Supervised Learning Methodologies to
Improve Customer Support

Inés F. Marques
inesfmarques@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

December 2020

Abstract

This article is about classifying technical issues from customer support and the goal is to develop a
predictive algorithm which the technical support assistant can use as an aid to diagnose the root cause
of the user’s problem. This is done by applying supervised learning methodologies using a previously
collected dataset which consists of labeled technical issues, where the response variable is the cause.
However, there are some properties of the dataset that can hamper the learning process such as sparsity
and imbalance. We train several popular classifiers and choose the one with the best generalization
score. We evaluated the models not only based on common metrics such as Fl-score and accuracy but
also on another metric: an accuracy score that indicates whether the algorithm is able to predict the
root cause within the 3 most probable causes. The best results were produced by Neural Networks
achieving almost 70% of accuracy. and 90% of Top 3 accuracy. Since we are looking for a way to help
the assistant, having a set of 3 possible causes to choose from, where one of them is correct with 90%
confidence, is a better option for the assistant. We conclude that the dataset needs to be improved in
order to reach better results but the proposed model may already be a successful classification system.

Keywords: Telecommunications, Classification, Supervised learning, Class imbalance

1. Introduction

Telecommunication companies provide packages of
services including TV, Internet, landline and mo-
bile phone plan, etc. An important part of the
user experience for any service is the assistance pro-
vided by the operator when the user needs help
in what might be a stressful situation. However,
for the generality of telecommunication operators,
it is known that the customer support has its weak-
nesses and one can spend hours on the phone talk-
ing with the technical assistant on the other side
of the line. This is why companies are focusing
their energies to enhance the relationship with the
customers by making their service quality more ad-
vanced and to stay competitive in the market by
making the technical support service more efficient.
Due to the highly competition between telecom-
munication companies, they are continually putting
more efforts to improve and develop their operation
of support call center in order to achieve customer’s
loyalty and satisfaction. So, how can the working
method of the technical assistance be improved?

This dissertation will be carried out under the
scope of the KEEN project which is a collabora-
tion between Border Innovation, an IT consulting
firm, and CEMAT, Center of Computational and

Stochastic Mathematics. We will work within a
specific framework where the given data belongs
to a certain telecommunications company and it is
provided to us by Border Innovation. Within this
framework, in order to obtain the root cause of a
user’s technical issue, it must be given background
information, test results and a list of services and
Symptoms.

Whenever a user contacts the technical support
call center, it will first be answered by an automatic
attendant which allows the system to set automat-
ically the background of the problem. The back-
ground gives information about the client, the type
of service, the type of technology and the equipment
provider. The main services are Internet, Television
and Voice, and each one encompasses a set of sub-
services organized in a tree-like structure. There are
also tests done automatically in result of a commu-
nication between the user’s equipment of the service
at issue and the company’s servers. Their results
are presented qualitatively in colors to the assistant
through an interface. The tests results can come
back as error, when something is wrong, or as OK,
when everything is well, or sometimes they can be
inconclusive. In conversation with the customer,
the assistant records in the interface the occurring

https://border-innovation.com/
http://cemat.ist.utl.pt/main.php

symptoms from which the customer is complaining.
After collecting all this information, the assistant
determines what he or she believes is the root cause
of the problem. Then, the assistant decides if it
is possible to provide a prompt solution and correc-
tion to the problem or if it is necessary an in-person
service for further troubleshooting.

How can we help the assistant properly diagnose
a technical issue? The purpose of this Master’s the-
sis is to develop a recommendation system that will
allow the assistant to quickly find the source of the
problem and consequently provide a better service
to the customer. Creating a model that yields the
cause of the problem with reasonable accuracy will
not only improve the customer support response
time - as it moves on to a faster resolution - but
also increase the efficiency of the serviced. This is
somehow a way of automating the decision making
during a technical assistance call in order to opti-
mize its efficiency.

This work does not generalize to every technical
support line as we follow an example from a spe-
cific telecommunications operator. There are pre-
defined sets of services, symptoms and causes from
which the technical assistant is able to choose from.
Additionally, in the scope of the KEEN project,
we focus on supervised machine learning method-
ology as Border Innovation provides us with a la-
beled dataset. In addition, regarding the provided
dataset, each instance is classified based on the be-
lief of the technical assistant and it is not necessar-
ily the true cause of the problem. The human error
present in the dataset can bring chaos to the model
and the training data may not have the desired pre-
dictive power.

Classification is one of the most popular topics
of machine learning, with a broad array of appli-
cations. The number of available methods has in-
creased and logically there is a need for method
comparisons to find the best one for different situ-
ations, as showed in [3], [2] and [14]. However, the
focus on customer support data manipulation using
machine learning techniques is not sufficiently ad-
dressed and neither is the comparison of different
machine learning approaches to classify the causes
of telecommunication technical issues.

2. Background

According to [1], the goal of supervised learning
is to learn a mapping from inputs x to outputs
y, given a labeled set of input-output pairs D =
{(x®,y@)}M | which is called the training set and
where M is the number of training observations.
Each training input x is a vector of numbers called
features, explanatory variables or covariates, where
x € RY. On the other hand, the output, response
or target variable can be an ordinal or a nominal
variable from some finite set of possible outcomes

such as gender, i.e. y € {Cy,...,Ck} where K is
the number of classes, or it can be a real-valued vari-
able such as salary. In the first case, we have a clas-
sification problem and the latter is called a regres-
sion problem. Since the set of causes for a technical
support issue is finite, we are dealing with a classifi-
cation problem. In addition, if K = 2 we have what
it is called a binary classification. If K > 2 then it
is a multiclass classification. We are assuming that
the classes are disjoint and so each input is assigned
to one and only one class.

If we assume that y = f(x), the goal of learning,
or training, is to estimate the function f given a la-
beled training set. Thus, the result of running a ML
algorithm can be expressed as a function f which is
an approximation of the unknown function f, and
then it can be used to make predictions, § = f(x)
The ability to categorize correctly new observations
that differ from those used for training is known as
generalization. In practical applications, the train-
ing data comprises only a tiny fraction of all possi-
ble input vectors, and so generalization is a central
goal in ML algorithms. In the following sections we
discuss some of the most popular multiclass classi-
fication algorithms.

2.1. Naive Bayes Classifier

This classification technique is based on Bayes’ the-
orem. It assumes conditional independence between
every combination of features given the target vari-
able. In simple terms, it assumes that the presence
of a particular feature is unrelated to the presence of
any other feature given the class. Even if these fea-
tures depend on each other or upon the existence
of the other features, all of these properties inde-
pendently contribute to the probability p(x, C), as
[9] mentions. Therefore, it is a generative model
since it computes the joint distribution of the data
points. It is known to outperform even highly so-
phisticated classification methods. Assuming there
are N features:

p(C) TT; plai|C)

p(Cilx) = P2

The probability of each class p(Cy) is estimated
by the respective relative frequency of the class in
the training set. Then, we apply the maximum
a posteriori estimation to find the posterior class
probabilities - note that p(x) is constant given the
input.

N

p(Culx) o< p(Cr) [T plwilCr)

2.2. Softmax Regression

Softmax regression (SR) is an extension of logistic
regression used for solving multiclass classification.
As the name suggests, the sigmoid logistic function

is replaced by the so-called softmax function. As-
suming we have K classes, our hypothesis takes the
form:

exp((61)"x)
1 exp((0®)"x)
he(x) = —% : .
Zj:l exp((0Y))Tx) :
exp((67))Tx)
Here, 8 = OL) BJQ) -«) | where each

column vector 1) € RVN+! denotes the parameters
of our model for each estimated probability.

The model is trained via an optimization algo-
rithm, e.g. gradient descent. For that we need to
define a cost function that will be minimized. As [1]
suggests, we use the cross-entropy error function for
the multiclass classification problem. Cross-entropy
measure is a widely used alternative for the mean
squared error when the output of the algorithm is
a probability distribution.

2.2.1 Decision Trees

Decision trees (DT) are a non-parametric model
that predicts the value of a target variable by learn-
ing simple decision rules inferred from the data fea-
tures. In a DT, each leaf node is assigned a label.
The non-terminal nodes, which include the root and
other internal nodes, contain attribute test condi-
tions to separate observations that have different
characteristics. The split at each node is based on
the feature that gives the maximum information
gain. A new observation is classified by following
a path from the root node to a leaf node, where at
each node a test is performed on some feature of
that instance.

Most algorithms employ a greedy strategy that
grows a decision tree by making a series of locally
optimal decisions about which attribute to use for
partitioning the data into successively purer sub-
sets - i.e., subsets with instances from less differ-
ent classes. The algorithm must provide a measure
for evaluating the goodness of the condition in each
internal node such as entropy, Gini and classifica-
tion error. Moreover, a stopping condition is needed
to terminate the tree-growing process. A possible
strategy is to continue expanding a node until ei-
ther all the instances belong to the same class or all
the instances have identical attribute values.

[13] praises DT as being simple to interpret and
fast classifiers. On the other hand, [6] states that
DT are unable to extract linear combinations of fea-
tures and that over-complex trees could overfit to
the data. Setting the minimum number of obser-
vations required at a leaf node or setting the max-
imum depth of the tree are necessary to avoid this

problem. Furthermore, if the class distribution is
imbalanced, the generated decision tree could gen-
eralize poorly to the minority classes. Finally, DT
can be unstable because small variations in the data
might result in a completely different tree being
generated.

2.2.2 Random Forest

Random Forest (RF), as the article [15] explains,
consists of a large number of individual decision
trees that operate as an ensemble. Each individual
tree in the random forest outputs a class prediction
and the most voted class (the mode) is the model’s
prediction.

Typically, RF corrects for decision trees’ habit
of overfitting to their training set because a large
number of relatively uncorrelated models (decision
trees) operating as a committee will outperform any
of the individual constituent models. Therefore,
low correlation between models is the key and the
chances of making correct predictions increase with
the number of uncorrelated trees in the RF, in con-
trast to just one decision tree.

2.2.3 Neural Networks

Neural Networks, as [1] explains, are capable of ex-
pressing a rich variety of nonlinear decision surfaces.
We shall restrict our attention to a specific class of
neural networks that have proven to be of greatest
practical value: the Multilayer Perceptron (MLP).
The functional form of a MLP is based on a linear
combination of fixed nonlinear functions ¢;(x):

M
yeew) = h | 3 wi,(0)

where h is a nonlinear function called an activa-
tion function and the coefficients w; in the linear
combination are called weights. In addition, each
function ¢;(x) is itself a nonlinear function of a lin-
ear combination of the inputs, and that is why these
functions are parametric and the parameters values
are updated during training.

This type of NN has a feed-forward architecture
which can be described as a series of transforma-
tions between layers. There are three types of lay-
ers; input layer, hidden layers and output layer.
Each hidden layer consists of units/neurons which
take an input, apply the function above and return
the output. The input layer consists only of one
neuron for each input variable and the output layer
is terminal where the number of neurons is equal
to the numbers of classes. By constructing multiple
layers of neurons, each of which passes on its results
to the next layer, the network can learn for example
nonlinear functions.

hidden units

M

Figure 1: Scheme of a feed-forward neural network.
Image from [1].

In the case of a neural network with only one hid-
den layer as pictured in Figure 1, we first take the
D input variables of an observation and construct
linear combinations of the form

a; —Zw xz—i—w ()

where j ranges from 1 to M - the number of
units/outputs in the first layer - and the superscript
(1) indicates the number of the layer. The term wj
is called bias. The result a; is transformed using a
differentiable nonlinear activation function h:

zj = h(ay)

The most common activation functions are the sig-
moid functions, hyperbolic tangent (tanh) and the
Rectified Linear Unit (ReLU). The outputs z; are
again used as inputs for the output layer:

)
ap = E wkj Zj +

where k ranges from 1 to the number of units the
output layer. Finally, the output units are trans-
formed using an appropriate activation function to
give a set of network outputs yi. The choice of ac-
tivation function is determined by the nature of the
data. In the case of multiclass classification, the
softmax function, o, is used. The overall network
function, assuming there is one hidden layer, is:

M D
y(x,w) =0 Z w,(j-)h (Z wj(pxz + w%)) + w(2)
j=1 i=1

In this type of networks the layers are dense mean-
ing they are fully connected. Moreover, since MLP
uses continuous nonlinearities in the hidden units
(differentiable activation functions), the network
function is differentiable with respect to the param-
eters.

The difficulty lies in determining the network pa-
rameters that fit best in the training data. To that

end, we measure the network’s output error: the dif-
ference between the desired output and the actual
output of the network. As in the softmax regres-
sion, our cost function will be the multiclass cross-
entropy error function and the goal is to find the
vector w that minimizes J(w). However, the error
function will have a highly nonlinear dependence
on the weights and bias parameters and therefore
difficult to compute analytically. Nevertheless, it is
possible to evaluate the gradient of an error func-
tion efficiently by means of the backpropagation pro-
cedurel5].

3. Data Preprocessing

The preprocessing phase is essential for model
building in order to minimize the error originated
by the dataset itself and not from the ML algo-
rithm. All the data analysis in this work was done
in R software environment for statistical [11]. In
order to maintain data confidentiality, the R mark-
down notebook designed for the data preprocessing
cannot be made public. Therefore, if the reader is
interested in taking a look at the code, it should be
requested to the author of this work.

The dataset provided by Border Innovation con-
tains real cases from a telecommunications company
technical support. It consists of a table observa-
tions X features. The columns are divided into the
response variable and the predictor variables. As
mentioned in the introduction, the features are di-
vided into Background, Tests, Services and Symp-
toms - which together make up the information
needed to solve the technical issue. The response
variable is an integer that encodes a specific cause
and the predictor variables are binary where each
entry indicates the presence or absence of the fea-
ture. The input data was originally categorical but
the covariates are represented in dummy encoding,
which is a process of converting categories into num-
bers.

The background variables describe the character-
istics of the service in question and of the client.
The tests can have binary or categorical results,
which sets how many columns are associated with
a test. In practice, the binary tests are catego-
rized into error and ok and they triggered in ac-

ordance with the type of problem. That is, they
are only done when something related to the test
is wrong. However, there is a level of ambiguity in
having the value 0 on both columns: it can mean
the test result is inconclusive or it can mean that
the test wasn’t even done. Motivated by this, some
binary tests were converted to categorical tests, and
so the tests are mostly categorical. They are asso-
ciated to a triplet of columns that encode the cat-
egories unknown, error and ok. The baseline cate-
gory, when all three variables are 0, means that the

test wasn’t done. Moreover, the tests variables are
named as Dz with x being a positive integer, for ex-
ample D83, with sequential numbering. Finally, the
main services are Internet, TV and Voice. The rela-
tions between services and symptoms are described
by a tree with 4 levels. The first two levels refer to
the services (main and secondary) and the other two
levels refer to the possible symptoms for each com-
bination of services. Each branch can have at most
two services and two symptoms. The combination
of services and symptoms variables in each obser-
vation in the dataset is associated to a branch of
that tree. That is, there is a predefined set of com-
binations for this part of the predictor variables. In
addition, the services and symptoms variables are
named as SERx and SYMx respectively, with = be-
ing a positive integer with sequential numbering.

The initial dataset had 192684 rows and 582
columns. The first step was to look for missing
values and one service covariate had 17056 miss-
ing values. We were told by Border Innovation that
the missing values should be treated as the absence
of the service in question since it was a bug in the
system that keeps all of the information, and they
were replaced with 0. Then, we looked for constant
columns and observed that there were 163 variables
always equal to 0 but none always equal to 1. In
the process of understanding the reason behind this,
we were told that some variables were outdated and
others were missing due to the dataset not being in
sync with the latest version of the system.

After an update on the arrangement of the data,
there were still 124 constant columns equal to 0.
One possible explanation for this is the fact that
the variables are in dummy encoding which means
there is a ”binarization” of the categories. When
some categories are not present in the observations
that leads to a lot of zeros present in the dataset,
and consequently null variables. We also checked
whether each variable had the correct domain type
and range. There were services and symptoms vari-
ables with non-binary values: 133 values equal to
2. We were told that this was also a bug and that
they should be replaced with 1. Following this pre-
liminary analysis, we looked for inconsistencies in
some of the four groups of the predictor variables.

We verified possible relations between binary test
variables pointed out to us by Border Innovation,
where either they appeared to be testing the same
function or they were somehow correlated. Table
I presents the results. The second and third veri-
fications suggest that there may be some repeated
columns. Furthermore, the four last verifications
are concerning. On the one hand, each pair of tests
on the three verifications before last are supposed
to test the same function but show differences. On
the other hand, D70 is supposed to be the conjunc-

Test Conflicts
D38 = D397 2

D40 = D447 0

D42 = D437 0

D49 = D507 275

D56 = D577 198

D336 = D3377 4298

If D70 = 1 then | 70
D69 =D71 =17
If D73 =1 then | 53
D72 =D74 =17

Table 1: Tests associations

tion of D69 and D71 as well as D73 is supposed
to be the conjunction of D72 and D74. The expla-
nation provided is that these faults are the result
of several overlaps of states in an observation. This
means that when a client calls and a new SESSIONID
is created, a full initial battery of tests is ran. How-
ever, as the assistant interacts with the client, some
of the tests are rerun and only those results are up-
dated in the system. This way, an incoherent state
of the data is generated due to contradictions be-
tween variables that test the opposite and have the
same result or that test the same but have opposite
results. This would also be investigated and a new
version of the dataset would result from solving this
problem.

On the new version of the dataset, besides run-
ning all the previous data analysis, we also checked
whether every observation had at least one service
and one symptom and at most two of each. Note
that for the model to be accurate and approxi-
mate reality, observations without services, without
symptoms or without both do not make sense and
bring chaos to the model. Fortunately, every ob-
servation had at most two services and two symp-
toms. However, there were 32997 instances with-
out any symptoms. Not having information on the
symptoms of the issue means that the label is based
solely upon test variables. This combined with in-
consistencies still found with the previous analysis
would yet result in another version of the dataset.

In the course of the data preprocessing, we were
asked by Border Innovation to look for anything out
of the ordinary that could show more inconsisten-
cies in the dataset. This time we focused on the
labels and found two that appeared to having no
predictive pattern. From all the test variables re-
lated to each label, some of which somehow indicate
the presence of an error in the service in question,
nothing would suggest a pattern of error for those
causes or a correlation between a group of tests and
the causes. This situation hints at a poor profil-
ing of the causes. That is, for some labels there
may not be concrete evidence for them in the data

which means that it may be hard to predict future
observations with those causes.

The last version of the dataset provided by Bor-
der Innovation has 65972 observations and 567 vari-
ables. The first column corresponds to the SES-
SIONID of the observation and the second column
to the response variable. For modeling purposes,
the first column is irrelevant and it was removed.
Thus, there are 565 predictor variables and one re-
sponse variable. Although there are no missing val-
ues, there are 2173 non-binary values on the covari-
ates. Their values vary between 2 and 22 and they
were all replaced with 1. There are still 136 con-
stant columns equal to 0 and two secondary services
are absent: share center and OneNet VoIP. In ad-
dition, the sparsity of the dataset is approximately
95%.

There are only 67 cases without symptoms. We
tried unsuccessfully to find a pattern in those ob-
servations, namely within the labels, and so the
decision was made to consider them invalid and
to be removed from the dataset. Hereafter, the
dataset used for model fitting will be the final ver-
sion cleaned of invalid observations, thus with 65900
observations.

3.1. Data imbalance

Although data cleaning helps to prevent the model
from misbehaving, another challenge arises. In
classification problems, a sufficiently representative
number of observations of each class is desirable for
a model to be able to learn how to better separate
the classes. That is why imbalanced classifications
pose a difficulty for predictive modeling as most of
the ML algorithms used for classification are de-
signed around the assumption of an similar number
of observations for each class. This results in mod-
els having a poor predictive performance, specially
for the minority classes.

In total, there are 217 possible causes and only
114 are present in the dataset, which means that ap-
proximately 47% of the labels are not represented.
Table 2 shows the class distribution counting how
many classes belong to a certain range of number
of observations in the dataset:

Range of frequency Number of classes
[1,10[observations 56
[10,100[observations 22
[100, 1000[observations 28
[1000, 10000[observations
[10000, 00| observations 1

Table 2: Number of classes per range of frequency

It is clear that the class distribution is severely
imbalanced. The label with the higher frequency is
the class 153, which corresponds to Undetermined

Cause, and it holds almost half of the data points.
The other half of the data points are allocated to
the remaining 113 present classes. In addition, the
majority of the classes are almost negligible, mean-
ing they have less than 10 observations in the whole
dataset. In the context of telecommunications cus-
tomer support, it is comprehensible that there are
causes more frequent than others since some tech-
nical problems are more likely to happen than oth-
ers. However, one factor that possibly aggravates
the disparity in class frequencies is the fact that
the response variable in the dataset is determined
by the technical assistant. In other words, what
the assistant considers to be correct is the absolute
truth. The labeling of the observations is based on
the classification made by the assistant without any
verification, which can lead to considerable human
error. From this, it follows that the imbalance is a
property of the problem domain - as some causes
are more frequent - and the information that the
dataset comprises may not be accurate by measure-
ment error. Hence, taking the models we saw in the
previous chapter, it is possible that, if the classes
are not well separable, several of those models will
generalize poorly as they will probably overfit. The
models may have bias towards classes which have
higher number of instances and assume that most
technical issues are caused by those causes, with-
out being the algorithm’s fault but because of the
properties of the data itself. However, as mentioned
earlier, the fact that a model predicts better the ma-
jority causes may not be a significant problem since
it will predict correctly more often. In other words,
since theoretically the frequency of the classes is
proportional with their likelihood of occurrence, it
may be a good thing to focus more on the majority
causes than on the others. Nevertheless, in addition
to a model selection based on typically used metrics
in ML, Border Innovation asked us to evaluate the
models based on whether the correct cause is in the
top 2 or 3 causes predicted by the model. We will
call this measure Top 3 accuracy.

4. Brute-force Approach

We attempt to train the models seen in Section 2,
since it is hard to guess which one will perform bet-
ter, using the final version of the dataset. Here-
after, all the computations related to modeling are
done in the Python programming language, more
specifically in a Google Colab Notebook using a
hosted runtime in the Google Cloud. Scikit-learn
was the main library used for model fitting, model
selection and evaluation, available at [4]. The code
for this chapter is available at GitHub in the file
Model.ipynb.

First, we partition the dataset into training data
and test data. Then, we split the training data

https://github.com/inesfmarques/MasterThesis

again, applying what is called the k-fold cross-
validation. The training data is randomly divided
into k groups, or folds, of approximately equal size.
One run of cross-validation involves one of the folds
being set as the validation set while the model is fit-
ted on the remaining k — 1 folds, which make up the
training set. The final result is usually the average
of all the scores. According to [13], the validation
set is used to tune parameters of the algorithm or
other regularization by predicting new observations
with the already fitted model. On the other hand,
the test set provides an unbiased evaluation for the
model and it is used to obtain performance metrics.

In order to assess a classifier performance, we
must use an appropriate metric. The most pop-
ular metric is Accuracy which is the fraction of
correctly classified data. Precision is, for a cer-
tain class C}, the proportion of observations which
the model classifies with C}, and that are actually
labeled as Cj. Recall is, for a certain class Cl,
the proportion of observations that are labeled as
C), which are correctly classified by the model. The
F1-score combines both recall and precision and it
is the harmonic mean between the two:

P19 precision X recall

precision + recall

According to [10], in order to get an overall Fl-score
of a multiclass classification model, one usually av-
erages the Fl-scores over all classes. This average
can be macro, where each class has equal weight and
so it results in the simple arithmetic mean. The av-
erage can also be micro, where each observation has
equal weight meaning we look at all the samples to-
gether. In this case, a prediction error is both a false
negative for one of the classes and a false positive
for the other and thus the proportion of prediction
errors will be equal to the accuracy. Finally, the
average can be weighted, where we weight the F1-
score of each class by the number of observations
from that class.

4.1. Model Comparison

We will compare between Naive Bayes, Softmax Re-
gression, Random Forest and Neural Networks. The
models’ parameters are tuned in by performing a
grid search with a 3-fold cross-validation in order
to determine the best combinations of parameters
based on the overall weighted Fl-score. As dis-
cussed in Section 3.1, the reason why we opt for
the weighted F1-score is because Border Innovation
asked us to focus on the more frequent causes as
it is more important for the recommendation sys-
tem to predict correctly more often the dominant
causes than to predict correctly every cause. So we
must consider the proportion for each label in the
dataset. The choice of the number of folds derives
from the fact that our dataset is large enough that

the training set is still representative whilst having
a relatively low k.

We split the whole dataset into training set
(80%) and test set (20%). After performing cross-
validation on the training set, we fit each model
with the best combination of parameters one more
time to compute performance measures on the test
set (precision, recall and the weighted F1-score).

Naive Bayes

As seen before, we must choose the type of NB
classifier based on our dataset. Since the features
are binary, we will first assume it follows a multi-
variate Bernoulli distribution and so we opt for the
BernoulliNB estimator. The grid search combined
with 3-fold cross-validation was relatively fast since
the only parameter to be tuned was the additive
smoothing parameter, alpha. The best alpha is
100 with the overall weighted F1-score being around
44,3%. This poor result led us to assume another
distribution of the data, namely multinomial distri-
bution. The scikit-learn library provides a classi-
fier based on Multinomial NB that is designed to
correct severe assumptions which make it suitable
for imbalanced datasets: the ComplementNB. The
best alpha is approximately 184 with the overall
weighted Fl-score still being low, around 46, 7%.
Furthermore, the models are classifying a lot of un-
seen data with the four most frequent classes which
is evidence that the models are too closely fit to the
training set and there is no predictive power for the
minority classes.

Softmax Regression

The built-in classifier that implements SR is
the LogisticRegression with the parameter
multi_class set to multinomial. However, this
method does not have the option of Stochastic
Gradient Descent (SGD) as the weight optimiza-
tion solver, but instead it is able to learn from
other gradient-based solvers like Stochastic Aver-
age Gradient, which is a variation of SGD with
faster convergences rates'. The grid search with
cross-validation on LogisticRegression yielded a
best score of 60,8% with the LBFGS? solver and
inverse of the regularization parameter, C, close to
the default value which is 1. In comparison to Naive
Bayes, although the model still has a lot of gener-
alization errors with the most frequent class, the
higher score is a sign of less chaos within the other
classes.

IPlease refer to [12] for more information on SAG

2Quasi-Newton methods are an alternative to Newton’s
method. They can be used when the Hessian matrix is dif-
ficult or time-consuming to evaluate, in order to find local
minimum of a function

Random Forest

The built-in RandomForestClassifier fits a num-
ber of decision trees on either the whole dataset
or on various sub-samples of the dataset, known as
bootstrap samples, which are drawn with replace-
ment. Furthermore, during the construction of a
tree, the function to measure the quality of a split
(criterion) can be either the Gini impurity or the
entropy, for calculating the information gain of each
feature. Also, the best node split is found either
from all input features or a random subset of size
max_features. The purpose of these two sources of
randomness is to decrease the variance of the forest
estimator and avoid overfitting.

First we perform a grid search on the parameters
bootstrap, max_features and criterion as well
as on the number of decision trees that make up
the ensemble, n_estimators. The best model uses
bootstrap samples and fits 75 decision trees with
the Gini criteria and the default max _features.
The overall weighted Fl-score was approximately
59, 7%.

Next, we plot validation curves for the param-
eters min_samples_leaf and min_samples_split,
which represent the minimum number of instances
required to be at a leaf node and the minimum num-
ber of instances required to split an internal node,
respectively. They help control the size of the trees
and their default values lead to fully grown and un-
pruned trees. Figure 2 compares both the training
score and the validation score: In Figure 2(a), we
can see that the validation score remains almost the
same for different values of min_samples_split and
that the training score decreases for higher values.
Nevertheless, the parameter value with the best val-
idation weighted Fl-score is 8. In Figure 2(b), we
can see that both lines tend to decrease from the be-
ginning to the end of the plot and even show some
instability for higher numbers. The best value for
min_samples_leaf is therefore the smallest value,
which is 1. Furthermore, we can see that in both
plots the training score is much higher than the val-
idation score for smaller values of the parameters,
which is a sign of overfitting. This is due to the fact
that these parameters control the size of each de-
cision tree, and smaller values mean a deeper tree.
Decision trees tend to overfit the deeper they are
because at each level of the tree the splits are deal-
ing with a smaller subset of the data there.

The model with the best parameters yielded a
weighted Fl-score of approximately 60,7%. The
overall weighted Fl-score, are very close to the
LogisticRegression model. The classification er-
rors, as before, are likely a consequence of the im-
balanced class distribution where some labels dom-
inate over others and it is persistent through all the
algorithms treated so far.

Validation Curve for min_samples_split

Taining score

—— Cross-validation score
0.80

0.75

Fl-score

0.70

0.65

o 10 20 k] 40 50
min_samples_split

(a) min_samples_split

Validation Curve for min_samples_leaf

Taining score
070 = Cross-validation score
0.65
g
5 060
A
i
055
0.50
] 10 20 30 40 50

min_samples_leaf

(b) min_samples_leaf

Figure 2: Validation curves for both parameters
with RandomForestClassifier

Neural Networks

An alternative to the scikit-learn library when it
comes to neural networks is to use Keras, which
is a deep learning programming interface written
in Python running on top of the machine learning
platform TensorFlow. Ultimately, the selection of
an architecture for the neural network will come
down to trial and error.

We will perform parameter tuning with cross-
validation manually, increasing the number of folds
to 10. Furthermore, we ranged over the number of
neurons in the hidden layers, the batch size and the
number of epochs. The batch size is the number
of instances that are propagated through the net-
work before updating the weights. Having a batch
smaller than the whole training set requires less
memory and the network typically trains faster be-
cause it is updating the weights more often. How-
ever, the smaller the batch the less accurate the
estimate of the gradient will be. The number of
epochs corresponds to the the number of times that
the entire training set will be processed. As the
number of epochs increases, more number of times
the weight are changed in the neural network and
we can go from underfitting to optimal values to
overfitting.

The types of layers we will consider in order

to keep the model simple is the Dense layer, the
LeakyReLU layer and the Dropout layer. The
Dense layer is a regular fully-connected layer, where
for each neuron we take the dot product between
the input vector x and the weight kernel matrix
W featured in the Dense layer, add a bias vector
(if we want to include a bias), and finally take an
element-wise activation of the output values. This
type of layer is usually implemented as the first
hidden layer. The activation function to be used
will be the rectifier, ReLU and the only parameter
to be tuned will be the number of neurons of the
layer. The LeakyReLU layer uses a leaky version
of the ReLU activation function. The traditional
ReLU is equal to f(x) = max(x,0) but this leads to
dead neurons that output always the same value 0,
specially when the optimizer learns large negative
weights or bias. Once a ReLU neuron ends up in
this state, it is unlikely to recover because the gra-
dient at 0 is also 0 and so gradient descent learning
will not alter the weights. The paper that intro-
duces the leaky version [8] argues that the death of
neurons can be avoided by allowing a small gradient
when the unit is not active. Finally, the Dropout
layer helps prevent overfitting. It randomly sets in-
put neurons to 0 with a frequency of the parameter
ratec [0,1] at each step during training time. In-
puts not set to 0 are scaled up by 1/(1 —rate) such
that the sum over all inputs is not changed. Al-
though in Keras it is called a layer, it is more of
a regularization which makes the NN become less
sensitive to the specific weights of neurons. This, in
turn, results in a network that is capable of better
generalization.

Now that we have an overview of the layers we
will consider for this model, we look for the best
combination of these layers and the best parame-
ters a and rate. In order to compare the different
models, we created a function that computed the
weighted Fl-score during the training phase since
Keras does not handle the scikit-learn metric nor
it has a built-in weighted F1-score. Furthermore,
for training, the batch size and number of epochs
that we found to be the more suitable were 1000
and 150, respectively. Moreover, when compiling
the NN we will use Adam as the weight optimizer
because according to [7] the method is ”computa-
tionally efficient, has little memory requirement, in-
variant to diagonal rescaling of gradients, and is
well suited for problems that are large in terms of
data/parameters”. In Keras, the default learning
rate for Adam is 0,001 and the default momentum
parameters for the first and second moment are 0,9
and 0,999, respectively. Furthermore, we will use
the categorical cross-entropy as the loss function
which corresponds to the softmax regression loss:
a softmax activation plus a cross-entropy loss.

The NN that yielded the best weighhted F1-score
is as follows: the input layer receives the 565 co-
variates and the first Dense layer is responsible for
transforming those neurons using the rectifier acti-
vation function as mentioned and giving 300 neu-
rons as output. The input layer is followed by a
Dropout layer with probability 0,2 of setting the
input neurons to 0. Then, it comes a LeakyReLU
layer with o = 0,3 which is the default value. Next,
we have another Dropout layer that sets its input to
0 with probability 0,3. Lastly, the output layer is
a Dense layer with the softmax activation function
and outputs 217 neurons, which corresponds to the
total number of classes in our problem. The ques-
tion mark in the figure corresponds to the yet un-
known batch size. The overall validation weighted
Fl-score was 62,72%. We conclude that the per-
formance of the ML algorithms on the raw classi-
fication of the final dataset is limited to a certain
point due to the properties of the dataset itself. The
class imbalance and the poor profiling of the causes
present challenges to the classification and the mod-
els are not able to learn the minority classes so well.

We mentioned the fact that Border Innovation
was interested in another type of metric that shows
a broader view of the model performance. Instead
of computing a performance metric that evaluates
if the most probable cause is the true cause, we will
evaluate whether the true cause is in the 3 most
probable labels, and we will call it Top 3 accuracy.
To this end, we created a function predict_NN that
given a new observation returns the 3 most probable
classes and the respective probabilities if specified.
Then, we created another function evaluate_NN
that computes the Top 3 accuracy given the model
and the test set. The code is available at GitHub
in the file Classifier.ipynb. The Top 3 accuracy
for the Keras Neural Network was 90, 77%. We also
computed the Top 3 accuracy for the other discrimi-
native models studied in this section and found that
the scores fluctuated around 90%. This shows that
the models tend to opt first for the majority causes
and only then predict the minority ones. If the
true cause is within the Top 3 of causes predicted
by the model with more than 90% confidence and
if the technical assistant has access to that set of
causes, there is a higher chance of solving the prob-
lem than with just a single output of the model.
The improvement of results suggests that the final
recommendation system should have multiple pos-
sible choices for the cause of a customer support
issue. Once the model outputs the Top 3, the assis-
tant can go through each item or even deliberate on
the problem - since the personal contact with the
user always gives more details that a machine may
not comprehend -, and decide what seems to be the
best choice.

https://github.com/inesfmarques/MasterThesis

5. Conclusions

This work was set to answer following research ques-
tion: How can we help the assistant properly diag-
nose a technical issue? This was done by gath-
ering data, preprocessing data, attempting several
classification algorithms and choosing the one with
the best generalization score. However, it is hard
to draw any further conclusion given the proper-
ties of the dataset itself. The preliminary analysis
hinted not only at the problem of high dimensional-
ity, particularly the number of covariates, and spar-
sity of the data but also at the imbalanced class
distribution. Although discriminative models per-
formed fairly well, the dominance of the more fre-
quent classes over others resulted in a drop of the
generalization score. Even though some problems
are more frequent than others, this imbalance can
also be due to the fact that we rely on the label-
ing provided by the technical assistant which adds
human error. Another challenge was the poor pro-
filing of the causes. Great part of the causes, not
only have they less than 10 instances in the whole
dataset, but they also have profiles that are mixed
up by the models in general. In particular, the ones
with only one observation in the dataset are always
misclassified in the validation set.

The proposed model consists of a neural network
with 2 hidden layers. Although the maximum re-
sults did not exceed 70% in accuracy and 65% in
weighted F1l-score, we reached scores higher than
90% when computing the Top 3 accuracy - which
indicates whether the correct cause is in the 3 most
probable labels that the model predicted. Based
on these conclusions, we recommend a new orga-
nization of the causes in order to make them more
separable. For example, group minority causes with
the same resolution and remove vague and ambigu-
ous causes. This simplification and the decrease in
the number of classes may help to make the prob-
lem less complex and consequently contribute for a
better performance of the algorithms. Nonetheless,
some of the discriminative models of the brute force
approach show potential for being good classifiers
once the impact of these issues is reduced.

References

[1] C. M. Bishop. Pattern Recognition and Ma-
chine Learning. Springer, 2007.

[2] R. Caruana and A. Niculescu-Mizil. An em-
pirical comparison of supervised learning al-
gorithms using different performance metrics.

2005.

[3] J.-W. Chan, K.-P. Chan, and A.-O. Yeh. De-
tecting the nature of change in an urban en-
vironment: A comparison of machine learning

10

[10]

[11]

[12]

algorithms. Photogrammetric Engineering and
Remote Sensing, 67:213-225, Feb 2001.

S.-L. Developers. Scikit-Learn User Guide, re-
lease 0.23.1 edition, May 2020.

I. Goodfellow, Y. Bengio, and A. Courville.
Deep Learning. MIT Press, 2016.

P. Gupta. Decision trees in machine learn-
ing. https://towardsdatascience.com/

decision-trees-in-machine-learning-641b9c4e8052,

May 2017. Last accessed on Jul 10, 2020.

D. Kingma and J. Ba. Adam: A method for
stochastic optimization. International Confer-
ence on Learning Representations, Dec 2014.

A. L. Maas, A. Y. Hannun, and A. Y. Ng.
Rectifier nonlinearities improve neural network
acoustic models. 2013.

T. M. Mitchell. Machine learning. McGraw-
Hill, 1997.

K. P. Murphy. Machine Learning: A Proba-
bilistic Perspective. MIT Press, 2012.

R Core Team. R: A Language and Environ-
ment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Aus-
tria, 2020.

M. Schmidt, N. Roux, and F. Bach. Minimiz-
ing finite sums with the stochastic average gra-
dient. Mathematical Programming, 162, Sep
2013.

P.-N. Tan, M. Steinbach, and V. Kumar. In-
troduction to Data Mining. Addison Wesley,
May 2005.

B. Trawinski, M. Smundefinedtek, Z. Telec,
and T. Lasota. Nonparametric statistical anal-
ysis for multiple comparison of machine learn-
ing regression algorithms. International Jour-
nal of Applied Mathematics and Computer Sci-
ence, 22(4):867-881, Dec 2012.

T. Yiu.
est.

Understanding random for-
https://towardsdatascience.com/

understanding-random-forest-58381e0602d2,

Jun 2019. Last accessed on Jul 10, 2020.

https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2

	1 Introduction
	2 Background
	2.1 Naive Bayes Classifier
	2.2 Softmax Regression
	2.2.1 Decision Trees
	2.2.2 Random Forest
	2.2.3 Neural Networks

	3 Data Preprocessing
	3.1 Data imbalance

	4 Brute-force Approach
	4.1 Model Comparison

	5 Conclusions

