
DTL: Translation, SMT Verification, Separation and
Interpolation

Miguel de Lacerda e Costa Serra do Nascimento

Thesis to obtain the Master of Science Degree in

Mathematics and Applications

Supervisor(s): Prof. Jaime Arsénio de Brito Ramos
Prof. João Filipe Quintas dos Santos Rasga

Examination Committee

Chairperson: Prof. Maria Cristina de Sales Viana Serôdio Sernadas
Supervisor: Prof. Jaime Arsénio de Brito Ramos

Member of the Committee: Prof. Francisco Miguel Alves Campos de Sousa Dionísio

January 2021

ii

Declaração
Declaro que o presente documento é um trabalho original da minha autoria e que cumpre todos os

requisitos do Código de Conduta e Boas Práticas da Universidade de Lisboa.

Declaration
I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

iii

iv

Acknowledgments

I would like to thank Professor Jaime Ramos and Professor João Rasga for accepting to supervise this

thesis and for all the helpful guidance and insight given throughout its development.

I am grateful to my parents for all the support they have given me throughout my education and for

everything they have done for me.

v

vi

Resumo

O objetivo desta dissertação é contribuir para uma melhor compreensão da Lógica Temporal Distribuı́da

(DTL), nomeadamente ao investigar se possui algumas propriedades lógicas importantes.

Começamos por apresentar uma tradução de fórmulas em DTL para fórmulas em lógica de primeira

ordem (FOL) que preserva a consequência semântica, e de seguida recorremos a CVC4, um provador

de teoremas e solucionador de satisfiability modulo theories (SMT), de forma a verificar a validade de

fórmulas em DTL, capitalizando na tradução de DTL para FOL mencionada anteriormente. Também

propomos uma extensão da propriedade da separação a DTL, e provamos que a lógica temporal dis-

tribuı́da cujas linguagens locais contêm os operadores Until e Since tem a nossa versão da propriedade

da separação. Adaptamos ainda a propriedade da interpolação de Craig a DTL, e provamos que um

fragmento desta lógica tem a propriedade referida.

Palavras-chave: Lógica temporal distribuı́da, CVC4, propriedade da separação, interpolação

de Craig

vii

viii

Abstract

The purpose of this dissertation is to contribute to better understand Distributed Temporal Logic (DTL),

namely by investigating whether it enjoys some important logical properties.

We start by presenting a translation from DTL formulas into first-order logic (FOL) formulas that

preserves entailment, and afterwards we resort to the theorem prover and satisfiability modulo theories

(SMT) solver CVC4 in order to check the validity of DTL formulas, capitalizing on the translation from

DTL to FOL previously mentioned. Furthermore, we propose an extension of the separation property to

DTL, and we prove that our extension of this property holds for the distributed temporal logic whose local

languages contain both the Until and Since operators. We also adapt the Craig interpolation property to

DTL, and we prove that the property holds for a fragment of this logic.

Keywords: Distributed temporal logic, CVC4, separation property, Craig interpolation

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Figures . xiii

1 Introduction 1

1.1 Thesis Outline . 2

2 A Translation from DTL into FOL 3

2.1 First-order Logic . 3

2.1.1 Syntax . 3

2.1.2 Semantics . 5

2.2 Linear Temporal Logic . 6

2.2.1 Syntax . 6

2.2.2 Semantics . 7

2.3 Distributed Temporal Logic . 8

2.3.1 Syntax . 8

2.3.2 Semantics . 8

2.4 The Translation Function . 10

2.5 Extending the Translation Function to more Operators . 13

3 SMT Verification using CVC4 15

3.1 The Functionalities and Operability of CVC4 . 15

3.2 Quantifiers in a SMT Formula . 19

3.2.1 An Instantiation Algorithm . 19

3.2.2 A Selection Function for LIA-formulas . 20

3.2.3 The Generalized Algorithm . 24

3.3 Validity Checking of LTL and DTL Formulas using CVC4 28

4 Separation Properties 31

4.1 Separation Property for Temporal Logic . 31

4.2 Separation Property for DTL . 32

xi

5 Craig Interpolation 37

5.1 Definition of Craig Interpolation in the Context of DTL . 37

5.2 Craig Interpolation for a Fragment of DTL . 38

6 Conclusions 43

6.1 Achievements . 43

6.2 Future Work . 43

Bibliography 45

A Code 47

xii

List of Figures

3.1 Example of the declaration of variables and the use of some symbols and connectives for

the ASSERT command in CVC4 (run on the terminal). 17

3.2 Example of the QUERY command being used in CVC4 to prove a theorem and the

CHECKSAT command being used to solve a SMT instance (run on the terminal). 17

3.3 Example of the COUNTERMODEL command being applied in CVC4 to get a model that

makes the formula x+ y = 2 invalid after an invalid QUERY, and a model that makes the

same formula satisfiable after a satisfiable CHECKSAT (run on the terminal). 18

xiii

xiv

Chapter 1

Introduction

Distributed temporal logic (DTL) is a temporal logic introduced with the purpose of reasoning about

temporal properties of discrete distributed systems from the local point of view of its agents [1, 2].

Having been first proposed near the end of the twentieth century in [3], DTL is a relatively recent logic,

when comparing to, for instance, first-order logic (FOL) or linear temporal logic (LTL). Because of this,

there are still some important ideas and logical properties left to be studied for DTL, some of which may

improve the applicability of this logic in certain areas. The purpose of this document is to investigate

whether DTL enjoys some of these logical properties.

In this work, we will start by presenting the syntax and semantics of FOL, LTL and DTL, and we will

then proceed to approach the topic of translation. More specifically, we will present a translation from

DTL formulas into FOL formulas that preserves entailment. In fact, some problems can be made easier

to solve by considering the DTL formula translated into FOL, rather than the DTL formula itself. We will

make use of this translation when studying satisfiability modulo theories (SMT) verification, since the

question of whether a DTL formula is valid or not can be tied to the SMT problem.

The SMT problem is a variant of the SAT problem for which the non-logical symbols are interpreted

in the context of some background theory. We will study CVC4, a theorem prover for SMT problems, and

present its techniques for dealing with quantified SMT instances. We will finish the topic of verification

when attempting to check, using CVC4, the validity of DTL formulas, by initially translating them into

FOL.

The topic of separation will be addressed as well. A logic is said to have the property of separation if

every formula is equivalent to a Boolean combination of formulas that each refer only to the present, past

or future [4–7]. Dov Gabbay was the first to show that the temporal logic with the operators Until and

Since has the separation property over the integers [8]. It turns out that, for temporal logic, the notion of

separation is tied to the expressiveness of the logic, that is, the variety and quantity of ideas that the logic

can be used to represent [9, 10]. In this work, a proposal for an extension of the separation property to

distributed temporal logic is presented, along with the proof that this extension of the separation property

holds for the distributed temporal logic whose local languages contain both the Until and Since operators.

We will finish this document with the topic of Craig interpolation. A logic having the Craig interpo-

1

lation property is such that if a formula φ entails a formula ψ, then there exists a formula θ (called the

interpolant) such that φ entails θ, θ entails ψ, and every propositional symbol in θ occurs both in φ and

ψ. When it comes to applications in computer science, interpolation is often a desired property to have

in a temporal logic. For example, interpolation has played a role in building efficient model checkers.

Uniform interpolation, which we will talk about in this work, has been particularly useful in this regard.

The Craig interpolation property is proven to hold for both FOL and a fragment of LTL [11, 12]. We

will study the Craig interpolation property in the context of distributed temporal logic, and prove that this

property holds for the fragment of DTL whose local languages contain X as the only temporal operator.

1.1 Thesis Outline

To sum up, this document is organized as follows:

• In Chapter 2, we introduce the syntax and semantics of FOL, LTL and DTL. We also present a

translation from DTL formulas to FOL formulas, and we prove that it preserves entailment.

• In Chapter 3, we study the SMT solver CVC4 and the techniques it utilizes for dealing with quanti-

fied formulas. We also attempt to check the validity of LTL and DTL formulas using CVC4, capital-

izing on the previous translation from DTL to FOL.

• In Chapter 4, we propose an extension of the separation property to distributed temporal logic,

and we prove that this extension of the property holds for the distributed temporal logic whose

local languages contain both the Until and Since operators.

• In Chapter 5, we prove that the Craig interpolation property holds for the distributed temporal logic

whose local languages contain X as the only temporal operator.

• In Appendix A, we transcript the code developed in Mathematica for translating LTL and DTL

formulas into FOL formulas that are written in CVC4’s native input language.

2

Chapter 2

A Translation from DTL into FOL

In this chapter, we present the syntax and semantics of first-order logic (FOL), linear temporal logic

(LTL) and distributed temporal logic (DTL). Furthermore, we aim to show how to translate from DTL

into FOL. With this intention, we will define a translation function that translates DTL formulas into FOL

formulas, and prove that our translation function preserves entailment in DTL. This translation function

will be necessary for section 3.3, where we attempt to check the validity of DTL formulas by resorting to

a Mathematica function that, based on the translation function we will define, translates DTL formulas

into FOL formulas written in CVC4’s native language. The code of this Mathematica function, along with

some guidance on how to use this function, can be found in Appendix A.

Finally, the translation function will also be expanded to other temporal operators than are not con-

sidered in the definition of the function.

2.1 First-order Logic

2.1.1 Syntax

We will introduce formulas in the context of FOL. First, we start by explaining what a first-order signature

is.

Definition 2.1. A first-order signature is a tuple Σ = 〈F ,P, τ〉 such that

• F and P are disjoint sets, with P 6= ∅;

• τ : F ∪ P → N is a map.

The elements of F are said to be the function symbols, while the elements of P are said to be the

predicate symbols (or predicate letters). The map τ returns the arity of its argument. Additionally, let

• Fn denote the subset of function symbols with arity n;

• Pn denote the subset of predicate symbols with arity n.

3

Example 2.1. Let us consider a first-order signature Σ, where F = {0, 1,+,×} and P = {∼=}. Then, we

have that F0 = {0, 1}, F2 = {+,×} and P2 = {∼=}.

Before introducing formulas in first-order logic, we first have to say what is a term. Let X =

{x0, x1, . . . } denote the set of variables.

Definition 2.2. The set TΣ of terms over Σ is inductively defined as follows:

• F0 ∪ X ⊆ TΣ;

• f(t1, . . . , tn) ∈ TΣ provided that f ∈ Fn and t1, . . . , tn ∈ TΣ.

Definition 2.3. The set LΣ of formulas over Σ is inductively defined as follows:

• ⊥ ∈ LΣ - “bottom”, denotes a proposition that is always false;

• p(t1, . . . , tn) ∈ LΣ provided that p ∈ Pn and t1, . . . tn ∈ TΣ;

• ϕ1 ⇒ ϕ2 ∈ LΣ provided that ϕ1, ϕ2 ∈ LΣ - implication;

• ∀xϕ ∈ LΣ provided that x ∈ X and ϕ ∈ LΣ - universal quantification.

For the sake of simplicity, it may be useful to consider certain formula abbreviations. As such, we

define the following abbreviations:

• ¬ϕ ≡ (ϕ⇒ ⊥) - negation;

• > ≡ (⊥ ⇒ ϕ) - denotes a proposition which is unconditionally true;

• ϕ ∨ ψ ≡ ¬ϕ⇒ ψ - disjunction;

• ϕ ∧ ψ ≡ ¬ (ϕ⇒ ¬ψ) - conjunction;

• ∃xϕ ≡ ¬∀x¬ϕ - existential quantification.

In a formula, it may also be important to distinguish between variables that occur free and variables

that are bounded to a quantifier.

We inductively define the map varΣ that assigns to each term the set of variables occurring in it the

following way:

• varΣ(x) = {x};

• varΣ(c) = ∅;

• varΣ(f(t1, . . . , tn)) = varΣ(t1) ∪ · · · ∪ varΣ(tn).

Also, we inductively define the map fvΣ that assigns to each formula the set of variables occurring

free in it in the following way:

• fvΣ(p(t1, . . . , tn)) = varΣ(t1) ∪ · · · ∪ varΣ(tn).

4

• fvΣ(⊥) = ∅;

• fvΣ(ϕ⇒ ψ) = fvΣ(ϕ) ∪ fvΣ(ψ);

• fvΣ(∀xϕ) = fvΣ(ϕ)\{x}.

Note the following example:

fvΣ((∃x1 p(x1, x2)) ∧ (∀x3 q(x1, x3))) = {x1, x2}.

2.1.2 Semantics

In this subsection, we study the semantics of FOL, that is, the study of the logical system in the point

of view of their interpretation. With this in mind, we introduce the concepts of interpretation structure,

assignment and satisfaction.

Definition 2.4. An interpretation structure over Σ is a tuple I = 〈D, {fI}f∈F , {pI}p∈P〉 such that

• D is a non-empty set which we call the domain;

• fI : Dn → D is a map providing that f ∈ Fn;

• pI : Dn → {0, 1} is a map providing that p ∈ Pn;

Essentially, fI and pI represent the interpretation or denotation of, respectively, f and p in I.

Example 2.2. Let Σ be a first-order signature, where F = {0, 1,+,×} and P = {∼=}. We can consider

an interpretation structure I over Σ such that I = 〈Q, {0I , 1I ,+I ,×I}, {∼=I}〉 and

• 0I = 0;

• 1I = 1;

• +I : Q×Q→ Q, such that d1 +I d2 = d1 + d2;

• ∼=I (d1, d2) = 1 provided that d1 = d2.

An assignment is a map ρ : X → D. We say that an assignment σ is x-equivalent to another

assignnment ρ, which we write σ ≡x ρ, if σ(y) = ρ(y) for every y ∈ X\{x}.

Definition 2.5. We inductively define contextual satisfaction as follows:

• Iρ 1Σ ⊥;

• Iρ Σ p(t1, . . . , tn) whenever pI(JtIρ1 K, . . . , JtIρn K) = 1;

• Iρ Σ ϕ1 ⇒ ϕ2 provided that either Iρ 1Σ ϕ1 or Iρ Σ ϕ2;

• Iρ Σ ∀xϕ providing that Iσ Σ ϕ for every σ that is x-equivalent to ρ.

5

Given an interpretation structure I and an assignment ρ, if Iρ ϕ, we say that I and ρ contextually

satisfy ϕ ∈ LΣ.

Definition 2.6. We say that I satisfies ϕ (we can also say that ϕ is true in I, or that I is a model of ϕ),

which we write I Σ ϕ, whenever Iρ Σ ϕ for every ρ.

Definition 2.7. A formula is valid, written �Σ ϕ, if I ϕ for every interpretation structure I over Σ.

We will also need the definition of entailment and the definition of theory for some of the following

sections. We introduce these concepts in the next definitions.

Definition 2.8. A formula ϕ over Σ is entailed by a set Γ of formulas over the same signature, which we

write Γ �Σ ϕ, if, for every interpretation structure I over Σ, I Σ ϕ whenever I Σ γ for each γ ∈ Γ.

Definition 2.9. The semantic closure of a set Γ ⊆ LΣ is the set

Γ�Σ = {ϕ ∈ LΣ : Γ �Σ ϕ}

of its entailed formulas.

Definition 2.10. A set of formulas Θ ⊆ LΣ is said to be a theory if Θ�Σ = Θ.

2.2 Linear Temporal Logic

While first-order logic describes a static situation, temporal logic is able to depict that situation as time

progresses. In particular, linear temporal logic (LTL) is a propositional temporal logic with modalities that

describe events along a single time path.

2.2.1 Syntax

We introduce LTL formulas in the following definition.

Definition 2.11. Given a set of propositional symbols Prop, we define the language of linear temporal

logic LLTL as follows:

LLTL ::= Prop | ⊥ | LLTL ⇒ LLTL | X [LLTL] | LLTL ULLTL | LLTL SLLTL.

The ⊥ and ⇒ have the usual meanings. Intuitively, the formula Xϕ, which we call a next formula,

stands for “ϕ will hold in the next instant”. The formula ϕ1 Uϕ2, which we call a until formula, stands for

“there is an instant in the future where ϕ2 will hold and until then formula ϕ1 must hold”. Furthermore,

the formula ϕ1 Sϕ2, which we call a since formula, is similar to an until formula but in the past direction.

Intuitively, it stands for “since the last instant in the past for which ϕ2 was true, ϕ1 has always been true”.

We introduce the following abbreviations:

• Fϕ ≡ >Uϕ - which stands for “sometime in the future, ϕ must hold”;

6

• Gϕ ≡ ¬F¬ϕ - which stands for “always in the future, ϕ must hold”.

Note that all the temporal operators we have shown talk about the future, except for the since op-

erator, which talks about the past. Additionally, temporal operators can be combined to express more

complex properties. We will see some examples of both of these situations in the next sections and

chapters.

2.2.2 Semantics

First, we introduce the definition of finite and infinite words. We assume a nonempty and finite set Σ,

called the alphabet, whose elements are called symbols or letters.

Definition 2.12. Let Σ be an alphabet. A finite word w over Σ is a finite, possibly empty, sequence

ν1ν2 . . . νn where n ∈ N and each νi ∈ Σ, for i = 1, . . . , n. The set of all finite words over Σ is denoted by

Σ∗.

The finite word corresponding to the empty sequence, which we call the empty word, is denoted by

ε. The length of a word, which we denote by |w|, is the number of symbols that appear in the sequence.

For instance, the length of the word w = ν1ν2 . . . νn in n. The length of the empty word is 0. Also, we

write w|i to denote the prefix of w of length i, that is, w|i = ν1 . . . νi, provided that 0 ≤ i ≤ |w|.

Definition 2.13. An infinite word σ over Σ is an infinite sequence σ = ν1ν2 . . . where each νi ∈ Σ, for

i ∈ N. The set of all infinite words over Σ is denoted by Σω.

The length of an infinite word is always ω.

Definition 2.14. An interpretation for LTL is an infinite word over 2Prop.

Intuitively, an interpretation structure for LTL is an infinite sequence of valuations, such that each

element of the sequence in an LTL interpretation structure will determine the boolean values of the

propositional symbols at a given moment in time. Given an interpretation σ = ν0ν1ν2 . . . , we can see

νi as the set of propositional symbols that hold at an instant i. We can now define satisfaction in the

context of LTL.

Definition 2.15. Let σ be an interpretation and i ∈ N. The local satisfaction relation for LTL is inductively

defined as follows:

• σ, i 1 ⊥;

• σ, i p if p ∈ σ[i] if σi(p) = 1;

• σ, i ϕ1 ⇒ ϕ2 if σ, i 1 ϕ1 or σ, i ϕ2;

• σ, i Xϕ if σ, i+ 1 ϕ;

• σ, i ϕ1 Uϕ2 if there is j > i such that σ, j ϕ2 and σ, k ϕ1, for every i < k < j.

7

The interpretation σ satisfies the formula ϕ, which we write σ ϕ, if σ, i ϕ for every i. Similarly to

FOL, we say that a formula is valid if it is satisfied by all interpretations.

We also define entailment in the context of LTL.

Definition 2.16. Let Γ ∪ {ϕ} ⊆ L. We say that Γ entails ϕ, written Γ � ϕ, when σ ϕ for every

interpretation σ such that σ Γ.

2.3 Distributed Temporal Logic

2.3.1 Syntax

The syntax of distributed temporal logic (DTL) is defined over a distributed signature.

Definition 2.17. A distributed signature is defined as a tuple Σ = 〈Id, {Propi}i∈Id〉, where Id is a

non-empty finite set of agents and, for each i ∈ Id, Propi is a set of local state propositions.

The global language LDTL is defined by

LDTL ::= @i1 [Li1] | · · · | @in [Lin] | ⊥ | LDTL ⇒ LDTL,

for Id = {i1, . . . , in}, where the local languages Li for each i ∈ Id are defined by

Li ::= Propi | ⊥ | Li ⇒ Li | Li ULi | Li SLi | ©j [Lj],

with j ∈ Id.

The ⊥ and ⇒ have the usual meaning, while U and S were introduced in the previous section. In

the global language, we introduce a new kind of formula. We say that the formula @i[ϕ], called a global

formula, means that ϕ holds for agent i. On the other hand, local formulas hold locally for each agent.

Note that temporal operators only occur in local formulas, meaning that we talk about these formulas

in the context of a given agent. Also locally for an agent i, the formula ©j [ψ], called a communication

formula, means that agent i has just communicated (or synchronized) with agent j, for whom ψ holds.

2.3.2 Semantics

Before presenting the definition of a DTL interpretation structure, we will introduce have to introduce the

concepts of local and distributed life-cycles, and of local and global states.

Definition 2.18. A local life-cycle of an agent i ∈ Id is a countable infinite, discrete and well-founded

total order λi = 〈Evi,≤i〉, where Evi is the set of local events and ≤i the local order of causality.

Definition 2.19. The relation →i⊆ Evi × Evi, called the local successor relation, is the relation such

that e→i e
′ if e <i e′ and there is no e′′ such that e <i e′′ <i e′.

As a consequence, ≤i=→∗i , i.e., ≤i is the reflexive, transitive closure of→i.

8

Definition 2.20. A distributed life-cycle is a family λ = {λi}i∈Id of local life-cycles. This family is such

that ≤= (
⋃
i∈Id ≤i)∗ defines a partial order of global causality on the set of all events E =

⋃
i∈IdEi.

Note that, due to the fact that communication between agents involves event sharing, we may have,

for some event e, e ∈ Ei ∩ Ej , for i 6= j.

Definition 2.21. The local state of agent i is a finite set ξi ⊆ Evi down-closed for local causality, that is,

if e ≤i e′ and e′ ∈ ξi, then also e ∈ ξi.

We denote the set of all local states of an agent i by Ξi. This set is totally ordered by inclusion and

has ∅ as the minimal element.

Due to the total order on local events, the local states of each agent are totally ordered. The 0th

state of each agent is ∅, and the next local state is reached by the occurrence of an event which we call

last(ξi), since it is the last event in which agent i took part in order to reach the present state ξi. We

denote by ξki the kth state of agent i, meaning that ξ0
i = ∅ is the initial state and ξki is the state reached

after the occurrence of the first k events. Note that ξki is the only state of agent i that contains exactly k

elements, that is, where |ξki | = k. Moreover, given e ∈ Evi, (e � i) = {e′ ∈ Evi|e′ ≤i e} is always a local

state. Furthermore, we have that (last(ξi) � i) = ξi, assuming that ξi is non-empty.

Definition 2.22. A global state is a finite set ξ ⊆ Ev closed for global causality, that is, if e ≤ e′ and

e′ ∈ ξ, then also e ∈ ξ.

The set of all global states, written Ξ, has ∅ as the minimal element. Also, we can see that every

global state ξ includes the local state of agent i.

After these definitions, we can finally introduce DTL interpretation structures.

Definition 2.23. An interpretation structure µ for DTL is a labelled distributed life-cycle of the form

µ = 〈λ, σ〉, where λ consists of a distributed life-cycle and σ = {σi}i∈Id is a family of local labelling

functions.

For each i ∈ Id, the local labelling functions σi associate a set of local state propositions to each

local state. Furthermore, we also denote the tuple 〈λi, σi〉 by µi.

Now, we can define the global satisfaction relation by

• µ γ if µ, ξ γ for every ξ ∈ Ξ,

where the global satisfaction relation at a global state is defined by

• µ, ξ 1 ⊥;

• µ, ξ γ ⇒ δ if µ, ξ 1 γ or µ, ξ δ;

• µ, ξ @i[ϕ] if µi i ϕ if µi, ξ i ϕ for every ξ ∈ Ξi,

and where the local satisfaction relations at local states are defined by

• µi, ξ i p if p ∈ σi(ξ);

9

• µi, ξ i ¬ϕ if µi, ξ 1i ϕ;

• µi, ξ i ϕ⇒ ψ if µi, ξ 1i ϕ or µi, ξ i ψ;

• µi, ξ i ϕUψ if |ξ| = k and there exists ξni ∈ Ξi such that k < n with µi, ξni i ψ, and µi, ξmi i ϕ

for every k < m < n;

• µi, ξ i ϕSψ if |ξ| = k and there exists ξni ∈ Ξi such that n < k with µi, ξni i ψ, and µi, ξmi i ϕ

for every n < m < k;

• µi, ξ i ©j [ϕ] if |ξ| > 0, lasti(ξ) ∈ Ej , and µj , (lasti(ξ) � j) j ϕ.

A DTL formula γ is said to be valid, written � γ, if µ γ for every global interpretation structure µ.

Finally, we define entailment in the context of DTL.

Definition 2.24. Let Γ ∪ {ϕ} ⊆ LDTL. We say that Γ entails ϕ, written Γ � ϕ, when σ ϕ for every

interpretation σ such that σ Γ.

2.4 The Translation Function

In this section, we present a translation function from DTL formulas into FOL formulas, and we show

that this translation preserves entailment in DTL.

First, we need to introduce some definitions. To start, note that, excluding communication formulas,

local DTL formulas coincide with LTL formulas. This fact is used in [2] to prove that DTL is decidable

by a translation into LTL. We make use of this idea, along with the fact that there is a known translation

from LTL into FOL [13], in our own translation.

Given a DTL signature Σ = 〈Id, Prop〉, we define the corresponding FOL signature as having P =

{@(i, n) | i ∈ Id, n ∈ N0} ∪
⊎
i∈Id Propi ∪ {<}, where < has the usual meaning. We assume that the

symbol p ∈ Propi is represented in P by the unary predicate pi. The additional predicate @(i, n), with

i ∈ Id and n ∈ N0, is meant to express whether the n-th event in the global order of events of the DTL

signature belongs to agent i or not.

Thus, the translation of global formulas is given by the function f : LDTL → LFOL such that

• f(@i[ϕ]) = ∀x (@(i, x)⇒ fi(ϕ, x)),

and for each i ∈ Id, the function fi : Li → LFOL translates local formulas to FOL formulas the

following way:

• fi(p, x) = pi(x);

• fi(¬ϕ, x) = ¬fi(ϕ, x);

• fi(ϕ⇒ ψ, x) = fi(ϕ, x)⇒ fi(ψ, x);

• fi(ϕUψ, x) = ∃y x < y ∧@(i, y) ∧ fi(ψ, y) ∧ ∀z (x < z < y ⇒ (@(i, z)⇒ fi(ϕ, z)));

10

• fi(ϕSψ, x) = ∃y y < x ∧@(i, y) ∧ fi(ψ, y) ∧ ∀z (y < z < x⇒ (@(i, z)⇒ fi(ϕ, z)));

• fi(©j [ϕ], x) = @(j, x) ∧ fj(ϕ, x).

Let us also consider the map β from FOL interpretation structures to DTL interpretation structures

such that β(I) = 〈λ, σ〉, with λi = 〈Ei,≤i〉, where:

• Ei = {n ∈ N | @(i, n) ∈ PI};

• ≤i is the restriction of the usual order on N, with n→i m if n,m ∈ Ei and there is no k ∈ Ei, such

that n < k < m;

• σi(∅) = {p ∈ Propi | pi(0) = 1} and σi({m ∈ Ei | m ≤ n}) = {p ∈ Propi | pi(n) = 1}, for each

n ∈ Ei.

Now, we introduce and prove Proposition 2.1, which is necessary for showing that our functions fi,

for i ∈ Id, are well-defined. Note that we must only consider the FOL interpretation structures that

satisfy {
∧
i∈Id @(i, 0)}. We need to add this restriction due to the fact that, at the initial DTL state ∅, no

events have yet occurred.

Proposition 2.1. Given a FOL interpretation structure I that satisfies {
∧
i∈Id @(i, 0)}, we have that, for

every ϕ ∈ LDTL,

β(I)i, ξ
k
i i ϕ if and only if I, [x/lasti(ξki)] FOL fi(ϕ, x), for every ξki ∈ Ξi,

where [x/lasti(ξ
k
i)] stands for a variable assignment that assigns the free variable x of fi(ϕ, x) the value

lasti(ξ
k
i).

Proof. The proof follows by induction on ϕ. We assume that lasti(∅) = 0. For the basis of induction,

if the formula is a propositional symbol p, then β(I)i, ξ
k
i i p iff p ∈ σi(ξ

k
i) iff pi(lasti(ξki)) = 1 iff

I, [x/lasti(ξki)] FOL fi(p, x). As for the induction step, let us consider the following cases:

• The formula is ¬ϕ. Then, β(I)i, ξ
k
i ¬ϕ iff β(I)i, ξ

k
i 1 ϕ iff, by the induction hypothesis,

I, [x/lasti(ξki)] 1FOL fi(ϕ, x) iff I, [x/lasti(ξki)] FOL ¬fi(ϕ, x) iff I, [x/lasti(ξki)] FOL fi(¬ϕ, x).

• The formula is ϕ ⇒ ψ. If we assume that I, [x/lasti(ξki)] 1FOL fi(ϕ ⇒ ψ, x), this leads to

I, [x/lasti(ξki)] 1FOL fi(ϕ, x) ⇒ fi(ψ, x), which in turn implies that I, [x/lasti(ξki)] FOL fi(ϕ, x)

and I, [x/lasti(ξki)] 1FOL fi(ψ, x). By the induction hypothesis, we have that β(I)i, ξ
k
i i ϕ and

β(I)i, ξ
k
i 1i ψ. Therefore, β(I)i, ξ

k
i 1i ϕ⇒ ψ. The converse is similar.

• The formula is ϕUψ. If we assume that I, [x/lasti(ξki)] FOL fi(ϕUψ, x), then there exists y >

lasti(ξ
k
i) such that I, [x/y] FOL @(i, x) ∧ fi(ψ, x). Therefore, y ∈ Ei and (y ↓ i) = ξni for some

n > k, which means that lasti(ξni) = y. Hence I, [x/lasti(ξni)] FOL fi(ψ, x), and by the induction

hypothesis, we get that β(I)i, ξ
n
i i ψ. Furthermore, I, [x/z] FOL @(i, x) ⇒ fi(ϕ, x) for every z

such that lasti(ξki) < z < y. Given m such that k < m < n, we have that lasti(ξki) < lasti(ξ
m
i) <

lasti(ξ
n
i) = y. Since lasti(ξ

m
i) ∈ Ei, it follows that I, [x/lasti(ξmi) FOL @(i, x) and, therefore,

11

I, [x/lasti(ξmi)] FOL fi(ϕ, x). By the induction hypothesis, we obtain β(I)i, ξ
m
i i ϕ. Thus, we

conclude that β(I)i, ξ
m
i i ϕUψ. The converse is similar.

• The proof for S is similar to the proof for U.

• Assume that the formula is ©j [ϕ]. If we have that β(I)i, ξ
k
i i ©j [ϕ], then lasti(ξ

k
i) ∈ Ej and

β(I)i, lasti(ξ
k
i) ↓ j j ϕ. Using the induction hypothesis, we obtain I, [x/lastj(lasti(ξki) ↓ j)] FOL

fj(ϕ, x). Additionally, lastj(lasti(ξki) ↓ j) = lasti(ξ
k
i) ∈ Ej , so @(j, lasti(ξ

k
i)) ∈ PI , which means

that I, [x/lasti(ξki)] FOL @(j, x). From these results, we have that I, [x/lasti(ξki)] FOL @(j, x)∧

fj(ϕ, x), and thus, we arrive to the conclusion that I, [x/lasti(ξki)] FOL fi(©j [ϕ]). Once again,

the converse for this case is similar.

We are finally ready to prove the results that allow us to reach the most important result in this

chapter: the fact that our translation function f , that translates DTL formulas into FOL formulas, pre-

serves entailment. Again, we only regard in our translation FOL interpretation structures that satisfy

{
∧
i∈Id @(i, 0)}.

With this in mind, we introduce the two following propositions.

Proposition 2.2. Let Γ ∪ {δ} ⊆ LDTL. We have that

if Γ |=DTL δ then f(Γ) ∪ {
∧
i∈Id

@(i, 0)} |=FOL f(δ).

Proof. We start by proving that given a FOL interpretation structure I, we have that, for every γ ∈ LDTL,

β(I) DTL γ if and only if I FOL f(γ).

Like we did for the last proof, we assume that lasti(∅) = 0. Let β(I) 1 @i[ϕ]. This means that there is

a ξki such that β(I)i, ξ
k
i 1i ϕ. By Proposition 2.1, we get that I, [x/last(ξki)] 1FOL fi(ϕ, x). Additionally,

I, [x/last(ξki)] FOL @(i, x). From this, we get that I, [x/last(ξki)] 1FOL @(i, x) ⇒ fi(ϕ, x), meaning

that I 1FOL ∀x (@(i, x)⇒ fi(ϕ, x)). Thus I 1FOL f(@i[ϕ]).

Conversely, we assume that I 1FOL f(@i[ϕ]). This means that there is a n ∈ N0 such that

I, [x/n] 1FOL @(i, x) ⇒ fi(ϕ, x), i.e. I, [x/n] FOL @(i, x) and I, [x/n] 1FOL fi(ϕ, x). From the

first condition, we have that either n = 0, which leads to (n ↓ i) = ∅, or n ∈ Ei, in which case it follows

that lasti(n ↓ i) = n. By Proposition 2.1, we obtain that β(I)i, n ↓ i 1i ϕ. Thus β(I) 1DTL @i[ϕ].

We are now ready to finish our proof. Assume that Γ |=DTL δ and let I be a FOL model that

satisfies f(Γ) ∪ {
∧
i∈Id @(i, 0)}. From this, we get that β(I) DTL Γ, and therefore β(I) DTL δ. Thus,

I FOL f(δ). From this reasoning, we reach the conclusion that f(Γ) ∪ {
∧
i∈Id @(i, 0)} |=FOL f(δ).

Proposition 2.3. Let Γ ∪ {δ} ⊆ LDTL. We have that

if f(Γ) ∪ {
∧
i∈Id

@(i, 0)} |=FOL f(δ) then Γ |=DTL δ.

12

Proof. We translate DTL interpretation structures into FOL interpretation structures. Given a DTL inter-

pretation structure µ, we linearize its underlying global order of events < Ev,≤> by defining an injective

function h : Ev → N preserving the global causality relation, meaning that if e < e′ then h(e) < h(e′).

Thus, given a DTL interpretation structure µ and function h of < Ev,≤>, we define an associated

FOL interpretation structure Iµ,h as having domain N0 and such that

p
Iµ,h
i (n) =

1 if (p ∈ σi(e � i) ∧ h(e) = n) or (p ∈ σi(∅) ∧ n = 0),

0 otherwise,

@Iµ,h(i, n) =

1 if n = 0 or (e ∈ Evi ∧ h(e) = n),

0 otherwise.

Note that Iµ,h is a model of (
∧
i∈Id @(i, 0)).

Now, by following a simple inductive argument similar to the one used in the proof of the previous

proposition, we also get that, for every ϕ ∈ Li, Iµ,h, [x/h(lasti(ξi))] FOL fi(ϕ, x) if and only if µi, ξi i ϕ.

From this, we reach the conclusion that for every γ ∈ LDTL, Iµ,h FOL fi(γ) if and only if µ DTL γ.

Finally we assume that f(Γ) ∪ {
∧
i∈Id @(i, 0)} |=FOL f(δ). Also, let µ be a DTL model of Γ. Thus,

Iµ,h FOL f(Γ) ∪ {
∧
i∈Id @(i, 0)} meaning that Iµ,h FOL f(δ). We get µ DTL δ, allowing us to

conclude that Γ |=DTL δ.

The two previous propositions allow us to conclude the following result.

Corollary 2.1. Let Γ ∪ {δ} ⊆ LDTL. We have that

Γ |=DTL δ if and only if f(Γ) ∪ {
∧
i∈Id

@(i, 0)} |=FOL f(δ).

2.5 Extending the Translation Function to more Operators

Using this translation from DTL to FOL, one can prove (refute) the validity of a DTL formula by proving

(refuting) the validity of the translation of the same formula into FOL. This DTL formula may include

temporal operators whose direct translations we did not define, such as F, G and X, as it is enough to

use the abbreviations of these operators in order to translate the DTL formula.

For a formula ϕ, the abbreviations of the operators F, G and X are the following:

• Fϕ ≡ >Uϕ.

• Gϕ ≡ ¬F¬ϕ.

• Xϕ ≡ ⊥Uϕ.

However, in certain practical situations, it may be useful to consider the direct translations of these

operators, since these are simpler than the abbreviations, as they contain, in fact, fewer quantifiers. For

instance, if we consider a theorem prover capable of proving or refuting the validity of FOL formulas, this

13

theorem prover will most likely be able to return a result faster if the direct translations of these operators

are used.

Additionally, because of the added simplicity that comes with the use of direct translations, the the-

orem prover may be able to increase the range of formulas to which it can return a “valid” or “invalid”

result. In chapter 3 of this document, we will use CVC4 to prove and refute the validity of LTL and DTL

formulas by considering their translations into FOL (see also Appendix A). We confirmed that using the

direct translations allowed for a wider range of formulas that we could prove or refute, due to the direct

translations having a lower number of quantifiers.

With this in mind, we establish the lemmas that follow.

Lemma 2.1. The direct translation of the operator F from DTL into FOL is the following:

fi(Fϕ, x) = ∃y x < y ∧@(i, y) ∧ fi(ϕ, y).

Proof. Note that the abbreviation of F is Fϕ ≡ >Uϕ. From this, we have that fi(>Uϕ, x) = ∃y x <

y ∧@(i, y)∧ fi(ϕ, y)∧ ∀z (x < z < y ⇒ (@(i, z)⇒ >))). This leads to fi(>Uϕ, x) = ∃y x < y ∧@(i, y)∧

fi(ϕ, y) ∧ ∀z >, and simplifying, we get fi(>Uϕ, x) = ∃y x < y ∧@(i, y) ∧ fi(ϕ, y).

Lemma 2.2. The direct translation of the operator G from DTL into FOL is the following:

fi(Gϕ, x) = ∀y (x < y ∧@(i, y))⇒ fi(ϕ, y).

Proof. Note that the abbreviation of G is Gϕ ≡ ¬F¬ϕ. From this, we have that fi(¬F¬ϕ, x) = ¬fi(F¬ϕ, x) =

¬(∃y x < y ∧ @(i, y) ∧ fi(¬ϕ, x)). This means that fi(¬F¬ϕ, x) = ∀y ¬(x < y ∧ @(i, y) ∧ fi(¬ϕ, x)), and

this leads to fi(¬F¬ϕ, x) = ∀y ¬¬((x < y ∧ @(i, y)) ⇒ ¬fi(¬ϕ, x)), which simplifies to fi(¬F¬ϕ, x) =

∀y (x < y ∧@(i, y))⇒ fi(ϕ, y).

Lemma 2.3. The direct translation of the operator X from DTL into FOL is the following:

fi(Xϕ, x) = ∃y x < y ∧@(i, y) ∧ fi(ϕ, y) ∧ ∀z (x < z < y ⇒ ¬@(i, z)).

Proof. The abbreviation of X is Xϕ ≡ ⊥Uϕ. Thus, fi(⊥Uϕ, x) = ∃y x < y ∧@(i, y) ∧ fi(ϕ, y) ∧ ∀z(x <

z < y ⇒ (@(i, z) ⇒ ⊥)). This can be simplified to fi(⊥Uϕ, x) = ∃y x < y ∧ @(i, y) ∧ fi(ϕ, y) ∧ ∀z(x <

z < y ⇒ ¬@(i, z)).

14

Chapter 3

SMT Verification using CVC4

The SMT problem is a variant of the SAT problem for first-order logic, where the difference is in the fact

that, for an SMT instance, the non-logical symbols are interpreted in the context of some background

theory. Thus, the SMT problem consists of determining whether the SMT instance is satisfiable with

respect to the background theory. Examples of theories typically used in computer science include the

theory of integers, the theory of real numbers, the theory of lists or arrays and so on. Additionally, a

given SMT instance might combine a set of theories (for instance, combining the theory of real numbers

and the theory of integers).

CVC4 is an open-source theorem prover for SMT problems that can be used to prove the validity

or the satisfiability of first-order formulas in several logical theories and their combination [14]. It was

released in 2012 as the fourth in the CVC family of tools. It supports 4 different input languages, namely

the CVC4 Native Input Language, SMT-LIB v2, SyGuS-IF and TPTP.

SMT problems have important applications in some areas of computer science, such as software

verification, model checking and automated test generation [15]. Currently, CVC4 is considered to be

one of the most efficient and up-to-date tools for solving these problems.

In this chapter, a summary of CVC4’s functionalities is presented, along with its operability. Addi-

tionally, the methods used by CVC4 for handling satisfiability modulo theories (SMT) formulas are also

discussed, with the focus being on the approach used specifically for SMT formulas with quantifiers.

Lastly, we try to prove or refute the validity of LTL and DTL formulas using two different Mathematica

functions we implemented, which translate LTL or DTL formulas into FOL formulas written in CVC4’s

native language. The code for these two Mathematica functions, and some indications on how to use

them, can be found on Appendix A. Throughout this chapter, we use version 1.7 of CVC4. Furthermore,

note that we do not show proofs for some of the results about CVC4. These proofs can be found in [16].

3.1 The Functionalities and Operability of CVC4

In this section, we focus on providing a summary of the CVC4 Native Input Language documentation,

highlighting the most important features and how to operate with them. With this in mind, we start by

15

describing the SAT and SMT problems, by first explaining what a literal is.

Definition 3.1. A literal is a either a propositional variable or the negation of a propositional variable.

We say that x and y are positive literals, while ¬x and ¬ y are said to be negative literals.

Definition 3.2. A clause is a disjunction of one or more literals.

An example of a clause is x ∨ ¬ y ∨ ¬ z.

Definition 3.3. A clausal formula is a conjunction of one or more clauses.

For instance, (¬x ∨ y) ∧ (¬ y ∨ w ∨ ¬ z) is a clausal formula.

The SAT problem is, then, the problem of determining whether a given clausal formula is satisfiable,

i.e., if there exists an interpretation that satisfied a given clausal formula.

On the other hand, the SMT problem, also known as the satisfiability modulo theory problem, is

a variant of the SAT problem for first-order logic such that, for an SMT instance, the variables are in-

terpreted in the context of some background theory. Some theories that can be considered are, for

example, the theory of integer numbers, real numbers and also theories of data structures, such as lists

and arrays. Being an SMT-solver, CVC4 supports many of these theories.

As mentioned in the beginning of the chapter, the SMT-solver CVC4 supports 4 different input lan-

guages, which differ in their syntax and in the names of certain commands. The language we used in

this document is the CVC4 Native Input Language, whose documentation can be seen in [17]. It should

also be mentioned that, even though the examples provided in this section were run in the (Windows)

command line, CVC4 can also be run online [18].

CVC4 supports variables of different types, such as REAL, INT, BOOLEAN, STRING, array and tuple,

to name a few. Variables can be declared in a similar way to some programming languages. Moreover,

resorting to user-created variables or quantified variables, the ASSERT command can be used to add

formulas to our current logical context. The current logical context Γ is a collection of the assertions the

user has made so far, although CVC4 may also add formulas to the current context (this will be explained

further ahead). CVC4 will always take into account the current logical context when executing queries.

As for the real and integer arithmetic theories, CVC4 currently supports numerals, along with the

symbols − (both unary and binary), +, ∗, /, <, >, <= and >=. This excludes certain mathematical

operations such as roots, powers, logarithms and factorials, for instance. Specific operations for other

data types, like strings, arrays, sets or bit vectors, are also included in the tool.

In addition to these symbols, CVC4 allows the use of connectives such as ∀, ⇒ and ∨, all of which

have their own syntax. Figure 3.1 shows an example, run on the terminal, of the syntax in the declaration

of variables, along with the ASSERT command, where some of the previously mentioned symbols and

connectives are used.

CVC4’s main functionalities come from the QUERY and CHECKSAT commands. The QUERY com-

mand gets a formula as input and checks if the formula is valid in the current logical context (Γ |= F ,

where Γ is our current logical context and F is the formula). This means that the QUERY command can

be used to verify whether a given formula is a theorem or not. The QUERY command can produce 3

different answers:

16

Figure 3.1: Example of the declaration of variables and the use of some symbols and connectives for
the ASSERT command in CVC4 (run on the terminal).

• If the query returns “valid”, it means that Γ |=T F . After this, the logical context stays exactly as it

was before the query.

• If the query returns “invalid”, it means that Γ 2T F . This implies that there is a model of the theory

T that satisfies Γ ∪ {¬F}. After an invalid answer, the current logical context is augmented with a

set ∆ of variable-free literals such that Γ ∪ ∆ is satisfiable in T , but Γ ∪ ∆ |=T ¬F (which in fact

means that ∆ entails ¬F). We call the new context Γ ∪∆ a counterexample for the formula F .

• If the query returns “unknown”, a set ∆ of literals which entail ¬F is added to the logical context,

similarly to what occurs if the query returns “invalid”. However, the tool is not able to guarantee

that Γ ∪∆ is satisfiable in T .

On the other hand, the CHECKSAT command also takes a formula as input and checks if the formula

is satisfiable in the current logical context (Γ 2 ¬F). Thus, this command behaves in the same way as

making a query to ¬F , returning “sat” if ¬F is invalid, “unsat” if ¬F is valid, and “unknown” in the

remaining cases. This command can be used to solve SAT and SMT instances.

Figure 3.2: Example of the QUERY command being used in CVC4 to prove a theorem and the CHECK-

SAT command being used to solve a SMT instance (run on the terminal).

Furthermore, if CVC4’s produce-models option is turned on (this can only be done on start-up, using

the OPTION command), the user gains access to the COUNTERMODEL command. This command

can be used to, after an invalid QUERY or a satisfiable CHECKSAT, print a model that makes the input

formula invalid or satisfiable, respectively. An example of the application of these commands can be

seen in Figure 3.3.

17

Figure 3.3: Example of the COUNTERMODEL command being applied in CVC4 to get a model that

makes the formula x+ y = 2 invalid after an invalid QUERY, and a model that makes the same formula

satisfiable after a satisfiable CHECKSAT (run on the terminal).

CVC4 also contains other commands that can be advantageous in certain situations:

• The PUSH command saves the current state of the system, while POP restores the system to the

state it was in right before the last PUSH. It can be useful if we want to return to the logical context

we had before a possibly invalid QUERY or satisfiable CHECKSAT, since these results lead to a

change in the context.

• The WHERE command prints all the formulas belonging to the current logical context.

• After an invalid QUERY or a satisfiable CHECKSAT, RESTART may be used to repeat the QUERY

or CHECKSAT with an additional formula in the logical context. The formula needs to be introduced

as input when calling the RESTART command.

• The TRANSFORM command takes a term as input, simplifies it using the current logical context

and prints the result.

• PRINT and ECHO, which are common commands in programming languages, are also available.

Many modern SMT solvers, including CVC4, use a specific algorithm, called DPLL(T), to solve the

SMT problem for quantifier-free SMT instances in an arbitrary theory T .

The DPLL(T) algorithm (also referred to as the lazy approach) transforms an SMT formula into an

SAT one, by replacing every atom in the formula with Boolean variables [19]. Using the regular SAT-

solving DPLL algorithm, a satisfying valuation for the new formula is found, if it exists (if not, the algorithm

returns unsat). Afterwards, a theory solver is used to check if the assignments found are satisfiable in

the theory T . We say that the theory solver checks if the assignments are T -satisfiable. If a contradiction

is found by the theory solver, which means that the assignments are not T -satisfiable, then the algorithm

18

refines the SAT formula with this information, and the regular DPLL algorithm is used once more on the

SAT formula.

3.2 Quantifiers in a SMT Formula

The DPLL(T) algorithm can only be used for SMT formulas without quantifiers. For SMT formulas with

quantifiers, a different approach is needed.

In [16], the authors describe the techniques used in CVC4 for solving linear arithmetic formulas with

quantifiers. First, the article presents a framework that can be used to derive instantiation-based decision

algorithms for formulas with one quantifier alternation. These algorithms can be used for any theory

T , including in particular the linear real arithmetic (LRA) and linear integer arithmetic (LIA) theories.

Furthermore, the article discusses the techniques used in CVC4 to extend these decision algorithms to

formulas that have arbitrary quantifier alternations, and to mixed real and integer arithmetic.

For the following subsections, let us introduce some notation and definitions. A term written t[k]

denotes a term whose free variables are in the tuple k = (k1, ..., kn). Similarly, a formula written ϕ[j]

denotes a formula whose free variables are in the tuple j = (j1, ..., jm).

Given an integer n > 1, two integers a and b are said to be congruent modulo n, if n is a divisor of

their difference (that is, if there is an integer k such that a− b = kn). We write a ≡ b mod n.

Moreover, we say that a true/false decision problem is decidable if it can be solved by an algorithm

that halts on all inputs in a finite number of steps.

3.2.1 An Instantiation Algorithm

In this subsection, let us assume a theory T and a language E such that E is a language closed under

negation, and the satisfiability of finite sets of E formulas modulo T is decidable. We present an algorithm

for checking the satisfiability of formulas in the language Q(E) = {∃k∀x ϕ[k,x] | ϕ[k,x] ∈ E}. It should

be noted that this procedure may be used for any theory T .

PS(∃k∀x ϕ[k,x]) :
Let Γ := ∅ and e be a tuple of distinct fresh variables.
Repeat

If Γ is T -unsatisfiable, then return “unsat”.
If Γ′ = Γ ∪ {¬ϕ[k,x]} is T -unsatisfiable, then return “sat”.
Otherwise,

Let I be a model of T and Γ′ and let t[k] = S(I,Γ,¬ϕ[k,x], e).
Γ := Γ ∪ {ϕ[k, t[k]]}

Algorithm 1: An instantiation-based algorithm PS for determining the T -satisfiability of ∃k∀x ϕ[k,x],
using selection function S.

As it was mentioned, the algorithm PS takes as input a quantified formula of the form ∃k∀x ϕ[k,x]. It

begins by considering a tuple of distinct fresh variables e. Moreover, along the computation, it maintains

a set of formulas Γ, which is initialized as the empty set. After initialization, a loop is entered; this loop

19

will stop if either Γ is T -unsatisfiable, in which case it returns “unsat”, or Γ∪{¬ϕ[k,x]} is T -unsatisfiable,

after which it returns “sat”. On each iteration of the loop, the algorithm invokes a function S (we call it a

selection function), that returns a tuple of terms t[k], whose free variables are a subset of k. Afterwards,

the formula ϕ[k, t[k]] is added to Γ. We define selection function as follows:

Definition 3.4. A selection function (for E) takes as arguments an interpretation I, a set of formulas Γ,

and a formula ¬ϕ[k, e] in E , and a tuple of variables e, where I |= Γ∪¬ϕ[k, e]. It returns a tuple of terms

t[k] such that ϕ[k, t[k]] is also in E .

By maintaining the set of formulas Γ, the algorithm tries to find a subset of instances of ∀x ϕ[k,x]

that is either T -unsatisfiable, or T -satisfiable and entails ∀x ϕ[k,x]. If the subset is T -unsatisfiable,

this implies that ∀x ϕ[k,x] is also T -unsatisfiable. To check if the subset is T -satisfiable and entails

∀x ϕ[k,x], the algorithm checks on each iteration of the loop the satisfiability of Γ ∪ ¬ϕ[k,x]. If it is

T -unsatisfiable, this necessarily means that ¬ϕ[k,x] is T -unsatisfiable, since the algorithm has checked

in the previous step that Γ is T -satisfiable. In either case, the algorithm may terminate before all the

instances of ∀x ϕ[k,x] are added to Γ. The correction of the procedure is a consequence of Lemma 3.1.

Lemma 3.1. If PS terminates when Γ = {ϕ[k, t1], . . . , ϕ[k, tn]}, then ∃k∀x ϕ[k,x] is equivalent to

∃kϕ[k, t1] ∧ . . . ϕ[k, tn].

This lemma argues that the input to the procedure is equivalent to Γ, which means that the algorithm

PS can effectively eliminate the quantifier ∀ on the input formula. Theorem 3.1 also provides us with a

useful result regarding this algorithm.

Theorem 3.1. If S is finite and monotonic for ϕ[k, e] in E , then PS is a (terminating) decision procedure

for the T -satisfiability of ∃k∀x ϕ[k,x].

This theorem argues that the algorithm terminates as long as the selection function is finite and

monotonic for the formula ϕ[k, e] in the language E . The proofs for both Lemma 3.1 and Theorem 3.1

can be seen in [16].

3.2.2 A Selection Function for LIA-formulas

We consider formulas of the form ∃k∀x ϕ[k,x], where k and x are vectors of integer variables, and ϕ is

quantifier-free. According to Theorem 1, to have a (terminating) decision procedure for the satisfiability

of ∃k∀x ϕ[k,x], we need to create a finite and monotonic selection function for LIA. The algorithm for

creating such a function is described in this subsection. We assume that equalities are eliminated from

ϕ using the following transformation:

t ∼= 0 0 ≤ t ∧ 0 ≥ t.

We assume that the signature of integer arithmetic includes the symbols div+ and div−, which denote

division rounding up and down respectively. Additionally, we assume that LIA contains terms of the form

20

t divp c, where p ∈ {+,−} and c is a constant different from zero. We eliminate all occurrences of these

terms from a quantifier-free formula using the transformation:

ϕ[t divp c] ϕ[d] ∧ c · d ∼= t±p m ∧ 0 ≤ m < c,

where d and m are distinct fresh variables, and ±p is + if p is + or − if p is −.

The selection function SLIA is shown in Algorithm 2. The aim of this function is to find terms t to serve

as substitutions for the variables e in ¬ϕ[k, e]. From now on (and in the algorithm), we write ψ{ei 7→ ti}

to denote the formula that results of substituting all occurrences of ei by ti in ψ. The algorithm calls

the recursive algorithm Sr, which takes as arguments I, ¬ϕ[k, e], variables e which we still did not

incorporate into the substitutions, an integer θ, terms t which are the substitutions found for variables

from e so far, and a tuple of symbols p (each one belonging to the set {+,−}) which we call polarities.

The integer θ, which is initialized as 1, is meant to capture divisibility relationships through the algorithm.

SLIA(I,Γ,¬ϕ[k, e], e):
Return Sr(I,¬ϕ[k, e], e, 1, (), ()).

Sr(I, ψ, (ei, . . . , en), θ, t,p):
If i > n, return t divp θ
Otherwise, let (c, ti, pi) = Ssub(I, ψ, ei, θ), σ = {c · ei 7→ ti}
Return Sr(I, ψσ, (ei+1, . . . , en), θ · c, ((c · t)σ, θ · ti), (p, pi))

Ssub(I, ψ, e, θ):
Let M = Ml ∪Mu ∪Mc be such that:

–– I |= M and M |=p ψ,
––Ml ⇔ {c1 · e ≥ l1, . . . , cn · e ≥ ln}, c1 > 0, . . . , cn > 0,
––Mu ⇔ {d1 · e ≤ u1, . . . , dm · e ≤ um}, d1 > 0, . . . , dm > 0, and
––e /∈ FV (l1, . . . , ln) ∪ FV (u1, . . . , um) ∪ FV (Mc).

Return one of:

(ci, li + ρ,+) n > 0, max{(l1c1)I , . . . , (lncn)I} = (lici)
I ,

ρ = (ci · e− li)I mod (θ · ci)
(dj , uj − ρ,−) m > 0, min{(u1

d1
)I , . . . , (umdm)I} = (

uj
dj

)I ,

ρ = (uj − dj · e)I mod (θ · dj)
(1, ρ,+) n = 0,m = 0, ρ = eI mod θ

Algorithm 2: A selection function SLIA for linear integer arithmetic LIA.

This procedure calls the (non-deterministic) algorithm Ssub(I, ψ, ei, θ) (where ψ is ¬ϕ[k, e] on the first

call), which is meant to choose a term to substitute the variable ei. The choice is made based on a set

of literals M over the atoms of ψ which are satisfied by I and propositionally entail ψ. The literals in M

are partitioned into three sets Ml, Mu and Mc, where the set Ml contains the literals that correspond to

lower bounds for the variable e, while Mu contains the literals that correspond to upper bounds for the e,

and Mc contains the literals that remain. Taking this into account, Ml is equivalent to a set that contains

the literals in Ml written in solved form with respect to e, and the same is true for Mu. The literals in

these sets are of the form cj · e ≥ lj and dj · e ≤ uj , for Ml and Mu respectively. After considering

these sets, the algorithm returns a tuple of the form (c, ti, pi), where c is a constant, ti is a term, and pi

21

is a polarity. This tuple is chosen non-deterministically, according to a set of conditions. If Ml is non-

empty, the procedure may return the lower bound such that the value (lici)
I is maximal, plus a constant

ρ. Similarly, if Mu is non-empty, the procedure may return the upper bound such that the value (uidi)I is

minimal, minus a constant ρ. If both Ml and Mu are empty, the procedure returns the tuple (1, ρ,+). The

constant ρ is meant to guarantee that the returned term ti and e are congruent modulo θ · c in I, which

is sufficient to show that SLIA is model-preserving.

Returning to Sr, the algorithm constructs a substitution σ of the form {c · ei 7→ ti}. Subsequently, the

recursive algorithm Ssub is called again, where σ is applied to ψ, θ is multiplied by c, θ · ti is appended to

(c · t)σ, and pi is appended to p.

After finding substitutions t for all the variables e in the original formula, the algorithm returns a vector

of terms t divp θ, which is the integer division of each term in t by θ, where the polarities in p determine

if the division rounds up or down. When considering PSLIA (the instantiation procedure explained in

subsection 3.2.1, parameterized by the selection function SLIA), after the call to the selection function,

the instance ϕ[k, t divp θ] will be added to Γ. Although the choice of polarities in the selection function

does not have an impact in the correctness of the algorithm, it can reduce the number of instances

needed in PSLIA for showing unsatisfiability.

Lemma 3.2. If I is a model for LIA and for quantifier-free ψ, Ssub(I, ψ, e, θ) = (c, t, p), and θ ≥ 1, then:

1. (c · e)I ≡ tI mod (θ · c), and

2. I |= ψ{c · e 7→ t}.

Lemma 3.3. Each recursive call to Sr(I, ψ, (ei, . . . , en), θ, (t1, . . . , ti−1),p), occurring within a call to

SLIA(I,Γ,¬ϕ[k, e], (e1, . . . , en)), is such that:

1. θ | tIj for each 1 ≤ j < i, and

2. I |= ψ and ψ is equivalent to ¬ϕ[k, e]{θ · e1 7→ t1} · . . . · {θ · ei−1 7→ ti−1}.

Lemma 3.4. SLIA is model-preserving for ϕ[k, e].

Theorem 3.2. PSLIA is a sound and complete procedure for determining the LIA-satisfiability of formulas

of the form ∃k∀x ϕ[k,x].

The proofs for the lemmas and the theorem in this subsection can be seen in [16].

We show some examples of the algorithm. In these examples, we chose terms t[k] only based on

the lower bounds Ml found in the algorithm Ssub, although the algorithm may choose its terms based

on the upper bounds Mu as well (recall that the procedure is non-deterministic). We also underlined

the literal in Ml corresponding to the lower bound whose value is maximal according to I (which is the

bound that is chosen by the algorithm).

Example 3.1. Let us consider the LIA-formula ∃ab ∀xy (2 ·x < a∨x+3 ·y < b), whose negation (without

considering the quantifiers and using a tuple of distinct fresh variables (e1, e2)) is 2·e1 ≥ a∧e1 +3·e2 ≥ b.

Table 3.1 summarizes a possible run of PSLIA .

22

Ssub(I, ψ, e, θ)
Γ Γ′ e θ Ml return t[k] Add to Γ

1 sat sat e1 1 {2 · e1 ≥ a, e1 ≥ b− 3 · e2} (2, a,+)
e2 2 {6 · e2 ≥ 2 · b− a} (6, 2 · b− a,+) (6 · a, 4 · b− 2 · a) div+ 12 ψ1

2 unsat

Table 3.1: Possible run of PSLIA for the input considered in Example 3.1.

For all calls to Ssub in this run, we assume ρ = 0. On the first call to Ssub, we have that e = e1, and the

algorithm chooses the lower bound 2 · e1 ≥ a, returning the tuple (2, a,+). The constant θ is multiplied

by c, making it equal to 2, and t1 is multiplied by 1, which was the value of θ used in this call to Ssub.

Afterwards, on the second call to Ssub (in which we have e = e2), the algorithm applies the substitution

{2 · e1 7→ a}, resulting in the bound 6 · e2 ≥ 2 · b − a. This time, t1 is multiplied by c, which is 6, and

t2 is multiplied by 2, which was the value of θ last used. With this, the algorithm SLIA returns the terms

(6 · a, 4 · b − 2 · a) div+ 12, and an instance, which we call ψ1, is added to Γ in PSLIA . This formula is

equivalent to 2 · ((6 · a) div+ 12) < a ∨ (6 · a) div+ 12 + 3 · ((4 · b − 2 · a) div+ 12) < b. After eliminating

integer division, we obtain:

(2 · k1 < a ∨ k1 + 3 · k2 < b) ∧ 12 · k1
∼= 6 · a+m1 ∧ 0 ≤ m1 < 12∧

12 · k2
∼= (4 · b− 2 · a) +m2 ∧ 0 ≤ m2 < 12

which is equisatisfiable to:

(6 · a+m1 < 6 · a ∨ 12 · b+m1 + 3 ·m2 < 12 · b) ∧ 0 ≤ m1 < 12 ∧ 0 ≤ m2 < 12

which is LIA-unsatisfiable. From this, the algorithm concludes that ∃ab ∀xy (2 · x < a ∨ x + 3 · y < b) is

LIA-unsatisfiable.

Example 3.2. Let us consider the LIA-formula ∃a ∀xy (3 · x + y � a ∨ 0 > y ∨ y > 2), whose negation

(without considering the quantifiers and using a tuple of distinct fresh variables (e1, e2)) is 3 · e1 + e2
∼=

a ∧ 0 ≤ e2 ∧ e2 ≤ 2. This example demonstrates a case in which the value of ρ differs from zero. Table

3.2 summarizes a possible run of PSLIA .

On the first iteration of PSLIA , let us assume that I1 is a model that satisfies Γ′ and interprets all

variables as zero. The algorithm Ssub chooses the maximal lower bounds 3 · e1 ≥ a− e2 and e2 ≥ 0, and

obtains ρ = 0, returning the tuples (3, a − e2,+) and (1, 0,+). With this, the algorithm SLIA returns an

instance ψ1 that is added to Γ and is equivalent to 3 · (a div+ 3) � a, which implies that aI 6≡ 0 mod 3 in

subsequent models I that the algorithm chooses. This means that models I that satisfy 3 · e1 + e2
∼= a

are such that eI2 6≡ 0 mod 3. On the next iteration of PSLIA , let I2 be a model that satisfies Γ′. We obtain

the same maximal lower bounds as before, meaning that, since I2 satisfies 3 ·e1 +e2
∼= a, we necessarily

have that ρ = ((e2 − 0)I2 mod 3) 6= 0. The algorithm assumes that (e2 − 0)I2 ≡ 1 mod 3, thus assuming

ρ = 1. The instance ψ2 that is added to Γ′ is equivalent to 3 · ((a − 1) div+ 3) + 1 � a, implying that

23

Ssub(I, ψ, e, θ)
Γ Γ′ e θ Ml return t[k] Add to Γ

1 sat sat e1 1 {3 · e1 ≥ a− e2} (3, a− e2,+)

e2 3 {e2 ≥ 0} (1, 0,+) (a, 0) div+ 3 ψ1

2 sat sat e1 1 {3 · e1 ≥ a− e2} (3, a− e2,+)

e2 3 {e2 ≥ 0} (1, 1,+) (a− 1, 1) div+ 3 ψ2

3 sat sat e1 1 {3 · e1 ≥ a− e2} (3, a− e2,+)

e2 3 {e2 ≥ 0} (1, 2,+) (a− 2, 2) div+ 3 ψ3

4 unsat

Table 3.2: Possible run of PSLIA for the input considered in Example 3.2.

aI 6≡ 1 mod 3 in subsequent models I. Thus, for the next models, we have that eI2 6≡ 1 mod 3. On the

third iteration, the algorithm uses ρ = 2, and so the instance ψ3 is equivalent to 3 ·((a−2) div+ 3)+2 � a,

implying that aI 6≡ 2 mod 3, which means that eI2 6≡ 2 mod 3. Together, this instance and the two previous

ones are LIA-unsatisfiable. Therefore, the algorithm concludes that ∃a ∀xy (3 ·x+ y � a∨ 0 > y∨ y > 2)

is LIA-unsatisfiable.

3.2.3 The Generalized Algorithm

In this subsection, we present a technique that generalizes the instantiation-based algorithm of the pre-

vious subsection, making it capable of establishing the T -satisfiability of formulas with Boolean structure

and nested quantification. First, we consider the following definition:

Definition 3.5. A first order logic formula is in prenex normal form if it is written as a string of quantifiers

and bound variables, called the prefix, followed by a quantifier-free part, called the matrix.

We show an approach that can be used to establish the T -satisfiability of closed T -formulas (¬)ϕ.

Without loss of generality, let us consider that ϕ is a formula from the following grammar:

ϕ := ¬∀x ϕ | G | ϕ1 ∨ . . . ∨ ϕm,

where G is quantifier-free. It is important to note that all formulas in prenex normal form are equivalent

to a formula of this grammar for m = 1. Consequently, this grammar is a generalization of prenex normal

form. Other approaches that are specialized for quantified SMT formulas often require that the input

formula is in prenex normal form, yet the approach in this subsection may also be applied to inputs in

the above grammar.

Fundamentally, our approach for establishing the T -satisfiability of ϕ initially consists in considering a

sub-formula of ϕ of the form ∀y ψ[k,y], where ψ is quantifier-free. Note that this sub-formula may occur

between any number of negations. Then, the instantiation-based algorithm of subsection 3.2.1 may be

used to find a set of instances {ψ[k, t1[k]], . . . , ψ[k, tn[k]]} that is either T -unsatisfiable, or T -satisfiable

and entails ∀y ψ[k,y]. If the set is T -unsatisfiable, the algorithm replaces the sub-formula ∀y ψ[k,y]

in ϕ by ⊥, otherwise the algorithm replaces ∀y ψ[k,y] in ϕ by ψ[k, t1[k]] ∧ . . . ∧ ψ[k, tn[k]], which is

24

quantifier-free. This process is repeated for every sub-formula until the original formula ϕ is replaced

by a quantifier-free formula, to which the DPLL(T) algorithm may be applied afterwards. The algorithm

we present in this subsection is based on the above reasoning, since it focuses on constructing a set of

quantifier-free formulas Γ that replaces the input formula ϕ, while regularly checking the T -satisfiability

of Γ.

We introduce some new concepts. For each closed quantified T -formula of the form ∀x ϕ, let us

consider a pair (A, e), where e is a unique set of Skolem variables, and A is a Boolean variable called

the positive guard of ∀x ϕ. We write (A, e)
 ∀x ϕ to denote that A and e are associated to ∀x ϕ.

We write bϕc to denote the formula that results of replacing all closed quantified formulas (that do not

occur beneath other quantifiers) in ϕ with their corresponding positive guard. We write A(ϕ) to denote

the set of positive guards in ϕ. The algorithm we present in this subsection maintains an evolving set of

formulas Γ, and the formulas we add to Γ are of the form A ⇒ φ, where φ is a quantifier-free formula

entailed by ∀x ϕ and (A, e)
 ∀x ϕ. We call such formulas guarded instances. We write bψcΓ to denote

the result of replacing each positive guard A in bψc by the conjunction of formulas on the right hand side

of instances of Γ that are guarded by A (in other words, we select the instances where A is on the left

hand side). The formula bψcΓ is meant to correspond to the quantifier-free approximation of ψ under the

assumption of the current instances in Γ in our algorithm.

Example 3.3. Let ϕ be ¬∀x P (x)∨¬∀y R(y)∨¬∀z Q(z)∨G, where G is quantifier-free. Let ∀x P (x)

(A1, e1), ∀y R(y)
 (A2, e2), ∀z Q(z)
 (A3, e3), and let Γ be {A1 ⇒ P (a), A2 ⇒ R(b), A2 ⇒ R(c)}.

From this, we can conclude that bϕc is ¬A1 ∨ ¬A2 ∨ ¬A3 ∨ G, A(bϕc) = {A1, A2, A3}, and bϕcΓ is

¬P (a) ∨ ¬(R(b) ∧R(c)) ∨ ¬> ∨G.

The technique used to establish the T -satisfiability of a closed T -formula ∀x ϕ[x] is shown in Algo-

rithm 3.

The algorithm solveT takes as input the closed T -formula and calls the subprocedure CEGQIT ,

which in turn takes a set of formulas Γ (initially containing only the positive guard A0 of ∀x ϕ[x]), and A0

itself. This subprocedure maintains the set Γ, adding formulas to it using the recursive algorithm recT

until either Γ is unsatisfiable, in which case the input closed T -formula is unsatisfiable, or the recursive

procedure returns the empty set, which entails that the input closed T -formula is satisfiable.

Since our grammar has a tree-like structure, our algorithm uses a recursive procedure. This proce-

dure, recT , is meant to go through the tree in order to find out if there exists a quantified sub-formula

in the tree whose satisfiability is still unknown, in which case it returns a guarded instance of that sub-

formula, using a selection function ST to create that instance.

In more detail, the recursive algorithm recT takes as arguments the set of formulas Γ and the posi-

tive guard A of a formula ∀y ψ[k,y] (we have A = A0 the first time recT is called). Then, the algorithm

creates the formula φ[k, e] = bψ[k, e]cΓ, which represents the approximation of ψ[k, e] under the as-

sumption of the current instances in Γ. If bAcΓ (the set of instances in Γ that are currently guarded by A)

and ¬ψ[k, e] are T -unsatisfiable, the algorithm returns the empty set. Else, the algorithm considers the

25

solveT (∀x ϕ[x]) :
Return CEGQIT ({b∀x ϕ[x]c}, b∀x ϕ[x]c)

CEGQIT (Γ, A0) :
1. If Γ is T -unsatisfiable, then return “unsat”.
2. If recT (Γ, A0) = ∅, then return “sat”.
3. Otherwise, return CEGQIT (Γ ∪ recT (Γ, A0), A0).

recT (Γ, A), where (A, e)
 ∀y ψ[k,y] :
Let φ[k, e] = bψ[k, e]cΓ.
If bAcΓ ∧ ¬φ[k, e] is T -unsatisfiable, then return ∅.
If there exists an A′ ∈ A(bψ[k, e]c) such that recT (Γ, A′) 6= ∅, then

return recT (Γ, A′).
Otherwise,

Let I be a model of T and bAcΓ ∧ ¬φ[k, e], and let
t[k] = ST (I,Γ,¬φ[k, e], e).

Return {A⇒ φ[k, t[k]]}.

Algorithm 3: An algorithm solveT for establishing the T -satisfiability of ∀x ϕ(x), where ϕ is a formula
from the previously described grammar. This algorithm calls a counterexample-guided approach for
quantifier instantiation CEGQIT , and it generalizes the algorithm explained in the previous subsec-
tion. Instances are added to Γ using a selection function ST for theory T .

quantified sub-formulas of ψ whose guarded instance occurs in A(bψ[k, e]c) (the direct children of ψ),

and if the recursive call to recT returns a guarded instance for any of the children, the algorithm returns

that instance. Otherwise, the algorithm creates a model I of T and bAcΓ ∧ ¬φ[k, e], and it returns a

guarded instance A⇒ φ[k, t[k]], where the terms t[k] are chosen by a selection function ST .

The correctness of solveT comes from the following results. For the next lemma, we say that two

formulas are equivalent up to k if they are satisfied by the same set of models (when restricted to the

interpretation of variables k).

Lemma 3.5. Let (A, e)
 ∀y ψ[k,y].

1. If recT (Γ, A) returns {A⇒ φ[k, t[k]]}, then φ[k, t[k]] is equivalent to ψ[k, t[k]] up to k.

2. If bAcΓ ∧ b¬ψ[k, e]cΓ is T -unsat, then ∀y ψ[k,y] is equivalent to bAcΓ up to k.

Theorem 3.3. Assume the satisfiability of quantifier-free T -formulas is decidable, and a selection func-

tion ST exists that is finite and monotonic.

1. If solveT (∀x ϕ[x]) returns “unsat”, then ∀x ϕ[x] is T -unsatisfiable.

2. If solveT (∀x ϕ[x]) returns “sat”, then ∀x ϕ[x] is T -satisfiable.

3. solveT (∀x ϕ[x]) terminates.

Once again, the proofs for the lemma and theorem in this subsection can be seen in [16]. We show

some examples of the algorithm.

Example 3.4. Let us consider the LIA-formula ∀x ϕ[x], where ϕ[x] is ¬(∀y x > y ∨ 0 > y) ∨ x < 0. Let

(A1, e1)
 ∀x ϕ[x] and let (A2, e2)
 ∀y e1 > y ∨ 0 > y. The function CEGQI is called, where Γ is

initially {A1}. Table 3.3 below summarizes a possible run of the algorithm.

26

recT (Γ, A)
Γ? A b¬ψ[e]c b¬ψ[e]cΓ bAcΓ ∧ b¬ψ[e]cΓ? t[k] return return

1 sat A1 A2 ∧ e1 ≥ 0 > ∧ e1 ≥ 0 sat recT (Γ, A2)
A2 e1 ≤ e2 ∧ 0 ≤ e2 e1 ≤ e2 ∧ 0 ≤ e2 sat (e1) {A2 ⇒ 0 > e1}

2 sat A1 A2 ∧ e1 ≥ 0 0 > e1 ∧ e1 ≥ 0 unsat ∅ “sat”

Table 3.3: Possible run of the algorithm for the input considered in Example 3.4.

On the first call to CEGQI, Γ is T -satisfiable. The algorithm calls recT on Γ and A1, which first

checks if bA1cΓ ∧bA2 ∧ e1 ≥ 0cΓ is satisfiable. This is equivalent to >∧ (>∧ e1 ≥ 0), which is satisfiable.

Then, the algorithm checks if there is an A′ among the positive guards in b(∀y e1 > y ∨ 0 > y) ∧ e1 ≥ 0c

for which recT returns a guarded instance. For A′ = A2, we obtain that e1 ≤ e2 ∧ 0 ≤ e2 is satisfiable.

Since there are no positive guards in be1 > e2 ∨ 0 > e2c (because ∀y e1 > y ∨ 0 > y contains no nested

quantifiers), the algorithm uses the selection function SLIA, which given input e1 ≤ e2 ∧ 0 ≤ e2 returns the

tuple (e1), thus the instance A2 ⇒ 0 > e1 is added to Γ. On the second call to CEGQIT , we get that

Γ = {A1, a2 ⇒ 0 > e1} is satisfiable. The function recT is called on Γ and A1, where we now get that

0 > e1 ∧ e1 ≥ 0 is unsatisfiable. From this, the algorithm concludes that ∀x ¬(∀y x > y ∨ 0 > y) ∨ x < 0

is LIA-satisfiable.

Example 3.5. Let us consider the LIA-formula ∀x ϕ[x], where ϕ[x] is (¬(∀y x > y)∨¬∀z ψ[x]), and ψ[x]

is some LIA-formula. Let (A1, e1)
 ∀x ϕ[x], let (A2, e2)
 ∀y e1 > y, and let (A3, e3)
 ∀z ψ[e1]. Table

3.4 summarizes a possible run of the algorithm.

recT (Γ, A)

Γ? A b¬ψ[e]c b¬ψ[e]cΓ bAcΓ ∧ b¬ψ[e]cΓ? t[k] return return

1 sat A1 A2 ∧A3 > ∧> sat recT (Γ, A2)

A2 e1 ≤ e2 e1 ≤ e2 sat (e1) {A2 ⇒ e1 > e1}

2 sat A1 A2 ∧A3 e1 > e1 ∧ > unsat ∅ “sat”

Table 3.4: Possible run of the algorithm for the input considered in Example 3.5.

On the first call to CEGQIT , we find that Γ is satisfiable, thus recT is called. The recursive algorithm

finds that bA1cΓ ∧ bA2 ∧ A3cΓ is T-satisfiable, meaning that recT is called on A2, where the formula

A2 ⇒ e1 > e1 is added to Γ using the selection function SLIA. On the second call to CEGQIT , within

the call to recT for A = A1, the algorithm concludes that bA1cΓ ∧ b(∀y e1 > y) ∧ ∀z ψ[e1]cΓ, which is

> ∧ (e1 > e1 ∧ >) is unsatisfiable, meaning that recT returns the empty set and the algorithm returns

“unsat”. Thus, the formula ∀x (¬(∀y x > y) ∨ ¬∀z ψ[x]) is LIA-satisfiable.

Example 3.6. Let us consider the LIA-formula ∀xy ϕ[x, y], where ϕ[x, y] is (¬(∀zz < x ∨ y < z) ∨ x <

y + 5). Let (A1, (e1, e2))
 ∀xy ϕ[x, y] and let (A3, e3)
 ∀z z < e1 ∨ e2 < z. The algorithm CEGQI is

27

recT (Γ, A)
Γ? A b¬ψ[e]c b¬ψ[e]cΓ bAcΓ ∧ b¬ψ[e]cΓ? t[k] return return

1 sat A1 A3 ∧ e1 ≥ e2 + 5 > ∧ e1 ≥ e2 + 5 sat recT (Γ, A3)
A3 e3 ≥ e1 ∧ e2 ≥ e3 e3 ≥ e1 ∧ e2 ≥ e3 sat (e2) {A3 ⇒ e1 > e2}

2 sat A1 A3 ∧ e1 ≥ e2 + 5 e1 > e2 ∧ e1 ≥ e2 + 5 sat . . .
A3 e3 ≥ e1 ∧ e2 ≥ e3 e3 ≥ e1 ∧ e2 ≥ e3 unsat ∅
A1 (5, 0) {A1 ⇒ ⊥}

3 unsat “unsat”

Table 3.5: Possible run of the algorithm for the input considered in Example 3.6.

called, where Γ is initially {A1}. Table 3.5 summarizes a possible run of CEGQI.

On the first call to CEGQI, Γ is satisfiable, and the recursive call to recT adds the instance A3 ⇒

e1 > e2 to Γ. On the second call to CEGQI, Γ is again satisfiable, thus recT is called on A1. It

finds that bA1cΓ ∧ bA3 ∧ e1 ≥ e2 + 5cΓ, which is > ∧ e1 > e2 ∧ e1 ≥ e2 + 5, is also satisfiable, and

so recT is invoked recursively on A3. On this call, the algorithm finds that bA3cΓ ∧ b¬ψ[e]cΓ, which is

e1 > e2∧(e3 ≥ e1∧e2 ≥ e3), is unsatisfiable. The algorithm returns the empty set and comes back to recT

for A = A1. Lemma 5 implies that, since e1 > e2 ∧ (e3 ≥ e1 ∧ e2 ≥ e3) is unsatisfiable, ∀z z < e1 ∨ e2 < z

is equivalent to e1 > e2, which is the instance in Γ that is guarded by A3.

Back on recT with A = A1, the algorithm uses this information and replaces A3 by e1 > e2 in the

construction of b¬ψ[e1, e2]cΓ, which gives us e1 > e2∧e1 ≥ e2 +5. This step is not explicitly written in the

algorithm, but it occurs every time recT (Γ, A′) returns ∅ for some A′ ∈ A(bψ[k, e]c). Since there are no

more positive guards in the original formula (we had only A1 and A2), the algorithm applies the selection

function SLIA to the new formula e1 > e2 ∧ e1 ≥ e2 + 5, which returns the tuple (5, 0) for (e1, e2). This

gives us the instance A1 ⇒ ¬(5 > 0 ∧ 5 ≥ 0 + 5), equivalent to A1 ⇒ ⊥, which is added to Γ. On the

next call to CEGQI, the algorithm finds that Γ is unsatisfiable, returning “unsat”. Therefore, the formula

∀xy (¬(∀z z < x ∨ y < z) ∨ x < y + 5) is LIA-unsatisfiable.

3.3 Validity Checking of LTL and DTL Formulas using CVC4

CVC4 does not directly support LTL, DTL, nor its operators. However, we have seen in chapter 2 that

there is a translation from LTL into FOL, and we proved that a translation from DTL into FOL also exists.

That is, any LTL or DTL formula can be transformed into a FOL formula through translation functions

that preserve entailment.

Note that a FOL formula obtained using these translation functions will be such that every variable

in it is of integer sort, and it can be a quantified formula (in the case of a translation from DTL into FOL,

the translated formula will certainly be quantified). This means that, in truth, a translated LTL or DTL

formula belongs to the LIA theory, like the formulas we have seen throughout this chapter. Thus, we

should be able to use CVC4 to check the validity of LTL and DTL formulas, if we first translate them into

FOL formulas written in an input language that CVC4 supports. Our aim in this section is to understand

28

if the theorem prover is able to correctly check the validity of these formulas.

With this in mind, we implemented a Mathematica function that takes a LTL formula and the current

moment in time as input, and returns as output the corresponding FOL formula, written in CVC4’s native

language. For this, we resorted to the translation function g, which is known to translate LTL formulas

into FOL formulas, preserving entailment. We inductively define g the following way:

• g(p, x) = p(x);

• g(¬ϕ, x) = ¬g(ϕ, x);

• g(ϕ⇒ ψ, x) = g(ϕ, x)⇒ g(ψ, x);

• g(Xϕ, x) = g(ϕ, x+ 1);

• g(Fϕ, x) = ∃y x < y ∧ g(ϕ, y);

• g(Gϕ, x) = ∀y x < y ⇒ g(ϕ, y);

• g(ϕUψ, x) = ∃y x < y ∧ g(ψ, y) ∧ ∀z (x < z < y ⇒ g(ϕ, z)).

Formula Expected output CVC4’s output Counterexample

X (p ∧ q)→ X p ∧ X q valid valid

X p ∧ X q → X (p ∧ q) valid valid

X (p ∨ q)→ X p ∨ X q valid valid

X p ∨ X q → X (p ∨ q) valid valid

F (p ∧ q)→ F p ∧ F q valid valid

F p ∧ F q → F (p ∧ q) invalid unknown

G (p ∧ q)→ G p ∧ G q valid valid

G p ∧ G q → G (p ∧ q) valid valid

F (p ∨ q)→ F p ∨ F q valid valid

F p ∨ F q → F (p ∨ q) valid valid

G (p ∨ q)→ G p ∨ G q invalid unknown

G p ∨ G q → G (p ∨ q) valid valid

F p→ p invalid invalid p = λx.x == 1 1

FF p→ F p valid valid

GG p→ G p valid unknown

XX p→ X p invalid invalid p = λx.x == 2 1

G (p→ X (p))→ (p→ G p) valid –

G (p→ ¬q ∧ X p)→ (p→ ¬(rU q) valid –

Table 3.6: Output of the QUERY command for LTL formulas.

1For this formula, the current moment in time was considered to be the instant 0.

29

The code for this Mathematica function can be seen in Appendix A.

After its implementation, we used the Mathematica function to convert various LTL formulas into FOL

formulas written in CVC4’s native language, and used the QUERY command to check the validity of

each formula.

Table 3.6 shows the output of the QUERY command for these formulas. For the last two formulas in

the table, the queries for both formulas did not halt, and therefore no output was given by CVC4.

It is possible to see that CVC4 was able to verify and refute the validity of many of the formulas.

Overall, the results were positive, since although it has its flaws, CVC4 can be used to verify or refute the

validity of LTL formulas. However, for some of the formulas, it was not able to reach a conclusion when it

comes to their validity, therefore returning “unknown”. Furthermore, for the more complex formulas (the

last two formulas), the queries did not halt, potentially because CVC4 entered some sort of loop during

both queries.

Similarly, a Mathematica function that takes a global DTL formula as input, and returns as output the

corresponding FOL formula written in CVC4’s native language, was implemented. For this, we resorted

to the translation function defined in chapter 2. Again, the code for this function can be found in Appendix

A. The Mathematica function was also applied on certain formulas, and then the QUERY command was

used to check their validity.

First, the formula @i[G (p ∧ q)⇒ G p ∧ G q] was analyzed, among other DTL formulas consisting of a

single global formula containing a local formula equal to a valid LTL formula shown on Table 3.6. The

results were similar to the ones we had obtained for the LTL formulas, meaning that most of the DTL

formulas were correctly determined to be valid.

Considering a different formula, CVC4 correctly established @i[F p ⇒ p] as invalid, for which the

command COUNTERMODEL provided the following counterexample:

@(id, k) = True and p(id, k) =

k == 1 if id = i

False otherwise.

As for the formula (@i[G (p ⇒ ©j [q])] ∧ @i[F p]) ⇒ @j [F q], which should be valid, CVC4 returned

“unknown”, meaning that it was not able to reach a conclusion regarding the validity of the formula.

We had hoped that CVC4 would be able to reach a successful output in this case. However, based

on experiments we made with other formulas, CVC4 seems to have difficulty proving that DTL formulas

containing communication formulas are valid, most likely because these formulas involve multiple agents

and, therefore, more quantifiers, making them more complex than most of the other formulas we have

shown.

Due to this, the results obtained for DTL formulas were not as good as we had hoped. Communica-

tion formulas are an important part of DTL, since they allow communication between different agents.

Unfortunately, the fact that CVC4 has difficulty proving the validity of DTL formulas with communication

makes it quite limited when it comes to distributed temporal logic.

30

Chapter 4

Separation Properties

In this chapter we introduce the separation property [4–7]. Intuitively, a logic has the separation property

if every formula can be written as a Boolean combination of formulas that each only talk about the past,

present and future.

A temporal logic is expressively complete if for every first-order formula in this fragment, there is a

temporal logic formula that has exactly the same models (and vice-versa). A temporal logic is expres-

sively complete if and only if it has the separation property, provided that the temporal logic can express

the F and P operators (although we have not yet defined the P operator, it is similar to F, standing for

“sometime in the past”). This makes the separation property very useful when it comes to understanding

how expressive a temporal logic is, i.e., the quantity and variety of ideas that the temporal logic is able

to represent.

The separation property is proven to hold for the temporal logic with the Until and Since operators

over the integers [8]. We propose an extension of this property to DTL, and we prove that this extension

of the separation property holds for the distributed temporal logic for which the local languages have

both the Until and Since operators.

4.1 Separation Property for Temporal Logic

We start by introducing LTL, the language of the temporal logic with both Until and Since. Let us

consider a countable set of propositional variables Prop.

Definition 4.1. The language of temporal logic LTL is defined as follows:

LTL ::= Prop | ⊥ | LTL ⇒ LTL | LTL ULTL | LTL SLTL.

Note that the set LLTL of LTL formulas can be defined just like the one of TL, but omitting the S case.

We now introduce certain concepts that are useful to understand the notion of separation.

Definition 4.2. We say a formula A is simple if it has no outer Boolean structure, that is, if it is of the

form p, B SC, or B UC (for some p ∈ Prop and B,C ∈ LTL).

31

Definition 4.3. A formula is called non-future if it has no occurrences of U and non-past if it has no

occurrences of S.

A pure past formula is then a Boolean combination of formulas of the form A SB where both A and

B are non-future and similarly a formula is pure future if it is a Boolean combination of formulas of the

form AUB with A and B non-past.

A formula is pure present if it is a Boolean combination of variables, ⊥ and >.

Definition 4.4. A formula is separated if it is a Boolean combination of pure past, pure future and pure

present formulas.

As mentioned before, TL has the separation property over the integers, a result that was proven by

Gabbay in [8]. When we say “over the integers”, we are referring to the domain over which the formulas

in the logic are evaluated.

With these definitions, we can proceed to our adaptation of the separation property to distributed

temporal logic.

4.2 Separation Property for DTL

To understand how we reached our adaptation of the separation property to distributed temporal logic,

there are certain details we first need to take into account.

Note that our definition of separation property for DTL needs only to focus on the local languages

of DTL. This is true seeing that any temporal operators in a DTL formula occur in the local languages.

In fact, the global language in DTL only deals with global formulas and the relations of global formulas

between different agents. Since the global language of a distributed temporal logic is not defined using

temporal operators, we can direct our attention to the local languages.

Regarding the formulas in the local languages, we can see that these coincide with temporal for-

mulas, when excluding communication formulas. In turn, communication formulas contain assertions

inside them that belong to other local languages of the distributed temporal logic, meaning that they may

contain temporal operators inside them or even other communication formulas.

Due to the fact that communication formulas are what differentiates formulas in the local DTL lan-

guages from TL formulas, it would be useful to find a way to look at communication formulas as propo-

sitional symbols when it comes to separation, which we might be able to achieve if we can separate the

assertions inside communication formulas. By looking at communication formulas in local DTL formulas

as propositional symbols, it might be possible to separate these local DTL formulas using the same

techniques required to separate TL formulas.

Following this train of thought, we reached definition 4.5.

Definition 4.5. A distributed temporal logic is said to have the separation property if its local formulas,

for every agent, can be equivalently rewritten as a boolean combination of formulas, each of which

depends only on the past, present or future.

32

Now that we have a definition of separation property for DTL, it is of our interest to try and prove that

this property holds for distributed temporal logic.

With this intention, let us introduce the concept of complexity of a local DTL formula, which we define

the following way:

• |ϕ| = 0 for all ϕ ∈ L�©i , with i ∈ Id, where L�©i denotes all purely temporal formulas of Li, that is,

excluding communication formulas;

• |©j [ϕ]| = 1 + |ϕ|, with ϕ ∈ Lj , j ∈ Id;

• |ϕ| = max(|©1|, |©2|, . . . , |©m|), where ©1,©2, . . . ,©m represent the communication formulas in ϕ

that are not inside other communication formulas, with ϕ ∈ Li, i ∈ Id.

The complexity of a local DTL formula will be necessary in the next proof. In order to better under-

stand this concept, we provide a few examples:

• |(p⇒ q) ∧ r| = 0.

• |©j [p ∨ q]| = 1 + |p ∨ q| = 1, with j ∈ Id.

• |(t∧©j [p∨q])⇒ ©i[r ⇒ ©k[s]]| = max(|©j [p∧q]|, |©i[r ⇒ ©k[s]]|) = max(1, 2) = 2, with i, j, k ∈ Id.

Now, we are ready to prove Proposition 4.1.

Proposition 4.1. Distributed temporal logic, as defined in section 2.3, has the separation property.

Proof. First, note that, excluding communication formulas, local DTL formulas coincide with TL formulas.

Additionally, note that, when it comes to local DTL formulas, an assertion inside a communication formula

(and its temporal operators) concerns a different agent to the agent for which the communication formula

holds.

The proof follows by induction on the complexity of the local DTL formula.

We need to consider two base cases:

1. For the first base case, let us consider local DTL formulas that have complexity 0, that is, local

formulas belonging to the languages L�©i , with i ∈ Id. Since formulas in the languages L�©i coincide

with TL formulas, we can see assertions in these languages as TL formulas.

Each one of the languages L�©i has the Until and the Since operators and, therefore, has the sepa-

ration property over the integers. Consequently, by using the same techniques used to separate TL

formulas, we can equivalently rewrite every possible local DTL formula in the languages L�©i (that

is, local DTL formulas with complexity 0) as a boolean combination of formulas, each of which

depends only on the past, present or future.

2. For the second base case, we consider local DTL formulas with complexity 1. These formulas may

have one or more communication formulas, but each one of these cannot contain other communi-

cation formulas inside them.

33

Therefore, for this case, note that the assertions inside the communication formulas belong to the

languages L�©i , with i ∈ Id. This means that we can see the assertions inside the communication

formulas as TL formulas. Again, by using the same techniques used to separate TL formulas, we

can also separate the assertions contained in the communication formulas.

Furthermore, taking into account that a communication event may occur at any point in time, it

follows that we can see these communication formulas as propositional symbols when it comes

to separation. Thus, let us consider, for each i ∈ Id, the set of local state propositions Prop′i =

Propi ∪ {©j [L�©j] : j ∈ Id}.

With these new sets of local state propositions, let us consider, for each i ∈ Id, the corresponding

temporal logic with set of propositional symbols Prop′i and having exactly the same operators

as the local language of the agent i except for the communication formulas, which are seen as

propositional symbols.

Each one of these languages has the Until and the Since operators and, therefore, has the sepa-

ration property over the integers. This means that, by using the same techniques used to separate

the formulas in these languages, we can equivalently rewrite local DTL formulas with complexity 1

as a boolean combination of formulas, each of which depends only on the past, present or future.

For the induction step, we consider a local DTL formula ϕ ∈ Li, for some i, that has complexity

|ϕ| = n. Recall that |ϕ| = max(|©1|, |©2|, . . . , |©m|), where ©1,©2, . . . ,©m represent the communication

formulas in ϕ that are not inside other communication formulas. Note that the assertions inside each one

of the communication formulas ©k have at most complexity n− 1, for 1 ≤ k ≤ m. Through the induction

hypothesis, we know that the assertions inside the communication formulas ©k can be separated.

Thus, following the same train of thought as in the second base case, we can see each of the commu-

nication formulas ©k in the local DTL formula ϕ as propositional symbols when it comes to separation.

Again, for Li, we consider the corresponding temporal logic with set of local state propositions contain-

ing also these communication formulas. The formulas in this language can be separated, and thus the

same separation techniques for the formulas in this language can be used to separate ϕ.

Since every local formula in DTL, for every agent, can be separated, it follows that DTL has the

separation property.

Example 4.1. Let ϕ be the DTL formula @j [(©k[c] ∧ (f U g)) S q] ⇒ @i[F d]. We will use the algorithm

that is implicit in the proof of Proposition 4.1 in order to find a separated formula equivalent to ϕ.

We will make use of a result for separating the LTL formula ψ = (a ∧ (AUB))S q. This proof of

this result and of other results for separating LTL formulas can be found in [8]. The result states that

ψ1 ∨ ψ2 ∨ ψ3 is a separated LTL formula equivalent to ψ, where

ψ1 = (a S q) ∧ (aSB) ∧B ∧ (aUB);

ψ2 = A ∧ (aS (B ∧ q));

ψ3 = (A ∧ q ∧ (a SB) ∧ (a S q))S q.

34

We look at the local formulas in ϕ. First, note that F d is an abbreviation of >U d, which is a formula

that only talks about future. Therefore, this local formula requires no separation.

On the other hand, the local formula (©k[c] ∧ (f U g))S q is clearly not separated. When it comes

to complexity, |(©k[c] ∧ (f U g))S q| = 1, and so we have to follow the second base case of the proof

of Proposition 4.1. There is only one communication formula, which is ©k[c], and the assertion inside

it is a single propositional symbol, thus it is already separated. Let Propi be the set of propositional

symbols of agent i. At this point, since the assertions inside the communication formulas in the local

formula we are considering are already separated, we need to consider the temporal logic with set

Prop′i = Propi∪{©k[c]}. Then, due to the fact that we are now looking at ©k[c] as if it was a propositional

symbol, we are able to use the result presented in the beginning of this example in order to separate this

local formula.

Hence, the separated DTL formula equivalent to ϕ is (φ1 ∨ φ2 ∨ φ3)⇒ @i[Fd], where

φ1 = (©k[c]S q) ∧ (©k[c]S g) ∧ g ∧ (©k[c]U g);

φ2 = f ∧ (©k[c]S (g ∧ q));

φ3 = (f ∧ q ∧ (©k[c]S g) ∧ (©k[c]S q))S q.

35

36

Chapter 5

Craig Interpolation

In this chapter, we address the Craig interpolation property in the context of distributed temporal logic

and we prove that a fragment of DTL has this property.

In classical logics, the Craig interpolation property states that if a formula φ entails a formula ψ, then

there exists an interpolant formula θ such that φ entails θ, θ entails ψ, and every propositional symbol in

θ occurs both in φ and ψ.

The Craig interpolation property is frequently a convenient property to have in a temporal logic.

Temporal logics, in general, are widely used in the verification of systems and software, and interpolation

has been useful for building efficient model-checkers. A stronger form of interpolation called uniform

interpolation, which we will talk about in this chapter, has been particularly useful in this regard.

It has been proved that, in contrast to first-order logic, LTL does not have the Craig interpolation

property. However, this property has been proved to hold for fragments of LTL, namely the fragment of

LTL for which we consider X as the only temporal operator and exclude the rest of the temporal operators

[11, 12]. Inspired by these proofs, we will show that the Craig interpolation property also holds for the

fragment of DTL whose local languages contain X as the only temporal operator.

In this chapter, will often talk about fragments of DTL. We define fragments of the DTL by allowing in

the syntax of their local languages only a subset of the temporal operators that the local languages of

DTL are able to express.

5.1 Definition of Craig Interpolation in the Context of DTL

First, we need to introduce some concepts. Let us consider DTL (or a fragment of DTL) having global

language L and local languages Li, for i ∈ Id. Additionally, let α = {αi}i∈Id be a family of finite sets of

propositional letters. We define L[α] as the set of formulas in the global language L for which, for each

i ∈ Id, the local formulas in the language Li contain only propositional symbols from the set αi.

Given an interpretation structure µ = 〈λ, σ〉 = 〈{λi}i∈Id, {σi}i∈Id〉 and a family of finite sets of propo-

sitional letters α = {αi}i∈Id, we define µ � α as the interpretation structure with valuations {σi � αi}i∈Id,

where σi � αi represents the restriction of the valuation σi to the propositional letters in αi, for i ∈ Id.

37

We say that µ � α is the α-reduct of µ. We also say that µ is an expansion of µ � α. Moreover, if K is a

class of DTL interpretation structures, we write K � α for {µ � α | µ ∈ K}.

Definition 5.1. Let K be a class of DTL interpretation structures and L be the global language of DTL

(or of a fragment of DTL). We say that K is definable by L if there is a φ ∈ L such that, for every

interpretation structure µ, µ φ iff µ ∈ K.

Definition 5.2. Let K be a class of DTL interpretation structures and L be the global language of DTL

(or a fragment of DTL) with set of agents Id. Additionally, let α = {αi}i∈Id be a family of finite sets of

propositional letters. Then K is a projective class of the global language L if there is a φ ∈ L[β], with

{βi ⊇ αi}i∈Id, such that K = Mod(φ) � α.

Now we define the Craig interpolation property for distributed temporal logic.

Definition 5.3. Let L be the global language of DTL (or a fragment of DTL) with set of agents Id, and

α = {αi}i∈Id and β = {βi}i∈Id two families of finite sets of propositional letters. Then L has the Craig

interpolation property whenever the following holds. Let φ ∈ L[α], ψ ∈ L[β]. Whenever φ � ψ, then there

exists θ ∈ L[{αi ∩ βi}i∈Id] such that φ � θ and θ � ψ.

We also define uniform interpolation, a stronger form of interpolation than Craig interpolation.

Definition 5.4. Let L be the global language of DTL (or a fragment of DTL) with set of agents Id and

let α = {αi}i∈Id be a family of finite sets of propositional letters. Then L has uniform interpolation if,

for all families of sets of propositional letters β = {βi}i∈Id such that {βi ⊆ αi} for all i ∈ Id, and for

each formula φ ∈ L[α], there is a formula θ ∈ L[β] such that φ � θ and for each formula ψ ∈ L[α′] with

{αi ∩ α′i ⊆ βi} for all i ∈ Id, if φ � ψ then θ � ψ.

To give an intuition, a fragment of DTL that has uniform interpolation is such that the interpolant can

be constructed so that it depends only on the family of sets of propositional symbols of the antecedent

and its intersection, for each agent, with the family of sets of propositional symbols of the consequent.

The differences between Craig and uniform interpolation will be better explained in an example in the

next section.

5.2 Craig Interpolation for a Fragment of DTL

Now, let us consider the fragment of DTL for which the local languages contain X as the only temporal

operator (although they still contain communication formulas). We call this fragment DTL(X). The global

language L of DTL(X) is defined by

L ::= @i1 [Li1] | · · · | @in [Lin] | ⊥ | L ⇒ L,

for Id = {ii, . . . , in}, where the local languages Li for each i ∈ Id are defined by

Li ::= Propi | ⊥ | Li ⇒ Li | XLi | ©j [Lj].

38

Theorem 5.1. DTL(X) has uniform interpolation.

Proof. We will show something stronger. In fact, we will show that every projective class of DTL(X) is

definable by a formula in L.

For this, let us consider a set of agents Id, an agent j ∈ Id and a family α = {αi}i∈Id of finite sets of

propositional letters. Additionally, let φ ∈ L[{αi}i∈Id\{j}∪{αj ∪p}]. Our proof will consist in showing how

to construct a formula ψ ∈ L[{αi}i∈Id] that defines a projective class of φ, that is, the class of α-reducts

of models of φ.

With this in mind, let us focus on the agent j, since we aim to restrict the valuations σj . Let us

consider the global formulas of agent j in φ, as well as the communication formulas of the form ©j [ϕ],

for some ϕ ∈ Lj , occurring in the global formulas in φ. Let m1 be the depth of the maximal nesting

of X-operators occurring in the global formulas of agent j in φ. Additionally, let c be the number of

communication formulas of the form ©j [ϕ], for ϕ ∈ Lj , occurring in φ. Let m2 = max(di + ei), for

0 ≤ i ≤ c, where di is the depth of the maximal nesting of X-operators occurring in communication

formula i, and ei represents the order of the local event in agent j at which communication formula i

occurs (for example, if communication formula i occurs in the third local event of agent j, starting from

the designated event, then ei = 3). Finally, let n =max(m1,m2).

We can see that φ can only talk about n non-empty local events of agent j (starting from the des-

ignated event). Thus, it is possible to represent every valuation of p in these n local events by a set

S ⊆ {0, . . . , n}, such that k ∈ S means that p is true at the k-th event starting from the designated event,

and false otherwise. Now, for each S ⊆ {1, . . . , n}, we define φS the following way:

• For each occurrence of p inside a global formula of agent j occurring in φ that is in the scope of k

X-operators (k ≤ n), we replace p by > if k ∈ S and by ⊥ otherwise;

• For each occurrence of p inside a communication formula of the form ©j [ϕ], for ϕ ∈ Lj , occurring

in φ, that synchronizes with agent j at its e-th local event, let k be the depth of the nesting of

X-operators of this occurrence of p. We replace p by > if (e+ k) ∈ S and by ⊥ otherwise.

We can show that φ and φS are equivalent in all interpretation structures for which the valuation of p

is as is described by S.

For this, first note that the valuations for both formulas only differ in the global formulas of agent j

and inside the communication formulas of the form ©j [ϕ], for ϕ ∈ Lj . Thus, it is enough to show that

@[ϕ] and @[ϕS] are equivalent, and that ©j [ω] and ©j [ω
S] are equivalent, in all interpretation structures

for which the valuation of p is described by S, where ϕ,ϕS , ω, ωS ∈ Lj , and ϕS and ωS are defined by

replacing each occurrence of p as previously described.

Let us start with the global formulas of the form @j [ϕ] and @j [ϕ
S]. We have to show that µ @j [ϕ]

iff µ @j [ϕ
S], which is equivalent to showing that µj j ϕ iff µj j ϕS . We show this by induction on

the structure of the formulas.

For the base case, let ϕ be X . . .X p, a nesting of k X-operators. If µj j ϕ, then µj j X . . .X p.

Without loss of generality, if we fix the designated event, this means that p is true at the k-th event after

39

the designated event, and therefore k ∈ S. Thus, ϕS is X . . .X>. We reach the conclusion that µj j ϕS .

For the reverse, let ϕS be X . . .X>, a nesting of k X-operators. If µj j ϕS , then µj j X . . .X>. If we fix

the designated event, we can see that k ∈ S (if this was not the case, p would not have been replaced

by > in ϕS). Therefore µj j ϕ, where ϕ is X . . .X p.

For the step case, we consider two possibilities:

• Let ϕ be ¬ϕ1, and ϕS be ¬ϕS1 . By the induction hypothesis, we have that µj j ϕ1 iff µj j ϕS1 ,

which leads to µj j ¬ϕ1 iff µj j ¬ϕS1 , which is what we wanted to prove.

• Let ϕ be ϕ1 ⇒ ϕ2, and ϕS be ϕS1 ⇒ ϕS2 . Let us assume that µj j ϕ1 ⇒ ϕ2. Then either µj j ϕ2

or µj 1j ϕ1. If µj j ϕ2, then µj j ϕS2 by the induction hypothesis, and thus ϕS1 ⇒ ϕS2 . If µj 1j ϕ1,

this means that µj 1j ϕS1 by the induction hypothesis, and this leads to ϕS1 ⇒ ϕS2 . The proof for

the reverse is similar.

This finishes the proof that @[ϕ] and @[ϕS] are equivalent in the conditions previously mentioned.

Now, we need to show that ©j [ω] and ©j [ω
S] are also equivalent in all interpretation structures for

which the valuation of p is as described by S. Note that we only need to focus on showing that µj j ϕ

iff µj j ϕS . From this, the rest of the proof can be done by induction on the structure of the formulas

in a similar way to the proof we have just seen for the global formulas of agent j. We only need to take

into account, for the base case, the event at which the communication formula synchronizes with agent

j (recall how φS was defined for occurrences of p inside communication formulas).

Thus, we have shown that φ and φS are equivalent in all interpretation structures for which the

valuation of p is as is described by S. Now, let ψ =
∨
S⊆{0,...,n} φ

S . We can conclude that ψ holds in an

interpretation structure µ if and only if φ is satisfied by an expansion of µ.

Corollary 5.1. DTL(X) has the Craig interpolation property.

Proof. Considering that uniform interpolation is a stronger form of interpolation than Craig interpolation,

the result comes directly from Theorem 5.1.

We show an example with the intent of better illustrating some of the concepts introduced in this

chapter, including the differences between Craig and uniform interpolation.

Example 5.1. Let us consider DTL(X), which has both Craig interpolation and uniform interpolation.

Let ϕ ∈ L[α], where α = {αj , αk} = {{a, b, c}, {p, q}}. Also, let ψ ∈ L[α′], such that ϕ � ψ, where

α′ = {α′j , α′k} = {{a}, {p, q, r}}. Let φ be the interpolant, such that φ ∈ L[β], where β = {βj , βk}.

Note that both Craig and uniform interpolation require that ϕ � φ. For Craig interpolation, it is

also necessary to consider the conditions φ � ψ and φ ∈ L[{αi ∩ α′i}i∈Id], that is, βj ⊆ αj ∩ α′j and

βk ⊆ αk∩α′k. We conclude that, for this type of interpolation, the interpolant depends on the antecedent,

the consequent and the intersection of their sets of propositional symbols, for each agent, in the formulas

ϕ and ψ. In this particular example, βj ⊆ {a} and βk ⊆ {p, q}.

On the other hand, for uniform interpolation, the restrictions are the following: αj ∩α′j ⊆ βj , αk∩α′k ⊆

βk, βj ⊆ αj and βk ⊆ βk. The interpolant depends on the antecedent and the intersection of its sets

40

of propositional symbols, for each agent, with the sets of propositional symbols of the consequent.

However, it does not depend on the consequent, making uniform interpolation stronger that Craig inter-

polation. From this, we have that βj ⊆ {a, b, c}, βk ⊆ {p, q}, {a} ⊆ βj and {p, q} ⊆ βk.

41

42

Chapter 6

Conclusions

6.1 Achievements

One of the goals of this work was to show how to translate from DTL into FOL. With this in mind, we have

presented a translation function that translates DTL formulas into FOL formulas, and we have shown that

it preserves entailment in DTL.

We have also studied the theorem-prover CVC4, and following the work done in [16], we have pre-

sented the algorithms used in the theorem-prover for proving (or refuting) the validity of quantified for-

mulas in the LIA theory. Since LTL and DTL formulas translated into FOL belong to the LIA theory, and

typically contain quantifiers, we created two Mathematica functions, which can be seen in Appendix A,

that translate LTL and DTL formulas into FOL formulas written in CVC4’s native language. With this,

we wanted to understand if it was possible to use CVC4 to check the validity of LTL and DTL formulas.

While this method shows some positive results for LTL formulas, it fares worse when it comes to DTL

formulas, specifically the ones that contain communication formulas. This likely occurs because these

formulas involve multiple agents, which lead to more quantifiers on the translated formula, often making

them more complex. Unfortunately, we are not able to recommend our approach with CVC4 for checking

the validity of DTL formulas.

We have proposed an extension of the separation property to DTL, based on the definition of this

property for temporal logic [4–8]. We have proved that this extension of the separation property holds

for the distributed temporal logic for which the local languages have both the Until and Since operators.

Finally, we have addressed the Craig interpolation property in the context of DTL and we have proved

that this property holds for the fragment of DTL for which the local languages contain X as the only

temporal operator.

6.2 Future Work

Even though CVC4 is currently considered to be one of the most up-to-date theorem provers for SMT

problems, it would be interesting to study another theorem prover and to understand if it could provide

43

more consistent results in our approach for checking the validity of DTL formulas.

44

Bibliography

[1] D. Basin, C. Caleiro, J. Ramos, and L. Vigano. Distributed temporal logic for the analysis of security

protocol models. Theor. Comput. Sci., 412:4007–4043, July 2011. doi: 10.1016/j.tcs.2011.04.006.

URL https://doi.org/10.1016/j.tcs.2011.04.006.

[2] D. Basin, C. Caleiro, J. Ramos, and L. Viganò. Labelled tableaux for distributed temporal logic.

Journal of Logic and Computation, 19(6):1245–1279, January 2009. ISSN 0955-792X. doi: 10.

1093/logcom/exp022.

[3] H.-D. Ehrich and C. Caleiro. Specifying communication in distributed information systems. Acta

Informatica, 36:591–616, 03 2000. doi: 10.1007/s002360050167.

[4] D. Oliveira and J. Rasga. Revisiting separation: algorithms and complexity. Logic Journal of the

IGPL, 02 2020. ISSN 1367-0751. doi: 10.1093/jigpal/jzz081. URL https://doi.org/10.1093/

jigpal/jzz081. jzz081.

[5] A. Rabinovich. A proof of kamp’s theorem. Log. Methods Comput. Sci., 10(1), 2014. doi: 10.2168/

LMCS-10(1:14)2014. URL https://doi.org/10.2168/LMCS-10(1:14)2014.

[6] K. Schneider. Verification of Reactive Systems: Formal Methods and Algorithms. SpringerVerlag,

2004. ISBN 3540002960.

[7] D. Oliveira. Linear Temporal Logic: Separation and Translation. 2017. Master’s thesis, Instituto

Superior Técnico.

[8] D. Gabbay. The declarative past and imperative future. In B. Banieqbal, H. Barringer, and A. Pnueli,

editors, Temporal Logic in Specification, pages 409–448, Berlin, Heidelberg, 1989. Springer Berlin

Heidelberg. ISBN 978-3-540-46811-0.

[9] D. Peled. Temporal Logic: Mathematical Foundations and Computational Aspects, Volume 1. The

Computer Journal, 38(3):260–261, 01 1995. ISSN 0010-4620. doi: 10.1093/comjnl/38.3.260. URL

https://doi.org/10.1093/comjnl/38.3.260.

[10] I. Hodkinson and M. Reynolds. Separation - past, present, and future. In We Will Show Them!,

2005.

45

https://doi.org/10.1016/j.tcs.2011.04.006
https://doi.org/10.1093/jigpal/jzz081
https://doi.org/10.1093/jigpal/jzz081
https://doi.org/10.2168/LMCS-10(1:14)2014
https://doi.org/10.1093/comjnl/38.3.260

[11] A. Gheerbrant and B. ten Cate. Craig interpolation for linear temporal languages. In E. Grädel and

R. Kahle, editors, Computer Science Logic, pages 287–301, Berlin, Heidelberg, 2009. Springer

Berlin Heidelberg.

[12] N. Kamide. Interpolation theorems for some variants of ltl. Reports on Mathematical Logic, 2015

(Number 50), 2015. URL https://www.ejournals.eu/rml/2015/Number-50/art/5718/.

[13] G. De Giacomo and M. Vardi. Linear temporal logic and linear dynamic logic on finite traces. IJCAI

International Joint Conference on Artificial Intelligence, pages 854–860, January 2013.

[14] About CVC4, 2020. URL https://cvc4.github.io/index.html. Last accessed 30 January 2020.

[15] About SMT-LIB, 2020. URL http://smtlib.cs.uiowa.edu/about.shtml. Last accessed 30 Jan-

uary 2020.

[16] A. Reynolds, T. King, and V. Kuncak. Solving quantified linear arithmetic by counterexample-guided

instantiation. Formal Methods in System Design, 2017. doi: 10.1007/s10703-017-0290-y.

[17] CVC4 Native Input Language, 2020. URL https://cvc4.github.io/

cvc4-native-input-language.html. Last accessed 04 February 2020.

[18] CVC4 Online App, 2020. URL https://cvc4.github.io/app/. Last accessed 04 February 2020.

[19] A. Reynolds. Satisfiability modulo theories and DPLL(T), 2015. URL http://homepage.divms.

uiowa.edu/~ajreynol/pres-dpllt15.pdf. Last accessed 30 January 2020.

46

https://www.ejournals.eu/rml/2015/Number-50/art/5718/
https://cvc4.github.io/index.html
http://smtlib.cs.uiowa.edu/about.shtml
https://cvc4.github.io/cvc4-native-input-language.html
https://cvc4.github.io/cvc4-native-input-language.html
https://cvc4.github.io/app/
http://homepage.divms.uiowa.edu/~ajreynol/pres-dpllt15.pdf
http://homepage.divms.uiowa.edu/~ajreynol/pres-dpllt15.pdf

Appendix A

Code

In this appendix, we present the Mathematica functions created for translating LTL and DTL formulas

into FOL formulas written in CVC4’s native input language, in order to check their validity using CVC4.

Before presenting the code, we provide some pointers on how to use it, particularly on how to write

in Mathematica the LTL and DTL formulas that serve as input for the functions. Although Mathematica

contains operators such as ¬ and ⇒, it does not have temporal operators or communication formulas,

for instance. Because of this, it was necessary to find a way to write these operators in Mathematica, so

that it would be possible to express LTL and DTL formulas.

For propositional symbols, a simple letter can be used. A string composed of a letter concatenated

with an integer may be used as well.

As for the operators, Table A.1 explains the way to write them.

47

Operator In Mathematica

¬ϕ Not[ϕ]

ϕ⇒ ψ Implies[ϕ,ψ]

ϕ ∧ ψ And[ϕ,ψ]

ϕ ∨ ψ Or[ϕ,ψ]

Xϕ X[ϕ]

Fϕ F[ϕ]

Gϕ G[ϕ]

ϕUψ Until[ϕ,ψ]

@i[ϕ] At[i,ϕ]

ϕSψ Since[ϕ,ψ]

©j [ϕ] Communication[j,ϕ]

Table A.1: Operators and the way to write them in Mathematica.

Now, we transcript the code developed.

Listing A.1: Function that translates LTL formulas into FOL formulas written in CVC4’s native input

language

1 TranslFuncLTLtoFOL =

2 Function[{formula, time}, Module[{symbols, i, cvcstring, querytext},

3 symbols = DeleteDuplicates@Cases[formula, Symbol, Infinity];

4 cvcstring = {};

5 For[i = 1, i <= Length[symbols], i++,

6 If [! (symbols[[i]] === True || symbols[[i]] === False),

7 cvcstring =

8 cvcstring <> ToString[symbols[[i]]] <>

9 ” : INT −> BOOLEAN;\n”;]];

10 querytext = aux[formula, time];

11

12 cvcstring = cvcstring <> ”QUERY ” <> querytext <> ”;”

13]];

14

15 aux = Function[{formula, time}, Module[{varsuffix},

16 Which[Head[formula] === Symbol,

17 If [formula === True, ”TRUE”,

18 If [formula === False, ”FALSE”,

19 ToString[formula] <> ”(” <> ToString[time] <> ”)”]],

20 Head[formula] === Implies,

21 ” (” <> aux[formula[[1]], time] <> ”) => (” <>

22 aux[formula [[2]], time] <> ”)”,

23 Head[formula] === Not, ”NOT (” <> aux[formula[[1]], time] <> ”)”,

24 Head[formula] === And,

25 ” (” <> aux[formula[[1]], time] <> ”) AND (” <>

26 aux[formula [[2]], time] <> ”)”,

27 Head[formula] === Or,

48

28 ” (” <> aux[formula[[1]], time] <> ”) OR (” <>

29 aux[formula [[2]], time] <> ”)”,

30 Head[formula] === X, aux[formula[[1]], ToString[time] <> ”+1”],

31 Head[formula] === F, varsuffix = RandomInteger[10ˆ5];

32 ”EXISTS(j” <> ToString[varsuffix] <> ”: INT): (j” <>

33 ToString[varsuffix] <> ” >= ” <> ToString[time] <> ” AND (” <>

34 aux[formula [[1]], ” j ” <> ToString[varsuffix]] <> ”))”,

35 Head[formula] === G, varsuffix = RandomInteger[10ˆ5];

36 ”FORALL(i” <> ToString[varsuffix] <> ”: INT): i” <>

37 ToString[varsuffix] <> ” >= ” <> ToString[time] <> ” => (” <>

38 aux[formula [[1]], ” i ” <> ToString[varsuffix]] <> ”)”,

39 Head[formula] === Until, varsuffix = RandomInteger[10ˆ5];

40 ”EXISTS(j” <> ToString[varsuffix] <> ”: INT): j” <>

41 ToString[varsuffix] <> ”>= ” <> ToString[time] <> ” AND (” <>

42 aux[formula [[2]], ” j ” <> ToString[varsuffix]] <>

43 ”) AND FORALL(k” <> ToString[varsuffix] <> ”: INT): ((” <>

44 ToString[time] <> ” <= k” <> ToString[varsuffix] <> ”) AND (k” <>

45 ToString[varsuffix] <> ” < j” <> ToString[varsuffix] <>

46 ”)) => (” <> aux[formula[[1]], ”k” <> ToString[varsuffix]] <>

47 ”) ”]]];

Listing A.2: Function that translates DTL formulas into FOL formulas written in CVC4’s native input

language

1 TranslFuncDTLtoFOL =

2 Function[{formula}, Module[{symbols, i, cvcstring, communication},

3 symbols = DeleteDuplicates@Cases[formula, Symbol, Infinity];

4 communication =

5 DeleteDuplicates@Cases[formula, Communication, Infinity];

6 symbols = Rest[symbols];

7 For[i = 1, i <= Length[communication], i++,

8 If [MemberQ[symbols, communication[[i, 1]]],

9 symbols = DeleteCases[symbols, communication[[i, 1]]]]];

10 cvcstring = {};

11 For[i = 1, i <= Length[symbols], i++,

12 If [! (symbols[[i]] === True || symbols[[i]] === False),

13 cvcstring =

14 cvcstring <> ToString[symbols[[i]]] <>

15 ” : (STRING, INT) −> BOOLEAN;\n”]];

16 cvcstring = cvcstring <> ”At: (STRING, INT) −> BOOLEAN;\n”;

17 cvcstring = cvcstring <> ”QUERY ” <> auxglobal[formula] <> ”;”

18]];

19

20 auxglobal = Function[{formula}, Module[{varsuffix},

21 Which[

22 Head[formula] === Implies,

23 ” (” <> auxglobal[formula[[1]]] <> ”) => (” <>

24 auxglobal[formula [[2]]] <> ”)”,

25 Head[formula] === Not, ”NOT (” <> auxglobal[formula[[1]]] <> ”)”,

49

26 Head[formula] === And,

27 ” (” <> auxglobal[formula[[1]]] <> ”) AND (” <>

28 auxglobal[formula [[2]]] <> ”)”,

29 Head[formula] === Or,

30 ” (” <> auxglobal[formula[[1]]] <> ”) OR (” <>

31 auxglobal[formula [[2]]] <> ”)”,

32 Head[formula] === At,

33 ”FORALL(n: INT): n>=0 => (At(\”” <> ToString[formula[[1]]] <>

34 ”\” , n) => (” <> auxlocal[formula[[1]], formula [[2]], ”n”] <>

35 ”)) ”]]];

36

37 auxlocal = Function[{agent, formula, time}, Module[{varsuffix},

38 Which[Head[formula] === Symbol,

39 If [formula === True, ”TRUE”,

40 If [formula === False, ”FALSE”,

41 ToString[formula] <> ”(\”” <> ToString[agent] <> ”\”, ” <>

42 ToString[time] <> ”)”]],

43 Head[formula] === Implies,

44 ” (” <> auxlocal[agent, formula[[1]], time] <> ”) => (” <>

45 auxlocal[agent, formula [[2]], time] <> ”)”,

46 Head[formula] === Not,

47 ”NOT (” <> auxlocal[agent, formula[[1]], time] <> ”)”,

48 Head[formula] === And,

49 ” (” <> auxlocal[agent, formula[[1]], time] <> ” AND ” <>

50 auxlocal[agent, formula [[2]], time] <> ”)”,

51 Head[formula] === Or,

52 ” (” <> auxlocal[agent, formula[[1]], time] <> ”) OR (” <>

53 auxlocal[agent, formula [[2]], time] <> ”)”,

54 Head[formula] === Until, varsuffix = RandomInteger[10ˆ5];

55 ”EXISTS(j” <> ToString[varsuffix] <> ”: INT): j” <>

56 ToString[varsuffix] <> ” > ” <> ToString[time] <> ” AND At(\”” <>

57 ToString[agent] <> ”\”, j” <> ToString[varsuffix] <>

58 ”) AND (” <>

59 auxlocal[agent, formula [[2]], ” j ” <> ToString[varsuffix]] <>

60 ”) AND FORALL(k” <> ToString[varsuffix] <> ”: INT): ((” <>

61 ToString[time] <> ” < k” <> ToString[varsuffix] <> ”) AND (k” <>

62 ToString[varsuffix] <> ” < j” <> ToString[varsuffix] <>

63 ”)) => (At(\”” <> ToString[agent] <> ”\”, k” <>

64 ToString[varsuffix] <> ”) => (” <>

65 auxlocal[agent, formula [[1]], ”k” <> ToString[varsuffix]] <>

66 ”)) ” ,

67 Head[formula] === Since, varsuffix = RandomInteger[10ˆ5];

68 ”EXISTS(j” <> ToString[varsuffix] <> ”: INT): j” <>

69 ToString[varsuffix] <> ”>=0 AND j” <> ToString[varsuffix] <>

70 ” < ” <> ToString[time] <> ” AND j” <> ToString[varsuffix] <>

71 ” >= 0 AND At(\”” <> ToString[agent] <> ”\”, j” <>

72 ToString[varsuffix] <> ”) AND (” <>

73 auxlocal[agent, formula [[2]], ” j ” <> ToString[varsuffix]] <>

74 ”) AND FORALL(k” <> ToString[varsuffix] <> ”: INT): ((” <>

50

75 ToString[time] <> ” > k” <> ToString[varsuffix] <> ”) AND (k” <>

76 ToString[varsuffix] <> ” > j” <> ToString[varsuffix] <>

77 ”)) => (At(\”” <> ToString[agent] <> ”\”, k” <>

78 ToString[varsuffix] <> ”) => (” <>

79 auxlocal[agent, formula [[1]], ”k” <> ToString[varsuffix]] <>

80 ”)) ” ,

81 Head[formula] === Communication,

82 ”At(\” ” <> ToString[formula[[1]]] <> ”\”, ” <> ToString[time] <>

83 ”) AND (” <> auxlocal[formula[[1]], formula [[2]], time] <> ”)”,

84 Head[formula] === X, varsuffix = RandomInteger[10ˆ5];

85 ”EXISTS(j” <> ToString[varsuffix] <> ”: INT): j” <>

86 ToString[varsuffix] <> ” > ” <> ToString[time] <> ” AND At(\”” <>

87 ToString[agent] <> ”\”, j” <> ToString[varsuffix] <>

88 ”) AND (” <>

89 auxlocal[agent, formula [[1]], ” j ” <> ToString[varsuffix]] <>

90 ”) AND FORALL(k” <> ToString[varsuffix] <> ”: INT): ((” <>

91 ToString[time] <> ” < k” <> ToString[varsuffix] <> ”) AND (k” <>

92 ToString[varsuffix] <> ” < j” <> ToString[varsuffix] <>

93 ”)) => (NOT At(\”” <> ToString[agent] <> ”\”, k” <>

94 ToString[varsuffix] <> ”))”,

95

96 Head[formula] === F, varsuffix = RandomInteger[10ˆ5];

97 ”EXISTS(j” <> ToString[varsuffix] <> ”: INT): j” <>

98 ToString[varsuffix] <> ” > ” <> ToString[time] <> ” AND (” <>

99 auxlocal[agent, formula [[1]], ” j ” <> ToString[varsuffix]] <>

100 ”) AND At(\”” <> ToString[agent] <> ”\”, j” <>

101 ToString[varsuffix] <> ”)”,

102 Head[formula] === G, varsuffix = RandomInteger[10ˆ5];

103 ”FORALL(i” <> ToString[varsuffix] <> ”: INT): (i” <>

104 ToString[varsuffix] <> ” > ” <> ToString[time] <> ” AND At(\”” <>

105 ToString[agent] <> ”\”, i” <> ToString[varsuffix] <>

106 ”)) => (” <>

107 auxlocal[agent, formula [[1]], ” i ” <> ToString[varsuffix]] <> ”)”

108

109]]];

51

52

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	1 Introduction
	1.1 Thesis Outline

	2 A Translation from DTL into FOL
	2.1 First-order Logic
	2.1.1 Syntax
	2.1.2 Semantics

	2.2 Linear Temporal Logic
	2.2.1 Syntax
	2.2.2 Semantics

	2.3 Distributed Temporal Logic
	2.3.1 Syntax
	2.3.2 Semantics

	2.4 The Translation Function
	2.5 Extending the Translation Function to more Operators

	3 SMT Verification using CVC4
	3.1 The Functionalities and Operability of CVC4
	3.2 Quantifiers in a SMT Formula
	3.2.1 An Instantiation Algorithm
	3.2.2 A Selection Function for LIA-formulas
	3.2.3 The Generalized Algorithm

	3.3 Validity Checking of LTL and DTL Formulas using CVC4

	4 Separation Properties
	4.1 Separation Property for Temporal Logic
	4.2 Separation Property for DTL

	5 Craig Interpolation
	5.1 Definition of Craig Interpolation in the Context of DTL
	5.2 Craig Interpolation for a Fragment of DTL

	6 Conclusions
	6.1 Achievements
	6.2 Future Work

	Bibliography
	A Code

