
DTL: Translation, SMT Verification, Separation and Interpolation

Miguel de Lacerda e Costa Serra do Nascimento
Instituto Superior Técnico, Lisboa, Portugal

miguel.s.nascimento@tecnico.pt

January 2021

Abstract

The purpose of this work is to contribute to bet-
ter understand Distributed Temporal Logic (DTL),
namely by investigating whether it enjoys some im-
portant logical properties. We start by presenting a
translation from DTL formulas into first-order logic
(FOL) formulas that preserves entailment, and af-
terwards we resort to the theorem prover and sat-
isfiability modulo theories (SMT) solver CVC4 in
order to check the validity of DTL formulas, capi-
talizing on the translation from DTL to FOL pre-
viously mentioned. Furthermore, we propose an
extension of the separation property to DTL, and
we present a result stating that our extension of this
property holds for the distributed temporal logic
whose local languages contain both the Until and
Since operators. We also adapt the Craig interpola-
tion property to DTL, and we present a result stat-
ing that the property holds for a fragment of this
logic.

1 Introduction
Distributed temporal logic (DTL) is a temporal logic intro-
duced with the purpose of reasoning about temporal prop-
erties of discrete distributed systems from the local point of
view of its agents [6; 5]. Having been first proposed near the
end of the twentieth century in [8], DTL is a relatively re-
cent logic, when comparing to, for instance, first-order logic
(FOL) or linear temporal logic (LTL). Because of this, there
are still some important ideas and logical properties left to be
studied for DTL, some of which may improve the applicabil-
ity of this logic in certain areas. The purpose of this document
is to investigate whether DTL enjoys some of these logical
properties.

In this work, we will start by presenting the syntax and se-
mantics of FOL, LTL and DTL, and we will then proceed to
approach the topic of translation. More specifically, we will
present a translation from DTL formulas into FOL formu-
las that preserves entailment. In fact, some problems can be
made easier to solve by considering the DTL formula trans-
lated into FOL, rather than the DTL formula itself. We will
make use of this translation when studying satisfiability mod-

ulo theories (SMT) verification, since the question of whether
a DTL formula is valid or not can be tied to the SMT problem.

The SMT problem is a variant of the SAT problem for
which the non-logical symbols are interpreted in the context
of some background theory. We will study CVC4, a theorem
prover for SMT problems. We will also attempt to check,
using CVC4, the validity of DTL formulas, by initially trans-
lating them into FOL.

The topic of separation will be addressed as well. A
logic is said to have the property of separation if every for-
mula is equivalent to a Boolean combination of formulas
that each refer only to the present, past or future [15; 17;
20; 14]. Dov Gabbay was the first to show that the tem-
poral logic with the operators Until and Since has the sep-
aration property over the integers [9]. It turns out that,
for temporal logic, the notion of separation is tied to the
expressiveness of the logic, that is, the variety and quan-
tity of ideas that the logic can be used to represent [16;
11]. In this work, a proposal for an extension of the sepa-
ration property to distributed temporal logic is presented.

We will finish this document with the topic of Craig inter-
polation. A logic having the Craig interpolation property is
such that if a formula φ entails a formula ψ, then there exists
a formula θ (called the interpolant) such that φ entails θ, θ
entails ψ, and every propositional symbol in θ occurs both in
φ and ψ. When it comes to applications in computer science,
interpolation is often a desired property to have in a temporal
logic. For example, interpolation has played a role in build-
ing efficient model checkers. Uniform interpolation, which
we will talk about in this work, has been particularly useful
in this regard.

The Craig interpolation property is proven to hold for both
FOL and a fragment of LTL [10; 12]. We will study the Craig
interpolation property in the context of distributed temporal
logic, and reach the conclusion that this property holds for
the fragment of DTL whose local languages contain X as the
only temporal operator.

2 A Translation from DTL into FOL
In this section, we present the syntax and semantics of first-
order logic (FOL), linear temporal logic (LTL) and distributed
temporal logic (DTL). Furthermore, we aim to show how to
translate from DTL into FOL. With this intention, we will de-
fine a translation function that translates DTL formulas into

FOL formulas, and reach the conclusion that our translation
function preserves entailment in DTL. This translation func-
tion will be necessary for section 3, where we attempt to
check the validity of DTL formulas by resorting to a Mathe-
matica function that, based on the translation function we will
define, translates DTL formulas into FOL formulas written in
CVC4’s native language. The code of this Mathematica func-
tion, along with some guidance on how to use this function,
can be found in [13].

2.1 First-order Logic
We will introduce formulas in the context of FOL. First, we
start by explaining what a first-order signature is.

Definition 1. A first-order signature is a tuple Σ = 〈F ,P, τ〉
such that

• F and P are disjoint sets, with P 6= ∅;
• τ : F ∪ P → N is a map.

The elements of F are said to be the function symbols,
while the elements of P are said to be the predicate sym-
bols (or predicate letters). The map τ returns the arity of its
argument. Additionally, let

• Fn denote the subset of function symbols with arity n;

• Pn denote the subset of predicate symbols with arity n.

Before introducing formulas in first-order logic, we first
have to say what is a term. Let X = {x0, x1, . . . } denote the
set of variables.

Definition 2. The set TΣ of terms over Σ is inductively de-
fined as follows:

• F0 ∪ X ⊆ TΣ;

• f(t1, . . . , tn) ∈ TΣ provided that f ∈ Fn and
t1, . . . , tn ∈ TΣ.

Definition 3. The set LΣ of formulas over Σ is inductively
defined as follows:

• ⊥ ∈ LΣ - “bottom”, denotes a proposition that is al-
ways false;

• p(t1, . . . , tn) ∈ LΣ provided that p ∈ Pn and
t1, . . . tn ∈ TΣ;

• ϕ1 ⇒ ϕ2 ∈ LΣ provided that ϕ1, ϕ2 ∈ LΣ - implica-
tion;

• ∀xϕ ∈ LΣ provided that x ∈ X and ϕ ∈ LΣ - universal
quantification.

For the sake of simplicity, it may be useful to consider cer-
tain formula abbreviations. As such, we define the following
abbreviations:

• ¬ϕ ≡ (ϕ⇒ ⊥) - negation;

• > ≡ (⊥ ⇒ ϕ) - denotes a proposition which is uncon-
ditionally true;

• ϕ ∨ ψ ≡ ¬ϕ⇒ ψ - disjunction;

• ϕ ∧ ψ ≡ ¬ (ϕ⇒ ¬ψ) - conjunction;

• ∃xϕ ≡ ¬∀x¬ϕ - existential quantification.

In a formula, it may also be important to distinguish be-
tween variables that occur free and variables that are bounded
to a quantifier.

We inductively define the map varΣ that assigns to each
term the set of variables occurring in it the following way:

• varΣ(x) = {x};
• varΣ(c) = ∅;
• varΣ(f(t1, . . . , tn)) = varΣ(t1) ∪ · · · ∪ varΣ(tn).

Also, we inductively define the map fvΣ that assigns to
each formula the set of variables occurring free in it in the
following way:

• fvΣ(p(t1, . . . , tn)) = varΣ(t1) ∪ · · · ∪ varΣ(tn).

• fvΣ(⊥) = ∅;
• fvΣ(ϕ⇒ ψ) = fvΣ(ϕ) ∪ fvΣ(ψ);

• fvΣ(∀xϕ) = fvΣ(ϕ)\{x}.
Now, we study the semantics of FOL, that is, the study of

the logical system in the point of view of their interpretation.
With this in mind, we introduce the concepts of interpretation
structure, assignment and satisfaction.

Definition 4. An interpretation structure over Σ is a tuple
I = 〈D, {fI}f∈F , {pI}p∈P〉 such that

• D is a non-empty set which we call the domain;

• fI : Dn → D is a map providing that f ∈ Fn;

• pI : Dn → {0, 1} is a map providing that p ∈ Pn;

Essentially, fI and pI represent the interpretation or deno-
tation of, respectively, f and p in I.

An assignment is a map ρ : X → D. We say that an
assignment σ is x-equivalent to another assignnment ρ, which
we write σ ≡x ρ, if σ(y) = ρ(y) for every y ∈ X\{x}.
Definition 5. We inductively define contextual satisfaction as
follows:

• Iρ 1Σ ⊥;

• Iρ Σ p(t1, . . . , tn) whenever pI(JtIρ1 K, . . . , JtIρn K) =
1;

• Iρ Σ ϕ1 ⇒ ϕ2 provided that either Iρ 1Σ ϕ1 or
Iρ Σ ϕ2;

• Iρ Σ ∀xϕ providing that Iσ Σ ϕ for every σ that is
x-equivalent to ρ.

Given an interpretation structure I and an assignment ρ,
if Iρ ϕ, we say that I and ρ contextually satisfy ϕ ∈ LΣ.

Definition 6. We say that I satisfies ϕ (we can also say that
ϕ is true in I, or that I is a model of ϕ), which we write
I Σ ϕ, whenever Iρ Σ ϕ for every ρ.

Definition 7. A formula is valid, written �Σ ϕ, if I ϕ for
every interpretation structure I over Σ.

We will also need the definition of entailment and the defi-
nition of theory for some of the following sections. We intro-
duce these concepts in the next definitions.

Definition 8. A formula ϕ over Σ is entailed by a set Γ of
formulas over the same signature, which we write Γ �Σ ϕ, if,
for every interpretation structure I over Σ, I Σ ϕ whenever
I Σ γ for each γ ∈ Γ.
Definition 9. The semantic closure of a set Γ ⊆ LΣ is the set

Γ�Σ = {ϕ ∈ LΣ : Γ �Σ ϕ}
of its entailed formulas.
Definition 10. A set of formulas Θ ⊆ LΣ is said to be a
theory if Θ�Σ = Θ.

2.2 Linear Temporal Logic
While first-order logic describes a static situation, temporal
logic is able to depict that situation as time progresses. In
particular, linear temporal logic (LTL) is a propositional tem-
poral logic with modalities that describe events along a single
time path.

We introduce LTL formulas in the following definition.
Definition 11. Given a set of propositional symbols Prop,
the language of linear temporal logic LLTL is defined as fol-
lows:
LLTL ::= Prop | ⊥ | LLTL ⇒ LLTL | X [LLTL] |

LLTL ULLTL | LLTL SLLTL.
The⊥ and⇒ have the usual meanings. Intuitively, the for-

mula Xϕ, which we call a next formula, stands for “ϕ will
hold in the next instant”. The formula ϕ1 Uϕ2, which we call
a until formula, stands for “there is an instant in the future
where ϕ2 will hold and until then formula ϕ1 must hold”.
Furthermore, the formula ϕ1 Sϕ2, which we call a since for-
mula, is similar to an until formula but in the past direction.
Intuitively, it stands for “since the last instant in the past for
which ϕ2 was true, ϕ1 has always been true”.

We introduce the following abbreviations:

• Fϕ ≡ >Uϕ - which stands for “sometime in the future,
ϕ must hold”;

• Gϕ ≡ ¬F¬ϕ - which stands for “always in the future,
ϕ must hold”.

Note that all the temporal operators we have shown talk
about the future, except for the since operator, which talks
about the past. Additionally, temporal operators can be com-
bined to express more complex properties.

Regarding the semantics, we introduce the definition of fi-
nite and infinite words. We assume a nonempty and finite set
Σ, called the alphabet, whose elements are called symbols or
letters.
Definition 12. Let Σ be an alphabet. A finite word w over Σ
is a finite, possibly empty, sequence ν1ν2 . . . νn where n ∈ N
and each νi ∈ Σ, for i = 1, . . . , n. The set of all finite words
over Σ is denoted by Σ∗.

The finite word corresponding to the empty sequence,
which we call the empty word, is denoted by ε. The length
of a word, which we denote by |w|, is the number of symbols
that appear in the sequence. For instance, the length of the
word w = ν1ν2 . . . νn in n. The length of the empty word is
0. Also, we write w|i to denote the prefix of w of length i,
that is, w|i = ν1 . . . νi, provided that 0 ≤ i ≤ |w|.

Definition 13. An infinite word σ over Σ is an infinite se-
quence σ = ν1ν2 . . . where each νi ∈ Σ, for i ∈ N. The set
of all infinite words over Σ is denoted by Σω .

The length of an infinite word is always ω.
Definition 14. An interpretation for LTL is an infinite word
over 2Prop.

Intuitively, an interpretation structure for LTL is an infi-
nite sequence of valuations, such that each element of the se-
quence in an LTL interpretation structure will determine the
boolean values of the propositional symbols at a given mo-
ment in time. Given an interpretation σ = ν0ν1ν2 . . . , we
can see νi as the set of propositional symbols that hold at an
instant i. We can now define satisfaction in the context of
LTL.
Definition 15. Let σ be an interpretation and i ∈ N. The
local satisfaction relation for LTL is inductively defined as
follows:

• σ, i 1 ⊥;
• σ, i p if p ∈ σ[i] if σi(p) = 1;
• σ, i ϕ1 ⇒ ϕ2 if σ, i 1 ϕ1 or σ, i ϕ2;
• σ, i Xϕ if σ, i+ 1 ϕ;
• σ, i ϕ1 Uϕ2 if there is j > i such that σ, j ϕ2 and
σ, k ϕ1, for every i < k < j.

The interpretation σ satisfies the formula ϕ, which we
write σ ϕ, if σ, i ϕ for every i. Similarly to FOL, we say
that a formula is valid if it is satisfied by all interpretations.

We also define entailment in the context of LTL.
Definition 16. Let Γ ∪ {ϕ} ⊆ L. We say that Γ entails ϕ,
written Γ � ϕ, when σ ϕ for every interpretation σ such
that σ Γ.

2.3 Distributed Temporal Logic
The syntax of distributed temporal logic (DTL) is defined
over a distributed signature.
Definition 17. A distributed signature is defined as a tuple
Σ = 〈Id, {Propi}i∈Id〉, where Id is a non-empty finite set
of agents and, for each i ∈ Id, Propi is a set of local state
propositions.

The global language LDTL is defined by

LDTL ::= @i1 [Li1] | · · · | @in [Lin] | ⊥ | LDTL ⇒ LDTL,

for Id = {i1, . . . , in}, where the local languages Li for each
i ∈ Id are defined by

Li ::= Propi | ⊥ | Li ⇒ Li | Li ULi | Li SLi | ©j [Lj],

with j ∈ Id.
The ⊥ and⇒ have the usual meaning, while U and S were

introduced in the previous section. In the global language,
we introduce a new kind of formula. We say that the formula
@i[ϕ], called a global formula, means that ϕ holds for agent i.
On the other hand, local formulas hold locally for each agent.

Note that temporal operators only occur in local formulas,
meaning that we talk about these formulas in the context of a
given agent. Also locally for an agent i, the formula ©j [ψ],

called a communication formula, means that agent i has just
communicated (or synchronized) with agent j, for whom ψ
holds.

Before presenting the definition of a DTL interpretation
structure, we will introduce the concepts of local and dis-
tributed life-cycles, and of local and global states.
Definition 18. A local life-cycle of an agent i ∈ Id is
a countable infinite, discrete and well-founded total order
λi = 〈Evi,≤i〉, where Evi is the set of local events and ≤i
the local order of causality.
Definition 19. The relation→i⊆ Evi×Evi, called the local
successor relation, is the relation such that e→i e

′ if e <i e′
and there is no e′′ such that e <i e′′ <i e′.

As a consequence, ≤i=→∗i , i.e., ≤i is the reflexive, transi-
tive closure of→i.
Definition 20. A distributed life-cycle is a family λ =
{λi}i∈Id of local life-cycles. This family is such that ≤=
(
⋃
i∈Id ≤i)∗ defines a partial order of global causality on

the set of all events E =
⋃
i∈IdEi.

Note that, due to the fact that communication between
agents involves event sharing, we may have, for some event
e, e ∈ Ei ∩ Ej , for i 6= j.
Definition 21. The local state of agent i is a finite set ξi ⊆
Evi down-closed for local causality, that is, if e ≤i e′ and
e′ ∈ ξi, then also e ∈ ξi.

We denote the set of all local states of an agent i by Ξi. This
set is totally ordered by inclusion and has ∅ as the minimal
element.

Due to the total order on local events, the local states of
each agent are totally ordered. The 0th state of each agent is
∅, and the next local state is reached by the occurrence of an
event which we call last(ξi), since it is the last event in which
agent i took part in order to reach the present state ξi. We
denote by ξki the kth state of agent i, meaning that ξ0

i = ∅ is
the initial state and ξki is the state reached after the occurrence
of the first k events. Note that ξki is the only state of agent i
that contains exactly k elements, that is, where |ξki | = k.
Moreover, given e ∈ Evi, (e � i) = {e′ ∈ Evi|e′ ≤i e} is
always a local state. Furthermore, we have that (last(ξi) �
i) = ξi, assuming that ξi is non-empty.
Definition 22. A global state is a finite set ξ ⊆ Ev closed for
global causality, that is, if e ≤ e′ and e′ ∈ ξ, then also e ∈ ξ.

The set of all global states, written Ξ, has ∅ as the minimal
element. Also, we can see that every global state ξ includes
the local state of agent i.

After these definitions, we can finally introduce DTL inter-
pretation structures.
Definition 23. An interpretation structure µ for DTL is a la-
belled distributed life-cycle of the form µ = 〈λ, σ〉, where
λ consists of a distributed life-cycle and σ = {σi}i∈Id is a
family of local labelling functions.

For each i ∈ Id, the local labelling functions σi associate a
set of local state propositions to each local state. Furthermore,
we also denote the tuple 〈λi, σi〉 by µi.

Now, we can define the global satisfaction relation by

• µ γ if µ, ξ γ for every ξ ∈ Ξ,

where the global satisfaction relation at a global state is
defined by

• µ, ξ 1 ⊥;
• µ, ξ γ ⇒ δ if µ, ξ 1 γ or µ, ξ δ;
• µ, ξ @i[ϕ] if µi i ϕ if µi, ξ i ϕ for every ξ ∈ Ξi,

and where the local satisfaction relations at local states are
defined by

• µi, ξ i p if p ∈ σi(ξ);
• µi, ξ i ¬ϕ if µi, ξ 1i ϕ;
• µi, ξ i ϕ⇒ ψ if µi, ξ 1i ϕ or µi, ξ i ψ;
• µi, ξ i ϕUψ if |ξ| = k and there exists ξni ∈ Ξi such

that k < n with µi, ξni i ψ, and µi, ξmi i ϕ for every
k < m < n;

• µi, ξ i ϕSψ if |ξ| = k and there exists ξni ∈ Ξi such
that n < k with µi, ξni i ψ, and µi, ξmi i ϕ for every
n < m < k;

• µi, ξ i ©j [ϕ] if |ξ| > 0, lasti(ξ) ∈ Ej , and
µj , (lasti(ξ) � j) j ϕ.

A DTL formula γ is said to be valid, written � γ, if µ γ
for every global interpretation structure µ.

Finally, we define entailment in the context of DTL.
Definition 24. Let Γ ∪ {ϕ} ⊆ LDTL. We say that Γ entails
ϕ, written Γ � ϕ, when σ ϕ for every interpretation σ such
that σ Γ.

2.4 The Translation Function
In this subsection, we present a translation function from
DTL formulas into FOL formulas that preserves entailment
in DTL.

First, we need to introduce some definitions. To start, note
that, excluding communication formulas, local DTL formulas
coincide with LTL formulas. This fact is used in [5] to prove
that DTL is decidable by a translation into LTL. We make use
of this idea, along with the fact that there is a known transla-
tion from LTL into FOL [7], in our own translation.

Given a DTL signature Σ = 〈Id, Prop〉, we define the
corresponding FOL signature as having P = {@(i, n) | i ∈
Id, n ∈ N0} ∪

⊎
i∈Id Propi ∪ {<}, where < has the usual

meaning. We assume that the symbol p ∈ Propi is repre-
sented in P by the unary predicate pi. The additional pred-
icate @(i, n), with i ∈ Id and n ∈ N0, is meant to express
whether the n-th event in the global order of events of the
DTL signature belongs to agent i or not.

Thus, the translation of global formulas is given by the
function f : LDTL → LFOL such that

• f(@i[ϕ]) = ∀x (@(i, x)⇒ fi(ϕ, x)),

and for each i ∈ Id, the function fi : Li → LFOL trans-
lates local formulas to FOL formulas the following way:

• fi(p, x) = pi(x);
• fi(¬ϕ, x) = ¬fi(ϕ, x);
• fi(ϕ⇒ ψ, x) = fi(ϕ, x)⇒ fi(ψ, x);

• fi(ϕUψ, x) = ∃y x < y∧@(i, y)∧fi(ψ, y)∧∀z (x <
z < y ⇒ (@(i, z)⇒ fi(ϕ, z)));

• fi(ϕSψ, x) = ∃y y < x∧@(i, y)∧ fi(ψ, y)∧∀z (y <
z < x⇒ (@(i, z)⇒ fi(ϕ, z)));

• fi(©j [ϕ], x) = @(j, x) ∧ fj(ϕ, x).

Let us also consider the map β from FOL interpretation
structures to DTL interpretation structures such that β(I) =
〈λ, σ〉, with λi = 〈Ei,≤i〉, where:

• Ei = {n ∈ N | @(i, n) ∈ PI};
• ≤i is the restriction of the usual order on N, with n →i

m if n,m ∈ Ei and there is no k ∈ Ei, such that n <
k < m;

• σi(∅) = {p ∈ Propi | pi(0) = 1} and σi({m ∈ Ei |
m ≤ n}) = {p ∈ Propi | pi(n) = 1}, for each n ∈ Ei.

Now, we introduce Proposition 1, which is necessary for
reaching the conclusion that our functions fi, for i ∈ Id, are
well-defined. Note that we must only consider the FOL inter-
pretation structures that satisfy {

∧
i∈Id @(i, 0)}. We need to

add this restriction due to the fact that, at the initial DTL state
∅, no events have yet occurred.

Proposition 1. [13] Given a FOL interpretation structure I
that satisfies {

∧
i∈Id @(i, 0)}, we have that, for every ϕ ∈

LDTL, β(I)i, ξ
k
i i ϕ if and only if I, [x/lasti(ξki)] FOL

fi(ϕ, x), for every ξki ∈ Ξi, where [x/lasti(ξ
k
i)] stands for

a variable assignment that assigns the free variable x of
fi(ϕ, x) the value lasti(ξki).

We are finally ready to present two propositions that al-
low us to reach the most important result in this chapter: the
fact that our translation function f , that translates DTL for-
mulas into FOL formulas, preserves entailment. Again, we
only regard in our translation FOL interpretation structures
that satisfy {

∧
i∈Id @(i, 0)}.

Proposition 2. [13] Let Γ ∪ {δ} ⊆ LDTL. We have that
if Γ |=DTL δ then f(Γ) ∪ {

∧
i∈Id @(i, 0)} |=FOL f(δ).

Proposition 3. [13] Let Γ ∪ {δ} ⊆ LDTL. We have that
if f(Γ) ∪ {

∧
i∈Id @(i, 0)} |=FOL f(δ) then Γ |=DTL δ.

The two previous propositions allow us to conclude the fol-
lowing result.

Corollary 1. [13] Let Γ ∪ {δ} ⊆ LDTL. We have that
Γ |=DTL δ if and only if f(Γ) ∪ {

∧
i∈Id @(i, 0)} |=FOL

f(δ).

3 SMT Verification using CVC4
The SMT problem is a variant of the SAT problem for first-
order logic, where the difference is in the fact that, for an
SMT instance, the non-logical symbols are interpreted in the
context of some background theory. Thus, the SMT problem
consists of determining whether the SMT instance is satisfi-
able with respect to the background theory. Examples of the-
ories typically used in computer science include the theory
of integers, the theory of real numbers, the theory of lists or
arrays and so on. Additionally, a given SMT instance might

combine a set of theories (for instance, combining the theory
of real numbers and the theory of integers).

CVC4 is an open-source theorem prover for SMT prob-
lems that can be used to prove the validity or the satisfia-
bility of first-order formulas in several logical theories and
their combination [1]. It was released in 2012 as the fourth
in the CVC family of tools. It supports 4 different input lan-
guages, namely the CVC4 Native Input Language, SMT-LIB
v2, SyGuS-IF and TPTP.

SMT problems have important applications in some ar-
eas of computer science, such as software verification, model
checking and automated test generation [2]. Currently, CVC4
is considered to be one of the most efficient and up-to-date
tools for solving these problems.

In this section, a summary of CVC4’s functionalities is
presented, along with its operability. Additionally, we try to
prove or refute the validity of LTL and DTL formulas using
two different Mathematica functions we implemented, which
translate LTL or DTL formulas into FOL formulas written in
CVC4’s native language. The code for these two Mathemat-
ica functions, and some indications on how to use them, can
be found on Appendix A. Throughout this section, we use
version 1.7 of CVC4.

3.1 The Functionalities and Operability of CVC4
In this subsection, we focus on providing a summary of the
CVC4 Native Input Language documentation, highlighting
the most important features and how to operate with them.
With this in mind, we start by describing the SAT and SMT
problems, by first explaining what a literal is.
Definition 25. A literal is a either a propositional variable or
the negation of a propositional variable. We say that x and y
are positive literals, while ¬x and ¬ y are said to be negative
literals.
Definition 26. A clause is a disjunction of one or more liter-
als.
Definition 27. A clausal formula is a conjunction of one or
more clauses.

For instance, (¬x∨y)∧(¬ y∨w∨¬ z) is a clausal formula.
The SAT problem is, then, the problem of determining

whether a given clausal formula is satisfiable, i.e., if there
exists an interpretation that satisfied a given clausal formula.

On the other hand, the SMT problem, also known as the
satisfiability modulo theory problem, is a variant of the SAT
problem for first-order logic such that, for an SMT instance,
the variables are interpreted in the context of some back-
ground theory. Some theories that can be considered are,
for example, the theory of integer numbers, real numbers and
also theories of data structures, such as lists and arrays. Being
an SMT-solver, CVC4 supports many of these theories.

As mentioned in the beginning of the section, the SMT-
solver CVC4 supports 4 different input languages, which dif-
fer in their syntax and in the names of certain commands. The
language we used in this document is the CVC4 Native Input
Language, whose documentation can be seen in [3]. It should
also be mentioned that, even though the examples provided in
this section were run in the (Windows) command line, CVC4
can also be run online [4].

Figure 1: Example of the declaration of variables and the use of
some symbols and connectives for the ASSERT command in CVC4
(run on the terminal).

CVC4 supports variables of different types, such as REAL,
INT, BOOLEAN, STRING, array and tuple, to name a few.
Variables can be declared in a similar way to some program-
ming languages. Moreover, resorting to user-created vari-
ables or quantified variables, the ASSERT command can be
used to add formulas to our current logical context. The cur-
rent logical context Γ is a collection of the assertions the user
has made so far, although CVC4 may also add formulas to the
current context (this will be explained further ahead). CVC4
will always take into account the current logical context when
executing queries.

As for the real and integer arithmetic theories, CVC4 cur-
rently supports numerals, along with the symbols − (both
unary and binary), +, ∗, /, <, >, <= and >=. This excludes
certain mathematical operations such as roots, powers, log-
arithms and factorials, for instance. Specific operations for
other data types, like strings, arrays, sets or bit vectors, are
also included in the tool.

In addition to these symbols, CVC4 allows the use of con-
nectives such as ∀, ⇒ and ∨, all of which have their own
syntax. Figure 1 shows an example, run on the terminal, of
the syntax in the declaration of variables, along with the AS-
SERT command, where some of the previously mentioned
symbols and connectives are used.

CVC4’s main functionalities come from the QUERY and
CHECKSAT commands. The QUERY command gets a for-
mula as input and checks if the formula is valid in the current
logical context (Γ |= F , where Γ is our current logical context
and F is the formula). This means that the QUERY command
can be used to verify whether a given formula is a theorem or
not. The QUERY command can produce 3 different answers:

• If the query returns “valid”, it means that Γ |=T F . After
this, the logical context stays exactly as it was before the
query.

• If the query returns “invalid”, it means that Γ 2T F .
This implies that there is a model of the theory T that
satisfies Γ ∪ {¬F}. After an invalid answer, the current
logical context is augmented with a set ∆ of variable-
free literals such that Γ ∪ ∆ is satisfiable in T , but Γ ∪
∆ |=T ¬F (which in fact means that ∆ entails ¬F).
We call the new context Γ∪∆ a counterexample for the
formula F .

• If the query returns “unknown”, a set ∆ of literals which
entail ¬F is added to the logical context, similarly to
what occurs if the query returns “invalid”. However, the
tool is not able to guarantee that Γ ∪ ∆ is satisfiable in
T .

On the other hand, the CHECKSAT command also takes
a formula as input and checks if the formula is satisfiable in
the current logical context (Γ 2 ¬F). Thus, this command
behaves in the same way as making a query to ¬F , returning

“sat” if ¬F is invalid, “unsat” if ¬F is valid, and “unknown”
in the remaining cases. This command can be used to solve
SAT and SMT instances.

Figure 2: Example of the QUERY command being used in CVC4 to
prove a theorem and the CHECKSAT command being used to solve
a SMT instance (run on the terminal).

Furthermore, if CVC4’s produce-models option is turned
on (this can only be done on start-up, using the OPTION com-
mand), the user gains access to the COUNTERMODEL com-
mand. This command can be used to, after an invalid QUERY
or a satisfiable CHECKSAT, print a model that makes the in-
put formula invalid or satisfiable, respectively. An example
of the application of these commands can be seen in Figure
3.

Figure 3: Example of the COUNTERMODEL command being ap-
plied in CVC4 to get a model that makes the formula x + y = 2
invalid after an invalid QUERY, and a model that makes the same
formula satisfiable after a satisfiable CHECKSAT (run on the termi-
nal).

CVC4 also contains other commands that can be advanta-
geous in certain situations:

• The PUSH command saves the current state of the sys-
tem, while POP restores the system to the state it was in
right before the last PUSH. It can be useful if we want
to return to the logical context we had before a possibly
invalid QUERY or satisfiable CHECKSAT, since these
results lead to a change in the context.

• The WHERE command prints all the formulas belong-
ing to the current logical context.

• After an invalid QUERY or a satisfiable CHECK-
SAT, RESTART may be used to repeat the QUERY or
CHECKSAT with an additional formula in the logical
context. The formula needs to be introduced as input
when calling the RESTART command.

• The TRANSFORM command takes a term as input, sim-
plifies it using the current logical context and prints the
result.

• PRINT and ECHO, which are common commands in
programming languages, are also available.

Many modern SMT solvers, including CVC4, use a spe-
cific algorithm, called DPLL(T), to solve the SMT problem
for quantifier-free SMT instances in an arbitrary theory T .

The DPLL(T) algorithm (also referred to as the lazy ap-
proach) transforms an SMT formula into an SAT one, by
replacing every atom in the formula with Boolean variables
[18]. Using the regular SAT-solving DPLL algorithm, a sat-
isfying valuation for the new formula is found, if it exists
(if not, the algorithm returns unsat). Afterwards, a theory
solver is used to check if the assignments found are satisfi-
able in the theory T . We say that the theory solver checks if
the assignments are T -satisfiable. If a contradiction is found
by the theory solver, which means that the assignments are
not T -satisfiable, then the algorithm refines the SAT formula
with this information, and the regular DPLL algorithm is used
once more on the SAT formula.

3.2 Validity Checking of LTL and DTL Formulas
using CVC4

CVC4 does not directly support LTL, DTL, nor its operators.
However, we have seen in section 2 that there is a translation
from LTL into FOL, and we proved that a translation from
DTL into FOL also exists. That is, any LTL or DTL formula
can be transformed into a FOL formula through translation
functions that preserve entailment.

Note that a FOL formula obtained using these translation
functions will be such that every variable in it is of integer
sort, and it can be a quantified formula (in the case of a trans-
lation from DTL into FOL, the translated formula will cer-
tainly be quantified). This means that, in truth, a translated
LTL or DTL formula belongs to the LIA theory. Thus, we
should be able to use CVC4 to check the validity of LTL and
DTL formulas, if we first translate them into FOL formulas
written in an input language that CVC4 supports. Our aim in
this section is to understand if the theorem prover is able to
correctly check the validity of these formulas.

With this in mind, we implemented a Mathematica func-
tion that takes a LTL formula and the current moment in time
as input, and returns as output the corresponding FOL for-
mula, written in CVC4’s native language. For this, we re-
sorted to the translation function g, which is known to trans-
late LTL formulas into FOL formulas, preserving entailment.
We inductively define g the following way:

• g(p, x) = p(x);

• g(¬ϕ, x) = ¬g(ϕ, x);

• g(ϕ⇒ ψ, x) = g(ϕ, x)⇒ g(ψ, x);

• g(Xϕ, x) = g(ϕ, x+ 1);

• g(Fϕ, x) = ∃y x < y ∧ g(ϕ, y);

• g(Gϕ, x) = ∀y x < y ⇒ g(ϕ, y);

• g(ϕUψ, x) = ∃y x < y ∧ g(ψ, y) ∧ ∀z (x < z < y ⇒
g(ϕ, z)).

The code for this Mathematica function can be seen in [13].

Formula Expected output CVC4’s output Counterexample

X (p ∧ q)→ X p ∧ X q valid valid
X p ∧ X q → X (p ∧ q) valid valid
X (p ∨ q)→ X p ∨ X q valid valid
X p ∨ X q → X (p ∨ q) valid valid
F (p ∧ q)→ F p ∧ F q valid valid
F p ∧ F q → F (p ∧ q) invalid unknown
G (p ∧ q)→ G p ∧ G q valid valid
G p ∧ G q → G (p ∧ q) valid valid
F (p ∨ q)→ F p ∨ F q valid valid
F p ∨ F q → F (p ∨ q) valid valid
G (p ∨ q)→ G p ∨ G q invalid unknown
G p ∨ G q → G (p ∨ q) valid valid
F p→ p invalid invalid p = λx.x == 1 1

FF p→ F p valid valid
GG p→ G p valid unknown
XX p→ X p invalid invalid p = λx.x == 2 1

G (p→ X (p))→ (p→ G p) valid –
G (p→ ¬q ∧ X p)→ (p→ ¬(rU q) valid –

Table 1: Output of the QUERY command for LTL formulas.

After its implementation, we used the Mathematica func-
tion to convert various LTL formulas into FOL formulas writ-
ten in CVC4’s native language, and used the QUERY com-
mand to check the validity of each formula.

Table 1 shows the output of the QUERY command for
these formulas. For the last two formulas in the table, the
queries for both formulas did not halt, and therefore no out-
put was given by CVC4.

It is possible to see that CVC4 was able to verify and refute
the validity of many of the formulas. Overall, the results were
positive, since although it has its flaws, CVC4 can be used
to verify or refute the validity of LTL formulas. However,
for some of the formulas, it was not able to reach a conclu-
sion when it comes to their validity, therefore returning “un-
known”. Furthermore, for the more complex formulas (the
last two formulas), the queries did not halt, potentially be-
cause CVC4 entered some sort of loop during both queries.

Similarly, a Mathematica function that takes a global DTL
formula as input, and returns as output the corresponding
FOL formula written in CVC4’s native language, was im-
plemented. For this, we resorted to the translation function
defined in section 2. Again, the code for this function can be
found in [13]. The Mathematica function was also applied on
certain formulas, and then the QUERY command was used to
check their validity.

First, the formula @i[G (p∧ q)⇒ G p∧G q] was analyzed,
among other DTL formulas consisting of a single global for-
mula containing a local formula equal to a valid LTL formula
shown on the table we have previously shown in this section.
The results were similar to the ones we had obtained for the
LTL formulas, meaning that most of the DTL formulas were
correctly determined to be valid.

Considering a different formula, CVC4 correctly estab-
lished @i[F p ⇒ p] as invalid, for which the command
COUNTERMODEL provided the following counterexample:

@(id, k) = True and p(id, k) =

{
k == 1 if id = i

False otherwise.

As for the formula (@i[G (p ⇒ ©j [q])] ∧ @i[F p]) ⇒
@j [F q], which should be valid, CVC4 returned “unknown”,

1For this formula, the current moment in time was considered to
be the instant 0.

meaning that it was not able to reach a conclusion regard-
ing the validity of the formula. We had hoped that CVC4
would be able to reach a successful output in this case. How-
ever, based on experiments we made with other formulas,
CVC4 seems to have difficulty proving that DTL formulas
containing communication formulas are valid, most likely be-
cause these formulas involve multiple agents and, therefore,
more quantifiers, making them more complex than most of
the other formulas we have shown.

Due to this, the results obtained for DTL formulas were not
as good as we had hoped. Communication formulas are an
important part of DTL, since they allow communication be-
tween different agents. Unfortunately, the fact that CVC4 has
difficulty proving the validity of DTL formulas with commu-
nication makes it quite limited when it comes to distributed
temporal logic.

4 Separation Properties
In this section we introduce the separation property [15; 17;
20; 14]. Intuitively, a logic has the separation property if ev-
ery formula can be written as a Boolean combination of for-
mulas that each only talk about the past, present and future.

A temporal logic is expressively complete if for every first-
order formula in this fragment, there is a temporal logic for-
mula that has exactly the same models (and vice-versa). A
temporal logic is expressively complete if and only if it has
the separation property, provided that the temporal logic can
express the F and P operators (although we have not yet de-
fined the P operator, it is similar to F, standing for “sometime
in the past”). This makes the separation property very useful
when it comes to understanding how expressive a temporal
logic is, i.e., the quantity and variety of ideas that the tempo-
ral logic is able to represent.

The separation property is proven to hold for the tempo-
ral logic with the Until and Since operators over the integers
[9]. We propose an extension of this property to DTL, and
we reach the conclusion that this extension of the separation
property holds for the distributed temporal logic for which the
local languages have both the Until and Since operators.

4.1 Separation Property for Temporal Logic
We start by introducing LTL, the language of the temporal
logic with both Until and Since. Let us consider a countable
set of propositional variables Prop.

Definition 28. The language of temporal logicLTL is defined
as follows:

LTL ::= Prop | ⊥ | LTL ⇒ LTL | LTL ULTL | LTL SLTL.

Note that the set LLTL of LTL formulas can be defined just
like the one of TL, but omitting the S case.

We now introduce certain concepts that are useful to un-
derstand the notion of separation.

Definition 29. We say a formula A is simple if it has no
outer Boolean structure, that is, if it is of the form p, B SC,
or B UC (for some p ∈ Prop and B,C ∈ LTL).

Definition 30. A formula is called non-future if it has no
occurrences of U and non-past if it has no occurrences of S.

A pure past formula is then a Boolean combination of for-
mulas of the form ASB where both A and B are non-future
and similarly a formula is pure future if it is a Boolean
combination of formulas of the form AUB with A and B
non-past.

A formula is pure present if it is a Boolean combination
of variables, ⊥ and >.

Definition 31. A formula is separated if it is a Boolean com-
bination of pure past, pure future and pure present formulas.

As mentioned before, TL has the separation property over
the integers, a result that was proven by Gabbay in [9]. When
we say “over the integers”, we are referring to the domain
over which the formulas in the logic are evaluated.

With these definitions, we can proceed to our adaptation of
the separation property to distributed temporal logic.

4.2 Separation Property for DTL
To understand how we reached our adaptation of the separa-
tion property to distributed temporal logic, there are certain
details we first need to take into account.

Note that our definition of separation property for DTL
needs only to focus on the local languages of DTL. This is
true seeing that any temporal operators in a DTL formula oc-
cur in the local languages. In fact, the global language in DTL
only deals with global formulas and the relations of global
formulas between different agents. Since the global language
of a distributed temporal logic is not defined using temporal
operators, we can direct our attention to the local languages.

Regarding the formulas in the local languages, we can see
that these coincide with temporal formulas, when excluding
communication formulas. In turn, communication formulas
contain assertions inside them that belong to other local lan-
guages of the distributed temporal logic, meaning that they
may contain temporal operators inside them or even other
communication formulas.

Due to the fact that communication formulas are what dif-
ferentiates formulas in the local DTL languages from TL for-
mulas, it would be useful to find a way to look at communica-
tion formulas as propositional symbols when it comes to sep-
aration, which we might be able to achieve if we can separate
the assertions inside communication formulas. By looking at
communication formulas in local DTL formulas as proposi-
tional symbols, it might be possible to separate these local
DTL formulas using the same techniques required to separate
TL formulas.

Following this train of thought, we reached definition 32.

Definition 32. A distributed temporal logic is said to have
the separation property if its local formulas, for every agent,
can be equivalently rewritten as a boolean combination of
formulas, each of which depends only on the past, present or
future.

Now that we have a definition of separation property for
DTL, it is of our interest to understand if this property holds
for distributed temporal logic.

With this intention, let us introduce the concept of com-
plexity of a local DTL formula, which we define the follow-
ing way:

• |ϕ| = 0 for all ϕ ∈ L�©i , with i ∈ Id, where L�©i denotes
all purely temporal formulas of Li, that is, excluding
communication formulas;

• |©j [ϕ]| = 1 + |ϕ|, with ϕ ∈ Lj , j ∈ Id;

• |ϕ| = max(|©1|, |©2|, . . . , |©m|), where
©1,©2, . . . ,©m represent the communication for-
mulas in ϕ that are not inside other communication
formulas, with ϕ ∈ Li, i ∈ Id.

Now, we are ready to introduce Proposition 4.
Proposition 4. [13] Distributed temporal logic, as defined in
subsection 2.3, has the separation property.

5 Craig Interpolation
In this section, we address the Craig interpolation property
in the context of distributed temporal logic and we reach the
conclusion that a fragment of DTL has this property.

In classical logics, the Craig interpolation property states
that if a formula φ entails a formula ψ, then there exists an
interpolant formula θ such that φ entails θ, θ entails ψ, and
every propositional symbol in θ occurs both in φ and ψ.

The Craig interpolation property is frequently a convenient
property to have in a temporal logic. Temporal logics, in gen-
eral, are widely used in the verification of systems and soft-
ware, and interpolation has been useful for building efficient
model-checkers. A stronger form of interpolation called uni-
form interpolation, which we will talk about in this section,
has been particularly useful in this regard.

It has been proved that, in contrast to first-order logic, LTL
does not have the Craig interpolation property. However,
this property has been proved to hold for fragments of LTL,
namely the fragment of LTL for which we consider X as the
only temporal operator and exclude the rest of the temporal
operators [10; 12]. Inspired by these proofs, we will present a
result stating that the Craig interpolation property also holds
for the fragment of DTL whose local languages contain X as
the only temporal operator.

In this section, will often talk about fragments of DTL. We
define fragments of the DTL by allowing in the syntax of their
local languages only a subset of the temporal operators that
the local languages of DTL are able to express.

5.1 Definition of Craig Interpolation in the
Context of DTL

First, we need to introduce some concepts. Let us con-
sider DTL (or a fragment of DTL) having global language
L and local languages Li, for i ∈ Id. Additionally, let
α = {αi}i∈Id be a family of finite sets of propositional let-
ters. We define L[α] as the set of formulas in the global lan-
guage L for which, for each i ∈ Id, the local formulas in the
language Li contain only propositional symbols from the set
αi.

Given an interpretation structure µ = 〈λ, σ〉 =
〈{λi}i∈Id, {σi}i∈Id〉 and a family of finite sets of proposi-
tional letters α = {αi}i∈Id, we define µ � α as the interpre-
tation structure with valuations {σi � αi}i∈Id, where σi � αi
represents the restriction of the valuation σi to the proposi-
tional letters in αi, for i ∈ Id. We say that µ � α is the

α-reduct of µ. We also say that µ is an expansion of µ � α.
Moreover, if K is a class of DTL interpretation structures, we
write K � α for {µ � α | µ ∈ K}.
Definition 33. Let K be a class of DTL interpretation struc-
tures and L be the global language of DTL (or of a frag-
ment of DTL). We say that K is definable by L if there is a
φ ∈ L such that, for every interpretation structure µ, µ φ
iff µ ∈ K.
Definition 34. Let K be a class of DTL interpretation struc-
tures and L be the global language of DTL (or a fragment of
DTL) with set of agents Id. Additionally, let α = {αi}i∈Id be
a family of finite sets of propositional letters. ThenK is a pro-
jective class of the global language L if there is a φ ∈ L[β],
with {βi ⊇ αi}i∈Id, such that K = Mod(φ) � α.

Now we define the Craig interpolation property for dis-
tributed temporal logic.
Definition 35. Let L be the global language of DTL (or a
fragment of DTL) with set of agents Id, and α = {αi}i∈Id
and β = {βi}i∈Id two families of finite sets of propositional
letters. Then L has the Craig interpolation property when-
ever the following holds. Let φ ∈ L[α], ψ ∈ L[β]. Whenever
φ � ψ, then there exists θ ∈ L[{αi∩βi}i∈Id] such that φ � θ
and θ � ψ.

We also define uniform interpolation, a stronger form of
interpolation than Craig interpolation.
Definition 36. Let L be the global language of DTL (or a
fragment of DTL) with set of agents Id and let α = {αi}i∈Id
be a family of finite sets of propositional letters. Then L has
uniform interpolation if, for all families of sets of proposi-
tional letters β = {βi}i∈Id such that {βi ⊆ αi} for all
i ∈ Id, and for each formula φ ∈ L[α], there is a formula
θ ∈ L[β] such that φ � θ and for each formula ψ ∈ L[α′]
with {αi ∩ α′i ⊆ βi} for all i ∈ Id, if φ � ψ then θ � ψ.

To give an intuition, a fragment of DTL that has uniform
interpolation is such that the interpolant can be constructed
so that it depends only on the family of sets of propositional
symbols of the antecedent and its intersection, for each agent,
with the family of sets of propositional symbols of the conse-
quent.

5.2 Craig Interpolation for a Fragment of DTL
Now, let us consider the fragment of DTL for which the local
languages contain X as the only temporal operator (although
they still contain communication formulas). We call this frag-
ment DTL(X). The global language L of DTL(X) is defined
by

L ::= @i1 [Li1] | · · · | @in [Lin] | ⊥ | L ⇒ L,
for Id = {ii, . . . , in}, where the local languages Li for each
i ∈ Id are defined by

Li ::= Propi | ⊥ | Li ⇒ Li | XLi | ©j [Lj].
Theorem 2. [13] DTL(X) has uniform interpolation.
Corollary 3. DTL(X) has the Craig interpolation property.

Proof. Considering that uniform interpolation is a stronger
form of interpolation than Craig interpolation, the result
comes directly from Theorem 2.

6 Conclusion
One of the goals of this work was to present a translation
from DTL into FOL. With this in mind, we have presented
a translation function that translates DTL formulas into FOL
formulas, and we have shown a result stating that it preserves
entailment in DTL.

We have also studied the theorem-prover CVC4, and fol-
lowing the work done in [19], we have presented the algo-
rithms used in the theorem-prover for proving (or refuting)
the validity of quantified formulas in the LIA theory. Since
LTL and DTL formulas translated into FOL belong to the
LIA theory, and typically contain quantifiers, we created two
Mathematica functions, which can be seen in Appendix A,
that translate LTL and DTL formulas into FOL formulas writ-
ten in CVC4’s native language. With this, we wanted to
understand if it was possible to use CVC4 to check the va-
lidity of LTL and DTL formulas. While this method shows
some positive results for LTL formulas, it fares worse when
it comes to DTL formulas, specifically the ones that contain
communication formulas. This likely occurs because these
formulas involve multiple agents, which lead to more quanti-
fiers on the translated formula, often making them more com-
plex. Unfortunately, we are not able to recommend our ap-
proach with CVC4 for checking the validity of DTL formu-
las. However, it would be interesting to study another theo-
rem prover and to understand if it could provide more consis-
tent results in our approach for checking the validity of DTL
formulas.

We have proposed an extension of the separation property
to DTL, based on the definition of this property for temporal
logic [15; 17; 20; 9; 14]. We have presented a result stating
that this extension of the separation property holds for the
distributed temporal logic for which the local languages have
both the Until and Since operators.

Finally, we have addressed the Craig interpolation property
in the context of DTL and we have presented a result stating
that this property holds for the fragment of DTL for which
the local languages contain X as the only temporal operator.

References
[1] “About CVC4,” 2020, last accessed 30 January 2020.

[Online]. Available: https://cvc4.github.io/index.html
[2] “About SMT-LIB,” 2020, last accessed 30 January

2020. [Online]. Available: http://smtlib.cs.uiowa.edu/
about.shtml

[3] “CVC4 Native Input Language,” 2020, last accessed 04
February 2020. [Online]. Available: https://cvc4.github.
io/cvc4-native-input-language.html

[4] “CVC4 Online App,” 2020, last accessed 04 February
2020. [Online]. Available: https://cvc4.github.io/app/

[5] D. Basin, C. Caleiro, J. Ramos, and L. Viganò, “La-
belled tableaux for distributed temporal logic,” Journal
of Logic and Computation, vol. 19, no. 6, pp. 1245–
1279, January 2009.

[6] D. Basin, C. Caleiro, J. Ramos, and L. Vigano,
“Distributed temporal logic for the analysis of security

protocol models,” Theor. Comput. Sci., vol. 412, pp.
4007–4043, July 2011. [Online]. Available: https:
//doi.org/10.1016/j.tcs.2011.04.006

[7] G. De Giacomo and M. Vardi, “Linear temporal logic
and linear dynamic logic on finite traces,” IJCAI Inter-
national Joint Conference on Artificial Intelligence, pp.
854–860, January 2013.

[8] H.-D. Ehrich and C. Caleiro, “Specifying communica-
tion in distributed information systems,” Acta Informat-
ica, vol. 36, pp. 591–616, 03 2000.

[9] D. Gabbay, “The declarative past and imperative fu-
ture,” in Temporal Logic in Specification, B. Banieqbal,
H. Barringer, and A. Pnueli, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1989, pp. 409–448.

[10] A. Gheerbrant and B. ten Cate, “Craig interpolation for
linear temporal languages,” in Computer Science Logic,
E. Grädel and R. Kahle, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 287–301.

[11] I. Hodkinson and M. Reynolds, “Separation - past,
present, and future,” in We Will Show Them!, 2005.

[12] N. Kamide, “Interpolation theorems for some variants
of ltl,” Reports on Mathematical Logic, vol. 2015,
no. Number 50, 2015. [Online]. Available: https:
//www.ejournals.eu/rml/2015/Number-50/art/5718/

[13] M. Nascimento, “DTL: Translation, SMT Verification,
Separation and Interpolation,” 2021, Master’s thesis, In-
stituto Superior Técnico.

[14] D. Oliveira, “Linear Temporal Logic: Separation and
Translation,” 2017, Master’s thesis, Instituto Superior
Técnico.

[15] D. Oliveira and J. Rasga, “Revisiting separation:
algorithms and complexity,” Logic Journal of the
IGPL, 02 2020, jzz081. [Online]. Available: https:
//doi.org/10.1093/jigpal/jzz081

[16] D. Peled, “Temporal Logic: Mathematical Foundations
and Computational Aspects, Volume 1,” The Computer
Journal, vol. 38, no. 3, pp. 260–261, 01 1995. [Online].
Available: https://doi.org/10.1093/comjnl/38.3.260

[17] A. Rabinovich, “A proof of kamp’s theorem,” Log.
Methods Comput. Sci., vol. 10, no. 1, 2014. [On-
line]. Available: https://doi.org/10.2168/LMCS-10(1:
14)2014

[18] A. Reynolds, “Satisfiability modulo theories and
DPLL(T),” 2015, last accessed 30 January 2020.
[Online]. Available: http://homepage.divms.uiowa.edu/
∼ajreynol/pres-dpllt15.pdf

[19] A. Reynolds, T. King, and V. Kuncak, “Solving quanti-
fied linear arithmetic by counterexample-guided instan-
tiation,” Formal Methods in System Design, 2017.

[20] K. Schneider, Verification of Reactive Systems: Formal
Methods and Algorithms. SpringerVerlag, 2004.

https://cvc4.github.io/index.html
http://smtlib.cs.uiowa.edu/about.shtml
http://smtlib.cs.uiowa.edu/about.shtml
https://cvc4.github.io/cvc4-native-input-language.html
https://cvc4.github.io/cvc4-native-input-language.html
https://cvc4.github.io/app/
https://doi.org/10.1016/j.tcs.2011.04.006
https://doi.org/10.1016/j.tcs.2011.04.006
https://www.ejournals.eu/rml/2015/Number-50/art/5718/
https://www.ejournals.eu/rml/2015/Number-50/art/5718/
https://doi.org/10.1093/jigpal/jzz081
https://doi.org/10.1093/jigpal/jzz081
https://doi.org/10.1093/comjnl/38.3.260
https://doi.org/10.2168/LMCS-10(1:14)2014
https://doi.org/10.2168/LMCS-10(1:14)2014
http://homepage.divms.uiowa.edu/~ajreynol/pres-dpllt15.pdf
http://homepage.divms.uiowa.edu/~ajreynol/pres-dpllt15.pdf

	Introduction
	A Translation from DTL into FOL
	First-order Logic
	Linear Temporal Logic
	Distributed Temporal Logic
	The Translation Function

	SMT Verification using CVC4
	The Functionalities and Operability of CVC4
	Validity Checking of LTL and DTL Formulas using CVC4

	Separation Properties
	Separation Property for Temporal Logic
	Separation Property for DTL

	Craig Interpolation
	Definition of Craig Interpolation in the Context of DTL
	Craig Interpolation for a Fragment of DTL

	Conclusion
	Bibliography

