indirect means of assessing blood pressure itself by

means of the PPG waveform. It has been shown that the PPG signal at the fingertip is influenced by the

same physiological determinants as the radial pressure waveform and undergoes similar morphological

changes in vascular disease [17]. It’s not possible to directly extract blood pressure information from

the PPG waveform since its amplitude is related to tissue perfusion. However, the morphology of the

PPG, which is similar to the one of the pressure waveform, contains relevant features for blood pressure

estimation. These features can be translated into blood pressure values if an adequate calibration

procedure, also caled ”initialization” [17] is performed.

Some of pulse wave analysis features which can be extracted from the PPG have been inspired

in features commonly used to analyse blood pressure pulse waveforms, such as the augmentation

index, the diastolic time (time at which systolic blood pressure reaches its peak) and the time to systolic

peak [17]. However, the PPG waveform contains some differences from the pressure pulse and therefore

many PPG-specific features have been proposed in the literature for the analysis of PPG waveforms,

namelly:

• Systolic amplitude: peak-to-peak amplitude of the PPG wave

• Reflection index: RI = y/x, where y is the height of the diastolic peak and y is the height of the

systolic peak

• Index of the stiffness of the large arteries: SI = h/∆T , where h is the height of the subject and

∆T is the time delay between the systolic and diastolic peaks

Several features can also be derived from the second derivative of the PPG (sdPPG), or acceleration

plethysmogram (APG). The sdPPG signals is characterized by several peaks and valleys respectively

designated as a-wave (early systolic positive wave), b-wave (early systolic negative wave), c-wave (late

systolic reincreasing wave), d-wave (late systolic redecreasing wave) and e-wave (early diastolic positive

wave) [5].
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4
State of the art on cuffless BP

estimation

This chapter presents current state of the art in the field of continuous cuffless blood pressure estimation.

This includes both methods based on physiological models and data-driven methods, using machine

learning techniques. The most relevant literature methods found are discussed in detail.

4.1 Introduction

Cuffless blood pressure estimation has been extensively studied over the last years. The classical BP

estimation models consist of mapping indicators that can reveal the BP changes, such as PTT, PAT and

others defined in the previous section, to the BP values [17]. Several approaches have been attempted

to model the relationship between BP indicator variables and BP and they can be roughly divided in

two groups. One of the possible approaches consists of using theory-based mathematical models to

map the relationship between these indicators and the BP, requiring expert knowledge of the underlying
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physiologically processes. The alternative are data-driven approaches, based on machine learning

techniques.

4.2 Model-Based Methods

Early studies such as those by Chen et al. and Poon et al., two of the most cited works in the field,

developed PTT models for BP estimation based on the Moens-Korteweg equation, which correlates

PWV with the modulus of elasticity of the arterial wall [17].Although their results demonstrated that

PTT is able to track BP, both models have shortcomings such as limited accuracy and short calibration

intervals [28]. More recently in 2015, PIR (the photoplethysmogram intensity ratio) was proposed as a

new indicator for BP estimation in a study by Ding et al [29]. The inclusion of this parameter, which can

be affected by changes in the arterial diameter, improved the estimation when compared to BP models

based only on PTT.

The theory-driven model-based methods have the advantages of being generalizable and inter-

pretable. However, the relationship between BP indicators has been demonstrated to be more com-

plicated than a simple linear or nonlinear regression model. In the case of PTT, it has been shown

to have distinct correlation with BP among different individuals [17]. There are many factors affecting

blood pressure, such as age, temperature, mental stress, and different behaviour pattern, which are not

reflected in this indicator.

4.3 Data-driven Methods

Machine learning methods are particularly valuable for cuffless BP estimation due to their ability to

constantly learn from data. Also, machine learning techniques allow the use of multiple indicators for the

estimation, which would be difficult to integrate in a physiological mathematical model, and may prevent

BP prediction from being affected by confounding factors or noise in a single indicator [30].

One of the first to study this approach was Monte-Moreno, who combined a set of features describing

several PPG characteristics in several machine learning techniques to predict continuous SBP [30].

Ridge linear regression, a multilayer perceptron neural network, support vector machines and random

forests where tested, and the best performance was obtained with the Random Forest Tree method,

which has resulted in a coefficient of determination between the reference and the prediction of 0.91

and 0.89 for SBP and DBP, respectively [17].

Later, in a study by Ruiz-Rodriguez [31], a neural network based method based on PPG features

was studied on patients undergoing continuous invasive BP measurement with an arterial catheter. The

validation group included 47 patients and the results obtained were not satisfactory to allow clinical
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application [31].

In 2013, Kurylyak et al. also used an Artificial Neural Network (ANN) and a set of 21 features

extracted from the PPG waveform to estimate SBP and DBP. Training and test data were extracted

from the MIMIC database and the estimation results presented a MAE of 3.80 ± 3.46mmHg SBP and

2.21 ± 2.09mmHg for DBP. However, no information is given on the amount of subjects in which it was

tested [32].

With recent developments in machine learning, more advanced methods such as Deep Neural Net-

works have also been used to model the nonlinear relationship between the BP predictors and BP

measurements. Temporal dependencies between the raw input signals and blood pressure pressure

have also been model using recurrent neural networks [17].

4.4 State of the art research

4.4.1 Search strategy

Although cuffless and continuous blood pressure has been studied in the past, this systems do not yet

comply with the standards required to be applied in clinical practise, so there is currently a great interest

in developing such systems. In fact, a lot of recent studies have developed methods for BP estimation.

However, the application required for this project, namely applying the BP estimation method to the

data acquired in the WARD project, limits the amount of studies that are considered relevant. The main

search goal was therefore to find cuffless blood pressure estimation methods that could be integrated in

the WARD system.

The literature research was performed using two search engines: findit.dtu.dk and Google Scholar.

Several combinations of keywords were used for free word search. The words used are: cuffless,

continuous, blood pressure, estimation, photopletysmogram, PPG. The search resulted in thousands of

results so an inclusion criteria was defined based on the publication year. The inclusion criteria defined

were:

• Publication year: 2016 - present

• Online access available

Other exclusion criteria were defined based on the specific characteristics of the data available.

Studies with the following characteristics were excluded:

• specific hardware built for the purpose of the study

• measurements requiring procedures to induce BP changes for calibration (Valsalva manoeuvre,

cold pressure test or others)
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• unspecified BP estimation methodology

• only classification of BP in ranges of values (normotension, hypertention and pre-hypertension for

instance)

4.4.2 Selected Studies

After the research procedure described in the previous section the studies which achieved more promis-

ing results were selected and will next be reviewed in detail. In most studies, the results are evaluated

using the Association for the Advancement of Medical Instrumentation (AAMI) Standard, which requires

BP measurement devices to have Mean Error (ME) and Standard Deviation (STD) values lower than 5

and 8 mmHg, respectively [33]. It additionally requires devices to be evaluated on a statistical popula-

tion of at least 85 subjects, as shown in table 4.1. Some studies are also evaluated according to the

the British Hypertension Society (BHS) Standard [34], which grades BP measurement devices based

on their cumulative percentage of errors, as specified in table 4.2.

In table 4.3, a summary of the most relevant studies in the field is presented.

Table 4.1: Comparison with the AAMI standard

ME (mmHg) STD (mmHg) Subjects
SBP and DBP ≤ 5 ≤ 8 ≥ 85

Table 4.2: Comparison with the BHS standard

Cumulative Error Percentage
≤ 5mmHg ≤ 10mmHg ≤ 15mmHg

grade A 60% 85% 95%
grade B 50% 75% 90%
grade C 40% 65% 85%

(Kachuee2017) Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Mon-

itoring [7]

Purpose: To develop an algorithm, based on PAT features, heart rate (HR), Augmentation Index (AI),

Large Artery Stiffness Index (LASI) and Inflection Point Area Ratio (IPA) for the continuous (in an order

of seconds) and cuffless estimation of the systolic blood pressure, diastolic blood pressure, and mean

arterial pressure values.

Methods: The proposed framework estimates the BP values based on ECG and PPG signals and

was tested on data available in the MIMIC II online waveform database. The signals are first processed

to remove the effects of noise and artifacts from the raw signals using discrete wavelet decomposition.
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Next, two types of features can be extracted, which are based on either physiological parameters or

whole-based representation of vital signals. Several machine learning algorithms are then tested for the

regression task, namely Regularized Linear Regression, Decision Tree Regression, Support Vector Ma-

chine (SVM), Adaptive Boosting (AdaBoost) and Random Forest Regression (RFR). Separate models

are trained for the estimation of the SBP, DBP, and MAP, even though the same feature vectors are used.

Finally, there is an optional calibration procedure, which can improve the system’s accuracy.

Results: The parameter-based feature extraction approach slightly outperformed the whole-based

method and the AdaBoost approach performed better that the others regarding mean absolute error

(MAE). It was also observed that the calibration-based approach outperformed the calibration-free ap-

proach with a considerable margin. The proposed method was also evaluated using the Association

for the Advancement of Medical Instrumentation and the British Hypertension Society standards. For

comparison with the AAMI standard the RFR learning method was used, since it presents results with

lower STD values, which is an important criterion of the AAMI standard. The results comply with the

AAMI standard in the estimation of DBP and MAP and regarding the BHS protocol the results achieve

grade A for the estimation of DBP and grade B for the estimation of MAP.

Conclusion: By using PAT in combination with other feature from the ECG and PPG signal it is possi-

ble to obtain a reliable estimation of BP, and the BP estimation algorithm shows satisfactory results even

when no calibration procedures are used

Comments: Although the results do not meet the AAMI standard for SBP estimation ( in terms of

SD), the method was tested on 942 subjects, when the standard only requires evaluation in at least

85. Also, the MIMIC database contains only data from patients in intensive care units (ICU), potentially

having abnormal BP variations. Therefore, a more diverse population including also healthy and younger

subjects would likely lead to improved results.

Figure 4.1: Block diagram of the cuffless BP estimation method proposed by Kachuee et al.

(Ding2017) Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New

Extension and A Comprehensive Evaluation [22]

Purpose: The purpose of this work is to extend the PTT based cuffless BP measurement method

by introducing a new indicator – the photoplethysmogram intensity ratio (PIR) and to give insights into
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cuffless BP measurement for tracking dynamic BP changes and over extended calibration intervals.

Methods: A new model that relates PTT and PIR with DBP and SBP is proposed. PIR is extracted

from the PPG waveform, whereas PTT is extracted from ECG and PPG. The performance of two PTT

and PIR models and 6 models based only on PTT was compared. The validation was conducted on 33

subjects with and without hypertension, at rest and under various maneuvers with induced BP changes

(namely deep breathing, Valsalva manoeuvre and sustained handgrip). For each of the tests either one

or two heartbeat periods were used for calibration. The measurement at rest was also performed on 8

subjects one day after the first measurement, without repeating the calibration procedure.

Results: The proposed methods achieved better accuracy on each subject group at rest state and

over 24 hours calibration interval, comparing to the PTT models. Among all, the proposed method

PTT&PIR#2 performed the best, with estimation errors for SBP and DBP being 1.17 ± 5.72mmHg and

0.40 ± 7.11mmHg, respectively. The BP estimation errors under dynamic maneuvers, over extended

calibration interval were significantly higher for all methods. Regarding the extended calibration interval,

PTT&PIR#2 method performed better compared to the others.

Conclusion: The PIR shows potential as an additional indicator for improving the accuracy of cuffless

BP measurement.

Comments: This model still requires conduction of a conventional BP measurement to perform cal-

ibration of the model for each subject, and it was not tested on enough subjects in order to meet the

AAMI standards. Also, since calibration was performed before each of the dynamical experiments, it is

not possible to confirm the robustness of the method.

Figure 4.2: Block diagram of the cuffless BP estimation method proposed by Ding et al.

(Miao2017) A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining

Techniques [8]

Purpose: To propose a novel continuous BP estimation approach that combines data mining tech-

niques, namely two multivariate analysis methods, with a traditional mechanism-driven model. Also

aims at validating the proposed method over different time intervals and in both static and dynamic

conditions.
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Methods: First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram

signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection

method was then used to select the 10 most critical features for each subject. Multivariate linear re-

gression (MLR) and support vector regression (SVR), were adopted to develop the BP model based

on the features selected by the genetic algorithm. The model was validated with a static BP estimation

experiment on 73 healthy adults, a dynamic experiment on 35 subjects (after 5 min of rope skipping) and

follow-up experiments on 10 subjects. Follow-up validation experiments were conducted 1 day, 3 days

and 6 months after the first experiment.

Results: In static BP estimation, the approach showed a correlation coefficient and mean error of

0.852 and −0.001 ± 3.102mmHg for systolic BP, and 0.790 and −0.004 ± 2.199mmHg for diastolic BP.

Similar performance was observed for dynamic BP estimation. The estimation error increased from

−0.001± 3.102 to 0.85± 5.78mmHg for SBP and from −0.004± 2.199 to −1.24± 4.63mmHg for DBP at

1 day after the initial calibration. However, it was relatively stable from 1 day to 3 days and to 6 months

after construction of the model.

Conclusion: This approached showed improved accuracy when compared to a PTT+PIR method.

Comments: This approach is patient-specific since the BP estimation model must be constructed for

each subject, which improves the results when compared to other methodologies. However, this makes

it less suitable to implement in clinical settings.

Figure 4.3: Block diagram of the cuffless BP estimation method proposed by Miao et al.

(Xing 2019) An Unobtrusive and Calibration-free Blood Pressure Estimation Method using Pho-

toplethysmography and Biometrics [4]

Purpose: To develop a method to unobtrusively and optically measure blood pressure without calibra-

tion and study it on subjects with diverse biometrics.

Methods: PPT was estimated based only on an index of large artery stiffness which requires only

PPG signal and height information. Whole based features were extracted from the PPG and the sdPPG

waveform. Values of b/a, c/a, d/a and e/a, in which a, b, c, d and e are the amplitudes of the respective

waves in the sdPPG waveform. In total, 19 features were used as input to a random forest algorithm.
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The model was tested on 1248 subjects with various age, height, weight and BP levels, and PPG mea-

surements were performed for 60 seconds. A calibration procedure was also tested on a group of 147

subjects.

Results: BP estimation accuracy was tested separately for different subgroups: younger and older

populations; groups with low peripheral perfusion index and high peripheral perfusion index and groups

with different degrees of hypertension. Using the model without calibration the fitting errors in the

young population (<50 years old) with low, medium and high SBP (120mmHg, 120-139mmHg and

≥ 140mmHg, respectively) were 6.3 ± 7.2, −3.9 ± 7.2 and −20.2 ± 14.2 mmHg for SBP respectively. In

the older population (>50 years old) the fitting errors with low, medium and high SBP were 12.8 ± 9.0,

0.5 ± 8.2 and −14.6 ± 11.5 mmHg for SBP respectively. The results were significantly improved when

calibration was used.

Conclusion: PPG may be used to calculate BP without calibration in certain populations, namely those

with good peripheral perfusion, the normotensive and the pre-hypertensive. However with personalized

calibration PPG-based BP estimation accuracy is significantly improved.

Comments: This approach is particularly interesting given that it is based only on the PPG signal.

Although the results do not meet the AAMI standards, the method has been tested on a very wide

population.

Figure 4.4: Block diagram of the cuffless BP estimation method proposed by Xing et al.

(Mousavi 2018) Blood pressure estimation from appropriate and inappropriate PPG signals using

a whole-based method [35]

Purpose: To propose an algorithm for noninvasively, cuff-less and calibration-free BP estimation, using

only the PPG signal regardless of its shape (appropriate or inappropriate).

Methods: The method proposed is evaluated on PPG and ABP data from the MIMIC II database

belonging to 441 subjects. For each subject, three 15 seconds records are considered, resulting in a

total of 1323 records. The PPG signals are first pre-processed using a Fast Fourier Transform (FFT)

filter. The proposed whole-based method then considers all values of the PPG signal at a specific

distance between two consecutive R peaks in an ECG signal as the feature vector. The length of the
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feature vectors is then reduced by using the principal component analysis (PCA) algorithm. Each of

these vectors is then used an input of the machine learning algorithms applied, namely Decision tree

regression, Support vector regression (SVR), Adaptive Boosting (AdaBoost) regression and Random

Forest Regression (RFR). Train and test data are separated by a 10-fold cross validation procedure.

Results: The best results were obtained with Adaptive Boosting, with estimation errors of 0.187 ±

4.173mmHg, 0.067 ± 4.911mmHg and −0.050 ± 8.901mmHg for DBP, MAP and SBP respectively. The

results are met by the AAMI standard for both MAP and DBP estimations but not for SBP estimation.

According to the BHS standard, the proposed algorithm for DBP estimation got grade A, whereas it got

grade B for estimation of MAP and got approximately grade C for SBP estimation.

Comments: The results seem to indicate that the proposed algorithm can be used for BP estimation.

However, the fact that measurements from the same subject can be present in both the training and test

set set may lead to over optimistic results, as it mimics a calibration procedure.

Figure 4.5: Block diagram of the cuffless BP estimation method proposed by Mousavi et al.

(Wang 2018) A Novel Neural Network Model for Blood Pressure Estimation Using Photoplethes-

mography without Electrocardiogram [36]

Purpose: To develop a method for estimating systolic and diastolic BP based only on a PPG signal,

using a multitaper method to obtain the spectral components of a PPG signal and combining them with

two morphological features of the PPG.

Methods: To train and test the proposed model, data was extracted from the MIMIC database. Namelly,

58,795 valid intervals of PPG signal (subject number is 72) and corresponding BP values for different

people and different time instances were used (70% of them for network training, 15% of them for vali-

dation, and 15% of them for testing). Spectral features were extracted from the PPG signals using the

multitaper method and two morphological features (systolic upstroke time (ST) and diastolic time (DT))

were also extracted. This resulted in a total of 22 parameters being used to are used to train the Artificial

Neural Network (ANN), which was performed using the Levenberg-Marquardt algorithm.

Results: The proposed method resulted in mean absolute error of 4.02 ± 2.79mmHg for systolic BP

and 2.27± 1.82mmHg for diastolic BP.
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Comments: The results meet the AAMI criteria regarding mean error and standard deviation. How-

ever, the algorithm was not tested in a sufficient number of subjects.

Figure 4.6: Block diagram of the cuffless BP estimation method proposed by Wang et al.

(Thambiraj2019) Noninvasive cuffless blood pressure estimation using pulse transit time, Wom-

ersley number, and photoplethysmogram intensity ratio [37]

Purpose: To develop a novel BP algorithm based on the Morgan and Kiley expression and using PTT,

PIR (which can echo the change in vasomotor tone), and the Womersley number (α), which reflects the

fluid flow with respect to viscous effects of the blood, for the improvement of accuracy in BP estimation.

Methods: The algorithm was evaluated with 42 healthy and 39 diseased subjects and two trials were

performed for each subject. In each trial ECG and PPG signals were recorded for 3 min in a seated

rest position and the PTT, PIR and alpha parameter were obtained as an average of the first 30 s of the

recording. The alpha parameter is derived from the values of blood viscosity, which in turn are found

from the PPG signal (considered a surrogate for the blood viscosity measurement). Pulse pressure (PP)

was then derived from PIR, PTT and the alpha parameter, and MAP, SBP and DBP were estimated

using the proposed model.

Results: Errors of 0.13±2.12, −0.10±1.20, −0.013±1.08 were obtained in the estimation of SBP, DBP

and MBP of healthy subjects’ and in diseased subjects the errors obtained were 0.23±2.30, −0.24±1.50,

−0.047± 0.070 for SBP, DBP and MAP, respectively.

Comment: Although the results meet the AAMI criteria, the reference blood pressure measurements

are not performed with a continuous noninvasive blood pressure system, but with a cuff-based device,

and one-to-one calibration is required.

Figure 4.7: Block diagram of the cuffless BP estimation method proposed by Thambiraj et al.
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(Su2018) Long-term Blood Pressure Prediction with Deep Recurrent Neural Networks [38]

Purpose: To propose a new method for arterial blood pressure estimation, focusing particularly on

proving the importance of modelling temporal dependencies in BP dynamics for accurate BP predic-

tion. To improve the accuracy of multi-day BP prediction, BP estimation is formulated as a sequence

prediction problem in which both the input and target are temporal sequences.

Methods: The architecture of the deep recurrent neural network (RNN) proposed as BP estimation

model is first defined. It consists of a bidirectional Long Short-Term Memory (LSTM) at the bottom layer,

and a stack of multi-layered LSTM with residual connections. The bidirectional structure was designed

to access larger-scale context information of input sequence. The residual connections allow gradients

in deep RNN to propagate more effectively. RNN models with 2, 3 and 4 layers were then evaluated

on both a static and multi-day continuous BP dataset. The input features correspond to handcrafted

features of ECG and PPG signals (PTTs, Heart rate, Reflection Index, Systolic Timespan, Up Time,

Systolic Volume and Diastolic Volume). Each training dataset was divided such that 70 % of the data

was used for training, 10 % for validation and 20 % for test. Finally, a comparison of the model proposed

with two pulse transit time models, support vector regression (SVR), decision tree, and Bayesian linear

regression models and Kalman filter model was performed.

Results: On the static continuous BP dataset, the best accuracy was obtained by the proposed 4-layer

deep RNN (DeepRNN-4L) model which achieves a RMSE of 3.73 and 2.43 for SBP and DBP prediction

respectively. On a multi-day BP dataset, the deep RNN achieved RMSE of 3.84, 5.25, 5.80 and 5.81

mmHg for the 1st day, 2nd day, 4th day and 6th month after the 1st day SBP prediction, and 1.80, 4.78,

5.0, 5.21 mmHg for corresponding DBP prediction.

Comments: Since the the mean error and standard deviation were not computed, it is not straightfor-

ward to compare the performance with other studies and the AAMI standard.

Figure 4.8: Block diagram of the cuffless BP estimation method proposed by Su et al.
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Table 4.3: Summary of the recent studies proposing methods for cuffless BP estimation. (* - studies found more relevant and which have been described in detail
in the previous sections)

Author

(Year)

Moda-

lities
Features Model/ Method Dataset

BP

Reference

Patient-

specific

Calibration

Lowest estimation

errors (mean±SD)

[mmHg]

Kachuee

et al.

(2017)* [7]

ECG,

PPG

(1) PAT features,

HR, AI, LASI,

IPA;

(2) Whole-Based

Features

Regularized Linear

Regression;

Decision Tree

Regression; SVM;

AdaBoost; RFR

942 subjects

(MIMIC II database)
ABP Optional

SBP: -0.06 ± 9.88

MBP: 0.16±5.25

DBP: 0.36±5.70

(No calibration)

Ding

et al.

(2017)* [22]

ECG,

PPG
PTT, PIR

SBP =MBP0 · PIR0
PIR

+

2
3
· PIR
PIR0

·
(

PTT0
PTT

)2

DBP =MBP0 · PIR0
PIR

−
1
3
· PIR
PIR0

·
(

PTT0
PTT

)2

14 hypertensive and

19 healthy subjects;
Finapres Yes

SBP: 1.17±5.72

DBP: 0.40±7.11

Miao

et al.

(2017)* [8]

ECG,

PPG

14 ECG/PPG

features
MLR; SVR

73 healthy subjects +

35 subjects (dynamic

experiment) + 10 subjects

(long-term experiment)

Finapres Yes
SBP: -0.001 ± 3.102

DBP: -0.004 ± 2.199

Xing

et al.

(2019)* [4]

PPG

19 SDPTG-based

and whole

based features

RFR
1249 subjects + 147

subjects for calibration tests

electronic

sphygmo-

manometer

Optional

Young group:

SBP: 0.45 ± 11.3

DBP: 0.31 ± 8.55

Older group:

SBP: -0.68 ± 14.1

DBP: 0.20 ± 9.0

(No calibration)

Ding

et al.

(2017)* [22]

ECG,

PPG
PTT, PIR

SBP = DBP0 · PIR0
PIR

+

PP0 · PIR
PIR0

·
(

PTT0
PTT

)2

DBP = DBP0 · PIR0
PIR

+

27 healthy subjects Finapres Yes

SBP: 0.37 ± 5.21

DBP: - 0.08 ± 4.06

MBP: - 0.18 ± 4.13

Mousavi

et al.

(2018) [35]*

PPG
PPG whole

based features

AdaBoost

regression

441 subjects

(MIMIC II database)
ABP No

SBP: -0.05 ± 8.90

MBP: 0.07 ± 4.91

DBP: 0.19 ± 4.17
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Wang et al.

(2018)* [36]
PPG

PPG Spectral and

Morphological

features

ANN

(one hidden layer)

72 subjects

(MIMIC database)
ABP No

SBP: 4.02 ± 2.79

DBP: 2.27 ± 1.82

Thambiraj

et al.

(2019)* [37]

ECG,

PPG
PTT, PIR, α

42 healthy subjects;

39 diseased subjects

Omron

BP monitor
Yes

Healthy:

SBP: 0.13 ± 2.12,

DBP: -0.10 ± 1.20

MBP: -0.013 ± 1.08

Diseased:

SBP: 0.23 ± 2.30

DBP: -0.24 ± 1.50

MBP: -0.047 ± 0.070

Su et al.

(2018)* [38]

ECG,

PPG

7 ECG/PPG

features

Four-layer deep

RNN (LSTM)

84 healthy subjects + 12

healthy subjects for multi-

day experiments

Finapres No

SBP:

3.73 mmHg (RMSE)

DBP:

2.43 mmHg (RMSE)

Tanveer

et al.

(2019) [39]

ECG,

PPG

PTT and

morphological

features from

ECG and PPG

Waveform based

hierarchical

Artificial Neural

Network–Long

Short Term Memory

(ANN-LSTM) model

39 subjects

(MIMIC I database)
ABP Yes

SBP: 0.0159 ± 1.2630

DBP: 0.0018 ± 0.7280

Lin et al.

(2018) [40]

ECG,

PPG

(1) 19 PPG

indicators

and PTT

(2) 19 PPG

indicators

linear regression

algorithm
22 healthy subjects Finapres Yes

SBP: 2.75 ± 7.34

DBP: 2.71 ± 4.72

With (PPG + PTT)-

based method

Xing et al.

(2016) [41]
PPG

Spectrum

amplitude

and phase of PPG

ANN with

one hidden layer

69 patients

(MIMIC II database)

Omron

HEM-7051

BP monitor

No
SBP: 0.06 ± 7.08

DBP: 0.01 ± 4.66
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Sharifi

et al.

(2019) [42]

ECG,

PPG
PTT and PIR

regression by use

of MARS method

MIMIC II database

(3663 records)
ABP Yes

DBP: -0.09 ± 5.21

MBP: -0.16 ± 4.6

SBP: -0.29 ± 9.1

Chen

et al.

(2018) [43]

ECG,

PPG

heart-rate power

spectrum ratio

(HPSR),

PTT and PIR

SBP = (SBP0 −DBP0) ·
(

PTT0
PTT

)2
+

DBP0 · ln PIR0
HPSR0

· ln PIR
HPSR

+PIR+ PTTV

DBP = DBP0 · ln PIR0
HPSR0

· ln PIR
HPSR

+

PIRV

60 subjects (29

hypertensive and

31 normotensive)

mercury

sphygmo-

manometer

Yes

Hypertensive:

SBP: 0.73 ± 10.04

DBP: 0.90 ± 7.10

Normotensive:

SBP: 0.54 ± 7.52

DBP: 0.82 ± 6.20

Lin et al.

(2017) [44]

PPG,

ECG
PTT and 1st dPIR

SBP = a · PTT+

b · 1
1stdPIR

+ c

DBP = d · PTT+

e · 1
1stdPIR

+ f

22 healthy subjects Finapres Yes
SBP: 3.22 ± 8.02

DBP: 3.13 ± 4.82

Khalid

et al.

(2018) [45]

PPG

pulse area,

pulse rising

time and

width 25%

regression tree,

MLR and SVM

32 cases from the

University of

Queensland vital sign

dataset

noninvasive

blood

pressure

—–
SBP: -0.1±6.5

DBP: -0.6±5.2

Radha

et al.

(2018) [30]

PPG,

accele-

rometer

Activity features,

Heart rate

variability,

PPG morphology

features

sequence-to-sequence

model:

perceptron + LSTM

120 subjects
ambulatory

BP monitor
Yes

SBP: 5.65 mmHg

(RMSE)
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5
Blood Pressure Estimation Methods

This chapter describes the methods used in development of the blood pressure estimation algorithm.

This includes data description and selection, signal processing, feature extraction and regression algo-

rithm. The blood pressure estimation method developed, inspired by the literature studies described in

the previous section, was first applied to the MIMIC II database data. On a second step, this method

was adapted to be applied to the WARD data.

5.1 MIMIC Database

5.1.1 Dataset

The data used are from the Multi-Parameter Intelligent Monitoring for Intensive Care II (MIMIC II)

database. MIMIC II is a freely available database that contains data from more than 25000 ICU patients

who stayed in critical care units of the Beth Israel Deaconess Medical Center in Boston, Massachusetts.

Data were collected over a seven year period, beginning in 2001 [46]. The database contains two types

of data, namely, clinical data stored in a relational database and waveform data recorded by the bed-
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side monitors. The clinical database contains diverse information, such as hourly measurements of

vital signs, lab test results, medical procedures, medications, mortality information, among others. The

waveform data (MIMIC-II Waveform Database) contains records from a subset of patients and includes

physiological signals such as electrocardiogram (ECG), photopletysmogram (PPG) and intra-arterial

blood pressure (ABP). Only part of the waveform data have been matched to the clinical data in the

relational database [46].

The particular version of the database used (MIMIC II Waveform Database Matched Subset, version

3.1, which can be found at https://archive.physionet.org/physiobank/database/ mimic2wdb/matched/)

contains 4,897 waveform records and 5,266 numerics records matched with 2,809 MIMIC II Clinical

Database records. Not all signals are available for all of the subjects in this subset. Therefore, records

containing simultaneous PPG, ABP and ECG lead II waveforms with minimum durations of 10 minutes

were selected.

Since the data represent realistic ICU measurements, noise, missing data gaps and artifacts are

commonly encountered, due to patient movement, sensor degradation, transmission errors, electro-

magnetic interference and human error [46]. Liang et al. [6] have analysed ABP, ECG and PPG records

from the MIMIC II database and identified abnormal (low quality) signals, as shown in figure 5.1, which

were excluded from the present analysis. However, since in this work a more recent version of the

database, containing more records, was used, there are still abnormal signals present in the analysed

subset, which for the most part should be excluded by the pre-processing steps. The records selected

are from a total of 146 patients and have durations from 10 minutes to 1 hour. The distribution of systolic

and diastolic blood pressure records is shown in figure 5.2.

The authors of the database also mention the possibility of errors in the data matching and alignment.

In particular, the waveform data may contain unknown inter-channel delays, which may not be constant

in a given record [46]. This makes the extraction of pulse transit times unreliable in most cases, which

has also been demonstrated by Liang et al [6].
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Figure 5.1: Typical cases of abnormal waveforms. An “abnormal” ABP signal refers to an ABP signal where the
systolic and diastolic waves cannot be distinguished, or their morphologies are highly distorted; An
“abnormal” ECG signal refers to an ECG signal where the morphology of the QRS waves is highly
distorted; An “abnormal” PPG signal refers to a PPG signal where the systolic and diastolic waves
cannot be distinguished, their morphologies are highly distorted, and heart rate cannot be determined.
Adapted from [6]

Figure 5.2: Distribution of parameters in the records selected from the MIMIC II database: systolic blood pressure
(SBP) and diastolic blood pressure (DBP)

The steps implemented to estimate blood pressure from the data extracted from the MIMIC II database

are described in figure 5.3, and will be described in detail in the following sections.
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Figure 5.3: Block diagram of the proposed cuffless BP estimation method, where SBP and DBP features used as
label are extracted from the ABP signal. The steps in blocks (a), (b) and (c) are described in sections
5.1.3, 5.1.4 and 5.3, respectively.

5.1.2 State of the art method implementation

To establish a basis for comparison, the method by Kachuee et al. [7] described in the previous chapter

was implemented. This method was selected based on performance results, number of subjects in which

they were evaluated and the absence of calibration. This paper suggests two different implementations,

as mentioned in section 4.4.2. In the first, features extracted from the PPG and ECG signals are based

on physiological parameters. On the alternative, a whole-based representation of vital signals is used.

The first was chosen since it yielded better BP estimation results. The model was trained and tested on

the MIMIC II data described in the previous section. The Random Forest Regression was the algorithm

selected, as it led to the best estimation results in the paper, and feature vector used as input contained

the features described in figure 5.7 and table 5.2.

5.1.3 Pre-processing

The ABP, PPG and ECG signals are first resampled from 125 Hz to 1000Hz using linear interpolation, as

illustrated in figure 5.4. The PPG and ECG signals are then filtered and denoised using discrete wavelet

transform (DWT), following a similar method to [7]. The signal is decomposed to level 10 using DWT with

the Daubechies 8 (db8) mother wavelet. Both low frequencies (from 0 to 0.98Hz) and high frequencies

(from 250 to 500 Hz) are removed by zeroing the respective decomposition coefficients, illustrated in

figure 5.5. Wavelet denoising is then performed on the remaining coefficients using MATLAB function

wdenoise, which consists of three main steps [47]:

• Decomposition — Compute the wavelet decomposition of the signal at level 10.

• Detail coefficients thresholding — For each level from 1 to 10, select a threshold and apply soft

thresholding to the detail coefficients. The threshold selection rule is based on Stein’s Unbiased

Estimate of Risk (SURE), a quadratic loss function. After an estimate of risk is obtained for a

particular threshold value, t, the algorithm then minimizes the risks in t to yield a threshold value

[47].
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• Reconstruction — Compute wavelet reconstruction based on the original approximation coeffi-

cients of level 10 and the modified detail coefficients of levels from 1 to 10.

An example of the filtering process result is illustrated in figure 5.6
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Figure 5.4: Example of the result of the resampling process of the ABP, ECG and PPG signals. The original data
points, sampled at a 125Hz frequency, are plotted in orange and the resulting points, sampled at a
1000Hz frequency, in grey.

Figure 5.5: Wavelet decomposition structure of the PPG and ECG signals. X represents the data array being pre-
processed, cDi are the level i detail coefficients and cAi are the level i approximation coefficients. The
coefficients and corresponding frequencies highlighted in orange are the ones being removed by the
pre-processing algorithm
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Figure 5.6: Example of the result of the filtering process in the ECG (left) and PPG (right) signals. The original
signals are plotted in blue and the filtered signals in grey.
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BP signal cleaning

Systolic blood pressure (SBP) and diastolic blood pressure (DBP) are computed for each heart cycle.

Abnormal SBP and DBP values are discarded, using a method based on the signal abnormality index

(SAI) proposed by Sun et al [11]. The BP data exclusion criteria are shown in table 5.1. The mean

arterial pressure (MAP) is defined as:

MAP =
2DBP + SBP

3
(5.1)

Table 5.1: Features computed from the ABP signal and respective abnormality criteria. Adapted from Sun et al. [11]

Feature Description Abnormality Criteria
SBP Systolic blood pressure SBP > 300mmHg
DBP Diastolic blood pressure DBP < 20mmHg
PP Pulse pressure PP < 20mmHg
MAP Mean arterial pressure MAP < 30mmHg or MAP > 200mmHg

T Duration of each beat
f Heart rate (60/T) f < 20 or f > 200bpm

∆SBP SBP [k]− SBP [k − 1] |∆SBP | > 20mmHg
∆DBP DBP [k]−DBP [k − 1] |∆DBP | > 20mmHg

∆T T [k]− T [k − 1] |∆T | > 2/3sec

PPG Signal Cleaning

The PPG signal quality is evaluated based on a Signal Quality Index proposed by Elgendi [48]. Elgendi

compared eight different signal quality indices, and for lengths of PPG waveforms between 2 s and

30 s, the skewness Signal Quality Index (sSQI) method dementrated better performance than others.

Skewness is a measure of the symmetry of a probability distribution and sSQI is is defined as:

SSQI = 1/N

N∑
i=i

[xi − µ̂x/σ]
3 (5.2)

where µ̂x/ and σ are the empirical estimate of the mean and standard deviation of xi, respectively, and

N is the number of samples in the PPG signal [48] Using this method, the classifications of excellent

waveforms versus acceptable or unfit were best when 5s was used as the window of the PPG waveform

segment. Therefore, the sSQI is computed for each 5 second segment of the PPG signal. Segments

with a value below zero are discarded. Flat segments where no signal is present are also removed.
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5.1.4 Feature Extraction

The methodology followed to estimate blood pressure relies on the extraction of several features from the

ECG and PPG signals, which have been used in previous studies with the same goal. All the features are

described in tables 5.2, 5.3 and 5.4 and in figures 5.7, 5.8, 5.9 and 5.10. While many of these parameters

are proposed in literature without explicit meaning, others have physiological meanings which have been

described.

Pulse arrival time (PAT) corresponds to the time delay between the electrical activity of the heart and

a peripheral pulse measured in a peripheral point in the arterial tree. [17]. This metric is defined in table

5.2 and figure 5.7.

Large artery stiffness index (LASI) is related to the transit time of pressure waves from the root of the

subclavian artery to the apparent site of reflection and back to the subclavian artery [5]. This metric is

computed as the time difference between systolic peak and inflection point, as defined in table 5.2 and

figure 5.7.

The augmentation pressure (AG), measured by the augmentation index (AI), is the measure of the

contribution that the wave reflection makes to the SBP, and it is obtained by measuring the reflected

wave coming from the arterial tree periphery to the centre [5]. This metric is computed as the amplitude

ratio of the inflection point to the systolic peak, as defined in table 5.2 and figure 5.7.

Table 5.2: Features computed from the PPG and ECG for each heart cycle

Feature Description
PATf time interval between the ECG R-peak and the PPG foot

PATd time interval between the ECG R-peak and the PPG
derivative maximum

PATp time interval between the ECG R-peak and the PPG
systolic peak

RR interval Time interval between consecutive ECG R peaks

AI (Augmentation Index)
ratio of the height of the diastolic peak (x) to the systolic
upeak (y) in the pulse
AI = x

y

LASI
(Large Artery Stiffness Index)

time delay between the systolic peak and the point of
inflection

S1 Area under the curve (AUC) from start of cycle to max
derivative point

S2 AUC from max derivative point to systolic peak
S3 AUC from systolic peak to diastolic rise
S4 AUC from diastolic rise to end of cycle
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Figure 5.7: PPG and ECG features. The features are further described in table 5.2. Adapted from [7]

Systolic time, which is also known as crest time, has been proved useful for cardiovascular disease

classification [5]. It is computed as the time difference between systolic peak and the PPG foot, as

defined in table 5.3 and figure 5.8. The PPG characteristic value (PPGk) in table 5.3 is defined as

PPGk =
pm − pf
ps − pf

(5.3)

where pm = 1
T

∫
ptdt and pt gives the values of one cycle of the PPG signal as a function of time t,

T is the duration of the cycle, ps is the value at the systolic peak and pf is the value at the foot of the

waveform. PPGk was found to be a relevant feature for BP estimation by Miao et al. [8].

Figure 5.8: PPG signal (top), PPG signal derivative (middle) and PPG signal second derivative (bottom) with fea-
tures identified: f5 – Systolic time; f6 – dPPGHeight; f7 – dPPGWidth; f8 – ppgSecondDeriHeight; f9 –
sdPPGPeakHeight; f10 – sdPPGFootHeight; f11 – sdPPGWidth; f11 – sdPPGDeriWidth; f12 – PIR; f13
– Diastolic time, adapted from [8]

The second derivative of the PPG signal (sdPPG), an indicator of the acceleration of the blood in the

finger, also contains commonly used features. The sdPPG signals is characterized by several peaks and
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valleys respectively designated as a-wave (early systolic positive wave), b-wave (early systolic negative

wave), c-wave (late systolic reincreasing wave), d-wave (late systolic redecreasing wave) and e-wave

(early diastolic positive wave) [5]. The e-wave represents the dicrotic notch [5]. Analysis is usually

performed in terms of the amplitudes of the b-, c-, d-, and e-waves with respect to the a-wave amplitude,

illustrated in figure 5.9. The ratios computed are described in table 5.2.

Figure 5.9: Waves in the PPG signal second derivative (sdPPG), namely a-wave (early systolic positive wave),
b-wave (early systolic negative wave), c-wave (late systolic reincreasing wave), d-wave (late systolic
redecreasing wave) and e-wave (early diastolic positive wave). The e-wave represents the dicrotic
notch [5]

Table 5.3: Features computed from the PPG for each heart cycle

Feature Description
Systolic time Ascending time from PPG foot to PPG peak
dPPGHeight Intensity of the first derivate of the PPG waveform
dPPGWidth Time width of the first derivate of the PPG waveform

sdPPGHeight Total intensity of the second derivate of the PPG
waveform

sdPPGPeakHeight Peak intensity of the second derivate of the PPG waveform
sdPPGFootHeight Foot intensity of the second derivate PPG waveform
ppgSecondDeriWidth Time width of the second derivate of the PPG waveform
PIR Ratio of PPG peak intensity to PPG bottom intensity
Diastolic time Descending time from PPG peak to PPG foot
PPGk PPG characteristic value

b/a
ratio of the b-wave to the a-wave in the PPG
second derivative (sdPPG)

c/a ratio of the c-wave to the a-wave in the sdPPG signal
d/a ratio of the d-wave to the a-wave in the sdPPG signal
e/a ratio of the e-wave to the a-wave in the sdPPG signal

Finally, features that proved useful for risk stratification of hypertension on a study by Liang et al.

[12] where also computed and are described in table 5.4 and figure 5.10, together with two extra area

features.
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Table 5.4: 11 features computed from the PPG, dPPG and sdPPG waveforms for each heart cycle. All the features
except area1 and area2 are selected based on the study from Liang et al. [12]. The S, O, w, a, b, c and
d variables with respective subscripts are illustrated in figure 5.10

Feature Description
d amplitude of the d wave in the sdPPG signal

powerAreaRatio1

ratio of the quadratic sum of the curve point from the S+1 point to c−1

point in the dPPG cycle to the quadratic sum of the dPPG cycle curve point(︷ ︸︸ ︷
S+1c−1 /

︷ ︸︸ ︷
O+1O+1

)

powerAreaRatio2

ratio of the quadratic sum of the curve point from the S+1 point to d−1

point in the dPPG cycle to the quadratic sum of the dPPG cycle curve point(︷ ︸︸ ︷
S+1d−1 /

︷ ︸︸ ︷
O+1O+1

)
amplitudeRatio1 ratio of the point in the PPG cycle corresponding to the c-wave peak

to the systolic peak amplitude (S) (c−2/S)

amplitudeRatio2 ratio of the point in the dPPG cycle corresponding to the c-wave peak
to the max derivative point (w) (c−1/w)

amplitudeRatio3 ((b− c− d)/a)

timeSpan1
time span between the systolic peak (S) and the c−2 point in the PPG
cycle

(
Sc−2

)
slope1 slope from the b−2 point to the d−2 point

(
(b−2 − d−2)/b−2d−2

)
slope2 slope from the systolic peak (S) to the d−2 point

(
(S − c−2)/Sc−2

)
area1 Area under the curve (AUC) from start of cycle to systolic peak (S1+S2)
area2 AUC from systolic peak to end of cycle (S3+S4)

Figure 5.10: Definition of the fiductial points in PPG and its derivatives (dPPG and sdPPG) used to compute the
features in table 5.4 and respective mapping to PPG, dPPG and sdPPG. S correspond to the systolic
peak, O is PPG foot and w is the max derivative point ( (adapted from [9]

The feature extraction process requires several substeps, as illustrated in figure 5.11, which will be

described bellow.

Figure 5.11: Feature extraction process, corresponding to step (b) in the block diagram in figure 5.3
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Beats Identification

Systolic peaks are first computed using an automatic multiscale-based peak detection (AMPD) algorithm

[49]. The next step is to identify the points that mark the beginning of the PPG cycle (PPG foot), which

are defined as the minimum value between two consecutive systolic peaks.

Beats Selection

Since some parts of the signal may contain low quality PPG cycles, a method to detect and remove

them is necessary.

For this process, the signal is divided in 1 min segments, and the following steps are followed:

• Template creation: a template is computed as average of 30 seconds of beats (T1); The beats of

that 30 seconds window that have a correlation coefficient lower than 0.85 with the template are

excluded

– If more than 1
4 of the beats are excluded, the template is not used (If a previous template is

available it is used instead; Else, a new one is computed from the next 30 seconds)

– Otherwise, a new template is computed with the remaining beats (T2);

• Template comparison: All the beats in the 1 minute window are compared to the template and

if the correlation coefficient is lower than 0.95 they are excluded An example of the result of this

process is shown in figure 5.12.

Figure 5.12: PPG segment with systolic peaks and the begging of each PPG cycle (PPG foot) identified. The cycles
marked with a blue dot were excluded in the beat selection process, whereas the green marked cycles
are considered to have good quality for feature extraction.

Computing features

To compute the features described above, several fiducial points need to be computed from the ECG,

PPG, first derivative of the PPG (dPPG) and sdPPG signals. These include the R peaks in the ECG,
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peaks in the ECG, which are detected using the Pan-Thompkins algorithm, the PPG foot, the systolic

peaks, the max derivative points (dPPG maximum) and inflection points in the PPG signal.

The max derivative point is defined as the time value with greater gradient between the cycle start

and the systolic peak.

The inflection point is defined as the largest peak in the PPG gradient between the systolic peak and

the start of the next cycle. An example of the points computed is shown in figure 5.13.

Finally, to avoid the effects of noise, all features are averaged over 10 seconds segments, including

blood pressure labels, so that only one value of each systolic blood pressure (SBP) and diastolic blood

pressure (DBP) is estimated for each segment.

Figure 5.13: Example of PPG, ECG and ABP points identification. In ABP the systolic (SBP) and diastolic (DBP)
BP values are identified. In the ECG signal, the R peaks are identified and in the PPG signal, the
PPG foot, Systolic Peak, maximum of the first derivative (Max Derivative point) and Inflection point are
identified. In the PPG first derivative signal, the points identified to detect the maximum of the first
derivative (Max Derivative point) and Inflection point in the PPG signal are also shown.

5.2 WARD Data

In the WARD project, several physiological signals are acquired. ECG, PPG and blood pressure are the

particular ones of interest to this project so the acquisition process and characteristics of these signals

is described bellow.
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ECG

The ECG signal acquisition is performed with Lifetouch Blue. The Lifetouch Blue is a continuous cardiac

sensor that monitors the patient ECG with a sampling frequency of 1000 Hz and performs real time

streaming of data via bluetooth. Before transmission, it performs signal processing consisting of QRS

complexes detection and estimation of RRI, HR and respiration rate. QRS detection is based on a

modified version of the open source ECG algorithm by EP limited. The raw ECG-signal is downsampled

before streaming, resulting in a signal sampled at 100 Hz, and it is only transmitted for around 10

seconds each minute.

PPG

The PPG signal is acquired by Nonin WristOx2 pulse oximeter, which also provides oxygen saturation

and pulse rate measurements. As with ECG, raw-PPG is not transmitted continuously, but only for

about 10 seconds each minute, and its sampling frequency is 75 Hz. Part of the PPG data analysed,

corresponding to 231 subjects, was acquired with 8-bit ADC, whereas data corresponding to other 108

was acquired with 12-bit ADC. By applying the BP estimation method to both data it will be possible to

infer about the importance of data quality on the performance of the estimation method.

Blood Pressure

Since invasive ABP measurements are not recorded in the context of the WARD project, standard cuff-

based blood pressure measurements are used instead as label for the blood pressure estimation algo-

rithm. Blood pressure is recorded with TM2441 monitor.

TM2441 is an ambulatory blood pressure monitor also suitable for spot measurements in wards. It

is a typical cuff based device, as it uses an oscillometric measurement method. It has been validated

in accordance with ISO810601 protocol, and the pressure measurement accuracy is ±3mmHg. The

range of measurement is 60 to 280 mmHg for systolic blood pressure and 30 to 160 mmHg for diastolic

blood pressure.

In the WARD system, blood pressure is measured every 15, 30 or 60 minutes, and ECG and PPG

signals are acquired continuously for 10 seconds each minute. Therefore, it was first necessary to select

the ECG and PPG measurements from the same minute in which the blood pressure was measured. If

any of the signals is missing, the measurement is rejected. The distribution of blood pressure values in

the records selected from the WARD data

The steps implemented to estimate blood pressure from the WARD data are described in figure 5.14,

and will be described in detail in the following sections.
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Figure 5.14: Block diagram of the proposed cuffless BP estimation method. Point measurements BP measure-
ments obtained using a standard BP monitor to provide SBP and DBP values used as label. The
steps in blocks (a), (b) and (c) are described in sections 5.2.1, 5.2.2 and 5.3, respectively.

5.2.1 Pre-processing

The PPG signal acquired by the Nonin WristOx2 pulse oximeter is often saturated at the maximum value

so a cubic spline interpolation was performed on saturated signals, using a a window of 100 ms before

and after the saturation zone. This process is illustrated in figure 5.15.

Figure 5.15: PPG signal reconstruction illustration. The blue circles (◦) represent the samples 100ms sections
before and after the saturation area and � the reconstructed peaks samples.

The PPG and ECG signals are then resampled from 75Hz and 100Hz, respectively, to 1000Hz using

linear interpolation. The PPG and ECG signals are then filtered and denoised using discrete wavelet

decomposition (DWT), following the method described is section 5.1.3. The PPG signal sections with

low quality are also rejected according to the sSQI value, as described in section 5.1.3. Since the SBP

and DBP values are obtained from a certified device, no pre-processing is necessary.

5.2.2 Feature Extraction

The features extracted are the same as those described in section 5.1.4, and a similar feature extraction

process is followed, as explained in in the following subsections.
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Beats Identification

Systolic peaks are computed using automatic multiscale-based peak detection (AMPD) algorithm [49]

and the points that mark the beginning of the PPG cycle (PPG foot) are then defined as the minimum

value between two consecutive systolic peaks.

Beats Selection

Since in the WARD data, the signals are not continuous, a modified approach is performed to identify

noisy PPG cycles:

• Select last 30 seconds of measurements prior to BP measurement. An example is shown in figure

5.16.

• Template creation: a template is computed as average of the 30 seconds of beats (T1); The beats

of that 30 seconds window that have a correlation coefficient lower than 0.85 with the template are

excluded

– If more than 1
4 of the beats are excluded, the template is not used and a new one is computed

from the previous 30 seconds of measurements

– Otherwise, a new template is computed with the remaining beats (T2);

• Template comparison: All the beats in the 1 minute window are compared to the template and if

the correlation coefficient is lower than 0.95 they are excluded

Figure 5.16: Template computed from WARD PPG measurements. Each color corresponds to a continuous mea-
surement of the PPG signal (about 10 seconds) acquired in a distinct minute using the Nonin WristOx2
pulse oximeter.

Computing features

The ECG, PPG, dPPG and sdPPG signals fiductial points defined in section 5.1.4 are then computed.

These list of points computed is as follows:
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• R peaks in the ECG waveform

• PPG foot points in the PPG waveform

• Systolic peaks in the PPG waveform

• Max Derivative points in the PPG waveform

• Inflection points in the PPG waveform

Finally, to avoid the effects of noise, all features are averaged over the segments of around 10

seconds corresponding to the respective blood pressure label.

5.3 Regression algorithm

Random Forest

Random forests are an ensemble method which can be used for both classification and regression

problems. The algorithm is based on a collection of decision trees.

Decision Trees are a supervised learning method used for classification and regression. The goal

of the method is to split the training data into smaller subsets, in a way that the label variables in each

subset are as homogeneous as possible. In each subset, the predictor is assumed to be constant and

is defined as the most voted class [50].

In order to split the data, simple decision rules are learned from the data features. A tree is trained

by choosing the best feature to split each node, starting from the root. The best feature to split node m

is defined as the one that maximizes the impurity drop of the children nodes, with respect to node m.

Several impurity measures are available, such as entropy and Gini index. The one used in this work is

the Gini index, according to which the impurity of node m is defined as:

i(m) = −
K∑
k=1

P (k|m)(1− P (k|m)) (5.4)

where P (k|m) is the proportion of class k observations in node m [50].

In random forests, each tree in the ensemble is built from a sample of the training set generated by

bootstrap, that is, by sampling the training set with replacement. If k decision trees are generated, the

random forest predictor is then formed by taking the average over k of the trees [51]. When splitting

each node during the construction of a tree, the best split is found from a random subset of features.

In this implementation, the number of features in the random subset is equal to one third of the total

number of features. The purpose of these two sources of randomness is to decrease the variance of the

forest estimator, since individual decision trees typically exhibit high variance and tend to overfit. The
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randomness injected should create decision trees with prediction errors that can be cancelled out by

taking an average of the respective predictions.

The Random Forest Regression algorithm was chosen for this implementation due to its robustness

to noisy features and outliers. In addition, it has yield better results than other regression algorithms in

studies which implemented several methods for comparison, such as those by Kachuee et al. [7] and

Monte-Moreno [52]. Two estimation models were generated, by setting the training targets as SBP and

DBP separately. A bagged regression tree algorithm was then used to generate a model, with the min

leaf size set to 10 and the number of predictors to 100.

5.4 Model Evaluation

Since the amount of data used is limited, a 7-fold split was performed to evaluate the model. This is

a trade-off between the typical test and train set split and a leave-one-subject-out (Leave One Subject

Out (LOSO)) experiment. The latter consists of, in each of n iterations (n = the number of subjects), using

the data of n-1 subjects for training, while the data of the left out subject is reserved for testing [53]. The

advantages of this method is that the results should not depend on the split choice, which may lead to

particularly optimistic or pessimistic results [53]. On the other hand, it highly increases computational

complexity. Therefore, the data was instead separated in 7 groups, ensuring that data from each subject

was only present in one of the groups. The model was then trained with 6 of the groups created and

tested on the remaining group. This procedure is repeated 7 times, allowing all the data to be used for

testing.

The agreement of estimated BP with the reference BP was evaluated using scatter plots, Bland–Altman

plots, commonly used metrics such as the mean error, mean absolute error and root mean square error

and blood pressure standards.

Bland-Altman plots

The Bland-Altman plot describes the agreement between two quantitative measurements, which in this

case correspond to the true and estimated blood pressure measurements. It consists of a scatter plot

where the difference of the two measurements is plotted against their mean value. Its analysis allows

the quantification of the agreement between two measurements by studying the mean difference and

constructing an agreement interval, within which 95% of the differences between the estimated and true

blood pressure measurements fall.
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Metrics

The mean error (ME), mean absolute error (Mean Absolute Error (MAE)) and root mean square error

(Root Mean Square Error (RMSE)) are respectively defined as:

ME =
1

n

n∑
i=1

y − y∗ (5.5)

MAE =
1

n

n∑
i=1

|y − y∗| (5.6)

RMSE =

√√√√ 1

n

n∑
i=1

(y − y∗)
2 (5.7)

where n is the number of instances, y the true BP value and y∗ is the estimated value.

Blood pressure measurement standards

Performance was also evaluated based on the Advancement of Medical Instrumentation (AAMI) stan-

dard defined in section 4.4.2. To evaluate the model according to the standard, shown in table 4.1, it

was also necessary to compute the standard deviation (STD) of the ME.
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6
Blood Pressure Estimation Results

6.1 State of the art method implementation

The method implemented for comparison was trained on the 146 subjects from the MIMIC-II database.

As observed in table 6.1, the results obtained were not as good as those implemented by Kachuee et.

al [7]. The main reason behind this is that the parameter-based method, which has been implemented,

is not suitable for signals with abnormal morphologies, making the extraction of physiological parameters

unreliable in these cases. However, this study does not disclaim how the unsuitable signals are removed,

so in the present implementation all the data described in section 5.1.1 were used. It also does not

describe any method to reject noisy parts of the signals, for which attempting to extract features will lead

to abnormal values.

Table 6.1: Results of implementing the state of the art method for cufless BP estimation by Kachuee et al. [7]

ME (mmHg) STD (mmHg) Subjects
Kachuee [7] DBP 0.36 5.70 942

SBP -0.06 9.88 942
Implemented Version DBP -1.3519 10.7213 98

SBP 2.8224 21.9617 98
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6.2 MIMIC II database

6.2.1 Total dataset

On a first step, the model was trained and tested on the total data extracted from 146 subjects from the

MIMIC database using the 7-fold cross validation process described in the previous chapter. The data

was first trained using only the 10 features described in [7] and in table 5.2 and figure 5.7. On a second

stage including additional features inspired by other literature studies and physiological parameters that

can be extracted from the PPG signal, namely those described in table 5.3. All the results are presented

in table 6.2. All the performance metrics except the RMSE slighly decreased (ME, STD and MAE),

pointing that including these extra features improves the algorithm performance. In addition, an example

of feature importance for the 24-features model is also presented in figure 6.2.

When comparing the STD value for DBP in table 6.2 (13.35 mmHg) to that in the implemented version

of the algorithm by Kachuee et al., in table 6.1 (10.72 mmHg), an increase deviation is observed, which

is due to the fact that in the original algorithm, only DBP values in the range 60mmHg ≥ DBP ≥

130mmHg are considered, which is a limitation.

Table 6.2: Results of implementing the blood pressure estimation method developed, described in chapter 5, using
the data obtained from the MIMIC II database

ME STD MAE RMSE
(mmHg) (mmHg) (mmHg) (mmHg)

10 features DBP 0.76 13.35 10.92 13.52
(table 5.2) SBP 1.22 19.92 16.52 20.30
24 features DBP 0.48 12.76 10.81 13.55
(tables 5.2 and 5.3) SBP 1.13 19.53 16.63 20.32

Figure 6.1: Bland-Altman plot for SBP and DBP estimation using the 24-features model on 146 subjects data from
the MIMIC II database

53



Figure 6.2: Feature importance for two of the SBP and DBP estimation models in the 7-fold training and testing
procedure for using the 24-features model on 146 subjects data from the MIMIC II database. The
features correspond to those described in tables 5.2 and 5.4

6.2.2 Good Quality Subset

Although the method developed is able to identify noisy sections of signals, it does not identify the

PPG signal portions which do not have the typical shape, and the second wave and dichrotic notch are

not detectable. This typically occurs in older patients, due to the increased artery stiffness, which are

commonly monitored in the general ward. An example of this type of PPG signal is shown if figure 6.5b.

It can be observed that there is no prominent maximum between two consecutive Max derivative points

is the dPPG signal in figure 6.5b. Therefore, a substudy was conducted by training and testing the model

on a small subset of data from 21 subjects that were visually considered to have good quality for feature

extraction, as the one shown in figure 6.5a. The distribution of parameters in this subset is shown in

figure 6.3. The model was trained using the LOSO approach described in the previous chapter, due to

the reduced number of subjects present in the subset.

The model was trained with the initial 10 features in table 5.2, with both those features added to the

ones in table 5.3 (the 24 feature model used for the total dataset) and with the total 35 features from
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tables 5.2, 5.3 and 5.4. The results obtained are shown in table 6.3 and the Bland-Altman plots in figure

6.4 for the best performing method, with 24 features. It was observed that the 36 features did not result in

a significant improvement compared to the 24 features model, so it was not applied to the total dataset.

Figure 6.3: Distribution of parameters for 21 subjects: systolic blood pressure (SBP) and diastolic blood pressure
(DBP)

Table 6.3: Results of implementing the blood pressure estimation method developed, described in chapter 5, using
a good quality subset of data obtained from the MIMIC II database

ME STD MAE RMSE
(mmHg) (mmHg) (mmHg) (mmHg)

10 features DBP 11.55 6.34 15.03 16.18
(table 5.2) SBP 0.51 9.27 20.58 22.44
24 features DBP 5.20 5.13 10.61 11.82
(tables 5.2 and 5.3) SBP 1.70 7.98 17.38 19.18
35 features DBP 6.25 5.63 11.08 12.40
(tables 5.2, 5.3 and 5.2) SBP 0.27 7.92 17.72 19.46
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Figure 6.4: Bland-Altman plot for SBP and DBP estimation using the 24-features model on 21 subjects data from
the MIMIC II database
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Figure 6.5: Patient records segment containing ABP, ECG and PPG. The first derivative of the PPG signal is also
displayed, showing the peaks corresponding to the Inflection point and Max derivative point, the maxi-
mum of the first derivative in each PPG cycle; (a) good quality segment, in which the dichrotic notch in
the PPG signal is easily detected. (b) abnormal record, in which the dichrotic notch in the PPG signal
is not easily distinguished.
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6.3 WARD data

The outcomes of applying the model to the data collected by the WARD monitoring system can only be

qualitatively described, as unpublished data from the WARD patient cohorts has been used. The same

performance metrics used in the MIMIC II results evaluation were also computed (namely, ME, STD,

MAE and RMSE) and the values were comparable to those obtained in the total dataset from the MIMIC

II database. As in the total MIMIC II dataset, the STDs of the estimation errors do not comply with the

AAMI sandard for SBP and DBP estimation. However, the PPG data with higher resolution (12 bit ADC)

allowed improved results compared to the PPG data with lower resolution (8 bit ADC), as expected. In

both data sets the estimation results are poorer for the extreme values (low and high blood pressure).

The application to the WARD data of the data selection and cleaning procedures, described in the

previous chapter, resulted in a large decrease in the number of measurements available for training and

testing the BP estimation algorithm. In particular, the available measurements from the lower resolution

subset decreased to about 12 % of the initial number of measurements. For the higher resolution

subset, the available measurements decreased to about 20 %. This means that in the best case, it

would be possible to estimate blood pressure about 12 times per hour (20 % of the minute-based signal

acquisitions).
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7
Discussion

In this chapter, the results obtained are discussed and compared with state of the art studies. Possible

sources of error are also presented and their implications are discussed.

7.1 Available data

One of the main factors influencing the results of the study conducted is the quality of the available data.

Therefore, the characteristics of the data available and their implications are discussed in this section.

7.1.1 MIMIC database

Data from the MIMIC database has the advantage of having invasive ABP waveforms available, from

which SBP and DBP values can be extracted with high precision given that it is the standard for validation

of new BP measurement technologies. However, this data is mainly obtained from critically ill patients,

having possible medical conditions that alter the PPG waveform, making the extraction process of a

number of features less accurate. In particular, for people with arterial stiffness or stage III hypertension,
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as may occur in the older population, the PPG waveform may lose some important features such as its

dicrotic notches, making the estimation less precise [4].

On the other hand, there are few measurements with low or high blood pressure values, as observed

in the histogram in figure 5.2, making it difficult to obtain accurate measurements in the limits of the

physiological range. In particular, the ABP data do not provide values above 180 mmHg. Another

problem that affects the performance of the BP estimation model is that, as mentioned in the previous

chapter, the ECG and PPG signals are often not synchronized, making the PAT features inaccurate. For

this reason, it was also not possible to implement any literature method based solely on the PAT or PTT

features, although this methods have shown promising performance in estimating blood pressure, as

shown in chapter 4.

7.1.2 WARD project

About 700 patients have been monitored with the WARD system, and it was possible to obtain thousands

of blood pressure measurements with simultaneous PPG and ECG signals, thus showing great potential

for the training and testing of a blood pressure estimation model.

However, on a first approach, several problems were detected, namely the lack of synchronicity be-

tween the ECG and PPG signals. Since these are acquired for only 10 seconds each minute, if the PPG

and ECG segments are not simultaneous it is not possible to extract information for BP estimation. In

addition, the PPG signals with 8 bit resolution often lack sufficient quality to extract any reliable features,

particularly when the amplitude is low. These problems appear to be less severe on the second set of

data, in which the PPG waveform has a 12 bit resolution. However, only for 108 of the subjects monitored

the signals have such characteristics. It should be noted that even in this second set of data, there are

synchronicity problems, introducing errors in the PAT features extracted. Therefore future improvements

of the acquisition system to provide synchronous ECG and PPG signals would benefit the accuracy of

the estimation system.

7.2 Data pre-processing and shut down algorithm

The use of a clinical database implies some difficulties such as a high presence of noise and motion

artifacts, and the possibility that not all of the signals are available for the whole duration of the records.

This created the need for several data pre-processing steps. Namely, the PPG signal was processed

using wavelet denoising, the low quality segments were removed based on the sSQI value and the low

quality cycles from PPG were removed by comparing each cycle with a template, calculated using all

cycles in a windows of time. The aim was to maintain only the cycles that are not influenced by motion

artifacts and other conditions that change the typical shape of the cycles. The resulting signal segments
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were then used to compute a set of features. It was observed that when features are computed after

sSQI selection and template cleaning, less outliers are obtained.

7.3 Comparison with State of the Art Studies

The results of implementing the state of the art method by [7] showed a performance inferior to the

one obtained in such study. For DBP the mean error obtained was −1.35 ± 10.72mmHg compared to

0.36±5.70mmHg and for SBP it was 2.82±21.96mmHg compared to −0.06±9.88mmHg in the original

paper. The main reason behind this is the lack of reliability in the feature extraction process for signals

with abnormal morphologies. This study does not disclaim how the unsuitable signals are removed, so

in the version implemented, all the data described obtained from the MIMIC database were used. It also

does not describe any method to reject noisy parts of the signals in which attempting to extract features

will lead to abnormal values.

In table 7.1, a comparison between this work and the state of the art methods discussed in chapter

4 is shown. It is generally difficult to compare results from the various state of the art studies, due

to different evaluation metrics and varied datasets whose characteristics are often not specified. In

addition, it should be taken into account that the methods requiring calibration generally have lower

errors. Particularly, the Ding method shows a error of only −0.40 ± 7.11mmHg for DBP and 1.17 ±

5.72mmHg, being the only method of those stated that complies with the AAMI standard regarding

STD. However, one of the problems of calibration is that its accuracy may deteriorate over time, and the

intervals at which a new calibration is necessary are not studied.

Lower errors are also observed in small selected subsets of data while work including large scale

data has larger errors, which was also observed in this project. This highlights the difficulty of creating

a robust general model on a large dataset, possibly containing subjects with varied characteristics.

Another reason for this problem, pointed by Slapnicar et al. [53], is that the large MIMIC III dataset may

as well contain data from different PPG and ABP measurement devices.

All the results obtained in this project meet the AAMI standard regarding mean error (ME) except

DBP for the good quality subset in the MIMIC II database. In this particular case ME was 5.20mmH

which is only slightly above the limit of the standard (5mmHg). This could be due to the distribution of

DBP measurement values, observed in figure 6.3. As for standard deviation (STD), only in the small

subset the values are inferior to the AAMI standard of 8mmHg.
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Table 7.1: Comparison with state of the art methods.

DBP SBP Number
ME ± STD

(mmHg)
MAE

(mmHg)
RMSE

(mmHg)
ME ± STD

(mmHg)
MAE

(mmHg)
RMSE

(mmHg)
of test

subjects
Salpnicar et al.
[53] - 13.62 - - 18.34 - 510

Xing et al.
[4] 2.6± 9.3 - - 5.5± 15.5 - - 1532

Ding et al.
[22] 0.40± 7.11 - - 1.17± 5.72 - - 33

Kachuee et al.
[7] 0.36± 5.70 - - −0.06± 9.88 - - 942

Kachuee et al.
implemented
version

−1.35± 10.72 5.83 - 2.82± 21.96 11.80 - 942

MIMIC II
data 5.20 ± 5.13 10,61 11.82 1.70 ± 7.98 17.38 19.18 21

MIMIC II
data 0.48 ± 12,76 10,81 13,55 1.13 ± 19,53 16,63 20,32 146

AAMI
standard ≤ 5± 8 - - ≤ 5± 8 - - 85

7.4 Potential of cuffless continuous SBP and DBP estimation

The research conducted shows potential for estimation of BP without a cuff based device. However,

before this algorithm is to be applied to the WARD system it is necessary to improve its accuracy in the

lower and higher values of the blood pressure range. The event classes requiring BP measurements,

namely hypotension, circulatory failure and hypertension are defined based on SBP in the limits of the

physiological ranges (SBP > 180 mmHg and SBP < 91 mmHg), where the estimation algorithm shows

decreased performance.

Since for the blood pressure limit values a very precise value is not absolutely necessary, as it would

only be necessary to know whether the values are in the abnormal ranges or not, a possible upgrade

of the developed algorithm could be to perform classification instead of regression. However, this could

give rise to problems in the case of values close to the classification, whereas a regression algorithm

with good performance would be more precise. Redefining the limit values to compensate this issue

could also present problems. Defining a lower limit for DBP and higher for SBP could lead to potentially

missing risk situations, whereas a higher limit for DBP and lower limit for SBP could lead to false alarms.

Another issue referred in the previous chapter is the influence of the accuracy in detecting the dicrotic

notch. As observed in figure 6.2, the features based on the time position or amplitude of the dicrotich

notch revealed to be less important. This was particularly relevant because in both datasets, elderly

and diseased patients are common. Therefore, this features show little potential for continuous SBP

and DBP estimation in the scope of the WARD project, unless an alternative way to estimate the dicrotic

notch is developed.

Although the PPG and ECG signals are currently acquired each minute by the WARD system de-
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vices, blood pressure estimation cannot be obtained with the same frequency, since these signals often

contain noise. However, it is still possible to increase the rate of measurements when compared to the

cuff based device currently in use, with the advantage of decreasing the apparatus required to monitor

the patients, and also making it more comfortable. As referred in the previous chapter, with the current

data pre-processing pipeline, it would be possible to obtain about 12 measurements per hour, which is a

good improvement comparing to the current system (measurements performed every 15 or 30 minutes

during the day)

Lastly, the use of signals from two different devices in the method developed, namely the PPG and

the ECG signals, is often seen in literature as a disadvantage, since it is less convenient for the patient

when compared to having only a single device. However, for the current system, ECG and PPG are

already monitored for other purposes, and do not represent an increase in the apparatus required to

monitor blood pressure. Also PAT and PTT are well studied and have been proven to be correlated with

systolic and diastolic BP. Therefore, these features are useful to improve the performance of the BP

estimation model.
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8
Conclusions

The main aim of this project was to develop a blood pressure estimation method that could be applied

to the data acquired by the WARD system to monitor patients admitted to general WARD.

The first goal was to conduct a state of the art research regarding existing cuffless blood pressure

estimation methods. It was found that there many recent developments in this field although the ones

validated in a sufficiently large number of subjects do not yet meet the standards for clinical application.

In addition, the methods achieving better performances often include a calibration procedure requiring

a variation in the subject’s blood pressure. This is not feasible in cases such as the one studied in this

project, in which the subjects are hospitalized. The most relevant studies were therefore selected based

on performance results, number of subjects in which they were evaluated and the absence of calibration.

The second goal was to implement different state of the art approaches to cuffless blood pressure

estimation. Although the methods based on physiological models relating PAT or PTT features to BP

have shown promising performance,the implementation of any of these was not feasible due to lack of

synchronization between ECG and PPG signals. Taking into account the characteristics of the literature

studies, the data-driven method by Kachuee et al. [7] was chosen to be implemented.

The third goal was to propose and test improvements to the current methods. The main improve-
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ments implemented and tested were the extra features extracted from the PPG morphology and the

steps of data preprocessing allowing to obtain only clean sections of the PPG signal, which lead to an

improvement in the estimation performance. Although even with the additional steps developed it was

not possible to achieve results comparable to the best performances in the literature, it was possible

to improve the performance compared to the initial state of the art method implemented. Additionally,

satisfactory results were obtained in a small subset of patients.

The fourth goal was to apply the methods implemented to the patient dataset acquired in the WARD

project, providing a more reliable validation compared to the state of the art methods. This was also

possible, although large errors pointing at issues related to signal quality, commonly encountered in the

elderly patients, who make most of the population in the WARD project.

The fifth goal was to discuss the value of the development of a cuffless blood pressure measuring

device. Having a method that allows blood pressure estimation would extremely be valuable, particularly

in the setting of the WARD project, in which patients need to have blood pressure evaluated often.

However, it is important to ensure the accuracy of the method, particularly in the extreme values of

blood pressure.

8.1 Future Work

One of the crucial points in the development of an accurate algorithm for the estimation of blood pressure,

is to have an effective shut down algorithm. Artifacts are one of the weaknesses in using the PPG for

diagnosis, since the noise can limit the reliability and practical implementation of real-time monitoring

applications [48]. Artifacts can result in loss of data, inaccurate readings, and false alarms, affecting the

accuracy of pulse oximetry.

In the context of blood pressure estimation, it is important to identify and reject noisy and low quality

PPG segments to prevent inaccurate BP estimation. Although random forest regression is robust to

noisy features, it is important to decrease their occurrence since it affects the performance of the trained

model. Other metrics such as kurtosis and perfusion have been proposed for the estimation of signal

quality is the PPG signal [48]. Therefore, a combination of these metrics could be a way to improve

the detection of low quality segments. It is also important to tune the thresholds of the metrics used to

separate good quality and low quality PPG, for which a dataset of PPG segments labeled by experts

would be necessary.

Another point to be improved is the automatic detection of PPG fiductial points. In the developed sys-

tem, the systolic peaks are detected with the AMPD algorithm, which is robust to artifacts is most cases.

However, the other fiductial points are detected using simple methods based on detecting maximum and

minimum points in the PPG first and second derivative. This works well for waveforms with well defined
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dicrotic notches and in the absence of noise. However, in the remaining cases, more robust methods

would allow a more accurate determination of these points. In particular, Elgendi et al. [54] have pro-

posed a method to improve the detection of the a-waves in the sdPPG waveform. The integration of

such improvements in the current system should result in a better performance.
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