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Abstract—The neurosurgery field demands an high level of
accuracy and precision associated to each performed procedure.
On the other hand, the recent developments in the human-robot
area allowed the rise of surgical shared control systems. In
these, the surgeon is responsible for every decision, while the
robot is responsible for correcting the human error associated
do the surgeon’s action. In this work a neuronavigation system
based on the LBR Med robot, developed by KUKA, is proposed.
Furthermore, an error evaluation will be performed to assess
the performance of such system, concerning the intra-operative
registration and the needle placement stages. By doing so, the
most important sources of inaccuracy will be determined. Such
evaluation will be performed in the laboratory, in a simulated
neurosurgical environment, using an antropomorphic phantom
to recreate the patient’s cranium and brain. The intraoperative
registration will be performed by means of CT and ultrasound
images. Thus, the proposed method is a non-invasive one and
overcomes the most important drawbacks associated with the
state-of-the-art technologies. It is also important to refer that
every aspect regarding this stage will be addressed, such as, the
ultrasound calibration, the images segmentation and the rigid
registration algorithms. Finally, in what concerns the needle
positioning, the robot performance will be evaluated using the
navigation system Polaris Spectra, developed by Northern Digital.
Keywords: Neuronavigation, LBR Med, Ultrasound Imaging,
Segmentation, Registration

I. INTRODUCTION

Throughout the past few decades, a huge effort has been
put into the development and improvement of the surgical
navigation technology allowing the surgical procedures to be
performed in a less invasive manner and still assuring the
requirements of high precision and accuracy.

Nowadays, every brain biopsy that employs this method-
ology follows similar stages. The first, is the acquisition of
the preoperative images. Usually both magnetic resonance,
MRI, and computed tomography, CT, are used. These allow
the surgeon to visualise the patient’s brain and to plan the
intervention, defining the target location and the best trajectory
to reach it.

The second step is the intraoperative image-to-patient reg-
istration. In this, a coordinate transformation, that maps every
point in the image space to the physical space, is estimated.
The techniques available to perform this registration are di-
vided into point-pair matching and surface matching. The first
uses a set of fiducials which can be anatomical points of
the patient’s head, or artificial markers. The second, on its
turn, uses the surface of patient’s head or cranium, which can

be acquired in the physical space using a pointer or a laser
scanner.

After the registration is successfully performed, the surgical
instruments, tracked by the navigation system, can be seen, in
a set of screens, in the image space. This allows the surgeon to
move such objects based on the CT-MRI information. Thus, he
can use an articulating arm to constrain the probe movement
to the trajectory defined in the preoperative stage.

The mean global target errors, of such procedure, have
been evaluated by several authors. For instance, there is
the work developed in [1], which evaluated three of the
most widely used systems: the Medtronic StealthStation, the
BrainLab VectorVision and the Voxim from IVS Solutions.
This, reported an error ranging from 1-1.5 mm using rigidly
attached markers to perform the registration. Furthermore,
there is the work developed in [2] which, through a literature
review, reported errors ranging from submillimetric to 6 mm.
In this work, besides the aforementioned systems, also the
FARO Surgicom and the Stryker Nagivation System, among
others, were evaluated.

On the other hand, the surgical robotics field has also
been getting more attention. Nathoo et al. [3] presents several
advantages of using a robotic system in neurosurgery. From
those, it is worth stressing the ability to actively constrain the
tools to a particular path or position, even against externally
imposed forces, the ability to perform repetitive motions and
to hold in a specified position for long periods without tremor
and the high accuracy and precision that these systems provide.

Therefore, the project presented in this work proposes a
robot-assisted neuronavigation system in a shared control
fashion, [3], which disregards the use of any additional 3D
localization technology in the surgical room. Thus the robot
will be used to track the surgical tools and to actively correct
the surgeon’s action. Furthermore, to overcome the drawbacks
associated with the registration methods available, this work
uses intraoperative ultrasound imaging to scan the patient’s
cranium surface in the surgical room.

The use of the aforementioned technologies comes up as
a way to perform the neurosurgical procedure in a more
accurate, easy and safe manner. Finally, it is the main objective
of this work, the evaluation of the system’s performance,
specially, in what concerns the intraoperative registration and
the robot positioning stages.
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II. MATERIALS AND METHODOLOGY

A. Tracking
1) KUKA LBR Med: The LBR Med is a lightweight

jointed-arm robot with 7 axes. On their turn, each axis is
equipped with a range sensor, a torque sensor and a tempera-
ture sensor which are used for control and protective purposes.

Furthermore, in what concerns the robot control modes there
are two available: the position, and the impedance control
modes. An additional control mode was also implemented.
This is the manual guidance mode and it is an impedance
control mode with null stiffness.

Finally, the OpenIGTLink communication protocol, [4], was
implemented in Java, [5], so to allow the robot to communicate
its flange pose to the other devices.

2) Polaris Spectra: The Polaris Spectra, henceforth desig-
nated by Polaris, will be used in this work to perform the
calibration steps, to perform several measurements used in
the accuracy evaluation and to validate the robot positioning.
This navigation system provides several tools that can be
tracked, which will be attached to important objects whenever
it is relevant to measure their positions and orientations.
Consequently, these tools will be called trackers throughout
this work. Furthermore, there is the stylus. Its tip position can
be determined through the pivoting calibration and this will
be used to measure the position of static points and surfaces.

B. Imaging
1) CT Scanner: The CT scanner used in this work was the

Phillips Brilliance R 64. The scanned image is a volume of
197 slices spaced by 1 mm. Furthermore, each slice has a
field of view of 280 mm and consists in a matrix of 512×512
voxels.

2) Aloka ProSound: The device used to acquire ultrasound
images was the ProSound 2 and the linear transducer UST-
586-5, both developed by Hitachi Aloka. Furthermore, to
establish the communication between the ultrasound and the
main workstation the frame grabber DFG/USB2propcb was
chosen.

C. Tracking and Imaging Fusion

Fig. 1: Devices setup.

Figure 1 shows how every piece of software and hardware is
combined together in an experiment. As a summary, important

data comes from the robot and the Polaris which are used as
trackers to measure poses in space, and from the Ultrasound
which sends images through the frame grabber. A PLUS
server, [6], is used to synchronize all this information and the
3D Slicer, [7], is used to command the PLUS and to visualize
the data through an OpenIGTLink connection. Finally, PLUS
saves the important data in a MHA file which is then used
by the Matlab where the self-developed algorithms will run.
The main workstation used in this work is a computer with an
Intel i5-5200U processor running at 2.20 MHz using 6 GB of
RAM.

D. Phantom

The main study object in this work is an anthropomorphic
phantom based on the human skull with the following dimen-
sions: 305 mm height, 178 mm width and 203 mm length.

Inside the phantom, a group of spheres were placed. These
will be used as targets simulating points and paths inside
the skull, like tumours for instance. Figure 2 shows the top
view of the phantom with the targets spheres placed. These
are numbered from 1 to 10 and this numbering will be used
throughout this document to indicate each target.

Fig. 2: Phantom top view with numbered targets. (Adapted
from [8])

E. Methodology

1) Reference Frames: To start with, it is important to
introduce the main reference frames present in this work. In
the physical space, the Polaris, the robot Base and the robot
Flange are the main ones. Furthermore, there is the Stylus
and the Tracker’s reference frames and the Ultrasound frame.
The last reference frame present in the physical space is the
Needle reference frame, of which the Z axis is collinear with
the physical needle. Finally, there is the CT reference frame
which is associated to the image space.

2) Targets: It is through the targets, figure 2, that the
performance of the system will be evaluated.

As for the CT space, the position and orientation of each
target, defined by pCTTarget and vCTTarget, were determined using
the segmentation capabilities of the 3D Slicer.
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On the other hand, in the physical space, each target
position, pBaseTarget, was determined using the stylus. The ori-
entations, vBaseTarget, on their turn, were determined using the
image space orientations. A ground truth coordinate transfor-
mation was calculated registering each target position directly
and, afterwards, the orientations in the physical space were
obtained by transforming the CT space orientations through
such transformation.

3) Registration: The registration stage will be performed
in a stepwise manner, to evaluate how each source of error
affects the final result. Therefore, there are three important
point clouds, representing the phantom surface, to be built:
• The CT point cloud, defined by the set of points
pCTPhantom. This was obtained through an automatic seg-
mentation of the CT volume in Matlab.

• The ultrasound point cloud, defined by the set of points
pBase

′

Phantom. The surface of the phantom was imaged using
the ultrasound transducer. This was attached to the flange
of the robot which was controlled in manual guidance
during the process. Each image was automatically seg-
mented in Matlab and the position of each segmented
pixel was determined relatively to the robot base refer-
ence frame.

• The ground truth point cloud, defined by the set of points
pBasePhantom. This was acquired with the stylus by sliding
its tip over the phantom surface. Each position acquired
was then transformed to the base reference frame.

Notice that both the ultrasound and the ground truth point
clouds define the phantom surface relative to the robot base
frame. For that reason, they should be coincident. However,
due to several sources of inaccuracy, the two point clouds
will not overlap perfectly. Therefore, to distinguish these, one
will assume that the ultrasound point cloud exists in a virtual
reference frame, Base′.

The registration will then be performed in three steps:
• The first step consists in registering the CT and the

ground truth point clouds. The error for this step will
be evaluated with equations 1 and 2.

ep =
∥∥pBaseTarget − TBaseCT · pCTTarget

∥∥ (1)

ev = cos−1
(
vBaseTarget · (TBaseCT · vCTTarget)

)
(2)

• The second step consists in registering the ultrasound and
the ground truth point clouds. The error for this step will
be evaluated through equations 3 and 4.

ep =
∥∥∥pBaseTarget − TBase

′

Base · pBaseTarget

∥∥∥ (3)

ev = cos−1
(
vBaseTarget · (TBase

′

Base · vBaseTarget)
)

(4)

• The third and main step is to register the CT and the
ultrasound point clouds. This will be evaluated using the
equations 5 and 6.

ep =
∥∥∥pBaseTarget − TBase

′

CT · pCTTarget
∥∥∥ (5)

ev = cos−1
(
vBaseTarget · (TBase

′

CT · vCTTarget)
)

(6)

Finally, every step that requires the ultrasound images
acquisition was performed N times, using independent scans.
The performance of the second and third registration steps
will, therefore, be evaluated through the mean and standard
deviation of each target errors.

4) Needle Placement: Positioning the needle in the physical
space means to command the robot to align the Z axis
of the needle reference frame with the target orientation.
Furthermore, as it is the surgeon’s job to push the needle
forward until it reaches the target points, a distance d must
be kept between the reference frame origin ONeedle, and the
target position. This is shown in figure 3.

Fig. 3: Needle Placement

The error associated with this stage will be evaluated in two
steps:

• In the first step, the robot was commanded to the targets
positions acquired by the stylus, in this, no information
from the CT image will be used.

• In the second step, the robot was commanded to the
positions estimated through the registration between CT
and ultrasound point clouds.

The error for both steps will be calculated through equations
7 and 8.

ep =

∥∥∥∥∥pPolarisTarget − TPolarisTracker · TTrackerNeedle ·


0
0
d
1


∥∥∥∥∥ (7)

ev = cos−1

(
vPolarisTarget ·

(
TPolarisTracker · TTrackerNeedle ·


0
0
−1
0


))

(8)

III. IMPLEMENTATION

A. Segmentation

In this section, every image processing technique used to
segment the CT and ultrasound images will be described. It is
important to mention that segmenting these images means to
extract a point cloud that defines the phantom outer surface.
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1) CT: As the phantom is defined, in the CT volume, by
the voxels with the higher intensities, the first step was the
application of a threshold while the second step was to find the
voxels which define the phantom outer surface. A searching
strategy was implemented to keep only the voxels which define
the border of the phantom in each binary axial slice. For each
CT slice the rows and columns were searched, and, in each
row and column, both directions were covered, i.e., right to
left and left to right for rows, and top to bottom and bottom
to top for columns, adding up to a total of four loops. Having
said so, the first white voxel found in each line or column in
each direction was considered to be part of the outer surface.

Finally, the position of each segmented voxel was converted
to millimeters and the resulting cloud was downsampled. The
result can be seen in figure 4.

Fig. 4: CT point cloud.

2) Ultrasound: The first step of the ultrasound images
segmentation was the application of a Gaussian filter to smooth
the imaged surface, and then, a threshold was applied.

Due to the some non-filtered noise, artifacts appear in
the binary image. These had to be eliminated to avoid the
existence of outliers in the final point cloud. To that end, the
connected components in the binary image were determined
and only the largest one was kept.

Fig. 5: Phantom forehead point cloud.

To end with, the phantom surface was segmented as the
higher pixel in each column. The position of each segmented
pixel was converted to millimeters and then transformed to
the robot base reference frame. The resulting point cloud was
downsampled and the result can be seen in figure 5.

B. Setup Calibration

1) Temporal Calibration: The temporal calibration proce-
dure consists in imaging the bottom of a water tank while
performing a sinusoidal movement in the direction perpendic-
ular to the bottom of the tank with the ultrasound probe, [9].
Thus, two sinusoidal signals are built, i.e., the probe movement
and the bottom tank position in the ultrasound image. Finally,
the time shift can be determined by aligning the two. Figure 6
shows the two sine waves before the calibration and 7 shows
the two sine waves after the calibration.

Fig. 6: Sines before calibration.

Fig. 7: Sines after calibration.

Since there was the need to synchronize the messages from
three devices, the adopted method was to define the ultrasound
time delay to be zero and perform the calibration twice. One
calibration was performed with the tracking signal coming
from the robot and another with the tracking signal coming
from the Polaris. Thus, a time delay was computed for the
robot messages and a different one was computed for the
Polaris messages.

2) Robot-Polaris Calibration: Figure 8 shows the Polaris
to robot base calibration setup. The method is divided in two
steps, [10]:

• Determining pTrackerF lange through pivoting, similar to the sty-
lus calibration. However, here the robot was commanded
to perform the calibration movement automatically.

• Determining TBasePolaris through a point-pair registration.
The robot was commanded to move its flange to 150
different positions and a point-pair registration problem
was formulated, equation 9.
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∑
i

∥∥∥∥∥∥TBaseF lange,i ·


0
0
0
1

− TBasePolaris · TPolarisTracker,i · pTrackerF lange

∥∥∥∥∥∥
(9)

Fig. 8: Calibration setup.

3) Ultrasound Spatial Calibration: The method chosen
to perform this step was the stylus-based calibration, [11].
Although, the good precision and accuracy of such method,
the misalignment between the stylus and the scan plane is
reported as its main source of inaccuracy. Thus, in an attempt
to reduce the significance of this issue, this work proposes a
new procedure.

The idea behind the attempted solution is to keep the probe
still and slowly move the stylus in the direction perpendicular
to the scan plane while keeping it parallel to this plane. By
moving the stylus this way, in and out of the scan plane, it
is possible to assure that at some point it will be perfectly
aligned with the plane. It is, then, needed to find a criteria to
choose the frame that captured the best alignment.

Fig. 9: Stylus movement.

Figure 9 shows, in a simplified manner, what happens when
the stylus is moved the described way. In this figure, the blue
arrow represents the ultrasound wave emitted by the probe
and the red arrow represents the ultrasound wave after being
reflected.

It is possible to conclude, by looking at the image, that it
is in (b), i.e., when the stylus is the most aligned with the
scan plan, that the transducer will receive the greater amount
of reflected wave. For that reason, in (b) the stylus will appear
much brighter, and thus, the images total intensity is a suitable
criteria to choose the right frame.

Finally, the tip of the stylus was segmented in each selected
frame. The process of finding the stylus tip in the image is
divided into segmenting the stylus and then extracting the
tip position. Segmenting the stylus is similar to what was
described in for the phantom surface segmentation, i.e., the
image was filtered with a gaussian filter, a threshold was
applied and the largest connected component was kept. Then,
the tip was selected as the segmented pixel in the lowest row
or as the mean among the segmented pixels in the lowest row.
Figure 10 shows the output of the described procedure.

Fig. 10: Stylus tip segmented.

The position of the pixel was, then, converted to millimeters
and a point-pair registration problem was formulated, equation
10. ∑

i

∥∥∥pFlangeTip,i − T
Flange
Ultrasoundp

Ultrasound
Tip,i

∥∥∥ (10)

4) Needle Calibration: This was performed as shown in
figure 11. A calibrating tool was built, allowing a Polaris
tracker to be mounted on one end, and with an hole on the
other so to slide it along the needle. The tip, highlighted in the
figure, is placed in the center of such hole in the outermost
surface of the tool and its position, pToolT ip , was determined
using the stylus. By sliding the tool along the physical needle,
a set of points was acquired and an optimization problem was
formulated. Note that, since the needle is not completely stiff,
it deflects during the process. Thus, the calibration can not be
performed with a simple linear regression.

The points acquired with the calibrating tool can be trans-
formed to the needle reference frame through equation 11 or
12, whether one desires to estimate the transformation between
the needle and the tracker, or the transformation between the
needle and the flange frames of reference.


xNeedle
yNeedle
zNeedle

1

 = T ′NeedleTracker · TTrackerPolaris · TPolarisTool · pToolT ip (11)
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Fig. 11: Needle calibration.


xNeedle
yNeedle
zNeedle

1

 = T ′NeedleF lange ·T
Flange
Base ·TBasePolaris ·TPolarisTool ·pToolT ip (12)

Note that both xNeedle and yNeedle should be equal to
zero. Also, the transformations T ′NeedleTracker and T ′NeedleF lange only
constrain the Z axis. Therefore these are defined by: a rotation
θx, a rotation θy , a translation dx and a translation dy . The
cost function for such optimization problem can be built as
shown in equation 13.

J =
∑
i

(
x2Needle,i + y2Needle,i

)
(13)

The frame origin position was determined through a simple
procedure. The sliding motion begins with the tool tip touch-
ing the needle holder surface. So, after the optimization is
concluded, the translation dz is determined so that the origin
is coincident with the first points acquired.

C. Registration

In this work two different approaches were attempted.
The first approach consisted in performing an initial coarse
alignment using the Principal Component Analysis (PCA),
[12], [13], followed by a fine registration step with the ICP
algorithm, [14]. On the other hand, in the second approach, an
iterative algorithm was developed to register the clouds based
on the local Gauss and mean curvatures.

It is important to refer that only in the third step of the
stepwise registration, described in the Methodology section,
will the performance associated to the algorithms be evaluated.

Throughout this section, when point clouds are used, as
example, for the registration procedure, these will be called
fixed and moved such that the estimated transformation is the
one that registers the moved point cloud to the fixed point
cloud.

1) PCA + ICP Registration: The first step to perform,
in this approach, is to calculate a coarse alignment based
on the principal components of each point cloud. These can
be determined through the eigenvalue decomposition of its
covariance matrix. Consider the data set S, a point cloud of n

points, of the form 14, and its mean centered form B given by
equation 15, where S̄ is the mean matrix of S. The principal
components of S are the eigenvectors of C, given by 16.

S =


s1
s2
...
sn

 =


x1 y1 z1
x2 y2 z2
...

...
...

xn yn zn

 (14)

B = S − S̄ (15)

C = BT ·B (16)

Consider now a fixed point cloud, F , constituted by the
points fi, and a moved point cloud, M , constituted by the
points mi, of the form of 14. Also, each point fi is determined
by applying a rigid coordinate transformation to each point
mi, equation 17. Let VF and VM be the principal components
matrices of the fixed and moved point clouds respectively.

fi = (R ·mT
i + t)T ∀ fi ∈ F , mi ∈M (17)

Which employs:

VF = R · VM (18)

The coordinate transformation that transforms M in F
can be calculated following two simple steps. The first is
to compute the rotation matrix, R, which can be calculated
through equation 19.

R = VF · V TM (19)

Finally, let f̄ and m̄ be the the centroids of the fixed and
the moved point clouds. The translation vector, t, is given by
20.

t = f̄T −R · m̄T (20)

The second step is the fine tuning of the registration using
the ICP algorithm. This, performs the following three steps,
in an iterative manner, until a stop criterion is met.
• For each point of the moved point cloud, the correspon-

dent point in the fixed point cloud is the closest one.
• Find the transformation that transforms each point of the

moved point cloud to its correspondent point in the fixed
point cloud by means of a point-pair registration.

• Apply the estimated transformation to the moved point
cloud.

2) Curvature-Based Registration: The first step in the
curvature-based registration is the numerical estimation of the
mean and the Gauss curvatures of the surface in each point.
This is, in turn, divided into estimating the surface normal and
the local curvatures, and estimating the principal curvatures,
through a least-squares fitting of the Euler curvature equation,
for each point, [15]. These are finally used to compute the
mean and Gauss curvatures.
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The surface normal estimation for each point was performed
by means of a principal component analysis of such point
neighborhood, [16]. A local cluster was built for each point,
constituted by the point itself and its k nearest neighbours.
Thus, the principal components of such cluster were deter-
mined. The first two principal components will be coplanar to
the cluster, while the third can be assumed to be the surface
normal in that point.

Then, the local curvatures were also estimated. A new
neighborhood for each point P was defined, based on a
distance condition. Assume this neighborhood is defined by
the set of points Qi.

Also, let {P,X, Y,N} be a local orthogonal coordinate
system, as shown in figure 12a.

(a) Local coordinate system. (b) 2D curvature.

Fig. 12

In this coordinate system, P is defined by [0, 0, 0] and Qi
by [xi, yi, zi]. Also, Q−i represents the projection of Qi in the
pane XY and is defined by [xi, yi, 0]. On the other hand, Wi

is the surface normal in the point Qi and is defined in the
local coordinate system by [wx,i, wy,i, wz,i].

Having said so, the problem of computing the local curva-
tures, kin, is given in 2D as shown in figure 12b, where the
the curvature is calculated through equation 21.

kin =
sin(β)

‖P −Qi‖ sin(α)
(21)

Also, for a 3D problem, equation 21 can be approximated
by 22.

kin =
wxy,i√

x2i + y2i ·
√
w2
xy,i + w2

z,i

(22)

Where:

wxy =
wx,i · xi + wy,i · yi√

x2i + y2i
(23)

Having each local curvature calculated, one can now write
the Euler curvature equation as 24 shows.

kin = k1 cos
2(θi + θ) + k2 sin

2(θi + θ) (24)

Where the unknown parameters are θ, k1 and k2. By the
definition employed, θ is the angle between e1 and X , and θi
is the angle between the vector ~PQ−i and X .

The optimization problem can finally be formulated, as
shown in equation 25, and solved through a least-squares
optimization.

min
k1,k2,θ

∑
i

[
k1 cos

2(θi + θ) + k2 sin
2(θi + θ)− kin

]2
(25)

The Gauss and mean curvatures were, finally, calculated
through 26.

KG = k1 · k2 , KH =
k1 + k2

2
(26)

The second step in this method is to apply the registration
algorithm itself. In sum, the designed method uses the eu-
clidean distance to define the set of fixed points that can be
matched to a moved point, i.e., a given moved point, mj , can
be matched to any fixed point, fk, such that equation 27 holds.

‖mj − fk‖ < R (27)

Then, it uses the estimated curvatures to find the best match
within the neighborhood radius R, that is, the point fmatch,j
which is the solution of the equation 28.

argmin
fk

( |KG(fk)−KG(mj)| + |KH(fk)−KH(mj)| )

(28)
Where KG() and KH() define, respectively, the Gauss and

mean curvatures of a given point. Finally, a point-pair regis-
tration problem is formulated to compute the transformation
Ti that best transforms every point mj to its match. This is
shown, in homogeneous coordinates, in equation 29, and the
solution can be found through a least-squares optimization.∑

j

‖fmatch,j − Ti ·mj‖ (29)

At the end of each iteration, this transformation is applied to
the moved point cloud, changing the position of every point
mj , and the value of R is decreased, using equation 30. In
this, C is an arbitrary small constant, R0 is the initial value
of R, Rmin is the minimum allowed value of R and i is the
iteration.

Ri = max(R0 · e−C·(i−1) , Rmin) (30)

This procedure works under the assumption that the point
fmatch,j , that represents the best match to the point mj , is in
its vicinity. However, two things may happen that cause this
to not be the case.

In the first iteration the moved cloud is in a random position
relative to the fixed cloud. In this case, the aforementioned
assumption is obviously wrong. For that reason, in the first
iteration, the best match to every moved point is searched
through the entire fixed cloud neglecting the distance condition
of equation 27. This, however, leads to the second problem.

The estimated curvature for the same theoretical point in the
CT point cloud and in the ultrasound point cloud may differ.
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Fig. 13: Registration Algorithm.

Consequently, solving equation 28 with no neighborhood
radius condition may result in a wrong matching which leads
to a wrong alignment.

When the moved point cloud is transformed with a wrong
coordinate transformation, at some iteration, some of the
moved points will not have any fixed point in its vicinity,
causing the algorithm to get stuck.

For this reason, the first iteration is only performed through
N randomly chosen points and, whenever the algorithm gets
stuck, the moved points with no neighbours within R are
neglected. However, this is done only as long as there is a
minimum amount of valid matches. When this minimum is
not achieved, it is assumed that the N points chosen for the
first iteration failed to give a suitable alignment. Thus the
algorithm will restart, placing the moved point cloud in its
original position and picking a new set of N initial points.
This process is shown schematically in figure 13.

IV. RESULTS AND DISCUSSION

A. Calibration

1) Results: Starting by the setup calibration procedure, the
first important result is associated to the stylus calibration.
This was performed 5 times and the result with the lowest
mean residue was kept. The mean stylus calibration residue
obtained was 0.42 mm.

The second important calibration result, regarding the Po-
laris to robot calibration, is the residue of the least squares

optimization of the equation 9. The mean residue obtained
was 0.40 mm.

The ultrasound spatial calibration was performed 10 times
and evaluated through the point reconstruction accuracy PRA,
and through the calibration reproducibility CR, [17]. The first
was calculated by estimating the position of the tip of a tracked
3D printed cone. This was imaged near the four corners and
the center of the image and the mean error obtained was 0.89
mm. The calibration reproducibility, on its turn, was evaluated
through the standard deviation of the image corners and center
position estimation. The mean result obtained was 0.54 mm.

Finally, the results concerning the needle calibration. The
evaluation of the needle calibration quality was performed by
calculating the residues of the cost function, equation 13, at
the solution. The mean residue obtained was 0.64 mm.

2) Discussion: The two most important results to discuss
here are the Polaris to robot calibration and the ultrasound
spatial calibration results. In what concerns the first, additional
experiments were performed and the conclusion taken was that
the mean residue of 0.4 mm is justified by a slight deflection
of the robot coupling base.

On the other hand, the error associated to the ultrasound
spatial calibration is justified by two main reasons. To start
with, the method assumes that the stylus is always parallel
to the scan plane. However, it is impossible to assure an
absolutely perfect alignment. The second reason has to do
with the stylus tip and its segmentation. The diameter of the
stylus tip makes it impossible to find a single pixel which
corresponds to it with no uncertainty.

B. Registration

1) Results: The first step of the registration stage consists
in the CT to ground truth registration. The results for this can
be seen in table I.

Target ep (mm) ev (◦)
1 0,69 0,14
2 0,49 0,15
3 0,93 0,19
4 0,62 0,16
5 1,16 0,09
6 0,82 0,19
7 0,74 0,15
8 0,87 0,14
9 0,85 0,10

10 1,30 0,10
Mean 0,85 0,14

TABLE I: CT to ground truth registration error.

To perform the second and third steps of the stepwise
error evaluation described in Methodology section, 10 different
ultrasound scans were made. The results for ultrasound to
ground truth registration can be seen in table II.

The third step was then performed. The first attempt to
perform this used the PCA + ICP method. The results are
presented in table III.

The curvature-based algorithm was, then, applied to solve
the CT to ultrasound registration. The results are shown in
table IV.
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ep (mm) ev (◦)Target Mean Std. Dev. Mean Std. Dev.
2 0,62 0,14 0,42 0,20
3 0,67 0,15 0,40 0,19
4 0,75 0,19 0,40 0,20
5 0,62 0,19 0,37 0,17
6 0,76 0,25 0,4 0,19
7 0,77 0,23 0,42 0,20
8 0,57 0,20 0,42 0,20
9 0,67 0,24 0,39 0,18
10 0,52 0,20 0,40 0,19

Mean 0,66 0,15 0,40 0,19

TABLE II: Ultrasound to ground truth registration accuracy.

ep (mm) ev (◦)Target Mean Std. Dev. Mean Std. Dev.
1 3,12 0,45 4,99 1,07
2 4,43 1,04 4,98 1,06
3 5,44 1,63 5,21 0,95
4 7,28 1,38 3,73 1,00
5 3,28 0,88 4,97 1,11
6 6,04 1,04 5,14 0,90
7 6,81 1,22 4,84 1,06
8 2,45 0,80 5,17 0,97
9 2,32 0,58 4,60 1,19
10 3,44 0,78 5,10 1,02

Mean 4,46 0,73 4,87 1,00

TABLE III: PCA + ICP registration accuracy.

ep (mm) ev (◦)Target Mean Std. Dev. Mean Std. Dev.
1 1,07 0,30 0,76 0,57
2 1,20 0,44 0,76 0,56
3 1,36 0,55 0,78 0,45
4 1,43 0,48 0,79 0,46
5 1,68 0,39 0,78 0,53
6 1,35 0,47 0,77 0,46
7 1,35 0,39 0,78 0,55
8 1,27 0,43 0,76 0,53
9 1,16 0,47 0,79 0,53
10 1,37 0,31 0,79 0,46

Mean 1,32 0,21 0,78 0,50

TABLE IV: Curvature-based registration accuracy.

Finally, the processing time was calculated for every algo-
rithm involved in the registration stage. The results are shown
in table V. For the ultrasound segmentation, the time presented
is the total time that the algorithm took to segment all the
images acquired, while the time present for the registration
algorithms is the total time that these took to converge.

Processing Time (s)Experiment US segmentation PCA + ICP Curvature-Based
1 23,64 1,25 33,37
2 23,38 1,72 35,73
3 17,32 0,90 42,96
4 22,27 1,53 45,39
5 19,16 1,80 28,50
6 17,98 1,08 28,76
7 25,48 4,93 29,46
8 26,47 1,28 33,10
9 19,73 1,30 51,66

10 24,61 0,83 29,71
Mean 22,04 1,66 35,86

TABLE V: Processing time.

2) Discussion: The results in table I are mainly due to
three reasons. First of all, there is the CT resolution which
is around 0.5 mm along the X and Y axes and 1 mm along

Z axis. On the other hand, every position measured with the
stylus as a certain uncertainty associated, due to the pivoting
calibration result shown in the previous section. Finally, there
is the imperfect choice of the CT segmentation threshold.

Regarding the second registration step, table II, the pro-
cedure was performed 10 times due to the sensibility of the
resulting US point cloud to the phantom surface scanning. The
final mean errors for this step have, once more, three principal
sources of inaccuracy associated. These are the flawed ultra-
sound spatial calibration and Polaris to base calibration, both
presented and discussed in the previous section, and, as for
the CT, the ambiguous choice of the ultrasound segmentation
threshold.

By performing the third registration step it was possible to
verify that the error added by the algorithm employed can
be very significant. It is possible, by comparing the results
of tables III and IV, to conclude that the information added
by the use of the local curvatures, improved the registration
quality a lot.

In what concerns, the processing time of the registration
algorithms, the major reason behind the huge difference be-
tween the results in table V is that, for the ICP, the Matlab
built-in function was used. This means that the time consuming
part of the PCA+ICP algorithm was performed by compiled
code. Differently, in the curvature-based registration the whole
process was performed by interpreted code.

C. Needle Placement

1) Results: The results for the first needle placement ex-
periment can be seen in table VI. It is important to refer that
there are no results for the targets 5, 9 and 10 because these
were not reachable by the robot in the used layout.

Target ep (mm) ev (◦)
1 0,33 0,11
2 0,94 0,27
3 0,57 0,14
4 1,04 0,40
5 — —
6 0,45 0,13
7 0,45 0,17
8 0,93 0,19
9 — —

10 — —
Mean 0,57 0,17

TABLE VI: Needle placement results using the targets mea-
surement.

Since this experiment was performed in a different day, a
new CT to ultrasound registration was performed. The result
of the said registration can be seen in table VII.

The robot was finally commanded using the registered CT.
The results can be seen in figure VIII.
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Target ep (mm) ev (◦)
1 1,72 0,80
2 0,88 0,80
3 0,97 0,65
4 1,41 0,81
5 1,34 0,80
6 1,20 0,68
7 1,15 0,80
8 0,90 0,80
9 1,42 0,81
10 1,18 0,86

Mean 1,19 0,80

TABLE VII: Registration result.

Target ep (mm) ev (◦)
1 1,90 0,94
2 1,47 1,01
3 1,26 0,65
4 2,51 1,19
5 — —
6 1.88 0,76
7 1,39 0,91
8 0,56 0,84
9 — —
10 — —

Mean 1,43 0,91

TABLE VIII: Final needle placement results.

2) Discussion: The most prominent source of error behind
the results of table VI is related to the robot coupling base
deflection. The robot configuration changes the amount of
deflection in the coupling base and thus, calibrating the needle
using different robot configurations produced different results.
It was verified that the targets which demanded a robot
configuration most similar to the one used to calibrate, were
the ones that presented the lowest errors.

Regarding the results for the registration presented in table
VII, these were obtained using the curvature-based algorithm.
There is not further to add about them as the registration was
already discussed in the previous section.

Finally in what concerns the results presented in table
VIII, the biggest contribution comes, obviously, from the
registration outcome. However, it was possible to calculate
the robot contribution, by subtracting the registration errors
to the needle placement errors, and to verify that, once more,
the most significant contribution came from the robot coupling
base deflection.

V. CONCLUSIONS

Throughout the development of this work, the implemen-
tation of a robot-assisted and ultrasound-guided neuronaviga-
tion system was studied with regard to the image-to-patient
registration and robot positioning. As main achievements, it is
worth to stress out the design and implementation of a fast,
accurate and automatic setup calibration procedure that can
be applied to any system with similar characteristics. Besides,
a stepwise error evaluation methododology was presented in
this work, which can be used to assess the performance of any
robot-assisted and ultrasound-guided neuronavigation system,
and, the application of such methodology to the KUKA LBR
Med, can be used to guide further developments on this
project. Finally, it is also important to refer, that it was possible

to achieve a final registration stage quality comparable to the
most accurate systems available, using an affordable and non-
invasive technology.

It is one’s belief that the main developments to allow the
system to be implemented in a real surgical environment, are
the replacement of the coupling base to avoid non-rigid effects,
to study of the CT-MRI registration, accounting this as an ad-
ditional source of error, and to apply the developed procedure
with a setup more similar to a real surgical environment, i.e.,
using a biological subject, the Mayfield clamp and a realistic
relative position between the robot and the subject.
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