
A High-Order Discontinuous Galerkin Method for Optimal

Control of an OWC Spar Buoy

Ricardo Filipe Gomes Duarte
ricardo.g.duarte@tecnico.ulisboa.pt
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Abstract

Pseudospectral (PS) methods appeared in the 1990s and became an almost standard tool for the
numerical solution of optimal control problems (OCPs). One of the fundamental characteristics of
the PS methods is the ability to achieve high-order accuracy for smooth OCPs. This accuracy results
from approximating the state and control trajectories by single polynomials across the entire domain.
However, the high-order accuracy is usually lost for bang-bang OCPs because of the non-smooth nature
of the control. The current thesis aims to study an alternative approach to PS methods: a high-order
Discontinuous Galerkin Finite Element Method (DG-FEM) for the numerical solution of OCP based
on Pontryagin’s Maximum Principle. In contrast with the PS methods, the DG-FEM use a piecewise
polynomial solution of the state and control trajectories where mesh and polynomial refinement are
straightforward to implement. The application of mesh refinement allows obtaining high-order solutions
even for bang-bang OCPs. To show the capabilities of the method, two test cases were considered:
a continuous and a bang-bang time-solutions. A detailed study of the convergence properties of the
method was performed for both cases. For that, a floating-point arithmetic library with arbitrary
precision was used. The results demonstrated the expect problems of using double-precision arithmetic
for polynomial approximations of degree above six. Finally, the method was successfully applied for
optimal control of an OWC spar buoy wave energy converter. The results showed a 20% in the turbine
output power in comparison with the standard non-optimal control.
Keywords: nonlinear optimal control, discontinuous Galerkin, shooting method, oscillating water
column, Pontryagin’s maximum principle

1. Introduction

The Oscillating water column principle is one of
many viable ways to extract energy from ocean
waves [15, 16]. This principle uses the waves’ os-
cillation to move a water column (inside a device,
either floating or fixed), which changes the air pres-
sure between a turbine and the environment. The
pressure gradient forces air through the turbine and
induces its rotor movement. The rotor of the tur-
bine is attached to an electrical energy generator,
which supplies power to the grid.

Nowadays, the most common design of OWC de-
vices uses a self rectifying turbine, i.e. a turbine
that keeps its sense of rotation independently of
the sense of the air flow [12], thus eliminating the
need for valves to control the flow direction. The
most common turbine for this purpose is the Wells
turbine (with guiding vanes) [11, 4] attached to a
doubly fed induction generator (DFIG). The wells
turbine is used due to its simplicity and capability
to deal with bi-directional flows [12]. Some designs
replace the Wells turbine (reaction turbine) with an

impulse turbine, which has been shown to increase
the operating range with higher efficiency [12, 7].
A reaction turbine is kept rotating due to the de-
flection of air hitting the blades, while an impulse
turbine relies on the impulse given by the fluid pass-
ing through the blades.

Recently, the Wave Energy Group of Insti-
tuto Superior Técnico (IST) developed a new self-
rectifying bi-radial turbine with which proved to
have a better performance than a Wells turbine,
for this application [7, 12]. This turbine can be
equipped with a simple high-speed stop valve that
allows an open/closed operation as well as the par-
tial closure of the valve. This thesis will only focus
on the open/closed usage of the valve, which will
be treated as a bang bang optimal control problem
(OCP).

An upcoming method to solve OCP problems is
the finite element method: Discontinuous Galerkin
(DG-FEM). This FEM method was proposed by
[20] as a method to solve nonlinear differential equa-
tions. In this thesis, the DG-FEM with a mesh re-
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finement technique will be used with the same goal
as [10] but with a different formulation, with a spe-
cific focus on the bang-bang control problems, as
they are troublesome to pseudo-spectral methods.

The DG-FEM method to solve OCP problems,
takes advantage of a discretization of the problem
time domain element-wise and the weak form of the
differential equations, which is very well known of
most used finite element methods [19]. These char-
acteristics ar combined a to achieve high order of
accuracy and convergence characteristics [1]. Fur-
thermore, the refinement of the time mesh is comes
naturally and the discontinuities (like the solutions
of bang-bang OCPs) are easily handled because the
boundary between each element has a discontinuity.

Nowadays, the most established numerical solu-
tions to optimal control problems, are the pseudo-
spectral methods (PS), which were first introduced
in the 1990s [3] and have gathered popularity, to
the point of being the standard continuous-time
OCP solving method, in research and industry [21].
These methods present high order of accuracy for
smooth OCP [21].

The PS methods use polynomials to approximate
the entire time domain of the OCP, where each
polynomial used is pondered by a variable coeffi-
cient. These coefficients are computed according to
the problem; using the minimization of a norm cal-
culated in a chosen quadrature (preferably, Gauss-
Lobatto or Chebyshev–Gauss–Lobatto [21]). The
refinement of solutions is made by increasing the
number of polynomials and the number of points in
the quadrature. Since the the variables are approx-
imated by polynomials (which are continuous and
smooth), these methods are bound to have accuracy
problems for discontinuous our non smooth OCPs.

1.1. Document structure

This paper is divided into 5 sections, including the
introduction 1, where a small review on the os-
cillating water column and its control principle is
present.

Section 2 presents the Spar Buoy theoretical sys-
tem with a physical and numerical description of
the energy transmission effects.

The third section shows the numerical meth-
ods implemented for optimal control problems with
fixed terminal time and in continuous time (finite
elements). First, it starts with a review of opti-
mal control theory, then follows a review of the fi-
nite element method, specifically the Discontinuous
Galerkin method (DG), and finally the integration
of optimal control and finite elements. It provides
the base for the next simulations where this theory
is validated.

The fourth section presents the of the developed
formulation is now done by solving the problem pro-

Figure 1: Cross section of the buoy scheme.

posed by Gong et al. [18] (simple continuous PMP
problem), which tests the ability to solve continu-
ous control problems. 4.1. The problem proposed
by Luenberger, D. [14] (simple bang-bang problem)
is then solved, which tests the ability to solve bang-
bang control problems, with mesh refinement, in
this case, with one switching time instant. Then,
the OWC Spar buy system is tested with 1 wave
and 3 waves of different frequency.

Finally, in section 5, the conclusions about the
developed work, obtained results and achievements
ware displayed.

2. OWC Spar Buoy System

The OWC spar buoy system consists of a long, hol-
low and axisymmetric buoy with a turbine and a
generator attached to its head, approximately as it
is shown in figure 1 [6].

The formulation of the spar buoy dynamics
present in this section mainly follows the time do-
main approach already developed by [22] and [9].

2.1. Hydrodynamics

The OWC spar buoy is a two-body system com-
posed of a floater and tail tube filled with water.
The floater and the OWC free-surface are denoted
as body 1 and 2, respectively, as depicted in Fig. 1.
For computing the hydrodynamic coefficients in the
frequency domain, body 2 is modeled as an imagi-
nary neutrally buoyant rigid piston.

The discussed model will only consider the heave
motion of the buoy (up and down motion). Further-
more, it is assumed that the surface of the inside
water column is plane and horizontal. The ver-
tical position of body i is named xi, with the x-
axes pointing upward. At the equilibrium position,
xi = 0. With the previous assumptions, the first
two equations of the buoy’s dynamics, describing
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the heave motion, are:

(m1+A∞11)ẍ1 +A∞12ẍ2 = −ρwgS1x1+

S2patmp
∗ + Fd1

−R11(ẋ1)−R12(ẋ2), (1)

A∞21ẍ1+(m2 +A∞22)ẍ2 = −ρwgS2x2−
S2patmp

∗ + Fd2
−R21(ẋ1)−R22(ẋ2), (2)

where the mass of body i is denoted as mi. The lim-
iting value at infinite frequency of the added mass
of body i as affected by the motion of body j is
defined by A∞ij . The buoy and the inside OWC are
under the effect of excitation Fdi , radiation Rij ,
and the hydrostatic restoring forces ρwgSixi, where
ρw is the water density, g the gravity acceleration
and Si the area of the section parallel to the wa-
ter surface for each body. The force resulting from
the air chamber pressure is represented by the term
Sipatmp

∗, patm is the atmospheric pressure, and p∗

is the dimensionless relative pressure inside the air
chamber defined by

p∗ =
p− patm

patm
. (3)

Here p is the absolute pressure inside the air cham-
ber.

The radiation forces are defined by the terms
A∞ij ẍj + Rij . usualy, Rij are terms defined by
a convolution integral. For simplification, in this
thesis, Rij was be calculated as viscous dampers:
R12 = R21 = 0 and R11 = c1ẋ1, R22 = c2ẋ2.

The wave excitation forces are represented by
Fdi . With the assumption of linear water wave the-
ory, it can be computed as:

Fdi =

N∑
m=1

Γi(ωm)A(ωm)cos(ωmt+ φim + φr), (4)

i.e. the sum of several regular waves with differ-
ent angular frequency. Γi represents the excitation
force coefficient for body i, A the frequency depen-
dent wave amplitude, φmi is the frequency response
of body i and φr is just a random phase [9]. A(ωm)
may be calculated with:

A =
√

∆ωmSωmωm. (5)

where Sωm is the power spectral density of the wave
climate and ∆ωm is a frequency interval resultant
from the discretization of the frequency spectrum.
For a given ∆ωm the correspondent ωm should be
placed in the middle of the interval:

ωm = ωm−1 +
1

2
(∆ωm−1 + ∆ωm). (6)

The power spectral density Sωm may be given by
Pierson-Moscowitz formula:

Sωm = 262.9
H2
s

ω5
mT

4
e

e
− 1054

(ωmTe)4 , (7)

where Te represents the wave energy period and Hs

the significant wave height (which are referent to
the wave climate).

To transform the system in a state space repre-
sentation, let v1 = ẋ1 and v2 = ẋ2. Introducing the
total mass matrix (8), the closed form of equations
(1) and (2) is derived as:

M =

[
m1 + A∞11 A∞12

A∞21 m2 +A∞22

]
(8)

v̇1 = det(M)−1
(

(m2 +A∞22)F1 −A∞12F2

)
, (9)

v̇2 = det(M)−1
(
(m1 +A∞11)F2 −A∞21F1

)
, (10)

(11)

F1 = −ρwgS1x1 + S2patmp
∗ + Fd1

+R11(v1)+

R12(v2),

F2 = −ρwgS2x2 − S2patmp
∗ + Fd2

+R21(v1)+

R22(v2).

2.2. Pneumatic Chamber
The pneumatic chamber is located between the wa-
ter column and the turbine. For the developed
model, the water column will act as a rigid “piston”,
whose dynamics are already described in (9) and
(10) (x1, x2, v1, v2). The turbine will then acquire
some of the pneumatic energy and allow the move-
ment of mass from the system ṁt (which is defined
in subsection 2.3). Below, there is a short demon-
stration for the dynamics equation of the pressure
accounting with compressibility effects and starting
on the classic continuity equation:

ρ̇V + ρV̇ = −ṁt (12)

The volume of the air chamber V and its variation
can be defined as

V = (h0 + x1 − x2)S2, (13)

where, h0 is the height of the chamber at the equi-
librium position. The compression/decompression
of air is assumed to be an isentropic process and
the air is modeled as a perfect gas:

ρ = ρatm

(
p

patm

)1/γ

= ρatm(p∗ + 1)1/γ (14)

ρ̇ = ρatm
1

γ
(p∗ + 1)1/γ−1ṗ∗ (15)

, where γ is the specific heat ratio for air (1.4) and
ρatm is the air density at atmospheric pressure.

From the algebraic manipulation of equation (12)
and acknowledging the definitions in (13) and (14),
results expression:

ṗ∗ = − γ

ρS2

ṁt(p
∗ + 1)

h0 + x1 − x2
− γ (p∗ + 1)(ẋ1 − ẋ2)

h0 + x1 − x2
.

(16)
With these expressions, the system’s first non-
linearity is, finally, introduced.
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2.3. Power take-off system dynamics
The final power transmission to the generator is as-
sured by a shaft coupling turbine and generator.
The dynamics equation for the rotation of the shaft
is:

IΩ̇ = Tt − Tgen (17)

in which, Tt is the Torque supplied by the turbine,
Tgen is the torque absorbed by the generator, I is
the moment of inertia along the axis of rotation and
Ω is the rotational speed of the shaft. Tt and Tgen

are usually a function of the flow characteristics,
and type of devices and their size. It is typical,
when dealing with turbo-machines such as the bi-
radial turbine, to normalize the variables, by the
characteristics of the flow and the machine (like the
rotor diameter d). The expressions for the dimen-
sionless pressure head Ψ, flow Φ and power Π are:

Ψ =
p∗patm

ρtd
2Ω2

Φ =
ṁt

ρtd
3Ω

Π =
Pt

ρtd
5Ω3

(18)

p∗ =
Ψρtd

2Ω2

patm
ṁt = ρtd

3Ω Pt = Πρtd
5Ω3

(19)

For the dimensionalization just apply the inverse
transformation (19), being p∗ the non dimensional
pressure, ṁt the mass air flow and Pt the turbine
power. To obtain Tt for expression (17) remember
that Tt = Pt

Ω . In these expressions, the term ρt

is also present; this air density is different from ρ
in the air chamber (16, since it is correspondent to
the density of the inlet/outlet of air through the
turbine:

ρt =

{
(p∗ + 1)

1
γ ρatm, p

∗ > 0 (20)

ρatm, otherwise

To calculate Tt and ṁt the data from [5] can be
used. The expressions used to model the turbine
for the bang-bang problem were:

Φ̂(Ψ, u) =

0.12695Ψ4 − 0.71Ψ3 + 5.068Ψ2 + 4.289Ψ

Ψ3 − 2.561Ψ2 + 37.46Ψ + 6.278
(21)

Π̂(Φ) = −272Φ10 + 252Φ8 − 84.26Φ6+

12.9Φ4 + 2.605Φ2 − 0.00657 (22)

Without the effect of partial valve closure the
control problem may be transformed into a specific
type of on-off control: bang-bang control problem.
For these types of problems, the state function and
the objective function need to be linear with the
control [13].

The control for the buoy is the valve u, with u = 1
corresponding to the open valve and u = 0 to the

closed valve. The adapted problem for the applica-
tion of the bang-bang principle requires

Tt = uΠΩ2d5ρt (23)

ṁt = uΦΩd3ρt (24)

and for the maximization of the turbine power

Pt = uΠΩ3d5ρt. (25)

Regarding the generator electromagnetic torque,
equation (19) shows that the turbine output power
should be proportional to Ω3 if the time-averaged
turbine aerodynamic efficiency is to be maximized.
In practice, if the coupling between the turbine
aerodynamics and the spar-buoy OWC hydrody-
namics is taken into account, we can use a relation
of the type [8]

P opt
gen = aΩb, (26)

where b is about 3 (in fact 3.33 was used) and the
constant a used was 0.025. To obtain the torque for
the optimal power, just aknowledge that

Tgen = Pgen/Ω = aΩb−1 (27)

3. Optimal Control Solution Using a Discon-
tinuous Galerkin Finite ElementMethod

3.1. Optimal Control Theory
The original Pontryagin’s Maximum Principle
(PMP) focuses on finding an optimal path for a set
of variables for the maximization of a specified per-
formance index J given by a final state cost cf and
a Lagrangian function L pondered over time. This
originates the problem described by the following
expressions [13][22]:
Maximize:

J = cf
(
x(tf )

)
+

∫ tf

t0

L(t,x,u) dt, (28)

subject to:
ẋ = f(t,x,u) (29)

and the boundary condition:

x(t0) = x0, (30)

where x is the array of state variables, u are the
control variables and t is the time. cf is the cost
associated with final states, t0 and tf are the ini-
tial and final time of the problem respectively. The
Hamiltonian function can be defined as

H = L(t,x,u) + λT f(t,x,u) (31)

Instead of showing the extensive demonstration
of the the PMP formulation, the main results are:

ẋ = ∇λH(t,x,u,λ), (32)

λ̇ = −∇xH(t,x,u,λ), (33)

u : H = max(H), (34)

λ(tf ) = ∇x(tf )cf
(
x(tf )

)
. (35)
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All these conditions apply if u is optimal. [22]
shows a comprehensible demonstration to these
statements. This suggest the PMP can be solved in
3 stages stages: solving the state variables, through
expression (32); solving the co-state variables, with
the solution of (33) (Lagrange multipliers) and solv-
ing the optimal control equation (34) where (35) is
the boundary condition.

With a boundary condition placed at tf the most
natural way to solve equation (33) is to integrate it
backwards in time (from tf to t0). The first method
proposed in this thesis for the PMP problem is to
solve the control and the state variables forward in
time and then solving the co-state variables back-
ward (iteratively).

An alternative to the forward and backward inte-
gration can be found in book [13]. Where the prob-
lem is treated as a two-point boundary condition
differential equation problem. This formulation is
also developed in this paper [17].

3.2. Discontinuous Galerkin Finite Element
Method

The problem depicted in the previous sub-section
3.1 requires the solution for two vectorial differential
equations which describe a system in state-space
form: (32) and (33). These equations do not al-
ways have an analytical solution or the solution may
be less accurate or convenient than the numerical.
So for that purpose, on the course of this work, the
Discontinuous Galerkin (DG) finite element method
will be used [19, 1], whose formulation can be fol-
lowed in (36) through (46), for a generic state-space
system (36).

3.2.1 DG Formulation

Assume there is a system formulated by equation
(36). Recall that: x is the array of state variables;
u is the array of control variables; t is the time
and f is the state function (vectorial function with
the same length as x), which in expression (36) is
nonlinear and time-dependent.

ẋ = f(x,u, t),where u(t) is known. (36)

Multiplying (36) by a continuous smooth function
v and integrating along the domain (t0 to tf ):∫ tf

t0

ẋv dt =

∫ tf

t0

fv.dt (37)

Defining now an approximation for x as

x̂(t) =

nelem∑
e=1

x̃e(t), (38)

x̃e(t) =

{
Cep(τe) , if test < t < test + ∆te

0 , otherwise
, (39)

with:

Ce = cei,j , 1 ≤ i ≤ nx, (40)

p(τe) = pj(τ
e), 0 ≤ j ≤ np, (41)

τe =
2t− test − tef

∆te
, (42)

∆te = tef − test, (43)

where p = pi (polynomials of degree i, 0 ≤ i ≤ np)
and np the number of polynomials (which affects
the quality of the approximation), test is the start-
ing time of element e, tef the final time and ∆te the
time interval covered by element e, also, nx rep-
resents the number of state variables. τe, the lo-
cal time, is defined in expression (42). Matrix Ce

contains constants where each line corresponds to
the approximation of one x and each column multi-
plies with a polynomial of a certain degree, as shows
equation (39).

Function v is approximated by a set containing
the same polynomials as the ones used in the ap-
proximation ( ṽ = pi ). Substituting, as well, x in
(37) by (39), divides the integral by elements. The
calculations for each element are:

∆te

2

∫ 1

−1

2

∆te
x̃eṽT dτe =

∆te

2

∫ 1

−1

f̃
e
ṽT dτe. (44)

The left hand side of the equation integrated by
parts originates the boundary condition. Rearrang-
ing the terms we get the final expressions (per el-
ement) (45), for forward integration and (46), for
backwards integration.

−x̃e(1)
(
ṽ(1)

)T
+

∫ 1

−1

x̃e ˙̃vT dτe =

−
∫ 1

−1

f(x̃e,u, τe)ṽT dτe − x̂(te−1
f )

(
ṽ(−1)

)T
,

(45)

x̃e(−1)
(
ṽ(−1)

)T
+

∫ 1

−1

x̃e ˙̃vT dτe =

−
∫ 1

−1

f(x̃e,u, τe)ṽT dτe + x̂(te+1
0 )

(
ṽ(1)

)T
.

(46)

In equation (45), x̂(te−1
f ) is the approximation

of x evaluated at the end of the previous element
(x̃e−1(1)). On the other hand, in (46), x̂(te+1

0 ) rep-
resents the approximation of x calculated at the
beginning of the next element (x̃e+1(−1)).

3.2.2 Linear System Simulation with DG

Expressions (47) and (48) represent the calculations
that are required for the simulation of a linear sys-
tem of the type ẋ = A(t)x+B(t), derived from (45)
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and (46) respectively.(
P(1)+D +

∆te

2
IA

)
a =

− ∆te

2
IB + BC(−1)x̂(te−1

f ), (47)(
P(−1)−D− ∆te

2
IA

)
a =

∆te

2
IB + BC(1)x̂(te+1

0 ), (48)

The following definitions are being used:

Φ(τ) = p(τ)
(
p(τ)

)T
; M =

∫ 1

−1

ṗpTdτ,

P(τ) = diag(Φ(τ), · · · ,Φ(τ)), nx blocks,

D = diag(M, · · · ,M), nx blocks, (49)

IA =

∫ 1

−1

ΦAi,j dτ ;

IB =

∫ 1

−1

pBi dτ ; 1 ≤ i ≤ nx, 1 ≤ j ≤ nx,

BC(τ) = diag(p(τ), · · · ,p(τ)), nx blocks;

a =
[
cT

1 · · · cT
nx

]T
,

in which nx represents the number of state vari-
ables, diag(φ), nx blocks is a block diagonal matrix
where the block φ is repeated nx times. a represents
the matrix of constants C from expression (39), but
the constants are positioned in vector form: the first
entries of a, 0 up to np are the constants of x1, then
from np + 1 up to 2np + 1 are constants of x2 and
so on.

3.2.3 Nonlinear System Simulation with
DG

In nonlinear systems, the simulation method is
bound to be iterative. Expressions (50) and (51)
show the equations to solve (for a) for forward and
backward simulation.(

P(1) + D
)
a = −∆te

2
If + BC(−1)x̂(te−1

f ) (50)(
P(−1)−D

)
a =

∆te

2
If + BC(1)x̂(te+1

0 ) (51)

Using the definitions in (49) and (52).

If =

∫ 1

−1

pfi dτ ; 1 ≤ i ≤ nx. (52)

The method chosen to solve these nonlinear vec-
tor expressions is the fixed point method. This
method suggests that for iteration k the next guess
for solution is calculated using ak+1 = g(ak) Fur-
thermore, with this method is possible to assure
convergence for ∆te low enough and a close enough
initial guess [2].

3.3. Solving PMP Problems with DG

As seen above PMP problems require the solution
of two differential equations (32)-(33), one for the
state variables x and one for the co-state variables
λ. Unfortunately these cannot be solved together,
as λ requires the knowledge of the control and state
variables variables (u and x) at the final time T ,
since its boundary condition is positioned there (at
t = T ) for specified initial states and fixed time
problems.

In (32), f may be a nonlinear expression, lead-
ing to the iterations defined in the previous section
3.2.3. Looking at expressions (33) and (31), it is
possible to infer that λ is defined by a linear, time-
dependent system (53), which is easier to solve us-
ing the expressions defined for DG linear backwards
simulation, present in expression (48).

λ̇ =
(
J f(x)

)T

λ +∇xJ, (53)

in which J f(x) stands for the Jacobian of f about
x, i.e. dfi

dxj
.

Regarding equation (34), it represents the max-
imization of the Hamiltonian H about the control
variables u, which can be solved with an optimiza-
tion algorithm. In this work, the optimization algo-
rithm used was the conjugate gradient (of python’s
toolbox scipy, “cg”) ) for continuous control prob-
lems, but any other would do (attending to the char-
acteristics of the problem). For on-off control prob-
lems, an exhaustive search is valid because all that
is required is a solution using one of 2 values.

3.4. Solving PMP Problems with DG and Shooting
Method

In the previous sub-section 3.3 a method is dis-
cussed to solve the PMP problem, using the DG
method, by going forwards (to calculate x̂ and û)

and backwards (to calculate λ̂) because the bound-
ary conditions for λ are positioned in the final time.

In this section an alternative method is discussed,
where everything is calculated forward, making the
problem, possibly, faster to solve and with a better
convergence: the shooting method [17].

The shooting method is mainly used to solve
differential equations with boundaries in an initial
time and at a final time. A typical problem of ap-
plication is described in equation (54), where, to
a N -th order differential equation (described as a
system of first-order differential equations), there
are n1 boundary conditions placed at t = 0 and
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n2 = N − n1 boundary conditions placed at t = T .

dx

dt
= f(t,x),

xi(t = 0)− xBC(t=0)
i = 0 i = 1, · · · , n1,

(54)

xj(t = T )− xBC(t=T )
j = 0 j = n1 + 1, · · · , N.

This method consists on guessing the value of
the variables with boundary conditions at t = T in
t = 0 (aiming), which will be imposed as a condition
at t = 0. Then the problem can be solved with for-
ward integration to reach T (shooting). If the initial

guess for x
BC(t=0)
j is not the exact solution at t = 0,

then there will be a discrepancy between xj(T ) and

the original boundary condition x
BC(t=T )
j . For the

purpose of the formulation let V be the guess of the
imposed value of xj in t = 0 and F the discrepan-

cies, computed as Fj = xj − xBC(t=T )
j .

3.5. Aiming
While the first value of V may be arbitrary, a way
is required to renew the imposed initial value to
restart the cycle. The used method for this work
is the Newton method as suggested by [17]. A new
step is calculated as

Vnew = Vold −
(
JFV

)−1

F. (55)

Unfortunately, the Jacobian JFV required for
the calculations is usually not available. So, these
should be calculated as numerical Jacobians:

(JFV)ij =
∆Fi
∆Vj

=
Fi(V + δVj)− Fi(V)

δVj
. (56)

Keep in mind the calculation of the Jacobian re-
quires the integration of the problem n2 extra times
(one time for each δVj). Then, each step for the
shooting iterations, requires n2 +1 solutions for the
problem accounting for the original calculation of
F.

4. Tests and Results
The calculation of the error in these plots corre-
sponds to the L2 norm, as defined by [1]:

||error(φ)||2 =

√
1

T

∫ T

0

(φ(t)− φ̂(t))2 dt (57)

Remember that φ̂ is the approximation of φ by (38),
on the other hand φ is the exact solution of the
problem.

4.1. Test Case: Continuous Control
As mentioned before, [10] already solved this prob-
lem numerically with a slightly different formula-
tion. They achieved an order of convergence of

about np +0.5, even though. This problem required
a relaxation factor in order to converge with the for-
ward ad backward integration: x̃e = ωx̃e

new

+ (1−
ω)x̃e

old

, where, after each calculation of the state
variables with the fixed point method, the state

variables before the fixed point x̃e
old

will be added
to the state variables calculated x̃e

new

, through a
relaxation factor 0 < ω ≤ 1.

The maximization of the Hamiltonian for contin-
uous control is being achieved with the conjugate
gradient from scypy toolbox.

4.1.1 Problem Statement

Maximize:

J(u) =

∫ T

0

−u2dt− 4x1(T )− x2(T ) (58)

subject to 
ẋ =

(
x3

2 , u
)

x(0) =
(

0 , 1
)

T = 2

(59)

4.1.2 Results: Numerical Errors and Error
Trend-lines

In this problem it was still possible to implement
the integrals as symbolic; consequently, the numeri-
cal deviations from the analytical solution may only
be caused by the DG method or the maximum pre-
cision of the operations. Figure 2 shows the varia-
tion of the numerical absolute error (square norm)
with polynomial degree n and elements time inter-
val ∆te, with arbitrary precision (number of deci-
mal places (dps) = 100(2(a)), 8(2(b)) or 16(2(c)).
These figures were obtained using the forward and
backward integration method. Figure 2(d) is ob-
tained with the shooting method. In these fig-
ures markers are the points calculated, lines are
the trend-lines of the absolute error (with slope p).
Note the log-log scale.

4.2. Test Case: Bang-bang Control
As referenced before [13], bang-bang problems are
on-off problems with the particularity of having a
functional and a state space equation linear with
u. Looking at (60) and (61) it is evident that this
problem is a bang-bang control problem.

The algorithm to solve bang-bang problems was
equiped with a mesh refinement method. This
method consists on refining the mesh in the case
that ∂H/∂u changes sign between the right and
left boundaries of one element. A sign change
on ∂H/∂u symbolizes (for continuous functions) a
change in the control.
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Figure 2: Root mean square error and trend as func-
tion of ∆t and the polynomial degree n (where p is
the slope of the trend line).

[10] also solved this problem with the slightly dif-
ferent formulation and obtained a convergence of
the error of the order of about np + 0.5. Unlike the
continuous problem, this did not require the relax-
ation factor for the forward and backward integra-
tion algorithm, nor the shooting method.

4.2.1 Problem Statement

Maximize:

J(u) =

∫ T

0

(1− u)xdt (60)

subject to: 
ẋ = (u− 0.5)x

x(0) = 1

T = 5

(61)

4.2.2 Results: Numerical Errors and
“Switching time” Error

To avoid the complications of the continuous prob-
lem in the previous section, these calculations were
made with dps = 100. Figure 3(a) shows the error
considering ts to be a part of the boundary of two
elements.

On the other hand, figures 4a and 4b represent
the error considering ts to be inside one element.
In figure 4a, ts is in the middle of an element. In
figure 4b, ts is located at a distance of 5% of element
length from the element’s right boundary.

Finally, figure 3(b) represents the error as a func-
tion of the initial element size and the polynomial
degree of the solution found using the shooting
method with refinement and figure 5 shows a sensi-
tivity test made to the shotting method algorithm.
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Figure 3: Root mean square error with refinement
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Figure 4: Error of simulation with ts: (a) at 50%
of element length, (b) at 5% of element length from
the left boundary.

4.3. Results: OWC Spar Buoy

The First test shown, is made with the excitation
force in 6. This excitation force was build to vali-
date the system and force a symmetrical behavior
of the control. The resultant control can be found
in figure 7.

The second test, is done for an irregular wave
environment with three waves, where the excitation
force is in figure 8.

5. Conclusions

The present article applied a Discontinuous
Galerkin Finite Element Method (DG-FEM) to
solve nonlinear optimal control problems based on
Pontryagin’s Maximum Principle. The methodol-
ogy was extensively tested with arbitrary precision
and refinement problems. The DG-FEM can be
viewed as an alternative to the established spec-
tral methods [21]. Pontryagin’s Maximum Princi-
ple DG-FEM has several advantages, namely the
possibility of easily handling discontinuous control,
as the control and the ability to use mesh refine-
ment techniques to improve the accuracy. The
spectral methods handle mesh refinement by ad-
justing the number of points and their global po-
sition of the mesh. However, the approximation
of the solution spans across the computational do-
main. On the other hand, DG-FEM based al-
gorithms are significantly more versatile than the
spectral methods. This method allows a simple
implementation of local mesh and polynomial re-
finement (hp-refinement). The mesh refinement is
based on element subdivision, while polynomial re-
finement uses the adjustment of the degree of the

8



0 1 2 3 4 5
t

4

2

0

2

4

6

exact solution
starting guess for BC

iteration 1
iteration 2
iteration 4
iteration 6
iteration 8
converged

(s)

Figure 5: Sensitivity analysis of the shooting
method.

Figure 6: Altered excitation force

polynomial approximation within each element ac-
cording to a specified criterion. Another important
difference between the spectral methods and the
proposed methodology concerns the maximization
of the Hamiltonian. With spectral methods, the
maximization is ensured at specific control points.
The DG-FEM guarantees the maximization of the
Hamiltonian using an integral approach that uses
an element-wise continuous solution.

In this paper, the mesh refinement in bang-bang
optimal control problems was explored. An iter-
ative approach was implemented to compute the
switching instant. The results showed that it was
possible to compute the switching points within
the prescribed accuracy and, moreover, it was also
demonstrated that the convergence was p+1, where
p is the order of the polynomial. This is an improve-
ment in comparison with previous results published
in [10], where the order of convergence was p+ 1/2.
This was due to a change in the DG-FEM formu-
lation. The shooting method was also explored as
a viable way to solve these problems. It performed
well under all the test problems as well as the sen-
sitivity analysis made to the admissible values of
the arbitrary initial boundary condition. But, in-
conclusively, this was not possible to apply to the
OWC Spar buoy system.

Another important result was the demonstra-
tion that double precision (15 significant digits) is
not enough to compute accurate solutions for high-
order polynomial approximations. The results ob-
tained in this thesis used a prescribed number of
significant digits, typically 100, such that the order
of convergence was always p + 1 independently of

(a) Control for figure 6
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(b) Control for figure 6
zoomed

Figure 7: Control with excitation force in 6.

Figure 8: Excitation force with 3 wave periods.

the mesh size.

The optimal control of an OWC spar buoy wave
energy converter (WEC) was also implemented fol-
lowing the previous works made by the IST Wave
Energy Group. The goal was to implement the so-
called “Latching or phase control” of the WEC to
maximize the power extraction. This is done by
performing an optimal bang-bang control of a high-
speed stop valve installed in series with the turbine
rotor. The results presented for the studied OWC
spar buoy showed several improvements when com-
pared to previous published results [10]. The chat-
tering phenomenon was largely reduced even with-
out a regularization term used in [10] to penalize
the closing of the valve. Furthermore, the optimal
control achieved a 20% of increase in the generated
turbine power, in comparison with the uncontrolled
scenario.

References

[1] M. Baccouch. Analysis of a posteriori error es-
timates of the discontinuous Galerkin method
for nonlinear ordinary differential equations.
Applied Numerical Mathematics, 106:129–153,
2016.

[2] R. L. Burden and J. D. Faires. Numerical Anal-
ysis. Brooks/Cole Cengage Learning, 9th edi-
tion, 2011.

[3] G. Elnagar, M. A. Kazemi, and M. Raz-
zaghi. The pseudospectral legendre method
for discretizing optimal control problems.

9



(a) Control for figure 8

200 220 240 260 280 300
t

0.0

0.2

0.4

0.6

0.8

1.0

u

(s)

(b) Control for figure 8
zoomed

Figure 9: Control with excitation force in 8.

IEEE Transactions on Automatic Control,
40(10):1793–1796, 1995.

[4] A. F. O. Falcão, J. C. C. Henriques, and
L. M. C. Gato. Self-rectifying air turbines for
wave energy conversion : A comparative anal-
ysis. Renewable and Sustainable Energy Re-
views, 91(January):1231–1241, 2018.

[5] A. F. O. Falcão, L. M. C. Gato, and E. P. A. S.
Nunes. A novel radial self-rectifying air turbine
for use in wave energy converters. part 2. re-
sults from model testing. Renewable Energy,
53:159 – 164, 2013.

[6] A. F. O. Falcão, J. C. C. Henriques, and J. J.
Cândido. Dynamics and optimization of the
owc spar buoy wave energy converter. Renew-
able Energy, 48:369 – 381, 2012.

[7] A. F. O. Falcão, J. C. C. Henriques, and
L. M. C. Gato”. Oscillating-water-column
wave energy converters and air turbines: A
review. Renewable Energy, 85:1391–1424, 01
2016.

[8] A. F. de O. Falcão. Control of an oscillating-
water-column wave power plant for maximum
energy production. Applied Ocean Research,
24(2):73 – 82, 2002.

[9] J. C. C. Henriques, A. F. de O. Falcão, R. P. F.
Gomes, and L. M. C. Gato. Latching control
of an OWC spar-buoy wave energy converter
in regular waves. In International Conference
on Offshore Mechanics and Arctic Engineer-
ing, volume 44915, pages 641–650. American
Society of Mechanical Engineers, 2012.

[10] J. C. C. Henriques, J. M. Lemos, L. Eça,
L. M. C. Gato, and A. F. O. Falcão. A high-
order Discontinuous Galerkin Method with
mesh refinement for optimal control. Automat-
ica, 85:70–82, 2017.

[11] J. C. C. Henriques, J. C. C. Portillo, W. Sheng,
L. M. C. Gato, and A. F. O. Falcão. Dynamics
and control of air turbines for oscillating water
columns : Case study. Renewable and Sustain-
able Energy Reviews, 112:571–589, 2019.

[12] T. Karthikeyan, A. Samad, and R. Badhur-
shah. Review of air turbines for wave energy
conversion. In 2013 International Conference
on Renewable Energy and Sustainable Energy
(ICRESE), pages 183–191, 2013.

[13] F. L. Lewis, D. Vrabie, and V. L. Syrmos. Op-
timal Control. John Wiley & Sons, inc., 3rd
edition, 2012.

[14] D. G. Luenberger. Introduction to dynamic
systems: theory, models, and applications. J.
Wiley & Sons, New York, Chichester, Bris-
bane, 1979.

[15] A. F. de O Falcão. Wave energy utilization :
A review of the technologies. Renewable and
Sustainable Energy Reviews, 14:899–918, 2009.

[16] M. Penalba and J. V. Ringwood. A Review of
Wave-to-Wire Models for Wave Energy Con-
verters. Energies, 9, 2016.

[17] W. H. Press, J. C. A. Wevers, B. P. Flannery,
S. A. Teukolsky, W. T. Vetterling, B. Flannery,
and W. T. Vetterling. Numerical Recipes in C:
The Art of Scientific Computing. Number v. 1
in Numerical Recipes in C book set. Cambridge
University Press, 1992.

[18] Qi Gong, Wei Kang, and I. M. Ross. A
pseudospectral method for the optimal con-
trol of constrained feedback linearizable sys-
tems. IEEE Transactions on Automatic Con-
trol, 51(7):1115–1129, July 2006.

[19] J. N. Reddy. Introduction to the finite element
Method. McGraw-Hill, 3rd edition, 2006.

[20] W. H. Reed and T. R. Hill. Triangular mesh
methods for the neutron transport equation.
Technical report, University of California, Los
Alamos Scientific Laboratory, 1973.

[21] I. M. Ross and M. Karpenko. A review of
pseudospectral optimal control: From theory
to flight. Annual Reviews in Control, 36(2):182
– 197, 2012.
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