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Resumo

O campo da neurocirurgia é conhecido por exigir um elevado nı́vel de exatidão associado a cada

procedimento realizado. Por outro lado, os recentes desenvolvimentos na área da interação humano-

robô possibilitaram o aparecimento de sistemas cirúrgicos de controlo partilhado, nos quais cabe ao

cirurgião tomar cada decisão, enquanto que, ao robô, cabe a correção do erro humano, associado à

ação do médico.

Neste trabalho, é proposto um sistema de neuronavegação baseado no robô LBR Med, desenvolvido

pela empresa KUKA. Será, assim, feita uma avaliação do erro associado à utilização do dito sistema,

especialmente no que diz respeito às etapas de registo intraoperatório e de posicionamento da agulha,

bem como das causas do mesmo.

A avaliação deste sistema será realizada em ambiente laboratorial, simulando os procedimentos de

neurocirurgia, com a utilização de um fantoma antropomórfico capaz de simular o crânio e o interior do

cérebro do paciente.

Dito isto, será realizado um registo intraoperatório com recurso a imagens de ultrassons e de TAC.

Assim, o método proposto é considerado não-invasivo e contorna alguns dos mais importantes incon-

venientes associados às tecnologias utilizadas atualmente. É ainda de referir que todos os aspectos

associados a esta etapa serão estudados, nomeadamente, a calibração do ecógrafo, a segmentação

das imagens de ambas as modalidades, e os algoritmos de registo rı́gido. Por fim, no que diz respeito

ao posicionamento da agulha, a performance do robô será avaliada utilizando o sistema de navegação

Polaris Spectra, desenvolvido pela empresa Northern Digital.

Palavras-chave: Neuronavegação, LBR Med, Ultrassons, Segmentação, Registo
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Abstract

The neurosurgery field demands an high level of accuracy and precision associated to each per-

formed procedure. On the other hand, the recent developments in the human-robot area allowed the

rise of surgical shared control systems. In these, the surgeon is responsible for every decision, while the

robot is responsible for correcting the human error associated do the surgeon’s action.

In this work a neuronavigation system based on the LBR Med robot, developed by KUKA, is pro-

posed. Furthermore, an error evaluation will be performed to assess the performance of such system,

concerning the intra-operative registration and the needle placement stages. By doing so, the most

important sources of inaccuracy will be determined.

Such evaluation will be performed in the laboratory, in a simulated neurosurgical environment, using

an antropomorphic phantom to recreate the patient’s cranium and brain.

The intraoperative registration will be performed by means of CT and ultrasound images. Thus, the

proposed method is a non-invasive one and overcomes the most important drawbacks associated with

the state-of-the-art technologies. It is also important to refer that every aspect regarding this stage will

be addressed, such as, the ultrasound calibration, the images segmentation and the rigid registration

algorithms. Finally, in what concerns the needle positioning, the robot performance will be evaluated

using the navigation system Polaris Spectra, developed by Northern Digital.

Keywords: Neuronavigation, LBR Med, Ultrasound Imaging, Segmentation, Registration
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Chapter 1

Introduction

1.1 Motivation

Throughout the past few decades, a huge effort has been put into the development and improvement

of the surgical navigation technology, allowing the surgical procedures to be performed in a less invasive

manner and still assuring the requirements of high precision and accuracy.

Consequently, several projects have been developed in this field by the students in the Surgical

Robotics Laboratory at Instituto Superior Técnico, of which, the works done by Elyseu [1], which studied

the intraoperative registration, and Ferreira [2], which focused on image-guided pedicle screw place-

ment, are of particular importance.

On the other hand, the surgical robotics field has also been getting more attention, given the ability of

robots to compensate the human shortcomings, specially in what concerns precision, concentration and

endurance. Motivated by this, there is the study of the position and force control of a lightweight robot

for orthopedic surgery, done by Pires [3], and more recently the integration of the KUKA LBR Med in the

neurosurgical framework by Oliveira [4], which focused on the evaluation of the robot control laws and

the implementation of a suitable communication protocol. Furthermore, the promising results achieved

in [4] are the cornerstone for the present work.

Therefore, it is left to perform a quantitative analysis of the system’s accuracy which is crucial to

conclude about the viability of using it for neurosurgical applications.

1.2 Objectives

The present work aims to achieve three principal objectives.

The most important is the study of the image-to-patient registration problem in neurosurgery using

intraoperative ultrasound and preoperative CT imaging. Every aspect regarding this problem is aimed to

be covered. This includes the ultrasound calibration, both the CT and the ultrasound images segmenta-

tion and the rigid registration algorithms.

Secondly, there is the development of a systematic stepwise evaluation method that can be used to
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determine sources of inaccuracy and assess the error propagation in a robotic neuronavigation system

in a quantitative manner.

Finally, to apply the aforementioned objectives using the KUKA LBR Med and an anthropomorphic

cranial phantom, in the laboratory, simulating a surgical environment, so to evaluate the system’s perfor-

mance.

1.3 Thesis Outline

The present document is divided into six chapters. The second chapter presents an overview about

the topic, this aims to provide the adequate background knowledge to the reader so that the present

work can be fully understood. It starts by describing how the neurosurgery has evolved and how it is

performed nowadays, presenting a review about the existing systems and techniques. Then it focuses

on how the robotic systems can be integrated in this field describing the main advantages of these, and

afterwards, a brief description about the used imaging modalities is made. It ends by describing in detail

the proposed neuronavigation solution.

The third chapter aims to introduce every piece of software and hardware used, explaining the role

of each. Also, it presents the work methodology, which describes the experiments performed throughout

this work. It aims to introduce the important variables and data, how these were acquired or determined

and to describe how the quality assessment was performed. By doing so, every development presented

in the fourth chapter will come up justified.

The fourth chapter presents a detailed description of every implementation, justifying the choices

and assumptions made. This is divided into three main sections. Firstly, there is presented the image

acquisition and treatment and the segmentation techniques, then the setup calibration, and finally the

registration techniques employed.

The fifth chapter presents the results of every experiment described in the methodology section

applying the techniques described in the fourth chapter. Subsequently, a discussion is presented to

justify the results presented.

Finally, in the sixth chapter one will present a qualitative evaluation of the results. By doing so,

it will be possible to take conclusions on whether or not the right choices were made and about the

viability of the proposed neuronavigation system. Finally, the most important future developments will

be addressed.
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Chapter 2

Background

2.1 Brain Biopsy

A brain biopsy is a surgical intervention that aims to extract a small piece of brain tissue for the

diagnosis of abnormalities. Furthermore, such abnormalities can be located in the surface of the brain

or deep in it.

Figure 2.1: Brain Biopsy. (From [5])

To collect the sample, a probe (or needle) is used as shown in figure 2.1. Also, due to the sensitive

nature of the brain, this is a very invasive procedure and the path travelled by the probe, until it reaches

the target, must be carefully planned. Finally, a brain biopsy can be classified as open biopsy, if the brain

tissue is exposed through a craniotomy, i.e., the temporary removal a portion of the skull, or as closed

biopsy, if only a small hole is drilled in the skull.

The present work focuses on the closed biopsy procedure. This is a less invasive methodology but

requires the employment of the stereotactic frame or a neuronavigation system, section 2.2, to achieve

the required performance.
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2.2 Neuronavigation

2.2.1 Historical Perspective

Although the first known documentation about surgical interventions on human cranium are from the

neolithic period, the modern neurological surgery, as it is described today, only exists since the ending

of XIX century. It was in 1879 that the Scottish surgeon William Macewen performed the first successful

brain tumour removal. It is however to Victor Horsley, surgeon of the National Hospital of Queens Square

in London, that the title ”Father of Neurosurgery” is attributed on account of the several intracranial

interventions that he has performed. Also, it is important to refer the work of Harvey Cushing, who

created several techniques and methods that allowed these interventions to be done safely on humans.

Figure 2.2: Horlsey and Clarke experiments illustration. (From [6])

The important concept of stereotaxy was introduced in 1908 by Victor Horsley and the engineer

Robert H. Clark. Their experiments aimed to locate deep brain structures in a three-dimensional co-

ordinate system using external cranial references, figure 2.2. They verified that such procedure was

not sufficiently accurate to be performed on humans and the concept of stereotaxy was abandoned

by neurosurgeons until the emergence of the imaging modalities capable of increasing the method’s

accuracy.

(a) Pneumoencephalography (b) Angiography

Figure 2.3: Primordial imaging modalities.

The X-radiation was discovered by Wilhelm Röntgen in 1895 and made it possible for Walter Dandy

to invent the ventriculography in 1918 and improve it to create the pneumoencephalography in 1919.

The method consisted in draining the most of the cerebrospinal fluid from around the brain replacing it
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with air to allow the structure of the brain to clearly show up on an X-ray image, figure 2.3a. Also, in

1927 the Portuguese neurologist Egas Moniz developed the angiography which allowed to image the

blood vessels in and around the brain, figure 2.3b, thereby allowing the detection of abnormalities.

The appearance of the aforementioned imaging modalities allowed the stereotaxy to be considered

again and led the first stereotactic apparatus to be invented in 1947 by E. A. Spiegel and H. T. Wycis.

Such instrument allowed a probe to be positioned in a three-dimensional cartesian coordinate system

which was overlaid to the pneumoencephalography images.

Figure 2.4: Leksell Stereotactic System® (From [7])

In 1949 Lars Leksell developed a new instrument, figure 2.4. This was the first stereotactic system

to employ the ”center-of-arc” principle, and used three polar coordinates: angle, depth and anterior-

posterior location, contrasting with the cartesian coordinate system of the Spiegel-Wycis device. This

new device represented a considerable improvement since it provided maximum flexibility in choosing

the probe entry point and trajectory.

The Leksell stereotactic device has been improved throughout the years and it is still used today.

Furthermore, the surgical interventions that use an apparatus like this are called frame-based sterotactic

surgeries.

(a) CT (b) MRI

Figure 2.5: Modern imaging modalities.

By the 1970’s two new image modalities emerged which made it possible to directly observe the
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brain structures in a volume, providing valuable information to the surgeons. On one hand, there is

Computed Tomography (CT) invented by G. Hounsfield, figure 2.5a. A CT volume is built by stacking up

several slices. On their turn, each slice is the result of multiple X-ray measurements taken from different

angles. On the other hand, the Magnetic Ressonance Imaging (MRI), figure 2.5b, was the result of the

work developed by Damadian in 1971 and the work developed by Lauterbur as well as Mansfield and

Grannell in 1973. This imaging modality uses strong magnetic fields instead of X-rays and the resulting

images show a much higher definition in soft tissue contrast than the one found in the CT.

Finally, the ever-increasing capabilities of digital storage, the computer-graphic modelling and manip-

ulation as well as the three-dimensional localization technologies that appeared at end of the XX century

empowered the concept of frameless stereotactic surgery, also known as neuronavigation, to arise. The

presented historical perspective had, as a principal source of information, the work in [8].

Nowadays, both the frame-based surgery and the neuronavigation are valid options, as both can

provide an high accuracy. Therefore, it is the doctor’s job to choose between those for each specific

case.

2.2.2 Surgical Procedure

The first step in a frameless stereotactic surgery is the acquisition of the preoperative images. Both

CT and MRI are usually used and they must be merged resulting in a mixed image space where the

doctor can define the target point in the patient’s brain and the desired trajectory to reach it.

The surgical room is illustrated in figure 2.7. Here, it is crucial to fix the patient’s head so it does

not move during the procedure. By doing so, a steady coordinate correspondence between the surgical

space and the image space is assured. Such task is accomplished with the Mayfield clamp, a three

point fixture mechanism which is screwed to the patients head, figure 2.6.

Figure 2.6: MAYFIELD® Skull Clamp (From [9])

The registration step aims to calculate the aforementioned coordinate transformation and it is de-

scribed in detail in the next section. This is one of the main focuses of the present work and its impor-

tance for the success of the intervention is extreme.

Once the registration is performed, the position of any surgical tool marked with a reflective adaptor

in the surgical space can be seen, in the screen, in the image space in real time. This way the tools can

be moved relative to the patient’s head, based on the CT-MRI images information.
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Figure 2.7: The neuronavigation system is composed by a frame of reference (A), attached to the
stretcher or to the mayfield clamp, used to detect any undesired movement. A pointer (B) and fiducial
markers (C) equipped with reflective spheres that can be detected by the neuronavigation equipment
(D). This consists of two light emitters that perform three-dimensional localization trough triangulation.
Also a set of screens are available where the doctor can visualize the preoperative images and the
position of the surgical tools (F) when equipped with the respective adaptor (E). (From [10])

Figure 2.8: Vertek® articulating arm attached to the Mayfield clamp. (From [11])

Finally, the surgeon identifies the entry point and an articulating arm is used to correctly define the

needle orientation. Then, the articulating arm degrees of freedom are constrained allowing the needle

to move only in depth along the defined path. This movement is controlled by the doctor, and can be

monitored with the navigation equipment.
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2.2.3 Registration

The process of estimating the coordinate transformation between two reference frames is called

registration. The image-to-image registration can be used to merge the CT and MRI or PET (Positron

Emission Tomography) images creating a mixed image space, [12, 13]. However, this is out of the scope

of this work and one will focus on the image-to-patient registration.

The image-to-patient registration consists in the estimation of a rigid coordinate transformation. This

estimation will have as input the CT-MRI images and information acquired in the physical space.

The registration techniques can be divided in two groups, these are the point-pair matching and the

surface matching techniques, [14], given that each technique has its advantages and drawbacks.

Point-Pair Matching

Figure 2.9: Point-Pair registration illustration. Selected fiducials in the image space, A. Fiducials position
acquisition in the surgical space, B. Resulting image-to-patient registration , C. (Adapted from [14])

A rigid transformation between two reference frames can be accomplished using 3 or more pairs of

non collinear points. These points will be called fiducials and the point-pair matching technique can be

subdivided based on the nature of the fiducials used.

On one hand, there is the registration based on natural fiducials. In this technique, the registration is

performed using anatomical points of the patient’s head that are easy to identify in both the image and

the physical spaces, like the edges of the eyes or the nose tip, for example, [15].

On the other hand, the registration can be performed based on artificial fiducials. These are markers

that can be glued to the patient’s head skin or rigidly fixed to the bone through a previous surgery, [15],

and that are specially designed to be easily identified in the images.

Regarding the positive and negative aspects of this methodology, the use of natural fiducials is a non-

invasive technique of which the simplicity is the main advantage. On the other hand, the selection of

correspondent anatomical points in the image and in the physical space may be difficult and ambiguous.

As for the use of artificial markers, the first drawback is the need of an additional CT scanning, after the

markers placement, exposing the patient to an additional amount of radiation. The glued markers have

the additional drawback of moving due to the skin mobility. The rigidly attached markers do not have this

problem making this a very accurate method, however, this technique is very invasive and uncomfortable

for the patient.
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Surface Matching

Figure 2.10: Surface matching registration. Segmented surface in the image space, A. Surface acquisi-
tion in the surgical space, B. Resulting image-to-patient registration , C. (Adapted from [14])

In the surface matching registration, instead of a set of points with known correspondences, a surface

which defines the patient’s cranium or skin is used. This surface is extracted from the image space by

software. On the other hand, its acquisition in the physical space is performed by the doctor using

a pointer, [16], or a laser scanner, [17]. A suitable algorithm must then be employed to estimate the

coordinate transformation that best aligns both surfaces.

Comparing the surface matching technique, as it is done nowadays, with point-pair matching meth-

ods, this has the advantage of being non-invasive and discarding the need of the additional CT scanning.

However, the surface acquisition is still prone to errors due to the skin movement. In order to solve this

issue, an innovative method proposes the use of intraoperative ultrasound imaging to acquire the bone

surface directly, [1, 18, 19]. Furthermore, this is the technique proposed in the present work.

Error Evaluation

To evaluate the registration quality, Fitzpatrick et al. [20] proposes the taget registration error, TRE.

This consists in evaluating the error in the estimation of target points, i.e., the euclidean distance between

the real position of a target and the one estimated through the registered image space. The TRE is given

by 2.1, where ri and r′i are, respectively, the real and the estimated position of each of the N target

points.

TRE =
1

N

N∑
i=1

‖ri − r′i‖ (2.1)

2.2.4 State of the Art Performance

In this section a review of the reported neuronavigation systems performance is presented.

Strong et al. [21] compares three of the most widely used neuronavigation systems, these are, the

Medtronic StealthStation, the BrainLab VectorVision and the Voxim from IVS Solutions. They studied

four cadaveric heads and the registration was performed by means of rigidly fixed fiducial markers. They

reported a mean TRE ranging from 1-1.5 mm.
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The BrainLab system offers the possibility of using a laser scanner to perform a surface matching

registration, the Z-touch. This system was tested by Lübbers et al. [22]. In this study, a synthetic human

skull model was used and the reported TRE when using this system ranged from 1-1.2 mm. However,

the use of a phantom with no skin may cause this result to be unrealistic.

Also interesting is the work of Stieglitz et al. [23] which, through a literature review, reported errors

ranging from submillimetric to around 6 mm. Both the point-pair and surface matching techniques were

covered and besides the aforementioned systems, this work also includes the FARO Surgicom and the

Stryker Navigation System among others. This work also performs an interesting quantification about

the accuracy decrease after the registration step, identifying its most prominent origins.

Finally, a previous study performed in the Surgical Robotics Laboratory at IST presented an error

evaluation in a neuronavigation procedure [24], and reported an mean TRE of 3.93 mm after te mechan-

ical execution with the Vertek articulating arm.

2.3 Robotics in Neurosurgery

Regarding its technical classification, the robotic systems used in a surgical environment are divided

in three classes. These are the supervised controlled systems, the telesurgical systems and the shared

control systems, [25].

Figure 2.11: Shared control system. (Adapted from [25])

In a supervised controlled system, the surgery is planned by the surgeon in the preoperative stage.

These plans are then uploaded to the robot controller and the robot executes the operation autonomously

under the supervision of the surgeon.

In a telesurgical system, the robot is controlled by the surgeon by means of an haptic interface. It

faithfully replicates the surgeons motions.

Finally, in a shared control system, the surgeon and the robot share the control over the surgical

tools. In these systems, the surgeon is responsible for manually guiding the tools and the robot is

responsible for providing steady-hand manipulation. This is the most prominent type of robotic systems

in neurosurgery and moreover, the system proposed in the present work falls into this category. Figure

2.11 shows a representation of this type of systems.

Nathoo et al. [25] also presents several advantages of using a robotic system in neurosurgery. From

those, it is worth stressing the ability to actively constrain the tools to a particular path or position, even
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against externally imposed forces, the ability to perform repetitive motions and to hold in a specified

position for long periods without tremor and the high accuracy and precision that these systems provide.

(a) NeuroMate® (From [26]) (b) ROSA ONE® (From [27])

Figure 2.12: Robotic Systems.

The first robot used to hold a needle in a brain biopsy was the PUMA 200. This was a standard

industrial robot and operated as a supervised controlled system. Nowadays, several robotic systems

are available to perform this kind of procedure:

• ROSA ONE: This was designed to perform deep brain stimulation and needle placement in a brain

biopsy and it is prepared to work with CT and MRI images. Furthermore, the system works under

co-manipulation in a frame-based or frameless setup. To perform the image-to-patient registration,

it offers the possibility of coupling it with a precise optical distance sensor. Recent studies report

an application accuracy of around 4 mm, [28], using the ROSA in a real clinical scenario. This

robot is shown in figure 2.12b.

• Neuromate: The Neuromate works in similar fashion as ROSA ONE. It can also be used in a

frame-based or frameless setup and performs the image-to-patient registration using ultrasonic

technology. A set of ultrasonic receivers is attached to the patient’s skull while the emitter is

mounted on the robot’s arm. Different from the previous system, this is a tele-manipulated robot.

A phantom based study performed with this, reported an application accuracy of 1.29 mm, [29].

This robot is shown in figure 2.12a.

• NeuroArm: This is composed by two seven degree of freedom robotic arms, a system controller

and a set of haptic devices. A huge difference between this and the remaining robots is that the

NeuroArm is fully MRI compatible, meaning that it can operate inside an MRI scanner. Thus, it

allows a real-time update of the brain’s position.
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2.4 Image Modalities

2.4.1 Ultrasound Imaging

To start with there is the ultrasound imaging. An ultrasound probe is composed of piezoelectric

crystals which deform when a voltage is applied. This effect can be used to generate a vibration which

in turn produces a sound wave. Conversely, when hit with a sound wave, they undergo a mechanical

tension which will deform them, generating a voltage.

When a sound wave is emitted it travels with a speed that is imposed by the physical medium. From

there, a series of mechanisms will cause the wave attenuation, being that, the most important one in

terms of image formation is the reflection. Every time the sound wave crosses the border between two

media with different acoustic impedance, a portion of the energy that it carries is absorbed by the new

medium and the remaining is reflected. Moreover, the greater the impedance variation, the more the

energy that is reflected, equation 2.2.

αR =

(
Z2 − Z1

Z2 + Z1

)2

(2.2)

In this, αR is the reflection coefficient, and Z1 and Z2 are the acoustic impedance of the two media.

To create an ultrasound image, a voltage pulse is initially applied to the piezoelectric crystals. The

ultrasound wave emitted will be reflected in every media interface and the reflected waves will hit the

piezoelectric crystals, generating in turn a voltage. By acquiring this, it is possible to map the space that

the ultrasound wave travelled. This process is shown in figure 2.13.

Figure 2.13: A-mode scan in ophthalmic ultrasound diagnostic. Peaks correspond to eyelid (L), cornea
(C), anterior (AL), and posterior lens (PL) surfaces and retina (R). (Adapted from [30])

To estimate the depth through a temporal measurement, the speed of sound assumed by most of

the ultrasound systems is the mean value for soft tissues, i.e, 1540 m/s. [31]

The first ultrasound probes used only one piezoelectric element. These provided a one-dimensional

measurement like the one in figure 2.13 and this technique is called A-mode ultrasound. To build a 2D

image, an array of piezoelectric elements is used. And the image is built from a set of A-mode signals.

This is called B-mode ultrasound.
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Figure 2.14: B-mode ultrasound. (From [4])

2.4.2 Computed Tomography

The basic principle behind the computed tomography imaging is simple. An X-ray beam is emitted,

with an intensity I0, while a radiation detector is placed on the other side of the patient so that it measures

the attenuated radiation I. If the patient’s body is composed of n regions with different attenuation

coefficients λi and lengths li, the attenuated beam intensity can be calculated through 2.3.

I = I0 · e−
∑n

i=1 λili (2.3)

Building the image consists in determining the value of each λi and li. With a single transmission

measurement, too many unknowns exist and a solution can not be found. However, if several measure-

ments are taken with different orientations, it becomes possible to solve the set of resulting equations,

employing a suitable algorithm, [32], and map the interior of the patient’s body. Figure 2.15, shows a

very clear schematic representation of how this process works.

(a) (b)

Figure 2.15: Image formation. Views evaluated at 45 degrees steps over the object (a). Views evaluated
at 22.5 degrees steps over the object (b). (Adapted from [33])

To build the CT volume, a set of these images is acquired, in different axial planes, and stacked up.

Finally, the attenuation coefficients are normalized through the Hounsfield Units (HU). This is accom-

plished through equation 2.4.
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HU =
λ− λwater
λwater − λair

· 1000 (2.4)

Where λwater and λair are respectively the attenuation coefficients of the water and air. The HU

values for human body range from -1000 to 3000.

2.5 Proposed Project

Figure 2.16: Surgical Procedure Stages.

The project presented in this thesis proposes a robot-assisted neuronavigation system in a shared

control fashion which disregards the use of any additional 3D localization technology in the surgical

room. In order to provide a better understanding, let the neurosurgical procedure be divided into four

stages, figure 2.16.

The first one is the preoperative stage. In this, the doctor uses the MRI and CT images to deter-

mine the target points and to plan the best trajectory. This stage remains unchanged in the proposed

procedure.

Secondly, there is the image-to-patient registration. Here several differences are proposed. The

proposed method falls into the surface registration category. However, by employing the intraoperative

ultrasound technology, it overcomes the problem of the skin mobility. Moreover, the ultrasound trans-

ducer will be attached to the robot flange and the robot will be manually guided during the scanning.

Thereby, in this stage the robot will be used as a tracker, so that the position of the transducer is known

in every instant.

Once the registration is accomplished, the target point and the desired trajectory are transformed

to the physical space coordinates and uploaded to the robot controller. The surgeon will exchange

the robot tool and guide it to the desired position. In this stage, however, the robot will operate in an

impedance control mode, actively correcting the surgeon’s action. Besides this, the surgeon can still

receive feedback from a screen, where the movement of the tool relative to the patient can be followed

in the image space.

Finally, once the robot is correctly positioned, it will constrain every degree of freedom forcing the

needle to move only in depth along the desired trajectory, similarly to what was done with the articulating

arm.
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It is relevant to refer that the use of the aforementioned technologies and procedures comes up as

a way to perform the neurosurgical procedure in a more accurate, easy and safe manner. To end with,

the work developed in this thesis focuses in evaluating the system’s performance in the second and third

stages execution.
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Chapter 3

Materials and Methodology

3.1 Tracking

3.1.1 KUKA LBR Med

The LBR Med is classified as a lightweight robot and is a jointed-arm robot with 7 axes. The robot

is eqquiped with a set of sensors that provide information for the robot control and that are also used

for the protective functions. Therefore, every axis contains a range sensor, a torque sensor and a

temperature sensor. It is important to refer that the employment of a torque sensor in each joint allows

the implementation of a compliant robot behavior, enabling the LBR Med to react very quickly to external

forces and makes it particularly suitable for interaction with humans.

Sunrise Workbench

Figure 3.1: Sunrise Workbench Project Organization.

The Sunrise OS is the operative system designed by KUKA to interact with the robot. The robot can

be programmed through the Sunrise Workbench application using the Java language.

A regular project in Sunrise Workbench is organized as figure 3.1 shows.

Where:
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• src: The source code folder that contains every java class developed by the user to perform the

project specific tasks.

• Libraries: The libraries folder contains both the Java Runtime Environment (JRE) library which

allows the developer to interact with the hardware components, the KUKA Java library which con-

tains the Java classes to manipulate the robot, and the user libraries which provide functionality to

each specific project.

• IOConfiguration: The IOConfiguration allows the developer to interact with external devices

through a set of input and output signals provided by the robot controller itself.

• Safety Configuration: The Safety Configuration makes possible to use the safety capabilities

implemented in LBR Med.

• Station Setup: The Station Setup is a configuration file that defines the robot and the controller

used in the project.

Path Planning and Robot Control

Figure 3.2: Motion and Control Laws. (From [34])

Figure 3.2 shows the robot trajectories and control modes available to command the robot.

On one hand, the RobotMotion interface defines the trajectories typically used in industrial robots,

such as, linear motion (LIN), point to point motion (PTP), spline motion (SLP) and circular motion (CIRC).

These allow the user to define positions, velocities, accelerations and jerk profiles.

The IServoMotion interface on the other hand allows the user to change between motions in real

time, correcting its trajectories based on external perturbations. However, this will not be used in the
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context of this work.

Also, there is the control modes available in IMotionControlMode. This interface is implemented by

the ImpedanceMotionControlMode and the PositionControlMode. When using the impedance control

mode, the robot reacts compliantly to the external forces applied based on the set impedance parame-

ters. On the other hand, in position control mode, the robot sets each joint stiffness to its maximum and

follows the trajectory as close as possible. A detailed description of these control modes is out of the

scope of this project.

Finally, it is important to mention that a control mode was programmed which is a particular case of

the impedance control mode. This will be called the manual guidance and it is an impedance control

mode with zero stiffness.

Communication

Finally, besides positioning the tools, the robot must communicate with the external devices, sending

its position and orientation.

The OpenIGTLink comunication protocol was implemented in Java, [4] and a brief description of this

communication protocol can be found in section 3.3.1.

3.1.2 Polaris Spectra

The robot as a tracking device has the limitation of only being able to track one object at a time. This is

not be a significant problem to perform the surgical procedure, however, to perform the lab experiments,

section 3.5, one will need to track more than one object at the same time. Therefore, the Polaris Spectra

will be used to perform the calibration steps, to perform several measurements used in the accuracy

evaluation and to validate the robot positioning.

The Polaris Spectra, henceforth designated by Polaris, is an optical system developed by Northern

Digital (NDI). It can be seen in figure 3.3.

Figure 3.3: NDI Polaris Spectra.

The two cameras placed in the Polaris structure, are infrared light emitters which make possible

to locate any reflector in a given working volume. The NDI system provides several tools that can be

tracked, which are shown in figures 3.4 and 3.5.

The system uses the relative position between the tool markers to identify the tool and subsequently

determines its position and orientation. Thus, the system can track several tools at the same time as

long as their geometries are known and different from each other. The tools like the one in figure 3.4 will

be used to track important objects and will be called trackers from here on.
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Figure 3.4: Polaris Tool. Figure 3.5: Polaris Stylus.

Also, there is the stylus, figure 3.5. The position of its tip can be easily determined through pivoting,

section 3.5.5, and the stylus can be used to measure the position of static points or surfaces in space.

Finally, Wiles et al. [35] evaluated the Polaris Spectra system and reports a mean position error of

0.185 mm and a mean orientation error of 0.383º when tracking a passive rigid body.

3.2 Imaging

3.2.1 CT Scanner

The CT scanner used in this work was the Phillips Brilliance R 64. The scanned image is a volume

of 197 slices spaced by 1 mm. Furthermore, each slice has a field of view of 280 mm and consists in a

matrix of 512× 512 voxels. Therefore, size of each voxel, [CT sx,
CT sy,

CT sz], is:

CT sx = CT sy =
280

512
= 0.5469 mm/vx (3.1)

CT sz = 1 mm/vx (3.2)

3.2.2 Aloka ProSound

The device used to acquire ultrasound images was the ProSound 2, shown in figure 3.6, and the

linear transducer UST-586-5, shown in fiugre 3.7, both developed by Hitachi Aloka. These acquire b-

mode ultrasound images, within a frequency range of 3.75 to 7.5 MHz and a scanning width of 72mm.

Several other parameters are configurable in the ProSound 2 such as the acoustic power, the B-gain

and the image depth. Setting these parameters correctly was a concern during this work and the way

they were set is explained with more detail in sections 4.1.2 and 4.2.3, where the ultrasound imaging is

approached.

To establish the communication between the ultrasound device and the main workstation the frame

grabber DFG/USB2propcb, which can be seen in figure 3.8, was chosen. This is one of the preconfigured

frame grabbers in the PLUS Library, section 3.3.2, and has a maximum frame rate of 25 frames per

second with a maximum resolution of 768× 576 pixels.
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Figure 3.6: Aloka ProSound 2. Figure 3.7: Aloka UST-586-5.

Figure 3.8: Frame Grabber.

3.3 Tracking and Imaging Fusion

3.3.1 OpenIGTLink

The OpentIGTLink protocol was developed by Tokuda et al. [36], and it is an open-source network

communication protocol specifically designed for image-guided interventions.

A standard OpenIGTLink message is composed by and header of 58 bytes and the message body

of variable length. The header is, in turn, divided into 6 sections: the version of the protocol used, the

type of the message, the device name, the device’s time stamp, the message body size and a cyclic

redundancy check, CRC64.

On the other hand, the message body is specific for each message type. The most important mes-

sage types in the context of this work were the transform messages and the image messages. The

protocol also allows to communicate the device status and capability and, by means of a query mech-

anism, allows each device to request or command the stop of a given message sending.

3.3.2 PLUS Toolkit

The Public Software Library for Ultrasound, PLUS toolkit, is an open source project designed by

Lasso et al. [37] to integrate the components needed in an image-guided intervention. These can be

imaging devices, tracking devices, data processing algorithms and visualization software. An example

of the pipeline used by the PLUS toolkit is shown in figure 3.9.

The PLUS toolkit was chosen since it is prepared to work with the devices available, such as the

Polaris and the frame grabber. In its turn, the robot was configured as an OpenIGTLink compatible

device [37]. PLUS also provides a library with several important applications.
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Figure 3.9: PLUS Pipeline Example. (From [37])

The first one is the Virtual Mixer. When using different devices, data will be acquired in different time

stamps and for that reason it has to be resampled so that it can be combined together in a coherent

sampling time. The data fusion is performed by the Virtual Mixer. Furthermore, to successfully combine

the data, all the devices must be synchronized in time, so that every device’s time stamp correspond.

This is accomplished through temporal calibration, which is explained in detail in section 4.2.1, and is

also performed by another PLUS application.

The Capture Device, was used to save the output of the Virtual Mixer throughout the experiments

and generate a MHA file with the interesting data, so it could be easily used in Matlab.

PLUS also provides a live streaming output through an OpenIGTLink connection. The 3D Slicer,

section 3.3.3, was used as a visualization tool, connected to the PLUS output stream.

Finally, PLUS offers a ultrasound imaging simulator, Bartha et al. [38], which can be used as a

PLUS device and that was used to make preliminary tests to the registration algorithms. This simulator

computes the scanlines using a simple physics model which includes attenuation, absorption, surface

reflection and speckle.

3.3.3 3D Slicer

The 3D Slicer, originally developed by Pieper, Halle, and Hikinis [39], is an open-source software

platform for medical imaging processing and visualization.

This software is composed by a group of modules which can perform specific tasks like filtering,

segmenting, applying transformations or even choosing visualization parameters. It also allows the user

to program new modules to join functionalities and automate processes.

A specific set of modules in 3D Slicer, which comes in SlicerIGT package, are the ones that allow it

to command and communicate with a PLUS server through an OpenIGTLink connection.

Although the said wide range of applications, programming new modules is not easy due to the poor

documentation available, and the use of each module in separate does not allow user-developed algo-

rithms to be implemented. For that reason, in this work, the 3D Slicer will be used merely to command

the PLUS and to visualize the data during the experiments. It will also be used to visualize the CT

images and, sporadically, whenever there is no need to automate a task, one will take advantage of 3D
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Slicer capabilities.

3.3.4 Setup

Figure 3.10: Devices setup.

Figure 3.10 shows how every piece of software and hardware described throughout this section is

combined together in an experiment. As a summary of what have been explained, important data comes

from the robot and the Polaris which are used as trackers to measure poses in space, and from the

Ultrasound which sends images through the frame grabber. A PLUS server is used to synchronize all this

information and the 3D Slicer is used to command the PLUS and visualize the data. Finally, PLUS saves

the important data in a MHA file which is then used by the Matlab where the self-developed algorithms

will run. The main workstation used in this work is a computer with an Intel i5-5200U processor running

at 2.20 MHz using 6 GB of RAM.

3.4 Phantom

The main study object in this work is an anthropomorphic phantom based on the human cranium.

It was designed using a CAD software and built using the three-dimensional (3D) printer Stratasys

Dimension R in acrylonitrile butadiene styrene (ABS). The advantage of using this material is both that

it makes the 3D printing easy while it is also easily detected in both US and CT image modalities.

Its dimensions are very similar to the average human cranium: 305 mm height, 178 mm width and

203 mm length. Figures in 3.11 show the front and side views of the phantom, respectively.

Inside the phantom, a group of spheres were placed. These will be used as targets, simulating points

and trajectories. Figures in 3.12 show these spheres geometry.

Figure 3.12b also shows what will be referred to as the target position and orientation, pTarget and

vTarget, relative to the target sphere itself.

Finally figure 3.13 shows the top view of the phantom with the targets spheres placed. These are

numbered from 1 to 10 and this numbering will be used throughout this document to indicate each target.
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(a) (b)

Figure 3.11: Phantom front view in (a). Side view in (b). (From [1])

(a) Sphere geometry. (From [24]) (b) Sphere Cut. (Adapted from [24])

Figure 3.12: Target sphere.

Figure 3.13: Phantom top view with numbered targets. (Adapted from [1])

3.5 Methodology

3.5.1 Reference Frames

To start with, it is important to introduce the principal frames of reference. Figure 3.14 shows the

main frames of reference present in physical space. These are the Polaris, the robot Base and the robot
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Figure 3.14: Frames of reference in physical space.

Flange reference frames. On the other hand, figure 3.15 shows the frames of reference associated with

the Polaris tools.

Figure 3.15: Polaris tools reference frames.

Regarding the images frames of reference, figures in 3.17 show the frame of reference of the CT

image space while figure 3.16 show the frame of reference of the ultrasound image.

Finally, there is also the needle reference frame which is shown ahead in this section in figure 3.22.

3.5.2 Targets

The targets, figure 3.13, play an important role since it is through them, that the errors will be calcu-

lated. The position and orientation of the targets in the CT space, pCTTarget and vCTTarget, were determined

manually using the 3D Slicer segmentation capabilities. Two points were segmented in Slicer: the bot-
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Figure 3.16: Ultrasound image reference frame.

(a) Axial Plane (b) Sagittal Plane

Figure 3.17: CT reference frame.

tom of the sphere and a point along the sphere hole. These can be seen in figure 3.18,

Figure 3.18: Points segmented in Slicer. (Adapted from [24])

The position and orientation of the target were then calculated through 3.3 and 3.4.

pCTTarget = p1 (3.3)

vCTTarget =
p2 − p1
‖p2 − p1‖

(3.4)

On the other hand, the position of each target was determined in the physical space using the stylus.

The stylus tip was inserted inside each target sphere, as shown in figure 3.19, and its position with

reference to the base of the robot was calculated, equation 3.5.
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Figure 3.19: Targets position acquisition

pBaseTarget = TBasePolaris · TPolarisStylus · p
Stylus
T ip (3.5)

The orientations in physical space were estimated through the orientations measured in the CT scan.

A ground truth transformation between the CT and the base reference frames, T ′BaseCT , was determined

by registering the targets, equation 3.6, and the orientation of each target with reference to the base was

calculated by applying the aforementioned transformation to each orientation in CT scan, equation 3.7.

∑
i

∥∥pBaseTarget,i − T ′BaseCT · pCTTarget,i
∥∥ (3.6)

vBaseTarget = T ′BaseCT · vCTTarget (3.7)

3.5.3 Registration

It was stated that, in the context of this work, the registration is the process of estimating the co-

ordinate transformation between the image space and the physical space. Since the robot is the only

tracking device intended to be used in the surgical room, the aforementioned transformation is the trans-

formation between the CT and the robot base reference frames.

Point Clouds

There are three important point clouds to perform the registration experiment in the laboratory.

The first important point cloud is the one that results from the CT image segmentation. The CT seg-

mentation was performed in Matlab and the result was the set of points pCTPhantom defining the phantom

surface relative to the CT reference frame.

The second is the one that results from the ultrasound scanning. The surface of the phantom was

imaged using the ultrasound probe, as shown in figure 3.20. This was attached to the flange of the robot

which was controlled in manual guidance during the process. An algorithm was developed in Matlab to

segment the phantom surface in each ultrasound image. The position of each segmented pixel relative

to the ultrasound reference frame, pUltrasoundPhantom , was determined and subsequently transformed to the
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base reference frame, equation 3.8.

Figure 3.20: Ultrasound point cloud acquisition.

pBasePhantom = TBaseF lange · T
Flange
Ultrasound · p

Ultrasound
Phantom (3.8)

Figure 3.21: Ground truth point cloud acquisition.

Finally, there is the ground truth point cloud. This point cloud was acquired with the Polaris stylus,

by sliding its tip over the phantom surface, as shown in figure 3.21, and then transformed to the base

reference frame, equation 3.9. It will be used, as common reference, to perform a stepwise evaluation

of the error.

pBasePhantom = TBasePolaris · TPolarisStylus · p
Stylus
T ip (3.9)

Notice that both the point cloud acquired with the ultrasound and with the stylus are defined by the

set of points pBasePhantom, this means that these point clouds should define coincident surfaces. However,

due to several sources of inaccuracy, the two point clouds will not overlap perfectly. For that reason and

to distinguish these, through the remaining of this section, one will assume that the point cloud acquired
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by the ultrasound exists in a virtual reference frame, Base′, and thus is defined by the points pBase
′

Phantom.

Stepwise Error Evaluation

In order to assess how each source of inaccuracy affects the final result, the registration will be

performed in three steps. For each of those, there was calculated the target position errors, ep, and the

target orientation errors, ev, to assess the registration quality.

1. The first step consists in registering the CT and the ground truth point clouds. The transformation

matrix that results from this step is the TBaseCT and the error will be evaluated with equations 3.10

and 3.11.

ep =
∥∥pBaseTarget − TBaseCT · pCTTarget

∥∥ (3.10)

ev = cos−1
(
vBaseTarget · (TBaseCT · vCTTarget)

)
(3.11)

2. The second step consists in registering the ultrasound and the ground truth point clouds. If the

aforementioned sources of inaccuracy did not exist, the result of this registration would be the

identity matrix. However, as mentioned previously, this is not what happens in reality and thus, a

transformation matrix, TBase
′

Base , different from the identity results from this registration. The error for

this step will be evaluated through equations 3.12 and 3.13.

ep =
∥∥∥pBaseTarget − TBase

′

Base · pBaseTarget

∥∥∥ (3.12)

ev = cos−1
(
vBaseTarget · (TBase

′

Base · vBaseTarget)
)

(3.13)

3. Finally, the main step is to register the CT and the ultrasound point clouds. This will be evaluated

using the equations 3.14 and 3.15, where TBase
′

CT is the transformation that resulted from this step.

ep =
∥∥∥pBaseTarget − TBase

′

CT · pCTTarget
∥∥∥ (3.14)

ev = cos−1
(
vBaseTarget · (TBase

′

CT · vCTTarget)
)

(3.15)

Accuracy Determination

Since the registration quality is very sensitive to the ultrasound images acquisition, every step that

requires this acquisition was performed N times, using independent scans. The mean and the standard

deviation were calculated for each target error using equations 3.16 and 3.17, where the letter e is

representing both position and orientation errors.
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µe =
1

N

N∑
i=1

ei (3.16)

σe =
1

N

N∑
i=1

√
(ei − µe)2 (3.17)

Finally, the computational time was also computed for each algorithm intended to be used in the

surgical procedure, so to conclude whether or not its use is feasible.

3.5.4 Needle Positioning

A needle holder was built as figure 3.22 shows. It is a tool that can be attached to the robot flange

and that allows the needle to be pushed through, limiting its movement to a line in space, to simulate the

real procedure.

Figure 3.22: Needle holder.

The needle frame of reference, introduced in the beginning of this section, is attached to the holder

and it was determined so that the physical needle is along the Z axis. Also, its origin is placed in the

center of the hole in the outermost surface of the holder, as it can be seen in the figure.

Having said so, placing the needle means to command the robot to align the Z axis of the needle

frame of reference with the target orientation, figure 3.23. Since it is the doctor’s job to push the needle

forward through its path until it reaches the target, a distance, d, must be kept between the origin of

the needle reference frame and the target position, pBaseTarget. Figure 3.24 shows the robot positioning the

needle in the laboratory.

Finally, this can be summed up to compute the matrix TBaseF lange that holds equations 3.18 and 3.19.

pBaseTarget = TBaseF lange · T
Flange
Needle ·


0

0

d

1

 (3.18)
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Figure 3.23: Reference frames in needle placement.

Figure 3.24: Needle placement in the laboratory.

vBaseTarget = TBaseF lange · T
Flange
Needle ·


0

0

−1

0

 (3.19)

Stepwise Error Evaluation

Just like in the previous section, the error evaluation was performed in two steps:

1. In the first step, the robot was commanded to the positions acquired by the stylus, in this, no

information from the CT space will be used. In this step the left side of equations 3.18 and 3.19 is

given by 3.5 and 3.7, respectively.

2. In the second step, the robot was be commanded to the positions estimated through the registra-

tion between CT and ultrasound point clouds. In this step pBaseTarget and vBaseTarget, of equations 3.18

and 3.19, are substituted by pBase
′

Target and vBase
′

Target and are given by:

pBase
′

Target = TBase
′

CT · pCTTarget (3.20)
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vBase
′

Target = TBase
′

CT · vCTTarget (3.21)

It is important to refer that throughout these experiments, the robot was commanded using the point

to point (PTP) instructions, different than what happens in a real surgical environment where the robot

is guided by the doctor in an impedance control regime.

Finally, a tracker was attached to the needle holder and the error was calculated in the Polaris refer-

ence frame for both the described steps. It was then evaluated through the equations 3.22 and 3.23.

ep =

∥∥∥∥∥∥∥∥p
Polaris
Target − TPolarisTracker · TTrackerNeedle ·


0

0

d

1



∥∥∥∥∥∥∥∥ (3.22)

ev = cos−1

vPolarisTarget ·

TPolarisTracker · TTrackerNeedle ·


0

0

−1

0




 (3.23)

3.5.5 Calibrations

Up to now, several transformation matrices were mentioned. Some of those are given while others

must be calculated through calibration.

Tip to Stylus

To start with, there is the position of the stylus tip relative to the stylus reference frame. This is

calculated through pivoting, which consists in rotating the stylus around the tip, describing a conic shape.

Also, the tip position must be kept still throughout the procedure. Then, the NDI software computes

automatically the stylus tip position. The estimation is accomplished by optimizing the cost function in

equation 3.24, where p0 is the fixed position of the stylus tip.

∑
i

∥∥∥p0 − TPolarisStylus,i · p
Stylus
T ip

∥∥∥ (3.24)

Ultrasound to Flange

The transformation between the ultrasound frame of reference and the flange of the robot. This is

the transformation that allows the ultrasound image to be positioned in space. A huge effort was put into

accurately determine this transformation since correctly positioning the images has an enormous impact

in ultrasound volume reconstruction and registration. The method used was the calibration with a stylus,

[40]. However, some improvements were made so to make it automatic and more accurate. The method

is explained in detail in section 4.2.3. Following the recommendations on [40] the calibration procedure

was performed N times and its quality assessment was made by evaluating its accuracy and precision.
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The accuracy was calculated through the Point Reconstruction Accuracy, PRA. This is in turn com-

puted by imaging a group of J points, of which the positions are known. The known positions are then

compared with the estimated ones through equation 3.25.

PRA =
1

N

N∑
i=1

 1

J

J∑
j=1

∥∥∥pBasej − TBaseF lange T
Flange
Ultrasound,i p

Ultrasound
j

∥∥∥
 (3.25)

On the other hand, the precision is calculated through the Calibration Reproducibility, CR. This is

obtained by transforming several pixels in the image with the estimated transformations and computing

how near they are across the N trials. The standard way to do it is by using the four corners and the

center of the image. Equation 3.26 shows how CR is calculated for each point.

CR =
1

N

N∑
i=1

∥∥∥pFlange − TFlangeUltrasound,i p
Ultrasound

∥∥∥ (3.26)

Where pFlange is calculated with equation 3.27. The results for this calibration can be seen in section

5.1.

pFlange =
1

N

N∑
i=1

TFlangeUltrasound,i p
Ultrasound (3.27)

Polaris to Robot Base

The transformation between the robot base and the Polaris reference frame. This transformation is

needed to perform every experiment that uses both the robot and the Polaris. To compute this transfor-

mation matrix the robot was commanded to several different positions while its flange was tracked by

the Polaris. The transformation was estimated through a point-pair registration. A detailed description

of the procedure can be found in section 4.2.2.

Needle to Flange/Tracker

Finally, the transformation between the needle frame of reference and the flange or tracker frames

of reference. This transformations are responsible for allowing the robot to correctly place the needle in

space while the Polaris measurements can be used to compute the placement error. A simple method

was developed to accomplish this calibration and it is described in detail in section 4.2.4.
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Chapter 4

Implementation and Algorithms

4.1 Segmentation

In this section, every image processing techniques used to segment the CT and ultrasound images

will be described. It is important to mention that segmenting these images means to extract a point cloud

that defines the phantom outer surface. To achieve this, firstly the pixels/voxels that define this surface

must be found and secondly, the position of these must be determined in the desired reference frame.

4.1.1 CT Segmentation

Starting with the CT volume, this has the characteristics shown in section 3.2.1. Also, figures 4.1a

to 4.1c show three particular slices of the phantom CT volume in the axial, coronal and sagittal planes.

The CT segmentation was performed applying 2D image processing techniques to each individual axial

slice.

(a) Axial Plane (b) Coronal Plane (c) Sagittal Plane

Figure 4.1: Phantom CT Planes.

The phantom is defined by the voxels with the higher intensities and thus the first step was the

application of a threshold. Figures in 4.2 show the result of this procedure. To favour the visualization,

the binary images shown in this report will have their foreground and background colours inverted, i.e.,

the background will be represented by the white pixels and the foreground will be represented by the
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black pixels.

(a) Axial Plane (b) Coronal Plane (c) Sagittal Plane

Figure 4.2: Threshold application result.

The next step was to find the voxels which define the phantom contour. A searching strategy was

implemented to keep only the black voxels which define the border of the phantom in each axial slice.

For each slice the rows and columns were searched, and, in each row and column, both directions were

covered, i.e., right to left and left to right for rows, and top to bottom and bottom to top for columns,

adding up to a total of four loops. Having said so, the first black voxel found in each line or column

in each direction was considered to be part of the outer surface. Figures in 4.3 show the output of

this procedure, while figure 4.4 show the axial slice where the segmented surface overlaps the original

image.

(a) Axial Plane (b) Coronal Plane

(c) Sagittal Plane

Figure 4.3: Surface extraction result.

The position of each segmented voxel was then computed relative to the CT reference frame, by
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Figure 4.4: Segmented surface and original image overlapped.

converting it to millimeters, as shown in equation 4.1.

pCTPhantom =


CT sx 0 0 0

0 CT sy 0 0

0 0 CT sz 0

0 0 0 1

 ·

CT vxi

CT vxj

CT vxk

1

 (4.1)

After applying this procedure, the resulting point cloud was too dense, which caused every operation

on the point cloud to take too long to process. For that reason a downsampling step was applied. The

method used for this step was the grid average. In this a three dimensional grid is defined with a given

grid step and the points within the same box are merged to a single point. This is done preserving the

point cloud shape. The definition of this grid step was specific for each registration step, however figure

4.5 shows the CT point cloud in which, for visualization purposes, the grid step was set to 3 mm.

Figure 4.5: Segmented point cloud.

37



4.1.2 Ultrasound Segmentation

Setup

The first important machine parameter is the image depth. This were set to the minimum allowed by

the ProSound, i.e., ≈ 47 mm, since the surface of the phantom will always appear in the upper pixels.

Also, by choosing the minimum depth, the image resolution will be the highest. The size of each pixel

was directly given by the machine and it was:

USsx =US sy = 0.1168mm/px (4.2)

The images were further clipped to a 200× 465 pixels region of interest, as shown in figure 4.6.

Figure 4.6: Clipped ultrasound frame.

Also, since one is working with the upper part of the image, the frequency was chosen to be the

highest, i.e., 7.5 MHz. The acoustic power was set to 60% and the B-gain was set to 55. These were

tuned by hand to reduce the image noise with no degradation of the imaged phantom surface.

Image Segmentation

A regular ultrasound image of the phantom surface can be seen in figure 4.7.

Figure 4.7: Phantom surface ultrasound image.

The first step in the segmentation was to apply a Gaussian filter to smooth the imaged surface. The

output can be seen in figure 4.8.
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Figure 4.8: Ultrasound image filtered.

After the filtering, a threshold was applied. Like in the previous section, for visualization purposes,

the phantom surface (image foreground) is represented by the black pixels while the image background

is represented by white pixels. The result of the threshold application can be seen in figure 4.9. In this,

it is possible to verify that some artifacts appear as black pixels too due to some unfiltered noise.

Figure 4.9: Ultrasound binary image.

The elimination of these artifacts assures that the resulting point cloud will not contain outliers. The

solution was to determine the connected components in the binary image and keep only the largest one.

In its turn, finding the connected components can be divided in three steps:

1. Search for the next unlabeled pixel , ρ, i.e., a segmented pixel that does not belong to any con-

nected component.

2. Determine every segmented pixel that connects to ρ using a flood-fill algorithm.

3. Repeat steps 1 and 2 until there is no more unlabeled pixels.

The result of applying this elimination can be seen in figure 4.10.

Figure 4.10: Clean ultrasound binary image. Figure 4.11: Extracted surface.

Finally, the outer surface was extracted by keeping only the highest pixel of every column. The result

can be seen in figure 4.11 and in figure 4.12 where the segmented surface overlaps the original image.

The position of each segmented pixel was converted to millimeters as shown in equation 4.3 and

finally, their position relative to the robot base reference frame was calculated through equation 3.8.
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Figure 4.12: Extracted surface and original image overlapped.

pUltrasoundPhantom =


USsx 0 0 0

0 USsy 0 0

0 0 0 0

0 0 0 1

 ·

USpxi
USpxj

0

1

 (4.3)

Also, just like in the previous section, the resulting point cloud had to be downsampled. This was

performed in the same way as for the CT cloud. Figure 4.13 shows the resulting point cloud of the

phantom forehead where, for visualization purposes, the grid step was set to 1 mm.

Figure 4.13: Ultrasound point cloud.
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4.2 Calibration

4.2.1 Temporal Calibration

It was referred in section 3.3.2, that the data from the different devices is merged by the Virtual

Mixer. However, the internal time stamp is specific for each device, which may cause a time shift to

appear between the messages from different devices. For instance, a position sent from the robot could

be associated with the wrong position sent by the Polaris which would result in inconsistent tracking.

Such time shift can be corrected in PLUS by applying a delay to each individual device messages.

To compute this delay Moult et al. [41] proposes a temporal calibration method which is embedded

in PLUS. The procedure consists in imaging the bottom of a water tank while performing a sinusoidal

movement, in the direction perpendicular to the bottom of the tank, with the ultrasound probe. The

bottom of the tank is automatically segmented by the PLUS using a RANSAC algorithm, [41], and

its position in the images will consequently describe a sine wave as well. Figures in 4.14 show the

segmented bottom of the tank.

(a) (b)

Figure 4.14: Segmented bottom of the tank. In (a) the probe was away from the bottom of the tank while
in (b) the probe was closer to the bottom of the tank. (Adapted from [41])

Having these signals, i.e., the probe movement and the bottom tank position in the ultrasound image,

the time shift can be determined by aligning the two. Figure 4.15 shows the two sine waves before the

calibration and 4.16 shows the two sine waves after the calibration. In both, the fixed signal corresponds

to the position of the bottom of the tank in the image while the moving signal corresponds to the position

of the ultrasound probe, i.e., the tracking signal. The correction is done by shifting the moving signal to

match the fixed signal.

Since there was the need to synchronize the messages from three devices, the adopted method was

to define the ultrasound time delay to be zero and perform the calibration twice. One calibration was

performed with the tracking signal coming from the robot and another with the tracking signal coming

from the Polaris. Thus, a time delay was computed for the robot messages and a different one was

computed for the Polaris messages.
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Figure 4.15: Sines before calibration.

Figure 4.16: Sines after calibration.

4.2.2 Robot-Polaris Calibration

Tovar-Arriaga et al. [42] uses a simple method to calibrate a robot with a navigation system. This

method consists in commanding the robot to move its flange, while this is being tracked by the navigation

system. Resulting from this procedure, there is the set of flange positions with reference to the robot

base, and the set of flange positions with reference to the navigation system. Finally, a least-squares

optimization can be used to estimate the coordinate transformation between the base and the navigation

system reference frames. Figure 4.17 shows the setup of this calibration.

Figure 4.17: Polaris to Base Calibration.

This calibration can be performed in two steps:
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1. Determining pTrackerF lange through pivoting. In this step the robot was commanded to keep the flange

position still while changing its orientation. The flange orientation was varied from around -70◦ to

+70◦ in both x, y and z directions, and then the NDI software computed the position of the flange

reference frame origin relative to the tracker reference frame.

2. Determining TBasePolaris through a point-pair registration. The robot was commanded to move its

flange to 150 different positions. Also, to avoid synchronization errors, at every position the robot

stopped for 2 seconds. A Matlab algorithm was developed to record every position read by the

robot and by the polaris, and the registration problem was formulated, equation 4.4, and solved

through a least-squares minimization.

∑
i

∥∥∥∥∥∥∥∥∥T
Base
F lange,i ·


0

0

0

1

− T
Base
Polaris · TPolarisTracker,i · pTrackerF lange

∥∥∥∥∥∥∥∥∥ (4.4)

4.2.3 Ultrasound Spatial Calibration

The ultrasound spatial calibration is the process of estimating the coordinate transformation between

the ultrasound image and the probe position sensor. In the case of this work this is the transformation

between the ultrasound and the flange reference frames.

Several methods were studied and attempted to perform the ultrasound spatial calibration. The wall

phantom calibration method, [40], was initially chosen due to its simplicity, however, the tests performed

shown poor accuracy, and thus, one had no other option but to abandon this method. The most logical

option to choose next would be the Cambridge phantom. This was proposed by Prager et al. [43] so to

increase the wall phantom accuracy by solving its drawbacks. However, the apparatus and the complex

scanning pattern required, [43], made this method unpractical to perform with the robot. Finally, one

realized that keeping the probe and the robot still was the most effortless way to perform the calibration.

The stylus method was chosen based on this condition and on the material available.

In the traditional method, the stylus is manually aligned with the image, the image is captured and

the stylus tip is manually segmented. The procedure is repeated several times changing the image

region where the stylus tip appear so to constrain the largest image area possible. The transformation

between the image and the probe sensor is estimated through a least squares minimization of 4.5,

where pUltrasoundTip corresponds to each segmented pixel and TSensorUltrasound is the estimated transformation.

Improvements to this procedure were done, for example, by automatically segmenting the images, [44].

N∑
i=1

∥∥pSensorT ip,i − TSensorUltrasoundp
Ultrasound
Tip,i

∥∥ (4.5)

Hsu et al. [44] reviews the existing calibration techniques that use a stylus and reports a high preci-

sion and good accuracy. Also, he finds the misalignment between the image and the stylus, the most

significant source of error.
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In this work, one attempted to reduce the error introduced by the aforementioned misalignment so to

increase the accuracy of the method. The idea behind the attempted solution is to keep the probe still

and slowly move the stylus in the direction perpendicular to the scan plane while keeping it parallel to

this plane, as figure 4.18 shows.

Figure 4.18: Stylus parallel to the scan plane.

By moving the stylus in and out of the scan plane it is possible to assure that at some point it will be

perfectly aligned with the plane. It is, then, needed to find a criteria to choose the frame that captured

the best alignment.

Figure 4.19 shows, in a simplified manner, what happens when the stylus is moved the described

way. Also, in this figure, the blue arrow represents the ultrasound wave emitted by the probe and the red

arrow represents the ultrasound wave after being reflected.

Figure 4.19: Stylus movement.

In both (a) and (c) the ultrasound wave does not hit the stylus in the perpendicular direction, causing

the reflected wave to leave the stylus surface with a certain angle relative to the scan plane. In (b)
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however, where the stylus is perfectly aligned with the scan plane, the ultrasound wave is reflected

parallel to the scan plane. For this reason, it is in (b) that the probe will receive the greater amount of the

reflected ultrasound wave causing the stylus to appear much brighter in this image than in the other two.

Thus, the total image intensity, obtained by summing the intensity of all the pixels, is a suitable criteria

to choose the image.

As in the traditional method, the described procedure was repeated several times, changing the

image region where the stylus tip appears, so to constrain a large area of the image. Every image was

recorded and a regular intensity pattern is shown in figure 4.20. In this, the stylus was passed trough the

scan plane in six different positions. The consecutive peaks with a similar intensity are justified by the

fact that the stylus was passed more than once in the same position to assure that suitable alignment

was captured.

Figure 4.20: Images total intensity.

To find the highest peak captured in each position, the data in figure was filtered by means of a

moving average and the resulting signal was divided in groups using an intensity threshold. Briefly, the

images were grouped in sets with a filtered intensity above such threshold and the images bellow the

threshold were discarded. Finally, the image with the highest total intensity was picked from each group.

This is shown in figures 4.21 and 4.22.

Having explained how the image selection was performed, one should now assess the image pro-

cessing techniques applied to segment the tip of the stylus. First of all, to get a cleaner image of the

stylus, the ProSound acoustic power was reduced to 30 %. Also, the region of interest selected was

400 × 465 pixels while every other machine parameter was kept equal to the ones in section 4.1.2. A

regular selected ultrasound frame can be seen in figure 4.23.

The process of finding the stylus tip in the image is divided into segmenting the stylus and then

extracting the tip position. Segmenting the stylus was similar to what is described in section 4.1.2,

i.e., the image was filtered with a gaussian filter, a threshold was applied and the largest connected

component was kept. Then, the tip was selected as the segmented pixel in the lowest row or as the

mean among the segmented pixels in the lowest row. Figure 4.24 shows the output of the described
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Figure 4.21: Image groups. Figure 4.22: Frames chosen.

Figure 4.23: Selected frame. Figure 4.24: Segmented tip.

procedure.

Finally, the coordinate transformation between the ultrasound image and the flange reference frames

can be estimated. The stylus tip position was converted to the flange reference frame, with equation 4.6.

pFlangeTip = TFlangeBase · TBasePolaris · TPolarisStylus · p
Stylus
T ip (4.6)

On the other hand, each segmented pixel was converted to millimeters as equation 4.7 shows.

pUltrasoundTip =


USsx 0 0 0

0 USsy 0 0

0 0 0 0

0 0 0 1




USpxTip,i
USpxTip,j

0

1

 (4.7)

Equation 4.5 can, now, be converted in 4.8. This is a typical point-pair registration problem, which

can be solved through a least squares minimization which will be assessed in detail in section 4.3.3.

∑
i

∥∥∥pFlangeTip,i − T
Flange
Ultrasoundp

Ultrasound
Tip,i

∥∥∥ (4.8)

Finally, figure 4.25 shows the calibration procedure being performed in the laboratory.
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Figure 4.25: Ultrasound calibration procedure.

4.2.4 Needle Calibration

The needle calibration consists in estimating the coordinate transformation between the needle frame

of reference and the robot flange or the needle tracker.

An interesting particularity about this frame is that neither the X nor the Y axis orientation are im-

portant and thus, it is only needed to find a way to accurately estimate the frame origin position and the

orientation of the Z axis.

Figure 4.26: Needle calibration.

The calibration was performed as shown in figure 4.26. A calibrating tool was built, allowing a Polaris

tracker to be mounted on one end, and with an hole on the other so to slide it along the needle. The tip,

highlighted in the figure, is placed in the center of such hole in the outermost surface of the tool and its
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position, pToolT ip , was determined using the stylus.

By sliding the tool along the physical needle, a set of points, collinear with the physical needle, was

acquired and an optimization problem was formulated. Note that, since the needle is not completely stiff,

it deflects during the process. Furthermore as the calibrating tool was built through 3D printing, a certain

slack existed between the tool hole and the needle. Thus, performing the calibration with a simple linear

regression would be inaccurate.

The points acquired with the calibrating tool can be transformed to the needle reference frame

through equation 4.9 or 4.10, whether one desires to estimate the transformation between the needle

and the tracker, or the transformation between the needle and the flange frames of reference.


xNeedle

yNeedle

zNeedle

1

 = T ′NeedleTracker · TTrackerPolaris · TPolarisTool · pToolT ip (4.9)


xNeedle

yNeedle

zNeedle

1

 = T ′NeedleF lange · T
Flange
Base · TBasePolaris · TPolarisTool · pToolT ip (4.10)

Since the points acquired are supposed to be placed along the Z axis, both xNeedle and yNeedle

should be equal to zero. Also, the transformations T ′NeedleTracker and T ′NeedleF lange constrain the Z axis but not

the frame origin. For that reason, these have only 4 important parameters: the rotation θx, the rotation

θy, the translation dx and the translation dy. Since the X and Y axes orientation is not important, the

rotation θz can be assumed to be zero. Also, the translation dz will be determined after the optimization

to fix the frame origin position. The cost function for such optimization problem can be built as shown in

equation 4.11. This was solved in Matlab using the Levenberg-Marquardt method.

J(θx, θy, dx, dy) =
∑
i

(
x2Needle,i(θx, θy, dx, dy) + y2Needle,i(θx, θy, dx, dy)

)
(4.11)

Note that equation 4.11 simply fits a line to the acquired data. This, in turn, is collinear to the Z axis.

The frame origin can finally be determined through a simple procedure. The sliding motion begins with

the tool tip touching the needle holder surface. So, after the optimization is concluded, the translation dz

is determined so that the origin is coincident with the first points acquired.
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4.3 Registration

As stated in section 2.2.3, the registration is the process of estimating the coordinate transformation

between two reference frames. These reference frames will be called fixed and moved such that the

estimated transformation is the one that transforms the coordinates in the moved reference frame to

coordinates in the fixed reference frame. The same way, when point clouds are used, these will also be

called fixed and moved such that the estimated transformation is the one that registers the moved point

cloud to the fixed point cloud.

Having said so, in this section, the registration algorithms used will be presented.

The most widely used algorithm to solve the point cloud registration problem is the Iterative Closest

Point (ICP), proposed by Besl and McKay [45], and improved throughout the years [46–48].

Different approaches to solve this problem also exist in the literature, for instance, [49, 50] present

registration algorithms based on the Kalman Filter and [51] developed a method based on the Gaussian

mixture model.

These methods have one issue in common. They are sensitive to the initial alignment between the

clouds. Thus, authors in [52–54] propose a coarse registration step to provide good initial conditions to

the aforementioned algorithms.

In this work two different approaches were attempted. The first approach consisted in performing an

initial coarse alignment using the Principal Component Analysis (PCA), [53, 54], followed by a fine reg-

istration step with the ICP algorithm. On the other hand, in the second approach, an iterative algorithm

was developed to register the clouds based on the local Gauss and mean curvatures.

In section 3.5, a methodology to evaluate how the error propagates is presented. This consists in

performing three registration steps, namely, the CT to ground truth, the ultrasound to ground truth and

the CT to ultrasound. Having said so, these three steps were accomplished in the following way:

1. In the first step, CT to ground truth, the CT point cloud will be the moved one and the ground

truth point cloud will be the fixed one. The moved point cloud will be initially transformed using the

transformation T ′BaseCT , calculated through the targets registration, section 3.5, to achieve a suitable

initial alignment. This is the transformation that best aligns the targets but not necessarily the one

that best aligns the point clouds. Then, the transformed moved point cloud will be registered to the

fixed point cloud using the ICP so to calculate the error on the targets when the clouds are best

aligned.

2. In the second step, ultrasound to ground truth, the ultrasound point cloud will be the moved point

cloud and, once again, the ground truth point cloud will be the fixed one. There is no need to apply

an initial transformation in this case because the clouds should be sufficiently well aligned in their

original positions. The registration will be performed solely by applying the ICP.

3. In the third and main step, CT to ultrasound, the CT point cloud will be the moved point cloud and

the ultrasound will be the fixed point cloud. To perform this step, the algorithms described in this

section will be used. This is the only step to be performed in a real application and only in this step
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will the performance associated to the algorithms be evaluated. The previous two steps are used

merely to assess which sources of error exist and how they influence the final result.

4.3.1 PCA and ICP

To start with, the principal components of each point cloud were calculated and then the coarse reg-

istration was estimated by aligning these. The output of such procedure is a coordinate transformation

which brings the moved point cloud to a position where it is coarsely aligned with the fixed point cloud.

Finally, the ICP was applied, having as input, the transformed moved point cloud and the fixed point

cloud.

PCA Coarse Registration

The Principal Component Analysis is a dimensionality reduction technique widely used in statistics.

It creates an hierarchical coordinate system that represents the variations in the data set.

A two-dimensional example is presented in figure 4.27, where it is possible to see a data set and its

principal components.

Figure 4.27: Principal Components in 2D.

The principal components of a data set can be computed through the eigenvalue decomposition of

its mean centered form covariance matrix. Consider the data set S, a point cloud of n points, of the form

4.12.

S =


s1

s2
...

sn

 =


x1 y1 z1

x2 y2 z2
...

...
...

xn yn zn

 (4.12)

The first step is to build the mean centered point cloud, B, obtained by subtracting the mean matrix,

S̄, to the original point cloud. The mean matrix is given by equation 4.13.

S̄ =


1

1
...

1

 · s̄ (4.13)
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Where s̄ is the centroid of S:

s̄ =
1

n

n∑
j=1

[xj yj zj ] (4.14)

The mean centered point cloud, B, can now computed as shown in equation 4.15.

B = S − S̄ (4.15)

The covariance matrix can be obtained with 4.16.

C = BT ·B (4.16)

This a 3× 3 matrix that can be decomposed into eigenvalues and eigenvectors, equation 4.17.

C = V ·D · V T (4.17)

Consider now a fixed point cloud, F , constituted by the points fi, and a moved point cloud, M ,

constituted by the points mi, of the form of 4.12. Also, each point fi is determined by applying a rigid

coordinate transformation to each point mi, equation 4.18. Let VF and VM be the principal components

matrices of the fixed and moved point clouds respectively.

fi = (R ·mT
i + t)T ∀ fi ∈ F , mi ∈M (4.18)

Therefore the principal components of the fixed point cloud will be the principal components of the

moved point cloud rotated by the matrix R, as shown in equation 4.19.

VF = R · VM (4.19)

The coordinate transformation that transforms M in F can be calculated following two simple steps.

The first is to compute the rotation matrix, R, which can be calculated through equation 4.20.

R = VF · V TM (4.20)

Finally, let f̄ and m̄ be the the centroids of the fixed and the moved point clouds. The translation

vector, t, is given by 4.21.

t = f̄T −R · m̄T (4.21)

ICP Fine Registration

The Iterative Closest Point is a method to register two point clouds using the geometric position

of their constituent points. This problem can be divided in two separate tasks which are: finding the

correspondence between the points, i.e., which point of the fixed point cloud corresponds to a given
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point of the moved point cloud, and compute the coordinate transformation that transforms each point in

the moved point cloud to its correspondent point in the fixed point cloud.

The ICP performs this two tasks in an iterative manner, which can be divided in three steps, that

repeat until a stopping criterion is met:

1. For each point of the moved point cloud, the correspondent point in the fixed point cloud is the

closest one.

2. Find the transformation that transforms each point of the moved point cloud to its correspondent

point in the fixed point cloud by means of a point-pair registration.

3. Apply the estimated transformation to the moved point cloud.

The Matlab implementation of the algorithm was used with the point to point minimization metric.

This was chosen since it provides better results with less iterations and processing time for the specific

case in study, [1].

Finally, the most suitable stopping criterion is the stagnation of the registration residue. This is given

by the mean euclidean distance between each moved point and its correspondent fixed point.

4.3.2 Curvature-Based Registration

Just like the ICP algorithm, the method proposed here will divide the registration problem in two

tasks, i.e., finding the correspondence between points and calculate the coordinate transformation that

transforms each point of the moved cloud to the correspondent point of the fixed cloud.

The description of each point by means of its Gaussian and mean curvatures will be used to, together

with the euclidean distance, decide the best correspondence between the points of both clouds. This

way, the final registration is expected to be more accurate than the one achieved using the ICP.

Gauss and Mean Curvatures

The Gaussian curvature, KG, and the mean curvature, KH , are the typical way to represent the

curvature of a surface. These are calculated through the principal curvatures, k1 and k2, which in turn,

are the maximum and the minimum normal curvatures of a surface at a given point.

Having said so, consider the surface S and the point V belonging to that surface, figure 4.28. The

principal curvatures of the surface S passing through V are associated with the curves C1 and C2 in the

normal directions e1 and e2. Furthermore, there is an infinite set of curves in S passing through V . By

definition the curvature is the reciprocal of the radius of the circle that best fits a given curve in a given

point. For example the curvature of the curve Cn can be calculated through the reciprocal of Rn. Finally,

the Euler curvature equation, shown in 4.22 relates the curvature of a generic curve passing through V

with its principal curvatures.

kn = k1cos
2(θ) + k2sin

2(θ) (4.22)
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Figure 4.28: Curvatures at point V. (From [33])

Where θ is the angle between the tangent direction tn and the direction e1, figure 4.29.

Figure 4.29: Curvature directions.

Having explained the mathematical meaning of surface curvatures in a point, one will now explain

how the these were estimated numerically for a point cloud. This estimation is divided into three main

steps, following the procedure in [55].

To start with, one must calculate the surface normal in every point P of a given point cloud, of the

form 4.23. To achieve this, the estimation of the tangent plane, [56], was performed.

P =


xP

yP

zP

 (4.23)

In [56] a method is proposed which consists in representing the tangent plane, Tp(P ), of P with a

center point O and a unit normal vector N . Also, a neighborhood of the point P is defined so to contain

the k nearest neighbours of such point and is represented by Nhbd(P ). Thus, the position of O is

calculated as the centroid of Nbhd(P ), and the N is calculated through a principal component analysis

of Nbhd(P ). Having said so, the covariance matrix of Nbhd(P ) was built as shown in equation 4.24.

CV =
∑

Q∈Nbhd(P )

(Q−O) · (Q−O)T (4.24)

The matrix CV was then decomposed in eigenvalues, λ1 > λ2 > λ3, and the respective eigenvectors,

ν1, ν2 and ν3. The first two eigenvectors, ν1 and ν2, are coplanar to Tp(P ) and N is parallel to ν3. To

assure that the normal vector in each point is coherently aligned with the others, pointing outside of the

point cloud, the centroid of the entire point cloud, P̄ , was computed. The normal vector was defined as

shown in 4.25.
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N =

 ν3 if (P − P̄ )T · ν3 ≥ 0

−ν3 if (P − P̄ )T · ν3 < 0
(4.25)

The second step was to estimate every curvature kin passing through P . Here one used the set of

pointsQi belonging to a neighborhood of P , different from the previousNbhd(P ). The new neighborhood

was defined as the set of points Qi, that hold equation 4.26 where d is an arbitrary small value.

‖Qi − P‖ < d (4.26)

Also, let N be defined by [nx, ny, nz] and let {P,X, Y,N} be a local coordinate system, figure 4.30,

such that, X and Y are orthogonal unit vectors and can be calculated through equations in 4.27.

φ = atan(ny, nx)

Y = [−sin(φ), cos(φ), 0]

X = Y ×N

(4.27)

Figure 4.30: Local coordinate system.

In this coordinate system, P is defined by [0, 0, 0] and Qi by [xi, yi, zi]. Also, Q−i represents the

projection of Qi in the pane XY and is defined by [xi, yi, 0]. On the other hand, Wi is the surface normal

in the point Qi and is defined in the local coordinate system by [wx,i, wy,i, wz,i].

Having said so, the problem of computing kin is given in 2D as shown in figure 4.31 where the the

curvature is calculated through 4.28.

Figure 4.31: 2D Curve.

kin =
sin(β)

‖P −Qi‖ sin(α)
(4.28)
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This, however, only holds for the case in which the the normal vectors N and Wi are coplanar,

which is rarely the case for 3D point clouds. Some approximations will then be made to transform our

3D problem in 2D. First of all, for every point Qi, in the neighborhood of P , zi is approximately zero.

Thus, one will assume that zi is indeed zero which reduces Qi to Q−i . The normal vector Wi is then

decomposed in two components, one parallel to N and other parallel to the vector ~PQ−i .

Wi, N || = wz,i (4.29)

W
i,

~
PQ−i ||

= wxy =
wx,i · xi + wy,i · yi√

x2i + y2i
(4.30)

This approximation is shown in figure 4.32 where W− is a reduction of W to 2 dimensions.

Figure 4.32: 2D Approximation.

Finally, one can write equation 4.28 as 4.31.

kin =
wxy,i√

x2i + y2i ·
√
w2
xy,i + w2

z,i

(4.31)

Which is obtained by making the substitutions of 4.32 to 4.35.

α = 90◦ → sin(α) = 1 (4.32)

sin(β) =
wxy,i
|W−|

(4.33)

∣∣W−∣∣ =
√
w2
xy,i + w2

z,i (4.34)

‖P −Qi‖ =
√
x2i + y2i (4.35)

The third step for estimating the principal curvatures was a least squares optimization with the Euler

curvature equation. One can write the Euler curvature equations as 4.36.

kin = k1 cos
2(θi + θ) + k2 sin

2(θi + θ) (4.36)
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Where the unknown parameters are θ, k1 and k2. By the definition employed, θ is the angle between

e1 and X, and θi is the angle between the vector ~PQ−i and X. To make it clear, figure 4.33 shows the

plane XY and how these angles are defined.

Figure 4.33: XY Plane.

Equation 4.36 can be written as a minimization for all the points, Qi, in the neighborhood of P as in

4.37.

min
k1,k2,θ

∑
i

[
k1 cos

2(θi + θ) + k2 sin
2(θi + θ)− kin

]2
(4.37)

Equation 4.37 can be decomposed as shown in 4.38 and thus the matrix form shown in 4.39 can be

written.

k1 cos
2(θi + θ) + k2 sin

2(θi + θ) = cos2(θi) · (k1 cos2(θ) + k2 sin
2(θ))

+2 cos(θi) sin(θi) · (k2 cos(θ)sin(θ)− k1 cos(θ)sin(θ))

+sin2(θi) · (k1 sin2(θ) + k2 cos
2(θ))

(4.38)

min
µ
‖A · u−B‖2 (4.39)

Where A, u and B are given by 4.40. On the other hand, C, D and E are given by 4.41 and result

from the minimization of 4.39.

Aw×3 =



cos2(θ1) 2cos(θ1)sin(θ1) sin2(θ1)
...

...
...

cos2(θi) 2cos(θi)sin(θi) sin2(θi)
...

...
...

cos2(θn) 2cos(θn)sin(θn) sin2(θn)


, u =


C

D

E

 , Bw×1 =



k1n
...

kin
...

kwn


(4.40)

C = k1 cos
2(θ) + k2 sin

2(θ)

D = (k2 − k1) · cos(θ)sin(θ)

E = k1 sin
2(θ) + k2 cos

2(θ)

(4.41)

Finally, one can build the matrix Θ. As shown in equation 4.42 the principal curvatures, k1 and k2
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are given by the eigenvalues of Θ while the principal curves direction, e1 and e2, are given in the local

coordinate system by the eigenvectors.

Θ =

C D

D E

 =

k1 cos2(θ) + k2 sin
2(θ) (k2 − k1) · cos(θ)sin(θ)

(k2 − k1) · cos(θ)sin(θ) k1 sin
2(θ) + k2 cos

2(θ)

 =

 cos(θ) sin(θ)

−sin(θ) cos(θ)

 ·
k1 0

0 k2

 ·
cos(θ) −sin(θ)

sin(θ) cos(θ)


(4.42)

The Gauss and mean curvatures were, then, calculated through 4.43.

KG = k1 · k2 , KH =
k1 + k2

2
(4.43)

Registration

Having the Gauss and mean curvatures calculated for each point in the point clouds, a registration

algorithm must now be designed. In sum, the designed method uses the euclidean distance to define

the set of fixed points that can be matched to a moved point, i.e., a given moved point, mj , can be

matched to any fixed point, fk, such that equation 4.44 holds.

‖mj − fk‖ < R (4.44)

Then, it uses the estimated curvatures to find the best match within the neighborhood radius R, that

is, the point fk, holding 4.44, that solves equation 4.45.

fmatch,j = argmin
fk

( |KG(fk)−KG(mj)| + |KH(fk)−KH(mj)| ) (4.45)

Where KG() and KH() define, respectively, the Gauss and mean curvatures of a given point. Finally,

a point-pair registration problem is formulated to compute the transformation Ti that best transforms

every point mj to its match. This is shown, in homogeneous coordinates, in equation 4.46, and the

solution can be found through a least-squares optimization, section 4.3.3.

∑
j

‖fmatch,j − Ti ·mj‖ (4.46)

At the end of each iteration, this transformation is applied to the moved point cloud, changing the

position of every point mj , and the value of R is decreased, using equation 4.47. In this, C is an arbitrary

small constant, R0 is the initial value of R, Rmin is the minimum allowed value of R and i is the iteration.

Ri = max(R0 · e−C·(i−1) , Rmin) (4.47)

This procedure works under the assumption that the point fmatch,j , that represents the best match
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to the point mj , is in its vicinity. However, two things may happen that cause this to not be the case.

Figure 4.34: Registration algorithm.

In the first iteration the moved cloud is in a random position relative to the fixed cloud. In this case, the

aforementioned assumption is obviously wrong. For that reason, in the first iteration, the best match to

every point mj is searched through the entire fixed cloud, neglecting the distance condition of equation

4.44. This, however, leads to the second problem.

The estimated curvature for the same theoretical point in the CT point cloud and in the ultrasound

point cloud may differ. Consequently, solving equation 4.45 with no neighborhood radius condition may

result in a wrong matching which leads to a wrong alignment.

When the moved point cloud is transformed with a wrong coordinate transformation, at some itera-

tion, some of the moved points will not have any fixed point in its vicinity, causing the algorithm to get

stuck.

For this reason, the first iteration is only performed using N randomly chosen points and, whenever

the algorithm gets stuck, the moved points with no neighbours within R are neglected. However, this is

done only as long as there is a minimum amount of valid matches. When this minimum is not achieved,

it is assumed that the N points chosen for the first iteration failed to give a suitable alignment. Thus the

algorithm will restart, placing the moved point cloud in its original position and picking a new set of N

initial points. Figure 4.34 shows a diagram which represents this algorithm schematically.
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4.3.3 Point-Pair Registration

The problem of registering two point sets with known correspondences can be formulated as an

optimization problem with the cost function shown in 4.48, using Cartesian coordinates.

n∑
i=1

‖R ·mi + t− fi‖ (4.48)

Where mi is a moved point and fi is the correspondent fixed point. Also R is the rotation matrix and

t is the translation vector.

Arun et al. [57] proposes a stepwise method to minimize such cost function. Assume that m̄ and f̄

represent the centroid of the moved and the fixed point sets, respectively. Also assume that both the

moved and the fixed point sets, M and F , are defined as shown in 4.49.

M =
[
m1 . . . mn

]
=


x1 . . . xn

y1 . . . yn

z1 . . . zn

 , F =
[
f1 . . . fn

]
=


x1 . . . xn

y1 . . . yn

z1 . . . zn

 (4.49)

The method can be divided in five steps:

1. Compute the centered point sets, M ′ and F ′, by subtracting the centroids to each point set.

M ′ = M − m̄ ·
[
1 . . . 1

]
, F ′ = F − f̄ ·

[
1 . . . 1

]
(4.50)

2. Compute the 3× 3 matrix H given by:

H = F ′ ·M ′T (4.51)

3. Compute the singular value decomposition of H:

H = U · Λ · V T (4.52)

4. The rotation matrix R is given by:

R = V · UT (4.53)

5. Finally, the translation vector can be calculated through:

t = f̄ −R · m̄ (4.54)

4.3.4 Implementation

The ultrasound imaging was performed so to acquire the maximum amount of the phantom surface,

thus, the forehead and both the right and left sides of the phantom were imaged. Figure 4.35 shows one

example of a regular point cloud built from ultrasound images.
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Figure 4.35: Ultrasound point cloud in the robot base reference frame.

Principal Component Analysis

(a) (b)

Figure 4.36: Principal Components of CT point cloud (a) and of ultrasound point cloud (b).

In order to perform the coarse registration using the principal component analysis, the point clouds

must have a similar shape. For that reason, an algorithm was designed to clip the original CT point

cloud, figure 4.5, keeping only the forehead and the sides. This procedure does not need to be much

accurate and for that reason it can also be performed manually through a suitable GUI, or using 3D

Slicer.

The principal components of each point cloud were calculated and can be seen in 4.36. This figures

show the mean centered point cloud and the 1st, 2nd and 3rd principal components marked with the

respective number.
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Mean and Gauss Curvatures

The estimated Gaussian and mean curvatures for both the CT and the ultrasound point clouds can

be seen in figures 4.37 and 4.38. These figures show the normalized curvatures so to ease the reader

interpretation.

(a) (b)

Figure 4.37: Normalized Gaussian curvature of the CT point cloud (a) and of the ultrasound point cloud
(b).

(a) (b)

Figure 4.38: Normalized mean curvature of the CT point cloud (a) and of the ultrasound point cloud (b).

Note that, the curvature-based registration does not require any clip of the CT point cloud. However,

the images show clipped CT clouds to favour the visualization.
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Chapter 5

Results and Discussion

In this section, the project results will be presented and discussed. Additional tests were performed

when necessary and these will also be presented here.

5.1 Calibration

Results Presentation

Starting by the setup calibration procedure, the first important result is associated to the stylus cal-

ibration. The results can be seen in table 5.1, where there is shown the mean and the maximum

calibration residues. These values were given directly by the NDI software.

Mean Error (mm) 0,42
Max. Error (mm) 1,16

Table 5.1: Stylus pivoting results.

Regarding the Polaris to base calibration, the main result to be assessed is the residue of the least

squares optimization of the equation 4.4. Table 5.2 shows the mean, the maximum and the minimum

residue as well as the standard deviation of these.

Mean Error (mm) 0,40
Max. Error (mm) 0,88
Min. Error (mm) 0,06
Std. Dev. (mm) 0,17

Table 5.2: Polaris to base calibration results.

As referred in section 3.5, the quality of the ultrasound spatial calibration was assessed by means of

the point reconstruction accuracy (PRA), and the calibration reproducibility (CR), which are calculated

through equations 3.25 and 3.26. The calibration procedure was repeated 10 times and the results will

be presented next.

The PRA was calculated by estimating the position of the tip of a tracked 3D printed cone. This was

imaged near the four corners and the center of the image and the result can be seen in table 5.3.
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Point Mean Error (mm)
Upper Left 0,75

Upper Right 1,26
Bottom Left 0,74

Bottom Right 0,87
Center 0,84
Mean 0,89

Table 5.3: PRA results.

As described in section 3.5, the calibration reproducibility is calculated as the standard deviation of

the image corners and center position estimation. The results can be seen in table 5.4.

Point Std. Dev. (mm)
Upper Left 0,34

Upper Right 0,66
Bottom Left 0,40

Bottom Right 0,87
Center 0,41

Table 5.4: CR results.

Finally, the results concerning the needle calibration. The evaluation of the needle calibration quality

was performed by calculating the residues of the cost function, equation 4.11, at the solution. These are

shown at table 5.5.

Mean Error (mm) 0,64
Max. Error (mm) 3,43
Min. Error (mm) 0,02
Std. Dev. (mm) 0,57

Table 5.5: Needle calibration results.

Also figure 5.1, shows a three dimensional representation of the calibration output, where it is possi-

ble to see the position of the points acquired, the fitted line and the needle reference frame.

Figure 5.1: Needle calibration shown in the Polaris reference frame.
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Discussion

To start with, there is the stylus pivoting calibration. This is the standard way to calculate the stylus tip

position and the error associated to this is mainly due to the difficulty in assuring that the tip is completely

static throughout the calibration procedure, as it is done by hand. Also, the stylus tip has a diameter of

around 1 mm which makes it impossible to calculate a single point that defines it. Consequently, every

position measured with the stylus will have a certain degree of uncertainty.

Regarding the Polaris to robot base calibration, an additional experiment was performed to find the

source of the error presented in table 5.2. The experiment consisted in commanding the robot to move

its flange in a straight line along the X axis with reference to the base frame. This way, the robot got

progressively more stretched out moving its center of mass away from the base. The flange position was

recorded by the Polaris and the result can be seen in figures 5.2a and 5.2b, where the Polaris points are

the flange positions measured by the Polaris, while the robot points are the ones measured by the robot.

(a) XY Plane (b) XZ Plane

Figure 5.2: Straight line along X axis.

Note that the Polaris readings show a much higher variance in the flange position than the robot

readings. To quantify this difference between the robot and the Polaris readings, equation 5.1 was used.

dnonrigid = ‖pPolaris,f − pPolaris,i‖ − ‖pRobot,f − pRobot,i‖ (5.1)

Where pPolaris,i and pPolaris,f are, respectively, the initial and final positions registered by the Polaris.

Similarly, pRobot,i and pRobot,f are, respectively, the initial and final positions registered by the robot. Also,

by applying the equation to the data in figures 5.2a and 5.2b, one got dnonrigid = 0.79 mm.

This result show that some non-rigid behaviour is associated to the robot movement, leading to the

conclusion that the robot coupling base is deflecting in some way. Consequently, the rigid coordinate

transformation that results from this calibration will not fit perfectly. The experiment was repeated per-

forming straight lines along y and z but not other interesting conclusions have been taken.

As for the ultrasound spatial calibration, the results for the accuracy and precision are justified by

several reasons. To start with, the whole calibration is performed under the assumption that the stylus

is always parallel to the scan plane. However, since the procedure is done by hand, it is impossible to
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assure a perfect alignment.

The second reason has to do with the stylus tip and its segmentation. As mentioned, the stylus tip

as a diameter of around 1 mm. On the other hand, the ultrasound image resolution is around 0.1 mm

in both directions. Thus, it is impossible to find a single pixel which corresponds to stylus tip with no

uncertainty. Nevertheless, the error introduced by both these issues can be attenuated by using more

points to calibrate.

Finally, there is the needle calibration. The calibration results shown in table 5.5 are the residues

of the minimization of equation 4.11 and are caused by the two factors mentioned in section 4.2.4, that

are, the needle deflection and the slack between the needle and the calibration tool hole. Also, these

results are from the TNeedleTracker and TNeedleF lange estimations as both were estimated through the same set of

points. Further validation for this calibration was merely visually performed, for instance by commanding

the robot to align the needle with the vertical or horizontal axes.

5.2 Registration

Results Presentation

In this section, the results of the registration process will be presented. To start with, there is the

targets acquisition and the determination of the ground truth transformation, T ′BaseCT .

Figure 5.3: Segmented targets in CT reference frame.

Regarding the targets segmentation in the CT, figure 5.3 shows the segmented position and orienta-

tion of the these in the CT reference frame.

The targets were acquired in the laboratory and registered to the CT targets as explained in section

3.5 to compute the ground truth transformation. Table 5.6 show the result of this procedure.

Finally, the targets orientation in the base reference frame was estimated through equation 3.7 and

figure 5.4 show the position and orientation of the targets in the robot base reference frame.

The ground truth point cloud was acquired and the first step of the registration, the CT to ground

66



Target ep (mm)
1 0,56
2 0,65
3 0,51
4 0,79
5 0,69
6 0,59
7 0,18
8 0,77
9 0,54
10 0,86

Mean 0,61

Table 5.6: Targets registration residue.

Figure 5.4: Acquired targets in the robot base reference frame.

truth, was performed. The results of this can be seen in table 5.7.

Target ep (mm) ev (◦)
1 0,69 0,14
2 0,49 0,15
3 0,93 0,19
4 0,62 0,16
5 1,16 0,09
6 0,82 0,19
7 0,74 0,15
8 0,87 0,14
9 0,85 0,10

10 1,30 0,10
Mean 0,85 0,14

Table 5.7: CT to ground truth registration error.

To perform the second and third steps of the stepwise error evaluation described in section 3.5, 10

different ultrasound scans were made. The second step, ultrasound to ground truth, results can be seen

in table 5.8. Also, the error distribution for each target is shown in figures 5.5a and 5.5b.

The third step was then performed. The first attempt to perform this used the PCA + ICP method.
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ep (mm) ev (◦)Target Mean Std. Dev. Mean Std. Dev.
2 0,62 0,14 0,42 0,20
3 0,67 0,15 0,40 0,19
4 0,75 0,19 0,40 0,20
5 0,62 0,19 0,37 0,17
6 0,76 0,25 0,4 0,19
7 0,77 0,23 0,42 0,20
8 0,57 0,20 0,42 0,20
9 0,67 0,24 0,39 0,18

10 0,52 0,20 0,40 0,19
Mean 0,66 0,15 0,40 0,19

Table 5.8: Ultrasound to ground truth registration accuracy.

(a) Position error (b) Orientation error

Figure 5.5: Ultrasound to ground truth target error distribution.

The results are presented in table 5.9 and in figures 5.6a and 5.6b.

ep (mm) ev (◦)Target Mean Std. Dev. Mean Std. Dev.
1 3,12 0,45 4,99 1,07
2 4,43 1,04 4,98 1,06
3 5,44 1,63 5,21 0,95
4 7,28 1,38 3,73 1,00
5 3,28 0,88 4,97 1,11
6 6,04 1,04 5,14 0,90
7 6,81 1,22 4,84 1,06
8 2,45 0,80 5,17 0,97
9 2,32 0,58 4,60 1,19

10 3,44 0,78 5,10 1,02
Mean 4,46 0,73 4,87 1,00

Table 5.9: PCA + ICP registration accuracy.
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(a) Position error (b) Orientation error

Figure 5.6: PCA + ICP target error distribution.

The curvature-based algorithm was also applied and the results are shown in table 5.10 and figures

5.7a and 5.7b.

ep (mm) ev (◦)Target Mean Std. Dev. Mean Std. Dev.
1 1,07 0,30 0,76 0,57
2 1,20 0,44 0,76 0,56
3 1,36 0,55 0,78 0,45
4 1,43 0,48 0,79 0,46
5 1,68 0,39 0,78 0,53
6 1,35 0,47 0,77 0,46
7 1,35 0,39 0,78 0,55
8 1,27 0,43 0,76 0,53
9 1,16 0,47 0,79 0,53

10 1,37 0,31 0,79 0,46
Mean 1,32 0,21 0,78 0,50

Table 5.10: Curvature-based registration accuracy.

(a) Position error (b) Orientation error

Figure 5.7: Curvature-based registration target error distribution.

Finally, the processing time was calculated for every algorithm involved in the registration stage. The
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Processing Time (s)Experiment US segmentation PCA + ICP Curvature-Based
1 23,64 1,25 33,37
2 23,38 1,72 35,73
3 17,32 0,90 42,96
4 22,27 1,53 45,39
5 19,16 1,80 28,50
6 17,98 1,08 28,76
7 25,48 4,93 29,46
8 26,47 1,28 33,10
9 19,73 1,30 51,66
10 24,61 0,83 29,71

Mean 22,04 1,66 35,86

Table 5.11: Processing time.

results are shown in table 5.11. For the ultrasound segmentation, the time presented is the total time

that the algorithm took to segment all the images acquired, while the time present for the registration

algorithms is the total time that these took to converge. Since the CT segmentation is not performed

during the surgery, it will never be a bottleneck to the procedure, for that reason its processing time

was not be evaluated. Some graphical results regarding the registration stage, i.e., the registered point

clouds and targets, can be seen in appendix A.

Discussion

In what concerns the determination of T ′BaseCT , table 5.6 present a mean residue of 0.61 mm. This

represents the minimum mean error that is possible to obtain in every registration step that involves both

the CT information and the physical space information and there are two main factors behind this value.

The first is the CT resolution. It is shown in section 3.2.1 that this is around 0.5 mm along the X

and Y axes and around 1 mm along the Z axis. On the other hand, it was already discussed that every

position measured with the stylus is not perfectly accurate.

An imperfect choice of the CT segmentation threshold adds up to the aforementioned facts causing

the relative position between the targets and the phantom surface to be different in the CT and in the

physical space. As a consequence, the transformation that best aligns the surfaces is different from

the one that best aligns the targets, figure 5.8. Thus, a mean position error of 0.85 mm and a mean

orientation error of 0.14◦result from the CT to ground truth registration, table 5.7.

Figure 5.8: Registration top view in 2D. In A the targets perfect alignment results in a slight misalignment
of the surfaces. By aligning the surfaces in B the targets get misaligned.

Regarding the registration steps involving the ultrasound imaging, 10 different ultrasound scans were
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made. In section 3.5, one referred that the ultrasound and the stylus surfaces were expected to not

overlap perfectly. The error introduced by this mismatch was measured by the ultrasound to ground

truth registration and resulted in a mean position error of 0.66 mm and a mean orientation error of 0.4◦.

This result is mainly related to the flawed ultrasound spatial calibration and Polaris to robot calibration,

both presented and discussed in the previous section. Also, as mentioned for the CT, the ambiguous

choice of the ultrasound segmentation threshold, adds up for these errors.

An additional potential source of error is related to the phantom surface scanning. Whenever the

transducer is not completely perpendicular to the surface the specular reflection and the ultrasound

wave diffraction, figure 5.9, will degrade the image. This degradation can be more or less significant

but will cause the image segmentation to result in a poorer surface. It is important to mention that this

phenomena are strongly correlated to each specific ultrasound scan performed, being the main reason

behind the decision of performing 10 independent experiments.

Figure 5.9: Image degradation due to non-perpendicular imaging. In A the specular reflection causes
the surface to appear less brighter in the image. In B the diffraction causes the point P’ to be imaged
instead of P.

A final concern was related to the phantom displacement throughout the procedure. A tracker was

attached to it so that this movement could be measured. Table 5.12 shows the difference in the phantom

initial and final position and shows that this was not a significant source of error.

Phantom Displacement
dx (mm) 0,093
dy (mm) 0,006
dz (mm) 0,080

Table 5.12: Phantom displacement throughout procedure measured in the Polaris reference frame.

Finally, the CT to ultrasound registration was performed. The first approach was to use the PCA +

ICP which resulted in a mean position error of 4.46 mm and a mean orientation error of 4.87◦, table 5.9.

These are large errors, specially when compared to the ones obtained in the previous two steps, and

are related to the algorithm capability to solve the problem. Consequently, a more detailed analysis is

needed to find the source of this error. To start with, the PCA was applied with no further fine tuning

and resulted in a mean position error of 13.47 mm and a mean orientation error of 9.95◦over the 10

experiments. Also figures 5.10a and 5.10b show an example of the relative position between the two
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point clouds after this initial coarse alignment step. Even though the target errors are high, by looking at

the figures one can conclude that this is a suitable initial coarse alignment.

(a) (b)

Figure 5.10: Principal component analysis coarse registration.

The next approach was to apply the ICP over an initial alignment with the ground truth transformation,

T ′BaseCT , to verify how the ICP would perform when it is given the best initial alignment possible. The

results obtained can be seen in table 5.13.

ep (mm) ev (◦)Targets Mean Std. Dev. Mean Std. Dev.
1 1,45 0,45 0,89 0,40
2 1,67 0,53 0,87 0,40
3 1,30 0,53 0,95 0,35
4 1,93 0,67 0,63 0,40
5 1,41 0,30 0,91 0,39
6 1,69 0,77 0,96 0,32
7 1,69 0,77 0,83 0,39
8 1,32 0,43 0,96 0,36
9 0,92 0,47 0,82 0,40

10 1,31 0,22 0,96 0,38
Mean 1,47 0,43 0,88 0,37

Table 5.13: ICP over T ′BaseCT results.

Obviously, this is an unrealistic scenario, but one can observe that ICP results have improved a lot. It

is possible to conclude that the better the initial alignment, the more accurate the ICP results are. On the

other hand, it is relevant to analyse the ICP optimization residues in both cases, i.e., when it is applied

after the PCA and the results are poor and when it is applied after the ground truth transformation and

the results are much more satisfactory. The mean residue over the 10 ultrasound acquisitions was 1.04

mm for the first case and 0.97 mm for the second, that is, a decrease of 67 % in the mean target position

error resulted in a 7 % decrease in the registration residue. There are two conclusions that can be taken.

The first is that the ICP optimization criterion, i.e., the euclidean distance between the closest points, is

not good enough to solve this problem, as it does not faithfully reflect the registration quality. The second

is that the ICP ability to find a global minimum is poor and it often converges to the local minimum that

is closer to the initial conditions.
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The use of the mean and Gauss curvatures came up as a way to increase the amount of information

available to perform the registration. Also, by using the shape of the cloud, which obviously does not

depend on the cloud position, the initial conditions will no longer affect the registration outcome. It is

important to refer that the mean position error of 1.32 mm and the mean orientation error of 0.78◦,

presented in table 5.10, are the result of every source of error described for the previous two steps.

However, by looking at figures 4.37 and 4.38 it is possible to verify that the curvature estimation is not

perfectly coherent in ultrasound and CT clouds which lead to the conclusion that the algorithm itself

introduces an additional source of inaccuracy.

In what concerns, the processing time of the registration algorithms, the major reason behind the

huge difference between the results in table 5.11 is that, for the ICP, the Matlab built-in function was

used. This means that the time consuming part of the PCA+ICP algorithm was performed by compiled

code. Differently, the curvature-based registration was fully implemented in Matlab meaning that the

whole process was performed by interpreted code. Nevertheless, a considerable effort was put into

reducing its processing time, for example by vectorizing the code and using built-in functions whenever

it was possible.

5.3 Needle Placement

Results Presentation

The results for the first needle placement experiment, section 3.5, can be seen in table 5.14. It is

important to refer that there are no results for the targets 5, 9 and 10 because these were not reachable

by the robot in the used layout.

Target ep (mm) ev (◦)
1 0,33 0,11
2 0,94 0,27
3 0,57 0,14
4 1,04 0,40
5 — —
6 0,45 0,13
7 0,45 0,17
8 0,93 0,19
9 — —
10 — —

Mean 0,57 0,17

Table 5.14: Needle placement results using the targets measurement.

Since this experiments were performed in a different day, a new CT to ultrasound registration was

performed. The result of the such registration can be seen in table 5.15a. Then, the robot was com-

manded using the registered CT. The results can be seen in figure 5.15b.
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Target ep (mm) ev (◦)
1 1,72 0,80
2 0,88 0,80
3 0,97 0,65
4 1,41 0,81
5 1,34 0,80
6 1,20 0,68
7 1,15 0,80
8 0,90 0,80
9 1,42 0,81
10 1,18 0,86

Mean 1,19 0,80

(a) Registration results.

Target ep (mm) ev (◦)
1 1,90 0,94
2 1,47 1,01
3 1,26 0,65
4 2,51 1,19
5 — —
6 1.88 0,76
7 1,39 0,91
8 0,56 0,84
9 — —
10 — —

Mean 1,43 0,91

(b) Needle placement results.

Table 5.15: Needle placement final results.

Discussion

The most prominent source of error behind the results of table 5.14 is related to the non-rigid phe-

nomena described and discussed in section 5.1. Note that the needle to flange coordinate transforma-

tion was estimated through equation 4.10, which, in turn, uses the Polaris to robot base transformation.

Consequently, the coupling base deflection causes the needle to flange coordinate transformation to

be different depending on the configuration of the robot at the moment of the calibration. On the other

hand, in the needle placing stage, each target demands a different robot configuration. It is then to be

expected that the targets which demand a robot configuration most similar to the one used to calibrate,

are the ones that present the lowest errors.

A simple procedure was performed to verify the validity of the proposed justification. This consisted

in commanding the robot to move from the calibration configuration to the configuration demanded by

each target. Similarly to the straight line experiment presented in section 5.1, the flange was tracked by

the Polaris, and the magnitude of the non-rigid effects was measured through equation 5.1. The results

can be seen in table 5.16.

Target dnonrigid (mm)
1 0,05
2 0,39
3 0,08
4 0,69
6 0,32
7 0,11
8 0,47

Table 5.16: Non-rigid effects.

It is possible to verify that there is a clear trend between the results in table 5.14 and the values in

table 5.16, which validates the justification provided.

An additional source of error as to do with the targets acquisition. These were acquired in the Polaris

reference frame, using the stylus, and then transformed to the robot base reference frame, using the

Polaris to robot transformation matrix. This has a mean error of 0.4 mm and therefore, the position of
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the targets with reference to the robot base is expected to be biased.

Regarding the results for the registration presented in table 5.15a, these were obtained using the

curvature-based algorithm. There is not further to add about them as the registration was already

discussed in the previous section.

Finally in what concerns the results presented in table 5.15b, the biggest contribution comes, obvi-

ously, from the registration outcome. However, table 5.17 shows the robot isolated contribution to these

final results. ∆ep and ∆ev correspond to the subtraction of the results in table 5.15a to the results in

table 5.15b for both the position and the orientation errors, respectively.

Target ∆ep (mm) ∆ev (◦)
1 0,18 0,14
2 0,59 0,21
3 0,29 0
4 1,1 0,38
6 0,68 0,08
7 0,24 0,11
8 -0,34 0,04

Table 5.17: Robot contribution to the final results.

It is interesting to note that, once again, there is a clear trend between the values in table 5.17 and

the ones in table 5.16. This fact leads to the conclusion that the justification provided at the beginning of

this section is indeed the most important source of error associated to the needle positioning stage as it

was performed in the laboratory.
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Chapter 6

Conclusions

Throughout the development of this thesis, the implementation of a robot-assisted and ultrasound-

guided neuronavigation system was studied with regard to the image-to-patient registration and robot

positioning.

Starting by the ultrasound calibration, although the issues reported in calibration results discussion,

the variation proposed in the present work resulted in a PRA of 0.89 mm and a mean CR of 0.54 mm

which, when compared to the results reported in [44], represent a significant improvement.

Regarding the Polaris to robot calibration, although the low mean error of 0.4 mm obtained, Tovar-

Arriaga et al. [42] reports a mean error associated with the robot to the navigation system calibration

of 0.23 mm, that is, around 43 % less than the error reported in the present work. This shows that a

considerable progression margin exists in this step.

As for the segmentation algorithms and starting by the CT, segmenting the phantom CT images was

a pretty straightforward task as this imaging modality does not present noise or artifacts of other kind.

On the other hand, the segmentation of the ultrasound images required a little more effort so to produce

a point cloud with no outliers. In both cases, the transition to a biological subject does not represent a

substantial problem as the bone is a very noticeable feature in both imaging modalities.

The point cloud registration was tackled with two different approaches. A curvature-based algo-

rithm was developed and compared against the widely used ICP with an initial coarse alignment step

performed by the Principal Component Analysis. It was possible to verify that the proposed algorithm

outperforms the ICP by 70 % in the targets position evaluation and by 84 % in the targets orienta-

tion evaluation. Furthermore, the results regarding the standard deviation of both the target position

and orientation errors, reinforce the higher robustness of the curvature-based algorithm. Moreover, by

evaluating the CT to ground truth and the ultrasound to ground truth registration steps, it is possible

to conclude that the amount of error added by the algorithm is very low. This leads to the conclusion

that the final error obtained in the registration stage is very close to the minimum achievable with the

available hardware.

When compared with the literature, the final registration performance achieved in this work is only

beaten by the screwed fiducials method which presents a minimum TRE of 0.7 mm in [23] and of 1
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mm in [21]. However, this solution has several drawbacks, section 2.2.3, that are eliminated by the

ultrasound-based registration. On the other hand, when compared with the non-invasive techniques,

only the Z-touch is comparable to the proposed solution, presenting a minimum reported TRE of 1 mm,

[22], in an arguably unrealistic study, section 2.2.4.

Regarding the needle positioning results, by comparing this with the mechanical execution error,

performed with the Vertek articulating arm, reported in [24], one can verify that the error obtained with a

robotic system is around 64 % less. Moreover, it is comparable the most accurate results achieved with

the robotic systems available.

To finish, the needle positioning experiment presented in this work revealed that the deflection of the

coupling base is a significant problem. By looking at tables 5.16 and 5.17, it is possible to verify that the

robot contribution to the final error is very low in the targets to which the non-rigid effects are also low,

which is a very promising result. This is what happens in targets 1, 3 and 7. However, it is also possible

to verify that the maximum error obtained, target 4, resulted directly from this effect and strongly reduces

the system’s reliability. Therefore, it is crucial to solve this issue.

Finally, in what concerns the processing times presented in table 5.11 and starting by the segmen-

tation, the mean result obtained over the 10 experiments was 22.04 s. This is the computational time

that the algorithm took to process every image in the .mha file. Each file contained around 1900 to 2000

images which means that the time to process each image was around 0.012 s and thus, the algorithm

processing rate is around 83 images per second. Given that the frame rate of the frame grabber is only

25 images per second, in a real application, the segmentation can be performed in real time and thus

will not be a bottleneck to the surgical procedure. As for the processing time obtained with the proposed

registration solution, the mean value of 35.86 s obtained is a bottleneck to the surgery procedure. As

no task can be done in parallel, the surgeons and the patient would be just waiting, which may not be

acceptable for a real case implementation. However, the implementation in a compiled language and

the use of an high performance workstation are surely enough to solve this issue.

6.1 Achievements

It is worth stressing out, as main achievements of the present thesis, the following:

• The design, implementation and validation of an easy, automatic and accurate setup calibration

procedure.

• The design, implementation and validation of a rigid registration mathematical framework that out-

performs the most widely used algorithms by a considerably high margin.

• The design of a stepwise error evaluation methodology that can be used to evaluate any robot-

assisted and ultrasound-guided neuronavigation system.

• A practical study with KUKA LBR Med in the Surgical Robotics Laboratory that can be used to

guide further developments on this project, setting the most important future goals.
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• A final registration stage performance that is comparable to the most accurate systems available,

using a non-invasive and affordable technology.

6.2 Future Work

It is one’s belief that the main developments to allow the system to be implemented in a real surgical

environment, are the following:

• To exchange the coupling base for a stiffer one and repeat the entire procedure. The displacement

caused by the base deflection should not be more than 0.1 mm so that its influence is negligible.

• To study and evaluate the MRI to CT registration. In a real application, the target points are

selected in the MRI image instead of the CT. For that reason, this registration error has a major

importance.

• Repeat the entire procedure selecting the target points in the MRI and evaluate the total final

accuracy.

• Apply the developed procedure with a setup more similar to a real surgical environment. For

instance, using a biological subject, the Mayfield clamp and a realistic relative position between

the robot and the subject.

• The development of every piece of hardware needed for a real implementation. That is, the integra-

tion of safety features like an emergency stop button and the enabling switches, and the integration

of a precise tool exchanger for the robot flange.

• The implementation of the registration and segmentation algorithms in a compiled language to

decrease their processing time.

• The development of a suitable guided user interface to aid all the surgical procedures.
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Appendix A

Graphical Registration Results

This appendix aims to show some graphical results of the registration stage. Here both the targets

and the point clouds final alignment obtained are shown for the US to CT registration.

The results for three scans will be shown. These are the cloud that produced the best results (Scan

1), the cloud that produced the worst results (Scan 2), and a randomly selected cloud for which the

results are near the mean (Scan 3), for both the PCA+ICP and the curvature-based registration.

Notice that 10 independent scans were performed, however, it would be tiresome to present the

results of all the 10 point clouds acquired for both algorithms. Besides, no further information would be

added.

Having said so, figures A.1 to A.3 show the PCA+ICP results while figures A.4 to A.6 show the

curvature-based results.

(a) Clouds (b) Targets

Figure A.1: Scan 1. PCA+ICP registration: Mean ep = 2.51mm; Mean ev = 2.38◦.
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(a) Clouds (b) Targets

Figure A.2: Scan 2. PCA+ICP registration: Mean ep = 5.83mm; Mean ev = 5.65◦.

(a) Clouds (b) Targets

Figure A.3: Scan 3. PCA+ICP registration: Mean ep = 4.16mm; Mean ev = 4.41◦.

(a) Clouds (b) Targets

Figure A.4: Scan 1. Curvature-Based registration: Mean ep = 0.94mm; Mean ev = 0.19◦.
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(a) Clouds (b) Targets

Figure A.5: Scan 2. Curvature-Based registration: Mean ep = 1.66mm; Mean ev = 0.85◦.

(a) Clouds (b) Targets

Figure A.6: Scan 3. Curvature-Based registration: Mean ep = 1.28mm; Mean ev = 0.34◦.
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