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Resumo

Os métodos pseudo-espectrais (PS) rapidamente tornaram-se a ferramenta padrão para resolver

numericamente problemas de controlo óptimo (OCP). Uma das caracterı́sticas principais dos métodos

PS é a capacidade de atingir uma elevada precisão em OCPs contı́nuos. Esta precisão resulta da

aproximação dos estados e do controlo ser feita usando um polinómio em todo o domı́nio. No en-

tanto, a elevada precisão perde-se para problemas do tipo bang-bang devido à natureza descontı́nua

do controlo. Esta tese pretende estudar uma abordagem alternativa aos métodos PS: um método de

elementos finitos designado por Galerkin descontinuo (DG-FEM) usando o Prı́ncipio do Máximo de Pon-

tryagin. Contrastando com os métodos PS, o DG-FEM usa uma solução polinomial por troços para a

trajéctória dos estados e do controlo, onde o refinamento de malha e polinomial são facilmente imple-

mentáveis. A aplicação de um refinamento de malha permite obter uma solução de elevada precisão

mesmo para problemas tipo bang-bang. Foram considerados dois casos teste de OCPs: um contı́nuo e

um bang-bang. Foi realizado um estudo detalhado da convergência do método para estes dois casos.

Para isso, foi usada uma biblioteca que permite aritmética de ponto flutuante com precisão arbitrária.

Os resultados demonstraram os problemas esperados pelo uso precisão dupla para polinónios de grau

superior a seis. Finalmente, o método foi aplicado com sucesso a um problema de controlo óptimo de

uma bóia tipo “OWC spar” de extração de energia das ondas. Os resultados mostraram um aumento

de 20% na potência da turbina em comparação com o controlo padrão.

Palavras-chave: controlo óptimo não-linear, coluna de água oscilante, Galerkin descontı́nuo,

princı́pio do máximo de Pontyagin, método de tiro
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Abstract

Pseudospectral (PS) methods appeared in the 1990s and became an almost standard tool for the

numerical solution of optimal control problems (OCPs). One of the fundamental characteristics of the PS

methods is the ability to achieve high-order accuracy for smooth OCPs. This accuracy results from ap-

proximating the state and control trajectories by single polynomials across the entire domain. However,

the high-order accuracy is usually lost for bang-bang OCPs because of the non-smooth nature of the

control. The current thesis aims to study an alternative approach to PS methods: a high-order Discontin-

uous Galerkin Finite Element Method (DG-FEM) for the numerical solution of OCP based on Pontryagin’s

Maximum Principle. In contrast with the PS methods, the DG-FEM use a piecewise polynomial solution

of the state and control trajectories where mesh and polynomial refinement are straightforward to im-

plement. The application of mesh refinement allows obtaining high-order solutions even for bang-bang

OCPs. To show the capabilities of the method, two test cases were considered: a continuous and a

bang-bang time-solutions. A detailed study of the convergence properties of the method was performed

for both cases. For that, a floating-point arithmetic library with arbitrary precision was used. The results

demonstrated the expect problems of using double-precision arithmetic for polynomial approximations

of degree above six. Finally, the method was successfully applied for optimal control of an OWC spar

buoy wave energy converter. The results showed a 20% in the turbine output power in comparison with

the standard non-optimal control.

Keywords: nonlinear optimal control, discontinuous Galerkin, shooting method, oscillating wa-

ter column, Pontryagin’s maximum principle
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Chapter 1

Introduction

1.1 Motivation and Topic Review

Wave energy converters (WECs) still prove a challenge to engineering, either due to their inherent

oscillatory behavior, which requires different forms of control to achieve higher efficiencies, or the com-

plexity of the wave-device interactions, which motivates the existence of a manifold of technologies and

devices for the extraction. A. F. de O. Falcão [1] did a thorough review of these. Penalba and Ringwood

[2] also did a good review of WEC devices, along with a comparison of the used model’s complexity.

The Oscillating Water Column (OWC) principle is one of many viable ways to extract energy from

ocean waves. This principle uses the waves’ oscillation to move a water column (inside a device, either

floating or fixed), which changes the air pressure between a turbine and the environment. The pressure

gradient forces air through the turbine and induces its rotor movement. The rotor of the turbine is

attached to an electrical energy generator, which supplies power to the grid.

This principle was first introduced as an energy converter by Yoshio Masuda in 1947 [1]. The system

was idealized with unidirectional turbine and control valves that would open according to the flow direc-

tion, redirection the air flow for the correct direction of the turbine. The most common design nowadays

uses a self rectifying turbine, i.e. a turbine that keeps its sense of rotation independent of the sense

of the air flow [3], thus eliminating the need for valves to control the flow direction. The most common

turbine for this purpose is the Wells turbine (with guiding vanes) [4, 5] attached to a doubly fed induction

generator (DFIG). The Wells turbine is used due to its simplicity and capability to deal with bi-directional

flows [3]. Some designs replace the Wells turbine (reaction turbine) with an impulse turbine, which has

been shown to increase the operating range with higher efficiency [3, 6]. A reaction turbine is kept rotat-

ing due to the deflection of air hitting the blades, while an impulse turbine relies on the impulse given by

the fluid passing through the blades, figure 1.1 shows the most different designs of turbines [3].
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Figure 1.1: The most used turbine for OWC wave energy converters. a) Wells turbine. b) Axial impulse

turbine. c) Bi-radial turbine.

Regarding control for OWCs, it is mostly implemented through the actuation of either a flow-limiting

control valve or the electromagnetic power of the generator. There are also a variety of implemented

strategies with different objectives. A common goal is to attain a steady power supply to the grid [7, 8].

Other control strategies focus on finding the best power output of the generator (power supplied to the

grid) [9, 10]. Figure 1.2 shows a distribution of control strategies for a selection of 30 articles analyzed

(Resultant from a search in EBSCO for the SU TERMS ”Oscillating water column” and ”Control”).

Recently, the Wave Energy Group of Instituto Superior Técnico (IST) developed a new self-rectifying

bi-radial turbine with which proved to have a better performance than a Wells turbine, for this applica-

tion [3, 6]. The turbine has been tested in laboratory and under real sea conditions at the Mutriku wave

power plant, Basque Country, Spain. This turbine can be equipped with a simple high-speed stop valve

that allows an open/closed operation as well as the partial closure of the valve. This thesis will only focus

on the open/closed usage of the valve, which will be treated as a bang bang optimal control problem

(OCP).

An upcoming method to solve OCP problems is the finite element method: Discontinuous Galerkin

(DG-FEM). This FEM method was proposed by Reed and Hill [11] as a method to solve nonlinear

differential equations. In this thesis, the DG-FEM with a mesh refinement technique will be used with the

same goal as Henriques et al. [12] but with a different formulation, with a specific focus on the bang-bang

control problems, as they are troublesome to pseudo-spectral methods.

The DG-FEM method to solve OCP problems, takes advantage of a discretization of the problem

time domain element-wise and the weak form of the differential equations, which is very well known of

most used finite element methods [13]. These characteristics ar combined a to achieve high order of

accuracy and convergence characteristics [14]. Furthermore, the refinement of the time mesh is comes

naturally and the discontinuities (like the solutions of bang-bang OCPs) are easily handled because the

boundary between each element has a discontinuity.

Nowadays, the most established numerical solutions to optimal control problems, are the pseudo-

spectral methods (PS), which were first introduced in the 1990s Elnagar et al. [15] and have gathered

popularity, to the point of being the standard continuous-time OCP solving method, in research and

industry [16]. These methods present high order of accuracy for smooth OCP [16].

The PS methods use polynomials to approximate the entire time domain of the OCP, where each

polynomial used is pondered by a variable coefficient. These coefficients are computed according to the
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problem; using the minimization of a norm calculated in a chosen quadrature (preferably, Gauss-Lobatto

or Chebyshev–Gauss–Lobatto [16]). The refinement of solutions is made by increasing the number of

polynomials and the number of points in the quadrature. Since the the variables are approximated by

polynomials (which are continuous and smooth), these methods are bound to have accuracy problems

for discontinuous our non smooth OCPs.
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Figure 1.2: Control options distribution for 30 articles

1.2 Objectives

This thesis has the main goal of formulating and solving the optimal bang-bang control problem for

the OWC spar buoy described in the motivation and topic review (section 1.1), where the control will rely,

solely, on the high-speed stop valve. The valve, as said before, will only be used with open and close

configurations. Remember that bang-bang control problems are a special type of on-off control where

the objective function and state functions are linear with the control variable. This problem has been

solved before by Henriques et al. [12] and Valério [17], but the bang-bang control showed a chattering

problem for both cases (closing and opening the valve many times in a short time interval).

This work is an attempt to eliminate the previously observed chattering problems. This requires the

development of an environment capable of solving optimal control problems of fixed initial conditions and

terminal time, where the control may be of bang-bang type. The proposed method to solve this control

problem is the finite element method (FEM), namely the discontinuous Galerkin (DG-FEM) method. This

method will provide a better approximation to discontinuous functions (since a discontinuity is allowed

at each element boundary) and will increase the capacity of refining the solutions when compared to

other continuous time methods like the spectral methods. These methods approximate the whole time

domain as a sum of several polynomials. Ross and Karpenko [16] wrote a comprehensive review on
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this topic for a wide range of control problems. But this type of numerical formulation inherently fails to

approximate discontinuous functions.

The developed method (DG-FEM) will follow a different approach to [12] and [17] and should allow

the transition for any optimal control problem of this type. With this in mind, it is important not only to

test the solver with the OWC spar buoy but with other systems as well, with a special focus on validating

and proofing. It is expected that the optimal control solver environment will be able to numerically solve

any other optimal control problems, with these type of restrictions.

1.3 Thesis Structure

This thesis is divided into 7 chapters including the introduction, where a short overview of the topic,

the motivation and the objectives are presented.

Chapter 2 provides a review of the OWC spar buoy system and its dynamics, where the main physical

and numerical principles will be described extensively, along with some remarks and simplifications. The

assumptions for the optimal control of the OWC spar buoy will also be made here. The model described

in this section will follow linear water wave theory and access the nonlinearities of the pressure, the

turbine and the generator.

The third chapter offers the mathematical basis for the numerical formulation of the optimal control,

the DG-FEM method and the algorithms that join these; namely: forward integration of the state variables

and control followed by backward integration of the adjoint states and the shooting method.

Chapter 4 shows, graphically, the algorithms and numerical methods developed in chapter 3. This is

done using flowcharts for each of the modules. These flowcharts are preceded by a short explanation

to help following the schemes.

The fifth chapter is dedicated to the testing and validation of the algorithms shown in chapter 4. Ini-

tially, a continuous nonlinear control problem is solved, where the algorithms are tested for their precision

and matched with the machine precision. Then follows the solution of a bang-bang problem, where the

importance of refinement is accessed. Still, on this problem, the sensitivity of the shooting method is

evaluated.

Chapter 6 tackles the problem of the optimal control of the OWC spar buoy, with one single wave and

three waves with different frequencies and amplitudes.

Finally, in chapter 7 the conclusions are taken, regarding the methods and results of the control,

followed by a description of possible future work that may be done to add or complete this thesis.

After the main body of the thesis, appendix A also presents some of the work done, but this work

was not used for any of the parts of the previous formulation. Appendix B presents the tables for the

excitation force of the waves and appendix C shows the documentation for the code developed in python,

from the extensive description of each module to practical examples of their use.
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Chapter 2

OWC Spar Buoy System

The OWC spar buoy system consists of a long, hollow and axisymmetric buoy with a Turbine and

a generator attached to its head, approximately as it is shown in figure 2.1. Its long shape eliminates

some of the radiation terms resultant from the interaction of the waves with the water column and makes

the approximation of the water column to a rigid piston more viable. The axisymmetry assures the body

will have the same behavior independently of the wave direction. Note, as well, the buoy has a mounted

weight at the end of the tail. This weight is a method to reduce pitch and roll rotation modes. In general,

these rotation modes are the more problematic movement modes of these types of devices [18].

As stated before the oscillating water column principle (OWC) is a method to extract energy from

ocean waves (WEC). The Energy scheme 2.2 suggests, several key components ensure the energy

from the waves is transmitted to the power grid. The ocean waves interact with the OWC spar buoy by

diffraction Fdi , on the other hand, the OWC spar buoy exchanges energy to the waves with the radiation

forces. Then, the air chamber, located between the water column and turbine (see figure 2.1) receives

the energy from the water column with the compression and decompression of air. The OWC spar buoy

is affected by the air chamber due to impulsion effects (caused by the pressure p). Then the energy going

to the air chamber is accumulated in the air pressure, which is traded with the turbine, in exchange for

mass outtake or mass intake to the chamber. The turbine, then, transforms the mass flow and pressure

into torque. Of course, part of the mass and pressure is lost to the atmosphere. The torque given by

the turbine, along with a control torque provided by the generator will rotate both the generator and the

turbine rotors, as they are rigidly coupled. In the presence of torque and rotational speed, the generator

is then able to supply that power to the grid.

This chapter presents the Spar Buoy theoretical system with a description of the energy transmission

effects. The formulation of the spar buoy dynamics present in this chapter mainly follows the time domain

approach already developed by Valério [17] and Henriques et al. [19].
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Figure 2.1: Cross section of the buoy scheme.

2.1 Physical Model of the Spar Buoy

2.1.1 Hydrodynamics

The OWC spar buoy is a two-body system composed of a floater and tail tube filled with water. The

floater and the OWC free-surface are denoted as body 1 and 2, respectively, as depicted in Fig. 2.1. For

computing the hydrodynamic coefficients in the frequency domain, body 2 is modeled as an imaginary

neutrally buoyant rigid piston.

The discussed model will only consider the heave motion of the buoy (up and down motion). Fur-

thermore, it is assumed that the surface of the inside water column is plane and horizontal. The vertical

position of body i is named xi , with the x-axes pointing upward. At the equilibrium position xi = 0. With

the previous assumptions, the first two equations of the buoy’s dynamics, describing the heave motion,

are:

(m1 + A∞11)ẍ1 + A∞12 ẍ2 = −wgS1x1 + S2patmp
∗ + Fd1 − R11(ẋ1)− R12(ẋ2); (2.1)

A∞21 ẍ1 + (m2 + A∞22)ẍ2 = −wgS2x2 − S2patmp
∗ + Fd2 − R21(ẋ1)− R22(ẋ2); (2.2)

where the mass of body i is denoted as mi . The limiting value at infinite frequency of the added mass of

body i as affected by the motion of body j is defined by A∞i j . The buoy and the inside OWC are under the
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Figure 2.2: Wave-to-wire power-flow on an OWC wave energy converter. The bidirectional power-flow
between the air chamber, the turbine and the atmosphere is represented by double arrows. In the figure,
V and I stand for voltage and electrical current, respectively. Adapted from [4].

effect of excitation Fdi , radiation Ri j , and the hydrostatic restoring forces wgSixi , where w is the water

density, g the gravity acceleration and Si the area of the section parallel to the water surface for each

body. The force resulting from the air chamber pressure is represented by the term Sipatmp
∗, patm is the

atmospheric pressure, and p∗ is the dimensionless relative pressure inside the air chamber defined by

p∗ =
p − patm

patm
: (2.3)

Here p is the absolute pressure inside the air chamber.

The radiation forces are defined by the terms A∞i j ẍj + Ri j . Ri j are terms defined by a convolution

integral:

Ri =

Z t

0

Ki j(t − s)ẋj(s)ds: (2.4)

For simplification, in this thesis, Rij was be calculated as viscous dampers: R12 = R21 = 0 and R11 = c1ẋ1,

R22 = c2ẋ2. This is possible due to the reduced order of magnitude of the cross terms (R12; R21) with

respect to the diagonal terms (R11; R22).

The wave excitation forces are represented by Fdi . With the assumption of linear water wave theory,

it can be computed as:

Fdi =
NX
m=1

Γi (!m)A(!m)cos(!mt + ffiim + ffir ); (2.5)

i.e. the sum of several regular waves with different angular frequency. Γi represents the excitation force

coefficient for body i , A the frequency dependent wave amplitude, ffimi is the frequency response of body

i and ffir is just a random phase [19]. A(!m) may be calculated with:

A =
p

∆!mS!m!m: (2.6)

where S!m is the power spectral density of the wave climate and ∆!m is a frequency interval resultant

from the discretization of the frequency spectrum. For a given ∆!m the correspondent !m should be

placed in the middle of the interval:

!m = !m−1 +
1

2
(∆!m−1 + ∆!m): (2.7)
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The power spectral density S!m may be given by Pierson-Moscowitz formula:

S!m = 262:9
H2
s

!5
mT

4
e

e
− 1054

(!mTe )4 ; (2.8)

where Te represents the wave energy period and Hs the significant wave height (which are referent to

the wave climate). The tables for Γ(!) and ffi! are present in annex B.

To transform the system in a state space representation, let v1 = ẋ1 and v2 = ẋ2. Introducing the total

mass matrix (2.9), the closed form of equations (2.1) and (2.2) is derived as:

M =

24m1 + A∞11 A∞12

A∞21 m2 + A∞22

35 (2.9)

where

v̇1 = Det(M)−1
“

(m2 + A∞22)F1 − A∞12F2

”
; (2.10)

v̇2 = Det(M)−1
`
(m1 + A∞11)F2 − A∞21F1

´
; (2.11)

F1 = −wgS1x1 + S2patmp
∗ + Fd1 + R11(v1) + R12(v2);

F2 = −wgS2x2 − S2patmp
∗ + Fd2 + R21(v1) + R22(v2):

2.1.2 Pneumatic Chamber

The pneumatic chamber is located between the water column and the turbine. For the developed

model, the water column will act as a rigid ”piston”, whose dynamics are already described in (2.10)

and (2.11) (x1; x2; v1; v2). The turbine will then acquire some of the pneumatic energy and allow the

movement of mass from the system ṁt (which is defined in subsection 2.1.3. Below, there is a short

demonstration for the dynamics equation of the pressure accounting with compressibility effects and

starting on the classic continuity equation:

d
dt

(V ) = −ṁt (2.12)

̇V + V̇ = −ṁt (2.13)

The volume of the air chamber V and its variation can be defined as:

V = (h0 + x1 − x2)S2; (2.14)

for which, h0 is the height of the chamber at the equilibrium position. The compression/decompression

of air is assumed to be an isentropic process and the air is modeled as a perfect gas:

p

‚
=
patm

‚atm
(2.15)
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where ‚ is the specific heat ratio for air (1.4) and atm is the air density at atmospheric pressure. Rear-

ranging:

 = atm

„
p

patm

«1=‚

= atm(p∗ + 1)1=‚ (2.16)

̇ = atm
1

‚
(p∗ + 1)1=‚−1ṗ∗ (2.17)

From the algebraic manipulation of equation (2.13) and acknowledging the definitions in (2.14) and

(2.16), results expression

ṗ∗ = − ‚

S2

ṁt(p
∗ + 1)

h0 + x1 − x2
− ‚ (p∗ + 1)(ẋ1 − ẋ2)

h0 + x1 − x2
(2.18)

that shows, explicitly, all the variables and constants, or equation

ṗ∗ = −‚
 
ṁt

V
+
V̇

V

!
(p∗ + 1) (2.19)

which is physically more intuitive. p∗ is the fifth state variable. Note that for this non-dimensional pressure

definition, the time variation is the same as the pressure (excluding the patm constant (ṗ = patmṗ
∗)).

With these expressions, the system’s first non-linearity is, finally, introduced.

2.1.3 Power Take-off System Dynamics

The final power transmission to the generator is assured by a shaft coupling turbine and generator.

The dynamics equation for the rotation of the shaft is:

IΩ̇ = Tt − Tgen (2.20)

in which, Tt is the Torque supplied by the turbine, Tgen is the torque absorbed by the generator, I is the

moment of inertia along the axis of rotation and Ω is the rotational speed of the shaft. Tt and Tgen are

usually a function of the flow characteristics, and type of devices and their size. It is typical, when dealing

with turbo-machines such as the bi-radial turbine, to normalize the variables, by the characteristics of

the flow and the machine (like the rotor diameter d). The expressions for the dimensionless pressure

head Ψ, flow Φ and power Π are:

Ψ =
p∗patm

td
2Ω2

Φ =
ṁt

td
3Ω

Π =
Pt

td
5Ω3

(2.21)

p∗ =
Ψtd

2Ω2

patm
ṁt = td

3Ω Pt = Πtd
5Ω3 (2.22)

For the dimensionalization just apply the inverse transformation (2.22), being p∗ the non dimensional

pressure, ṁt the mass air flow and Pt the turbine power. To obtain Tt for expression (2.20) remember

that Tt = Pt
Ω . On these expressions, it is also present the term t this air density is different from  in

the air chamber (2.18, 2.19), since it is correspondent to the density of the inlet/outlet of air through the
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Figure 2.3: Turbine curves

turbine:

t =

8<: (p∗ + 1)
1
‚ atm; p

∗ > 0 (2.23)

atm, otherwise

To calculate Tt and ṁt the data from [20] can be used. Figure 2.3 shows the curves of the data

regarding the bi-radial turbine.

In fact, the data that was used can be seen in annex A.1 where there is a more detailed version

of these curves, contempleting the option of partial closure of the valve. The curves in figure 2.3 were

generated with the valve completely open. The expressions used to model the turbine for the bang-bang

problem were:

Φ̂(Ψ; u) =
0:12695Ψ4 − 0:71Ψ3 + 5:068Ψ2 + 4:289Ψ

Ψ3 − 2:561Ψ2 + 37:46Ψ + 6:278
(2.24)

Π̂(Φ) = −272Φ10 + 252Φ8 − 84:26Φ6 + 12:9Φ4 + 2:605Φ2 − 0:00657 (2.25)

The fitting error for this curves can be seen as well in annex A.1.

Without the effect of partial valve closure in annex A, the control problem may be transformed into

a specific type of on-off control: bang-bang control problem. For these types of problems, the state

function and the objective function need to be linear with the control [21].

The control for the buoy is the valve u, with u = 1 corresponding the the open valve and u = 0 to the

closed valve. The adapted problem for the application of the bang-bang principle, requires

Tt = uΠΩ2d5t (2.26)

ṁt = uΦΩd3t (2.27)
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and for the maximization of the turbine power

Pt = uΠΩ3d5t (2.28)

The bang-bang control problems will be better discussed in chapter 4.

Regarding the generator electromagnetic torque, equation (2.22) shows that the turbine output power

should be proportional to Ω3 if the time-averaged turbine aerodynamic efficiency is to be maximized. In

practice, if the coupling between the turbine aerodynamics and the spar-buoy OWC hydrodynamics is

taken into account, we can use a relation of the type [22]

P
opt
gen = aΩb (2.29)

where b is about 3 (in fact 3:33 was used) and the constant a used was 0:025. To obtain the torque for

the optimal power, just aknowledge that

Tgen = Pgen=Ω = aΩb−1 (2.30)
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Chapter 3

Optimal Control Solution Using a

Discontinuous Galerkin Finite Element

Method

In this section a viable solver is developed for linear and nonlinear optimal control problems, with

fixed terminal time and in continuous time (finite elements). First, it starts with a review of optimal control

theory, then follows a review of the finite element method, specifically the Discontinuous Galerkin method

(DG-FEM), and finally the integration of optimal control and finite elements. It provides the base for the

next chapter where this theory is validated.

3.1 Optimal Control Theory

The original Pontryagin’s Maximum Principle (PMP) focuses on finding an optimal path for a set of

variables for the maximization of a specified performance index J given by a final state cost cf and

a Lagrangian function L pondered over time. This originates the problem described by the following

expressions [21][17]:

Maximize:

J = cf
`
x(tf )

´
+

Z tf

t0

L(t; x;u) dt; (3.1)

subject to:

ẋ = f(t; x;u) (3.2)

and the boundary condition:

x(t0) = x0; (3.3)

where x is the array of state variables, u are the control variables and t is the time. The use of bold
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symbolizes vectors and bold capital letters matrices. By default vectors are column. cf is the cost

associated with final states, t0 and tf are the initial and final time of the problem respectively. The upper

dot denotes time derivative.

Now, we may add the term −
R tf
t0

–T (ẋ− f(t; x;u)) dt to the performance index J:

I = cf
`
x(tf )

´
+

Z tf

t0

L dt −
Z tf

t0

–T (ẋ− f(t; x;u)) dt; (3.4)

where – are Lagrange multipliers, also called co-state variables. This term ensures the systems dy-

namics (3.2) are satisfied, since for optimal I:
R tf
t0

–T (ẋ − f(t; x;u)) dt = 0. Re-arranging (3.4) results

in:

I = cf
`
x(tf )

´
+

Z tf

t0

`
L(t; x;u) + –T f(t; x;u)

´
dt −

Z tf

t0

`
–T ẋ

´
: dt (3.5)

Now the Hamiltonian function can be defined as

H = L(t; x;u) + –T f(t; x;u) (3.6)

and I becomes:

I = cf
`
x(tf )

´
+

Z tf

t0

H(t; x;u;–) dt −
Z tf

t0

`
–T ẋ

´
dt (3.7)

To remove the time derivative of x in this expression, integrate by parts the last term:
R tf
t0

`
–T ẋ

´
dt.

Which results in:

I = cf
`
x(tf )

´
− –T (tf )x(tf ) + –T (t0)x(t0) +

Z tf

t0

H(t; x;u;–) dt +

Z tf

t0

`
–̇
T

x
´

dt: (3.8)

If u is the optimal control, then x will also need to follow the optimal path, which implies that∇xI and∇uI

need to be 0 (∇ represents the gradient operator and∇ffif the gradient of f along ffi: @f
@ffii

). Remembering

that x(t0) is fixed and its derivative about x is 0, the expressions for this condition stay:

∇uI =

Z tf

t0

∇uH(t; x;u;–) dt = 0; (3.9)

∇xI = ∇xcf
`
x(tf )

´
−∇x(–Tx(tf )) +

Z tf

t0

∇xH(t; x;u;–) + –̇ dt = 0: (3.10)

Forcing the conditions (3.9) and (3.10) to be true for any time, then at the final time:

–(tf ) = ∇x(tf )cf
`
x(tf )

´
(3.11)

and at any intermediate time

–̇ = −∇xH(t; x;u;–); (3.12)

0 = ∇uH(t; x;u;–); (3.13)

Additionally, if x and u are optimal, Lagrange multipliers will also need to be optimal. A way to ensure
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they are is to recall (3.7) and make ∇–I = 0 for any time instant:

ẋ = ∇–H(t; x;u;–) (3.14)

The PMP states the maximization ofH can be done in these three stages: solving the state variables,

through expression (3.14); solving the co-state variables, with the solution of (3.12) (Lagrange multipli-

ers) and solving the optimal control equation (3.13). Expression (3.13) changes for the case where u as

restrictions to a more generic form u : H = max(H)

Expression (3.11), is the boundary condition for –. With a boundary condition placed at tf the most

natural way to solve equation (3.12) is to integrate it backwards in time (from tf to t0). The first method

proposed in this thesis for the PMP problem is to solve the control and the state variables forward in time

and then solving the co-state variables backward (iteratively).

An alternative to the forward and backward integration can be found in Lewis et al. [21] book. Where

the problem is treated as a two-point boundary condition differential equation problem. This formulation

is also developed in this thesis, even though, for the generic case, the numerical solution for the coupled

systems (3.14)-(3.12) does not contemplate a changing variable through iterations (namely u) [23].

3.2 Discontinuous Galerkin Finite Element Method

The problem depicted in the previous section 3.1 requires the solution for two vectorial differential

equations which describe a system in state-space form: (3.14) and (3.12). These equations do not

always have an analytical solution or the solution may be less accurate or convenient than the numerical.

So for that purpose, on the course of this work, the Discontinuous Galerkin Finite Element Method (DG-

FEM) will be used [13],[14], whose formulation can be followed in (3.15) through (3.25), for a generic

state-space system (3.15).

The formulation with finite elements is particularly useful if the grid (points in time) is large to the

point where the sampling has the same frequency as some of the systems’ dynamics. Solving these

problems with a discrete time method is also viable, but the choice of time intervals needs to be well

planned. Even so, it is possible to miss some detail like the exact switching time of a bang-bang control

problem (time where the control changes from 1 to 0 or vice-versa), which would require a sampling time

refinement that is more easily made with a finite element formulation (see section 4.2 for a solution to

this kind of problem). Spectral methods can be used as well to solve optimal control problems [16], but

it is harder to deal with on/off nonlinearities when the problem is looked at from the whole domain, as is

the case of the spectral formulation. The weak form, that is used for the formulation of FEM may be also

very useful for some problems as it turns the constraints weaker and may offer a better solution for the

problems.
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3.2.1 DG-FEM formulation

Assume there is a system formulated by equation (3.15). Recall that: x is the array of state variables;

u is the array of control variables; t is the time and f is the state function (vectorial function with the same

length as x), which in expression (3.15) is nonlinear and time-dependent.

ẋ = f(x;u; t);where u(t) is known: (3.15)

Multiplying (3.15) by a continuous smooth function v and integrating along the domain (t0 to tf ):Z tf

t0

ẋv dt =

Z tf

t0

fv: dt (3.16)

Defining now an approximation for x as

x̂(t) =

nelemX
e=1

x̃e(t); (3.17)

x̃e(t) =

8><>:Cep(fi e) , if test < t < test + ∆te

0 , otherwise
; (3.18)

with:

Ce = cei;j ; 1 ≤ i ≤ nx; (3.19)

p(fi e) = pj(fi
e); 0 ≤ j ≤ np; (3.20)

fi e =
2t − test − tef

∆te
; (3.21)

∆te = tef − test; (3.22)

where p = pi (polynomials of degree i , 0 ≤ i ≤ np) and np the number of polynomials (which affects

the quality of the approximation), test is the starting time of element e, tef the final time and ∆te the

time interval covered by element e, also, nx represents the number of state variables. fi e , the local

time, is defined in expression (3.21). Matrix Ce contains constants where each line corresponds to the

approximation of one x and each column multiplies with a polynomial of a certain degree, as shows

equation (3.18).

Function v is approximated by a set containing the same polynomials as the ones used in the ap-

proximation ( ṽ = pi ). Substituting, as well, x in (3.16) by (3.18), divides the integral by elements. The

calculations for each element are:

∆te

2

Z 1

−1

2

∆te
x̃e ṽT

dfi e =
∆te

2

Z 1

−1

f̃
e
ṽT

dfi e : (3.23)

The left hand side of the equation integrated by parts originates the boundary condition. Rearranging the

terms we get the final expressions (per element) (3.24), for forward integration and (3.25), for backwards
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integration.

− x̃e(1)
`
ṽ(1)

´T
+

Z 1

−1

x̃e ˙̃vT dfi e = −
Z 1

−1

f(x̃e ;u; fi e)ṽT
dfi e − x̂(te−1

f )
`
ṽ(−1)

´T
; (3.24)

x̃e(−1)
`
ṽ(−1)

´T
+

Z 1

−1

x̃e ˙̃vT dfi e = −
Z 1

−1

f(x̃e ;u; fi e)ṽT
dfi e + x̂(te+1

0 )
`
ṽ(1)

´T
: (3.25)

In equation (3.24), x̂(te−1
f ) is the approximation of x evaluated at the end of the previous element

(x̃e−1
(1)). On the other hand, in (3.25), x̂(te+1

0 ) represents the approximation of x calculated at the

beginning of the next element (x̃e+1
(−1)). Figure 3.1 shows a scheme of the position of the boundary

conditions for each of the cases.

e0 e1 e2 e3

Boundary

condition

x̂(t−1
f )

x̂(t0
f ) x̂(t1

f ) x̂(t2
f ) x̂(t3

f )

x̃0(−1) x̃0(1) · · · x̃3(−1) x̃3(1)

(a) Forward

e0 e1 e2 e3

Boundary

condition

x̂(t4
0 )

x̂(t0
0 ) x̂(t1

0 ) x̂(t2
0 ) x̂(t3

0 )

x̃0(−1) x̃0(1) · · · x̃3(−1) x̃3(1)

(b) Backward

Figure 3.1: Element time definitions for forward and backward integration

3.2.2 Linear System Simulation with DG-FEM

Expressions (3.26) and (3.27) represent the calculations that are required for the simulation of a

linear system of the type ẋ = A(t)x + B(t), derived from (3.24) and (3.25) respectively.

“
P(1) + D +

∆te

2
IA
”

a = −∆te

2
IB + BC(−1)x̂(te−1

f ); (3.26)“
P(−1)− D− ∆te

2
IA
”

a =
∆te

2
IB + BC(1)x̂(te+1

0 ); (3.27)

With the following definitions:

Φ(fi) = p(fi)
`
p(fi)

´T; M =

Z 1

−1

ṗpTdfi;

P(fi) = diag(Φ(fi); · · · ;Φ(fi)), nx blocks;

D = diag(M; · · · ;M), nx blocks; (3.28)

IA =

Z 1

−1

ΦAi ;j dfi ; IB =

Z 1

−1

pBi dfi ; 1 ≤ i ≤ nx, 1 ≤ j ≤ nx;

BC(fi) = diag(p(fi); · · · ;p(fi)), nx blocks; a =
h
cT

1 · · · cT
nx

iT
;

in which, nx represents the number of state variables, diag(ffi); nx blocks is a block diagonal matrix where

the block ffi is repeated nx times. a represents the matrix of constants C from expression (3.18), but the

constants are positioned in vector form: the first entries of a, 0 up to np are the constants of x1, then from

np + 1 up to 2np + 1 are constants of x2 and so on.
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3.2.3 Nonlinear System Simulation with DG-FEM

In nonlinear systems, the simulation method is bound to be iterative. Expressions (3.29) and (3.30)

show the equations to solve (for a) for forward and backward simulation.

“
P(1) + D

”
a = −∆te

2
If + BC(−1)x̂(te−1

f ) (3.29)“
P(−1)− D

”
a =

∆te

2
If + BC(1)x̂(te+1

0 ) (3.30)

Using the definitions in (3.28) and (3.31).

If =

Z 1

−1

pfi dfi ; 1 ≤ i ≤ nx : (3.31)

The method chosen to solve these nonlinear vector expressions is the fixed point method. This

method suggests that for iteration k the next guess for solution is calculated using ak+1 = g(ak) Further-

more, with this method is possible to assure convergence for ∆te low enough and a close enough initial

guess.

Convergence of nonlinear simulation (fixed point method)

The fixed point theorem states that, for a function g(x) : IRn → IRn if:

a) g(D) : D → D, solution ∈ D ⊂ IRn;

b) g is continuously differentiable in D; (3.32)

c)
˛̨̨dgi
dxj

˛̨̨
< 1;

then there is a unique solution for x = g(x) in D and the fixed point method will converge towards the

solution [24].

For this purpose, g is defined as:

g =
“

P(1) + D
”−1“

− ∆te

2
If + BC(−1)x̂(te−1

f )
”
: (3.33)

Condition a) may be ”removed” if we assure that x0 (initial guess of x) is close enough to the solution.

Expression (3.33) demonstrates that x̂(te−1
f ) is a suitable guess to start the iterations, for a low ∆te .

This is done by removing the integral term If , which will make x̃e = x̂(te−1
f ).

It is assumed that f represents real dynamics, so b) is also assured.

Finally c) will hold true for low enough ∆te .

lim
∆te→0

˛̨̨ dg
dai

˛̨̨
= lim

∆te→0

˛̨̨“
− P(1) + M

”−1“
− ∆te

2

dIf
dx

dx
dai

”˛̨̨
= 0 < 1: (3.34)
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solve x using
(3.26)

x̃0 x̃1 x̃2 x̃3 solve –
using (3.27)

e0 e1 e2 e3

–̃
2

–̃
1

–̃
0

–̃
3

solve u optimize, actualize x
re-optimize u actualize x...

ũ0

x̃0

ũ0
x̃1

ũ1
x̃2

ũ2
x̃3

ũ3

x̃1

–̃
0

x̃2

–̃
1

x̃3

–̃
2

actualize
–

–̃
3

Figure 3.2: Algorithm outline.

3.3 Solving PMP Problems with DG-FEM

As seen above PMP problems require the solution of two differential equations (3.14)-(3.12), one

for the state variables x and one for the co-state variables –. Unfortunately these cannot be solved

together, as – requires the knowledge of the control and state variables variables (u and x) at the final

time T , since its boundary condition is positioned there (at t = T ) for specified initial states and fixed

time problems.

In (3.14), f may be a nonlinear expression, leading to the iterations defined in the previous section

3.2.3. Looking at expressions (3.12) and (3.6), it is possible to infer that – is defined by a linear, time-

dependent system (3.35), which is easier to solve using the expressions defined for DG-FEM linear

backwards simulation, present in expression (3.27).

–̇ =
“
J f(x)

”T
– +∇xJ; (3.35)

in which J f(x) stands for the Jacobian of f about x, i.e. dfi
dxj

.

Regarding equation (3.13), it represents the maximization of the Hamiltonian H about the control

variables u, which can be solved with an optimization algorithm. In this work, the optimization algorithm

used was the conjugate gradient (of python’s toolbox scipy (”cg”) ) for continuous control problems, but

any other would do (attending to the characteristics of the problem). For on-off control problems, an

exhaustive search is valid because all that is required is a solution using one of 2 values.

3.4 Solving PMP Problems with DG-FEM and Shooting method

In the previous section 3.3 is discussed a method to solve the PMP problem, using the DG-FEM

method, by going forwards (to calculate x̂ and û) and backwards (to calculate –̂) because the boundary

conditions for – are positioned in the final time.

In this section is discussed an alternative method, where everything is calculated forward, making

the problem, possibly, faster to solve and with a better convergence: the shooting method [23].

The shooting method is mainly used to solve differential equations with boundaries in an initial time

and at a final time. A typical problem of application is described in equation (3.36), where, to a N-th order
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differential equation (described as a system of first-order differential equations), there are n1 boundary

conditions placed at t = 0 and n2 = N − n1 boundary conditions placed at t = T .

dx
dt

= f(t; x);

xi (t = 0)− xBC(t=0)
i = 0 i = 1; · · · ; n1; (3.36)

xj(t = T )− xBC(t=T )
j = 0 j = n1 + 1; · · · ; N:

This method consists on guessing the value of the variables with boundary conditions at t = T in

t = 0 (aiming), which will be imposed as a condition at t = 0. Then the problem can be solved with

forward integration to reach T (shooting). If the initial guess for xBC(t=0)
j is not the exact solution at t = 0,

then there will be a discrepancy between xj(T ) and the original boundary condition xBC(t=T )
j . For the

purpose of the formulation let V be the guess of the imposed value of xj in t = 0 and F the discrepancies,

computed as Fj = xj − xBC(t=T )
j .

3.4.1 Aiming

While the first value of V may be arbitrary, it is required a way to renew the imposed initial value to

restart the cycle. The used method for this work is the Newton method as suggested by Press et al. [23].

Expression (3.37) demonstrates how a new step is calculated.

Vnew = Vold −
“
JFV

”−1

F: (3.37)

Unfortunately, the Jacobian JFV required for the calculations is usually not available. So, these

should be calculated as numerical Jacobians (3.38). Keep in mind the calculation of the Jacobian re-

quires the integration of the problem n2 extra times (one time for each ‹Vj ). Then, each step for the

shooting iterations, requires n2 + 1 solutions for the problem accounting for the original calculation of F.

(JFV)i j =
∆Fi
∆Vj

=
Fi (V + ‹Vj)− Fi (V)

‹Vj
: (3.38)
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Chapter 4

Implemented Algorithms

On this chapter is shown, with more detail, how the methods discussed in the previous chapter 3

were combined and implemented. This will be done with flowcharts to represent how the numerical

environment works. In fact, every diagram shown in this chapter corresponds to a function of the imple-

mentation.

The control methods will also be described here for three types of problems: continuous control, on-

off control and bang-bang control. The main algorithms outline is kept independent from the designed

control methods, to allow the application of any other problem.

4.1 System Simulation

Diagrams 4.1(a) and (b) specify how the implementation of equations (3.29) for x and (3.27-3.26)

for – are calculated. As the diagram 4.1(b) suggests, it can be used to calculate –̃ backwards and

forward (shooting method), as it is only a matter of changing the boundary conditions and some signs.

Remember these expressions are used since x is assumed to be nonlinear and – is linear. Recall,

also, that for nonlinear systems, the fixed point method is being used, whose convergence is assured

for ∆te small enough and a close enough initial guess, which for small ∆te may be x̂(te−1
f ). The fixed

point method is present in figure 4.1(a) and it corresponds to everything inside the big cycle. Being the

calculation of If done with the previous value of x̃. The small cycle (incrementing k) is only done, to

avoid large calculation times.

Note that, due to the iterative nature of the calculations of x, a stopping criterion is needed. The cri-

teria used here was a maximum number of iterations and a comparison between two different iterations

(to check if the change was significant or not). These parameters are arbitrary and should be changed

according to the desired precision. In these there is a reference to an integration rule; the one used for

this work was Gauss-Lobatto rule because it uses the extremes of the element (discontinuity points).

The number of integration points is arbitrary, but remembering that the Gauss-Lobato method integrates

exactly polynomials of degree up to 2nint − 3, a possible rule of thumb for the choice of nint (number of
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integration points) is:

2nint − 3 > degree(–T f) ≈ 2np;

nint > np +
3

2
: (4.1)

for element e

have the boundary condition

x̂(te−1
f ) calculated xBC

start with guess

x̃i : cei;j = xBCi if j = 0, else cei;j = 0

start with k = 1

calculate Ifk =
Pnint

p=0 fk(fip)p(fip)wp where p

is a point of an integration rule

assemble If = (If1 ; · · · ; Ifnx
)

a = (P(1) + D)−1(−∆te

2 If + BC(−1)xBC

k = nx?

attribute the costants in a to x̃e

k = k + 1

change small? to many iterations?

yes

no

no
yes

end

(a) x̃ forward

for element e

have the boundary condition

–̂(te+1
st ) or –̂(te−1

f ) for shoot-

ing method calculated: –BC

calculate IA =
Pnint

p=0 Φ(fip)Ai ;j(fip)wp and

IB =
Pnint

p=0 Φ(fip)Bi (fip)wp where p

is a point of an integration rule

a =
“

P(−1)− D− ∆te

2 IA
”−1“

∆te

2 IB + BC(1)–BC

”
or

a =
“

P(1) + D + ∆te

2 IA
”−1“

− ∆te

2 IB + BC(−1)–BC

”
for shooting method

attribute the costants in a to –̃
e

end

(b) –̃ backward or forward for shooting method

Figure 4.1: State variables simulation.

4.2 Control Calculations

After the solutions of x and –, the control is left to be defined. Here, the calculations may differ on

the type of control, raising the need for different calculations. Remember that for any of these, the goal

is to obtain the maximum
R T

0
H dt.

4.2.1 Continuous Control

As referenced in section 3.3, the continuous control problems are being calculated recurring to the

conjugate gradient method, but any other would suffice. Figure 4.2 illustrates the algorithm used to

solve the continuous control. It includes the simulation of the state variables as these will change the

Hamiltonian, and thus, the control.
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Note, again, that the algorithm in 4.2 is iterative and, therefore, it requires criteria to stop. The criteria

used here was the number of iterations and the change, this time in H. The thresholds are, once again,

arbitrary. Each iteration starts by building a function IH only dependent on ũe constants and, if required

by the optimization, the construction of the gradient of
R 1

−1
H dfi about the ũe constants: ∇CeuIH. After the

control is changed, the remaining variables should change to. With this, H will change, so the optimal

control will need to be recalculated (restarting the iteration).

compute IH(Ceu) =
Pnint

p=0H(Ceup(fip); x̃e(fip); –̃
e
(fip); fip)wp

as a function of Ceu constants, where p are points of an integration rule

If the optimization method requires

compute ∇CeuIH(Ceu)

optimize ũe

simulate the system x

with the new u (see fig 4.1(a))

if shooting method, simulate the co-states –

with the new u (see fig 4.1(b))

change small? to many iterations?
yes

end
no

Figure 4.2: Continuous control calculations.

4.2.2 On-Off Control

This type of control has the particularity of offering just two options for u (this time, scalar) u ∈ {0; 1}.

With this control, the maximization of the Hamiltonian is assured by one of two choices, making an

exhaustive search viable. Figure 4.3 shows how it may be done. With this control the expression (3.13)“
@H
@u

= 0
”

may not be assured (in fact, most of the times it is not), but there is still and admissible

maximum.

To calculate the on-off control, the approximations ũe will be kept constant inside the element, mean-

ing that one element only presents the value of u = 1 or u = 0. This may be undesirable for meshes with

larger ∆te , for which, figure 4.3 also proposes a refinement method, integrated inline.

This optimization algorithm starts with the calculation of H for u = 1 and for u = 0, performing the

state variables and co state variables changes with each u tested. Instead of directly calculating the

integral value of each H (u = 0 and u = 1), each point in the integral quadrature is compared, if at all

points the H calculated with u = 1 is greater than H calculated with u = 0 then, the control should be

u = 1. On the other hand, if H calculated with u = 1 is lesser than H calculated with u = 0, then the
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control should be u = 0. If there is a change between points, then this is a element with a shifting time,

and it should be refined.

put ũe = 1

simulate the system x

with the new u (see fig 4.1(a))

if shooting method, simulate the co-states –

with the new u (see fig 4.1(b))

calculate Hu=1(fip)

put ũe = 0

simulate the system x

with the new u (see fig 4.1(a))

if shooting method, simulate the co-states –

with the new u (see fig 4.1(b))

calculate Hu=0(fip)

compute ∆H(fip) = Hu=1(fip)−Hu=0(fip)

How is ∆H?

keep the ũe = 1 and

the correspondent x̃e and –̃
e

keep the ũe = 0 and

the correspondent x̃e and –̃
e

break the elements at the signal changes,

give u = 0 where ∆H < 0

and u = 1 where ∆H > 0

simulate the system x

in the new elements (see fig 4.1(a))

if shooting method, simulate the co-states –

in the new elements (see fig 4.1(b))

always > 0

always < 0

otherwise

endendend

Figure 4.3: On-Off control calculations.

4.2.3 Bang-Bang Control Problems

This type of problems are a variation from the on-off control problem, described above. They only

allow two possible values for u – u ∈ {0; 1}. With the particularity of having a functional J linear with u

and a f function as well. With this specification, @H
@u

is independent from u, or, at least, explicitly, because
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x and – are still dependent and they change @H
@u

. From which follows that if @H
@u

> 0 then u should be 1,

if @H
@u

< 0 then u should be 0.

Again, the approximation with u will be constant within each element, presenting the values 1 or 0.

But if it is assumed that @H
@u

is independent from u, then the refinement of an element is trivial: find the

zero of @H
@u

at the element (assuming x and – don’t change). The following diagram 4.4, presents the

control solution implemented for this type of problems.

calculate @H
@u

at fi e = −1: dHleft

calculate @H
@u

at fi e = 1: dHright

How is @H
@u

?

ũe = 1 ũe = 0

find the zero

(any method, ex. bisection)

cut the element at fi : @H
@u

= 0

give to each element u correspondent

to the sign of @H
@u

at its side
@H
@u

> 0→ u = 1, @H
@u

< 0→ u = 0

simulate the system x

with the new u and for the new

elements (if applied) (see fig 4.1(a))

if shooting method, simulate the co-states –

with the new u and for the new

elements (if applied) (see fig 4.1(b))

sign(dHleft) =

sign(dHright) = 1

sign(dHleft) =

sign(dHright) =

−1

otherwise

end

Figure 4.4: Bang-bang control calculations.

4.3 PMP Solutions

Now that the control and the simulation of state and co-state variables are defined (for one element),

what is left to specify is the progression of the solutions proposed. Figure 4.5 shows how to solve a PMP

problem with forward integration of the state variables and backwards for the co-state variables, while

figure 4.6 illustrates the shooting method solution. These are independent for any of the control methods

discussed in the previous diagrams 4.2, 4.3 and 4.4 or any other different method for a different control

problem.
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Figure 4.5 starts with the guess of an initial û, which will be used to calculate the state variables

x̃e from the initial element to the last. With these calculated, the main cycle can begin: cycling by

the calculation of the co-state variables –̃
e

from the last element to the first, then proceeding to the

recalculation of control state variables as was explained in the previous section 4.2, from the first to the

last element.

arbitrate a û

start with e = 0
simulate x̃e

(see fig. 4.1(a))
e = nelem?

e = e + 1

simulate –̃
e

(see fig. 4.1(a))
e = 0?

e = e − 1

calculate the control and state variables,

ũe and x̃e

(see figs. 4.2, 4.3 or 4.4)

e = nelem?

e = e + 1

change small? to many iterations?

no

yes

no

yes

no

yes

no

yes

end

Figure 4.5: Forward and backward PMP solution.

Figure 4.6 introduces the shooting method. After choosing a plausible –BC the cycle begins with the

calculation of the control, state and co-state variables as explained in section 4.2. These algorithms

should now be adapted to include the forward calculation of –. The algorithms for the simulation (fig.

4.1(b)) and control (figs. 4.2, 4.3 and 4.4) already have this option described. After the simulations and

control for each element, starting in the first, the discrepancy F will be calculated and –BC needs to be

actualized for the cycle to re-start.

The actualization of –BC is described in figure 4.6(b), where, for each entry in –BC is inserted a

displacement ‹V ; with that displacement, re-simulate and optimize the system (starting, again, in the

first element). Calculate the discrepancy with the displacement and return to the original system. Once

all –BC has been displaced (one at a time), invert the Jacobean and calculate the new –BC.
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arbitrate a

–BC = Vold

start with e = 0

calculate the control, and state variables,

ũe , x̃e and –̃
e

(see fig. 4.2, 4.3 and 4.4)

e = nelem?

e = e + 1

F = –tt − –̃
e
(1)

F small? to many iterations?Aim (actualize V)e = 0

no

yes

no

yes

end

(a) Shooting method algorithm

k = 0 V = Vold, then Vk = Vk + ‹Vk e = 0

calculate the control, and state variables,

ũe , x̃e and –̃
e

without refinement

(see fig. 4.2, 4.3 and 4.4)

e = nelem?

e = e + 1

@F
@Vk

= ∆F
‹Vk

k = nx?

k = k + 1

Vold = Vold −
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Figure 4.6: Shooting method.
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Chapter 5

Validation

The validation of the developed formulation is now done by solving the problem proposed by Gong et

al. [25] (simple continuous PMP problem), which has an analytical solution and tests the ability to solve

continuous control problems. This is done in sub-section 5.1. The problem proposed by Luenberger,

D. [26] (simple bang-bang problem) is then solved in sub-section 5.1, which tests the ability to solve

bang-bang control problems, in this case, with one switching time instant. Different solutions for same

problems were proposed by Henriques et al. [12] who implemented the discontinuous Galerkin method

integrating expression (3.23) by parts twice, resulting in a different configuration of equations (3.24) and

(3.25).

The following subsections show several error plots. The calculation of the error in these plots corre-

sponds to the L2 norm, as defined by [14]:

||error(ffi)||2 =

s
1

T

Z T

0

(ffi(t)− ffî(t))2 dt (5.1)

Remember that ffî is the approximation of ffi by (3.17), on the other hand ffi is the exact solution of the

problem.

5.1 Validation: Simple Continuous PMP

This problem is a test to the algorithms in chapter 4, namely the continuous control algorithm with the

conjugate gradient from scypy toolbox, in fact, the scypy toolbox had to be modified to allow arbitrary

precision calculations. This was achieved by copying the existing module and changing the relevant

functions to work with arbitrary precision. As referred before, Henriques et al. [12] already solved this

problem numerically with a slightly different formulation. They achieved an order of convergence of about

np + 0:5, even though, the optimal theoretical convergence should be of the order of np + 1 as proved by

Baccouch [14].

This problem required a relaxation factor in order to converge with the forward ad backward integra-
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tion.

x̃e = !x̃e
new

+ (1− !)x̃e
old

(5.2)

where, after each calculation of the state variables with the fixed point method, the state variables

before the fixed point x̃e
old

will be added to the state variables calculated x̃e
new

, through a relaxation factor

0 < ! ≤ 1. In [24] the relaxation is used, as a form to speed the convergence of the fixed point method.

This relaxation was not required when using the shooting method.

5.1.1 Problem Statement

maximize:

J(u) =

Z T

0

−u2dt − 4x1(T )− x2(T ) (5.3)

subject to: 8>>>>><>>>>>:
ẋ =

„
x3

2 ; u

«
x(0) =

„
0 ; 1

«
T = 2

(5.4)

The analytical solution is, as can be easily verified,

x =

24 2
5 −

64
5(t+2)5

4
(t+2)2

35 (5.5)

– =

24 −4

− 64
(t+2)3

35 (5.6)

u = − 8

(t + 2)3
(5.7)

5.1.2 Results: Numerical Errors and Error Trend-lines

In this problem it was still possible to implement the integrals as symbolic; consequently, the numeri-

cal deviations from the analytical solution may only be caused by the DG-FEM method or the maximum

precision of the operations. Figure 5.1 shows the variation of the numerical absolute error (square norm)

with polynomial degree n and elements time interval ∆te , with arbitrary precision (number of decimal

places (dps) = 100). These figures were obtained using the forward and backward integration method

described in section 4.3. Markers are the points calculated, lines are the trend-lines of the absolute error

(with slope p). Note the log-log scale. Figure 5.4 plots the same quantities, but was generated with the

shooting method.

Figures 5.2 and 5.3 plot the same as 5.1, but with limited precision, 8 decimal places for figure 5.2

and 16 for figure 5.3. In these figures the thinner continuous lines are the theoretical trend of the error

C∆tnp+1[14] and the dashed thick lines are just a visual feature to follow the plotted points.
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Figure 5.1: Root mean square error and trend as function of ∆t and the polynomial degree n (where p
is the slope of the trend line).

With these figures we will be able to access the impact of the machine precision in the DG method.

The choice of dps = 8 and dps = 16 simulates approximately the regular single precision and double

precision floats respectively.

5.1.3 Discussion

In figure 5.1 we can conclude the DG-FEM is working according to what is expected, following an

error convergence of the order of np + 1 (for the ”L2-norm” of the error) [14]. Furthermore, the use of

mpmath module with dps = 100 eliminated the precision portion of the error. On the other hand, in

figures 5.2 and 5.3, the portion of the error due to precision is very visible, creating a threshold for the

error. Once this threshold is surpassed, the error seems to develop a random behavior. These results

also appear as an improvement to Henriques et al. [12].

These plots stress the relevance of high precision, as the solution calculated with almost single

precision (fig. 5.2) is barely acceptable for most of the tested cases. This shows that increasing the

order of the polynomial approximation np or decreasing the time interval ∆te may be irrelevant or even

harmful to the quality of the approximation if the precision is left unattended. If this test was made using

only dps = 8, we would be led to believe the solution was badly implemented.

Similarly to figure 5.1, figure 5.4 also shows orders of convergence near the theoretical ordernp + 1.
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Figure 5.2: Root mean square error of as function of ∆t and the polynomial degree n calculated with
dps = 8

This implies that the shooting method is well implemented. This figure has fewer points because for

higher degrees of precision, the acceptable discrepancy will also need to be lower, for it affects the

errors as well, and for a lower discrepancy, more cycles need to run. This figure presents only x1 and –2

because u = –2=8 and x1 is derived from x2.

5.2 Validation: Simple Bang-bang Problem

This problem tests the algorithm of section 4.2, described by figure 4.4. As referenced before [21],

bang bang problems are on-off problems with the particularity of having a functional and a state space

equation linear with u. Looking at (5.8) and (5.9) it is evident that this problem is a bang bang control

problem.

Henriques et al. [12] also solved this problem with the slightly different formulation and obtained a

convergence of the error of the order of about np + 0:5 again, while the theoretical optimal convergence

rate is of the order of np + 1 [14]. Unlike the continuous problem, this did not require the relaxation factor

for the forward and backward integration algorithm, nor the shooting method.

32



10 3 10 2 10 1 100

t

10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2
||e

rro
r(x

1)|
| 2

n = 2.0
n = 3.0
n = 4.0
n = 5.0
n = 6.0
n = 7.0

(S)

(a) x1

10 3 10 2 10 1 100

t

10 18
10 17
10 16
10 15
10 14
10 13
10 12
10 11
10 10
10 9
10 8
10 7
10 6
10 5
10 4
10 3

||e
rro

r(x
2)|

| 2

n = 2.0
n = 3.0
n = 4.0
n = 5.0
n = 6.0
n = 7.0

(s)

(b) x2

10 3 10 2 10 1 100

t

10 17

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||e
rro

r(
2)|

| 2

n = 2.0
n = 3.0
n = 4.0
n = 5.0
n = 6.0
n = 7.0

(s)

(c) –2

10 3 10 2 10 1 100

t

10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

||e
rro

r(u
)||

2

n = 2.0
n = 3.0
n = 4.0
n = 5.0
n = 6.0
n = 7.0

(s)

(d) u

Figure 5.3: root mean square error of as function of ∆t and the polynomial degree n calculated with
dps = 16

5.2.1 Problem Statement

Maximize:

J(u) =

Z T

0

(1− u)xdt (5.8)

subject to: 8>>>><>>>>:
ẋ = (u − 0:5)x

x(0) = 1

T = 5

(5.9)
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Figure 5.4: Root mean square error and trend as function of ∆t and the polynomial degree n (where p
is the solpe of the trend line). Calculated with shooting method.
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Figure 5.5: Error of simulation with ts in element boundary

The analytical solution is, as can be easily verified,

ts = T + 2ln(0:5) (5.10)

x(t) =

8><>: e0:5t ; 0 ≤ t ≤ ts

ets−0:5t ; ts ≤ t ≤ T
(5.11)

–(t) =

8><>: 2(1− e0:5(ts−T ))e−0:5(t−ts); 0 ≤ t ≤ ts

2(1− e0:5(t−T )); ts ≤ t ≤ T
(5.12)

u(t) =

8><>: 1; 0 ≤ t ≤ ts

0; ts ≤ t ≤ T
(5.13)

5.2.2 Results: Numerical Errors and ”Switching time” Error

The errors calculated with this example represent mostly the error caused by the sifting time, ts,

estimation. To avoid the complications of the continuous problem in the previous section 5.1 These

calculations were made with dps = 100. Figure 5.5 shows the error considering ts to be a part of the

boundary of two elements.
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Figure 5.6: Error of simulation with ts: (a) at 50% of element length, (b) at 5% of element length from
the left boundary.
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Figure 5.7: Mean square error of x with bang bang refinement and shooting method.

On the other hand, figures 5.6a and 5.6b represent the error considering ts to be inside of one

element. In figure 5.6a ts is in the middle of an element. In figure 5.6b ts is located at a distance of 5%

of element length from the element right boundary.

Finally, figure 5.7 represents the error as a function of the initial element size and the polynomial

degree of the solution found using the shooting method with refinement.

5.2.3 Discussion

Figure 5.5 encounters once more the limits of DG-FEM method, like the ones on sub-section 5.1.2.

Figure 5.6 shows the dominance of the switching instant error about the DG-FEM error (note the

different scales of 5.5 and 5.6 for the same points). The error respective to the estimation of ts, with the

distances to the boundary tested, is always larger than the DG-FEM error. So, the polynomial degree

that is used is not reflected in the errors.

Between 5.6a and 5.6b there is almost no difference, figure 5.6a has more error associated with

respect to figure 5.6b. These results reflects the importance of refinement, mainly near ts.

Finally, 5.7 shows again the implementation of the algorithm appears correct. An Addition test was

made for this problem regarding the shooting method. The algorithm was tested with different initial –.
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Figure 5.8: Sensitivity analysis of the shooting method.

The most extremes tests made are depicted in figure 5.8 –BC = 100 and –BC = −100. It was found that

the shooting algorithm converged for both cases, demonstrating the method is not too sensitive to the

initial guess for the boundary condition of –.
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Chapter 6

Implementation on the OWC Spar

Buoy

In this chapter the algorithm described in 4.5 (forwards integration of x along with u and backward

integration of –) will be applied to the buoy, under regular and irregular wave circumstances, along with

some tests to validate the system and the algorithm.

Unfortunately, the shooting method algorithm did not perform well for this system. The simulation of

the – states, at a certain point, becomes unstable (increasing without bounds). The instability starts with

a big increase of the –5 state, from which follow all other – states. Some fruitless efforts to repair the error

(if it even is an error) were implemented: refining the simulation, simplifying the system, and normalizing

Ω and Pt. Due to time constraints, this problem of unknown origin (for now) was left unsolved.

This chapter follows the reasoning of some decisions made for model testing. And will show some

of the work made before performing the optimal control of the OWC spar buoy system under irregular

wave climate.

6.1 OWC Spar Buoy System: Summary applied to the Optimiza-

tion

This section compacts what was previously described about the OWC spar buoy dynamic system.

Recall that the state variables are the heave position of the buoy and the water column x1 and x2, the

heave speed of the buoy and the water column v1 and v2, the non dimensional pressure p∗ and the shaft

rotational speed Ω.The time variation of these is defined in chapter 2. This is just a summary, so the

constants and their meaning will not be explained here, this information is already presented in chapter
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2. For the hydrodynamic variables x1, x2, v1 and v2, the dynamics are:

ẋ1 = v1 (6.1)

ẋ2 = v2 (6.2)

v̇1 = Det(M)−1
“

(M2 + A∞22)F1 − A∞12F2

”
(6.3)

v̇2 = Det(M)−1
“

(M2 + A∞11)F2 − A∞21F1

”
; (6.4)

where:

F1 = −wgS1x1 + S2patmp
∗ + Fd1 (t) + c1v1 (6.5)

F2 = −wgS2x2 − S2patmp
∗ + Fd2 (t) + c2v2 (6.6)

M =

24m1 + A∞11 A∞12

A∞21 m2 + A∞22

35 : (6.7)

The dynamics of p∗ with compressibility effects are:

ṗ∗ = − ‚

S2

ṁt(p
∗ + 1)

h0 + x1 − x2
− ‚ (p∗ + 1)(ẋ1 − ẋ2)

h0 + x1 − x2
; (6.8)

where  = atm(1 + p∗)1=‚ and ṁt is defined by the turbine equations; ṁt = uΦtΩd3. The air density of

the inlet/outlet of the turbine t has the expression t = max(; atm)

The dynamics for the rotational speed of the shaft Ω are:

Ω̇ = (Tt − Tgen)=I: (6.9)

Tt is derived from the turbine equations Tt = uΠtΩ
2d5 and Tgen is being modeled by a control law

Tgen = 0:025Ω2:33. The turbine curves used follow the equations:

Φ̂ =
0:12695Ψ4 − 0:71Ψ3 + 5:068Ψ2 + 4:289Ψ

Ψ3 − 2:561Ψ2 + 37:46Ψ + 6:278
; (6.10)

Π̂ = −272Φ10 + 252Φ8 − 84:26Φ6 + 12:9Φ4 + 2:605Φ2 − 0:00657: (6.11)

The control valve is u and only takes the values 0 (when closed) or 1 (when opened). For the problem

to have a bang bang control, the Lagrangian for the optimization should be:

L = Pt = uΠtΩ
3d5 (6.12)

Some previous works on this topic used a regularization term to avoid the chattering problem [17],

[12]:

L = Pt + ›(1− u)2: (6.13)

This extra term penalizes the time when the valve is open u = 1. This term was not used in this thesis,
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because one of the objectives is to test the hypothesis that the chattering problem is caused by the

DG-FEM formulation, the algorithm or the precision. Furthermore, for higher values of › some of the

power will be taken from the turbine.

6.2 Notes on the Solutions

For the next sections shown, the major concern will be the stability of the process and the physical

rigor of system behavior. Assume, for the next sections (to avoid an extensive list of images) that if the

system is stable and generating a reasonable u response, then the power is being maximized properly.

In fact, at section 6.5, for the most complex scenario, the power is shown to ever increase for each

iteration in the control calculation (figure 6.8).

The simulation and control of the buoy will be affected by the boundary conditions, which, can not be

0 for all the variables (x1; x2; v1; v2; p
∗;Ω). Specifically, Ω can never be 0, since the calculations of the non

dimensional variables (2.21) will be impossible (division by Ω). So, the starting point for the simulation

will have to be (0; 0; 0; 0; 0;Ω0) with Ω0 as an arbitrary value (which will vary in the following sections).

The element time for the simulation was set to be smaller than ∆te ≤ 0:1 s for larger values of ∆te

there were some instabilities, mainly presented in the p∗ state and the – co-states. As seen before,

∆te is closely related to the error and the convergence of the fixed point method, but a smaller ∆te has

a cost in computation time. So, to demonstrate the working algorithm, only a ∆te of 0.1 will be used.

The length of the control interval will also be relevant since it provides the boundary condition for –.

The larger the time interval the lesser influence will this boundary condition have on the first instants

calculated, but, once again, the increase in the time interval will also mean an increase in computation

time.

The constant c11 that appears as a simplification of (2.1)-(2.2) will be the maximum value of the

damping 4:23× 104 found in the tables and Henriques et al. [4] and c22 was set to 1
10 of c11. Also, for the

purpose of testing the control, the significant wave height is fixed at 1.96m.

For stability reasons (regarding the boundary condition v1 = v2 = 0), the excitation force will need to

have a transient time, where the wave height will rise (from 0 to the actual value), and then be ”stable”

for the rest of the simulation.

It is important that with regular waves u has a regular, symmetric, behavior, in stationary state [per-

sonal communication, J. C. C. Henriques, 2020]. The next subsections will focus on creating the con-

ditions for this behavior to be visible in the calculated time interval. A good indicator of the system

stability is the accumulation of mass, which, in theory, should not happen when the system reaches the

stationary state.

6.3 Single Wave Simple Simulation

The initial, stable, test made with the buoy’s system was with one wave at the period of T = 9s,

significant wave height He = 1:96 and Ω0 = 100. Some of the results are shown bellow (in figure 6.1).
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(a) Ω (b) u

(c) x1

Figure 6.1: Data from the simulation with one wave T = 9, He = 1:96 and Ω0 = 100
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Figure 6.2: Fourier transform of the signal x1 in figure 6.1c

6.3.1 Discussion

These variables were chosen to demonstrate that with a Ω0 of 100 ms−1 there is an oscillatory

behavior corresponding to the boundary conditions (described by 6.1b), from which it is hard to validate

the simulation. After these results, the oscillatory behavior of the x1 was characterized (fig 6.2), the

simulation time was increased to 400 seconds and the rise time of the wave was changed from 20

seconds to 32, to accommodate multiples for the peak frequency of the x1; x2; v1 and v2 (which are not

shown, but present a similar signal to x1) responses: about 8 seconds. 6.1 also shows that Ω0 is very

superior to the average rotational speed of the turbine and, thus, should be changed to reduce the

transient time of the buoy.

6.4 Single Wave Altered Excitation

Having in mind the comments about the previous simulation, and still pursuing the symmetry in u, an

alteration to the excitation form is presented in figure 6.3, this excitation force will not only respect the

boundary conditions of x in t = 0 but it will as well force the boundary condition at the terminal time to be

respected. This is done by applying the symmetric of the rise effect to the end of the force (decreasing).

When subjected to this excitation, the algorithm reacted as in figure 6.4

41



Figure 6.3: Altered excitation force

(a) Ω (b) x1

(c) u (d) ṁt

Figure 6.4: Results with excitation force in 6.3 T = 9; He = 1:96 and Ω0 = 60.
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Figure 6.5: u zoomed from figure 6.4

6.4.1 Discussion

Figure 6.4b suggests that the oscillatory behavior in x1 was almost mitigated. u in 6.4c also seems

to have a more regular evolution, figure 6.5 shows a zoom in this plot for the time interval between 200

s and 300 s. Ω in 6.4a also starts closer to the average Ω. Finally, in 6.4d it is shown a plot of the

flow during the calculated time, from whose inspection is concluded that the system is not accumulating

mass (the average is almost 0, compared to the greatest peak, approximately 0.9% of the peak).

6.5 Irregular Waves

With the purpose of further testing the program, the system is now subjected to an irregular wave

regimen with 3 waves. More waves (wave periods) may be added for a better approximation of reality, 3

unphased waves are already a fair proof of the algorithm. Figure 6.6 shows the excitation force Fdi for

this situation and the resultant control, which is zoomed for the times [200,300] in figure 6.7. Since the

routine simulation of the system-control has been shown above that it is physically feasible, figure 6.8

presents the performance index convergence for various cycles of calculation for u and x.
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(a) Irregular wave excitation force (b) Resultant control

Figure 6.6: a: Excitation force with 3 wave periods. b: Result of the control in irregular wave climate
He = 1:96; T = (8; 11; 13)s
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Figure 6.7: u zoomed from figure 6.6
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Figure 6.8: Performance index convergence over calculations of u and x

6.5.1 Discussion

Under these conditions, the algorithm seems to be working properly, or, at least, increasing the

generated power of the non controlled system (figure 6.8 cycle 0). It seems safe to assume the maximum

is being calculated (for this case).

u seems to have some chattering problems that were not shown in the regular wave signals (except

at terminal time for figure 6.4). It seems that even with the introduction of arbitrary precision and another

finite element formulation the chattering problem is still to be solved. But, on one hand, recalling that

the regularization parameter ›(1 − u)2 was not used, the chattering problem appears to be less evident

than the one found in [12], where, even using a regularization parameter of › = 0:01, the control appears

to have more chattering; on the other hand, since the wave behavior is irregular and there is a random

phase in the model, it is hard to compare these behaviors.
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Chapter 7

Conclusions

This chapter is dedicated to remarks, highlights and commentary on this thesis. First, a recapitulation

of the main conclusions will be made, along with the achievements and advancements of the work.

Finally, is presented a list of possible future tasks to further complete the work developed in this

thesis

7.1 Main Conclusions

The present thesis applied a Discontinuous Galerkin Finite Element Method (DG-FEM) to solve non-

linear optimal control problems based on Pontryagin’s Maximum Principle. The methodology was ex-

tensively tested with arbitrary precision and refinement problems. The DG-FEM can be viewed as an

alternative to the established spectral methods. Pontryagin’s Maximum Principle DG-FEM has several

advantages, namely the possibility of easily handling discontinuous control, as the control and the abil-

ity to use mesh refinement techniques to improve the accuracy. The spectral methods handle mesh

refinement by adjusting the number of points and their global position of the mesh. However, the ap-

proximation of the solution spans across the computational domain. On the other hand, DG-FEM based

significantly more versatile than the spectral methods. This method allows a simple implementation

of local mesh and polynomial refinement (hp-refinement). The mesh refinement is based on element

subdivision, while polynomial refinement uses the adjustment of the degree of the polynomial approx-

imation within each element according to a specified criterion. Another important difference between

the spectral methods and the proposed methodology concerns the maximization of the Hamiltonian.

With spectral methods, the maximization is ensured at specific control points. The DG-FEM guarantees

the maximization of the Hamiltonian using an integral approach that uses an element-wise continuous

solution.

In this thesis, the mesh refinement in bang-bang optimal control problems was explored. An iterative

approach was implemented to compute the switching instant. The results showed that it was possible to

compute the switching points within the prescribed accuracy and, moreover, it was also demonstrated

that the convergence was p + 1, where p is the order of the polynomial. This is an improvement in
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comparison with previous results published in Henriques et al. [12], where the order of convergence

was p + 1=2. This was due to a change in the DG-FEM formulation. The shooting method was also

explored as a viable way to solve these problems. It performed well under all the test problems as well

as the sensitivity analysis made to the admissible values of the arbitrary initial boundary condition. But,

inconclusively, it was not possible to apply it to the OWC Spar buoy system.

Another important result was the demonstration that double precision (15 significant digits) is not

enough to compute accurate solutions for high-order polynomial approximations. The results obtained

in this thesis used a prescribed number of significant digits, typically 100, such that the order of conver-

gence was always p + 1 independently of the mesh size.

To show the capabilities of the method, an optimal control problem with a continuous solution was

also studied. The conclusions about the order of convergence were the same as in the case of the

bang-bang problem.

The optimal control of an OWC spar buoy wave energy converter (WEC) was also implemented

following the previous works made by the IST Wave Energy Group. The goal was to implement the

so-called “Latching or phase control” of the WEC to maximize the power extraction. This is done by

performing an optimal bang-bang control of a high-speed stop valve installed in series with the turbine

rotor. The results presented for the studied OWC spar buoy showed several improvements when com-

pared to previous published results by Henriques et al. [12]. The chattering phenomenon was largely

reduced even without a regularization term used in Henriques et al. [12] to penalize the closing of the

valve. Furthermore, the optimal control achieved a 20% of increase in the generated turbine power, in

comparison with the uncontrolled scenario.

7.2 Future Work

Remembering that there is an annex, containing the unused work, where the buoy is modeled with

the option of partial closure, it makes sense to solve the optimal control problem for this situation. This

could be easily implemented in the code, but the computational time was already too high to be feasible

within the framework of the current MSc thesis (a constraints module would need to be added). Still on

this topic, a suggestion is made to optimize the code developed in what concerns computational time. It

works well for small problems, but for cases with the complexity of the buoy, it takes a too much time to

make the calculations, even with a low degree in the discontinuous Galerkin method.

The OWC spar buoy control of this thesis does not use a regularization term. Another test that can

be implemented is to recalculate the control with regularization term and a very low › as an attempt to

completely eliminate the chattering. Furthermore, more tests with the buoy can be done (increasing the

time, increasing the number of elements, making the system more complex and increase the number

of waves). With this formulation, it is also possible to add the radiation terms with a more rigorous

definition.

Another interesting implementation would be to control both the valve and the electromagnetic torque

at the same time, having in mind the partial closure of the valve and the actual characteristics of the
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doubly-fed induction generator (DFIG).

Finally, the routine written to solve the optimal control problems can always be improved with more

features, for instance: the introduction of restrictions to the problem, which, once again could complete

the buoy control, for example: with the addition of the u hard nonlinearity for the partial closure of the

valve u ∈ 0 ∪ [0:4; 1] (due to suction forces the valve cannot close further than 40%) and the imple-

mentation of general boundary value problems (boundary conditions at the start and the end of the

problem).
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Appendix A

Numerical models for the turbine and

generator

This chapter introduces numerical models for the turbine and the generator, with partial closure of

the valve.

Unfortunately, due to time constraints, this work was not used for the optimal control of the turbine.

The optimization of the turbine using partial closure of the valve would require the addition of constraints

in the optimization formulation, which have not yet been introduced.

A.1 Numerical Model of the Turbine

The turbine will be modeled according to the data available in figures A.1 and A.2. Figure A.1

represents the non-dimensional flow (Φ) as a function of the valve opening (u ∈ [0; 1], being 0 the closed

position and 1 the open) and the non dimensional pressure head (Ψ). Figure A.2 represents the non-

dimensional power (Π) as a function of the non-dimensional flow and the valve opening. These relate

with the expressions in (2.21) and (2.22).
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Figure A.1: Turbine non-dimensional flow

Figure A.2: Turbine non-dimensional power

A.1.1 Non Dimensional Flow Numerical Model

Inspecting the trend of the points in figure A.1, the evolution with Ψ appears to have either a rational

or logarithmic form. Given the lack of points in u, it seems acceptable that a polynomial will fit. Two

models were tested and refined for the fitting of Φ:

Φ̂ = sign(p∗)(amu
m + · · ·+ a1u)log(bnΨn + bn−1Ψn−1 + · · ·+ b1Ψ + 1) (A.1)

Φ̂ = sign(p∗)
a1Ψ + · · ·+ an−1Ψn−1 + (an + an+1u)Ψn

Ψn−1 + bn−2Ψn−2 + · · ·+ b1Ψ + b0
(cmu

m + · · ·+ c1u) (A.2)

with n and m dependent on the refinement. All ai , bi and ci are independent constants to determine.

Model (A.2) structure was chosen to have a linear assymptote for Ψ → ∞. Furthermore, both models

have been restricted to have Φ(Ψ = 0; u) = Φ(Ψ; u = 0) = Φ(0; 0) = 0. It is assumed, of course, that

the polynomial inside the logarithm in (A.1) is never less than 0 and the polynomial in the denominator

in (A.2) is never 0 inside the testing domain (Ψ ∈ [0; 7]; u ∈ [0; 1]). The factor correspondent to sign(p∗)

which represents a sign function (-1 if p∗ < 0, 1 if p∗ > 0, or 0 otherwise) describes the compression and

decompression of the pressure chamber.

The estimation of the coefficients was calculated with a nonlinear least squares method [27]. Since
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these are nonlinear functions of their coefficients, the initialization constants are relevant for the algo-

rithm. So, for each optimization, 10 trials with different, random [27], starting points were made and the

best of each was chosen. The result is shown in tables A.1 and A.2.

rmse Log n=1 n=2 n=3 n=4 n=5

m=1 0.0344 0.0272 0.0259 0.0258 0.0257

m=2 0.0277 0.0272 0.0258 0.0258 0.0262

m=3 0.0104 0.0088 0.0038 0.0038 0.0040

Table A.1: Root mean square errors of proposed logarithmic function structure

rmse Rational n=1 n=2 n=3 n=4

m=1 0.0557 0.0133 0.0117 0.0068

m=2 0.0557 0.0222 0.0190 0.0131

m=3 0.0545 0.0042 0.0231 0.0042

Table A.2: Root mean square errors of proposed rational function structure

Finally, the function that was selected (A.3) for the model was a rational function with some modifi-

cations to the above structure. (A.3) displays a root mean square error (RMSE) of 0.0025 relative to the

data. The distribution of the error can be examined in figure A.3.

Φ̂(Ψ; u) =
(0:1657− 0:03875u)Ψ4 − 0:71Ψ3 + 5:068Ψ2 + 4:289Ψ

Ψ3 − 2:561Ψ2 + (33:17− 29:74u + 34:03u2)Ψ + 6:278u
u (A.3)

Figure A.3: Relative errors: |Φ̂(Ψ;u)−Φ(Ψ;u)|
Φ(Ψ;u)

Although there are some errors around 10%, it is to relevant to say that more points are available

for lower Ψ and the data also has more noise on these points. This will influence the relative error
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calculations. In figure A.4 it is clearly visible that these errors are almost imperceptible.

Figure A.4: Estimation Φ̃

A.1.2 Non Dimensional Power Numerical Model

The data available concerning� Π is represented in fig A.2. In here it is visible that Π is almost

independent from u, as long as Φ is used for argument. The data corresponding to u = 0:7 deviated

from u = 1 data for greater Φ, so these points were excluded for the least squares estimation, to avoid a

erroneous overfiting of the data. With this, Π can be written as:

Π̂(Ψ; u) = Π(Φ; u) = Π(Φ(Ψ; u)) (A.4)

Still analyzing figure A.2, the curve seems to be approximately quadratic, so it is expected that a

curve of that type will approximate the data well. This reasoning still leads to a rather big error due to

the initial part of the curve. A way to reduce this error is to increase the polynomial degree. It is also

reasonable to keep the degree of each term even, to represent a similar behavior in compression and

decompression (Φ > 0 and Φ < 0 respectively). For low values of Φ, the shaft maintains a rotation even

if there is almost no air flow (or pressure gradient), so the turbine is, in fact, consuming power, presenting

a negative torque (friction effect). With that said, in this curve there should be a constant negative part.

Summarizing what was said previously,

Π̂ = −a0 + a1Φ2 + · · ·+ anΦ2n (A.5)

Equation A.6 shows the fitting made for the tenth order polynomial (RMSE 0.0017) and the chosen

function to use in the simulation, represented in figure A.5. Figure A.6 pictures the error distribution of

the fitting. The other functions calculated and their root mean square errors can be found in table A.3

Π̂(Φ) = −272Φ10 + 252Φ8 − 84:26Φ6 + 12:9Φ4 + 2:605Φ2 − 0:00657 (A.6)
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Figure A.5: Estimation Π̂

Figure A.6: Relative errors |Π̂(Φ)−Π(Φ)|
Π(Φ)

n=1 n=2 n=3 n=4 n=5 n=6

rmse 0.0055 0.0029 0.0023 0.0018 0.0017 0.0017

Table A.3: Root mean square error for the (2n)th order polynomial

A.1.3 Turbine Efficiency

An optional tool to evaluate the turbine’s characteristics is the efficiency. The efficiency of the turbine

is defined as ” = Π=(ΦΨ) which is now possible to have as a sole function of Ψ and u. Figure A.7

pictures a surface of the efficiency as a function of these variables.
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Figure A.7: Turbine efficiency surface

A.2 Numerical Model of the Generator

Since doubly fed induction generators are typically used as wind energy converters, the most com-

mon representation of the generated power comes associated with wind speed [28, 29], which is useful

to skip some steps of the modeling. In this case it will be more useful to define the curve as a direct

function of the torque, supplied by the turbine Tt , and the rotational speed of the system Ω.

Figure A.8: Power of the generator data

Figure A.8 represents the available data about the generator. Upon inspection of this figure, a possi-

ble assumption is that the lines of constant rotational speed are nearly linear, whilst the lines of constant

torque present a rather quadratic behavior. To this extent, equation (A.7) presents a generic model to

apply to the generator. This model assumes that there can be higher order terms for the torque as well

as the speed and assures the conditions Pgen(Ω = 0; Tt) = Pgen(Ω; Tt = 0) = 0 are respected. Table A.4

lists some of the tests made with this formula.

Pgen =
mX
k=1

T kt (ankΩn + ak(n−1)Ω
n−1 + · · ·+ ak1Ω) (A.7)
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rmse n=2 n=3 n=4

m=1 194.9W 89.2W 88.2W

m=2 162.6W 83.5W 82.2W

Table A.4: Root mean square error for some values of m and n of equation A.7

Facing table A.4 the chosen model for this work was the model with m = 1 and n = 3, equation A.8,

for its simplicity without much gain in the error compared to higher order ones. Below are figures A.9a

and A.9b which depict the error distribution off the approximation and the surface created respectively.

Pgen = Tt(−9:18× 10−6Ω3 + 2:89× 10−3Ω2 + 6:84× 10−1Ω) (A.8)

(a) relative error (b) data comparison

Figure A.9: Relative error and comparison of (A.8) with the data in figure A.8

Similarly to the the turbine, an optional function that can be defined to describe the generator is the

efficiency. In this case, it is easily described by (A.9). Figure A.10 shows its shape.

” = (−9:18× 10−6Ω2 + 2:89× 10−3Ω + 6:84× 10−1) (A.9)
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Figure A.10: Efficiency of the generator using the estimated function
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Appendix B

Hydrodynamic characteristics

To calculate Γ and ffi, the following tables were used [30], recurring, when needed, to linear interpo-

lations between values.
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! Γ ffi ! Γ ffi ! Γ ffi
0.0005 0.1957 0 0.2403 0.1704 0.0672 0.4802 0.1125 0.8379
0.0068 0.1957 0 0.2466 0.1692 0.0742 0.4865 0.1108 0.8769
0.0131 0.1956 0 0.253 0.1679 0.0816 0.4928 0.1092 0.9171
0.0194 0.1955 0 0.2593 0.1666 0.0896 0.4991 0.1076 0.9585
0.0258 0.1954 0 0.2656 0.1653 0.0981 0.5054 0.106 1.0013
0.0321 0.1952 0 0.2719 0.164 0.1071 0.5117 0.1043 1.0453
0.0384 0.195 0 0.2782 0.1626 0.1167 0.518 0.1027 1.0906
0.0447 0.1947 0.0001 0.2845 0.1612 0.1269 0.5243 0.1011 1.1373
0.051 0.1945 0.0002 0.2908 0.1598 0.1377 0.5307 0.0995 1.1852
0.0573 0.1942 0.0002 0.2971 0.1584 0.1491 0.537 0.0979 1.2347
0.0636 0.1938 0.0004 0.3034 0.157 0.1612 0.5433 0.0963 1.2855
0.0699 0.1934 0.0005 0.3098 0.1555 0.174 0.5496 0.0947 1.3378
0.0762 0.193 0.0008 0.3161 0.154 0.1874 0.5559 0.0931 1.3913
0.0826 0.1925 0.001 0.3224 0.1526 0.2015 0.5622 0.0916 1.4465
0.0889 0.192 0.0014 0.3287 0.1511 0.2164 0.5685 0.09 1.5031
0.0952 0.1915 0.0018 0.335 0.1495 0.232 0.5748 0.0885 1.5612
0.1015 0.1909 0.0023 0.3413 0.148 0.2483 0.5811 0.0869 1.6209
0.1078 0.1903 0.003 0.3476 0.1465 0.2655 0.5875 0.0854 1.6822
0.1141 0.1897 0.0037 0.3539 0.1449 0.2834 0.5938 0.0839 1.7449
0.1204 0.189 0.0046 0.3602 0.1434 0.3021 0.6001 0.0824 1.8096
0.1267 0.1883 0.0056 0.3666 0.1418 0.3217 0.6064 0.0809 1.8757
0.133 0.1876 0.0068 0.3729 0.1402 0.3421 0.6127 0.0794 1.9434
0.1394 0.1868 0.0082 0.3792 0.1386 0.3635 0.619 0.0779 2.0128
0.1457 0.186 0.0097 0.3855 0.137 0.3856 0.6253 0.0765 2.0841
0.152 0.1852 0.0115 0.3918 0.1354 0.4087 0.6316 0.075 2.1569
0.1583 0.1843 0.0134 0.3981 0.1338 0.4327 0.6379 0.0736 2.2317
0.1646 0.1834 0.0157 0.4044 0.1322 0.4577 0.6443 0.0722 2.3082
0.1709 0.1825 0.0181 0.4107 0.1305 0.4836 0.6506 0.0708 2.3866
0.1772 0.1816 0.0209 0.4171 0.1289 0.5105 0.6569 0.0694 2.4666
0.1835 0.1806 0.0239 0.4234 0.1273 0.5384 0.6632 0.068 2.5488
0.1898 0.1796 0.0272 0.4297 0.1256 0.5673 0.6695 0.0667 2.6328
0.1962 0.1785 0.0309 0.436 0.124 0.5973 0.6758 0.0653 2.7187
0.2025 0.1774 0.0349 0.4423 0.1224 0.6283 0.6821 0.064 2.8063
0.2088 0.1763 0.0393 0.4486 0.1207 0.6604 0.6884 0.0627 2.8963
0.2151 0.1752 0.044 0.4549 0.1191 0.6936 0.6947 0.0614 2.988
0.2214 0.1741 0.0492 0.4612 0.1174 0.7279 0.7011 0.0601 3.0821
0.2277 0.1729 0.0548 0.4675 0.1158 0.7634 0.7074 0.0588 3.1779
0.234 0.1717 0.0608 0.4739 0.1141 0.8001 0.7137 0.0576 3.2757
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! Γ ffi ! Γ ffi ! Γ ffi
0.72 0.0563 3.3759 0.9598 0.0217 8.9419 1.1997 0.0067 18.3846

0.7263 0.0551 3.478 0.9661 0.0211 9.139 1.206 0.0065 18.6876
0.7326 0.0539 3.5826 0.9724 0.0205 9.3385 1.2123 0.0063 18.9936
0.7389 0.0527 3.6894 0.9788 0.02 9.5411 1.2186 0.0061 19.3026
0.7452 0.0516 3.7979 0.9851 0.0194 9.746 1.2249 0.0059 19.6143
0.7516 0.0504 3.909 0.9914 0.0188 9.954 1.2312 0.0057 19.9308
0.7579 0.0493 4.0219 0.9977 0.0183 10.1647 1.2375 0.0055 20.2471
0.7642 0.0482 4.1375 1.004 0.0178 10.3782 1.2438 0.0053 20.5678
0.7705 0.0471 4.2552 1.0103 0.0173 10.5948 1.2501 0.0052 20.8875
0.7768 0.046 4.3753 1.0166 0.0168 10.8134 1.2565 0.005 21.2145
0.7831 0.0449 4.4979 1.0229 0.0163 11.0353 1.2628 0.0048 21.5454
0.7894 0.0439 4.6225 1.0292 0.0158 11.2607 1.2691 0.0047 21.8763
0.7957 0.0428 4.7495 1.0356 0.0153 11.4882 1.2754 0.0045 22.211
0.802 0.0418 4.8792 1.0419 0.0149 11.7181 1.2817 0.0044 22.5459

0.8084 0.0408 5.0109 1.0482 0.0144 11.9512 1.288 0.0042 22.8876
0.8147 0.0398 5.1456 1.0545 0.014 12.1862 1.2943 0.0041 23.2317
0.821 0.0389 5.2821 1.0608 0.0136 12.4246 1.3006 0.0039 23.5787

0.8273 0.0379 5.4214 1.0671 0.0132 12.6669 1.3069 0.0038 23.9244
0.8336 0.037 5.5632 1.0734 0.0128 12.9109 1.3133 0.0037 24.2776
0.8399 0.0361 5.7075 1.0797 0.0124 13.1576 1.3196 0.0035 24.6311
0.8462 0.0352 5.8542 1.0861 0.012 13.4075 1.3259 0.0034 24.9882
0.8525 0.0343 6.0036 1.0924 0.0116 13.6604 1.3322 0.0033 25.3462
0.8588 0.0334 6.1553 1.0987 0.0113 13.9151 1.3385 0.0032 25.7113
0.8652 0.0326 6.3097 1.105 0.0109 14.1734 1.3448 0.0031 26.079
0.8715 0.0318 6.4669 1.1113 0.0106 14.4352 1.3511 0.003 26.4469
0.8778 0.0309 6.6262 1.1176 0.0103 14.6983 1.3574 0.0029 26.8162
0.8841 0.0301 6.7886 1.1239 0.0099 14.9653 1.3638 0.0028 27.1888
0.8904 0.0294 6.9539 1.1302 0.0096 15.2351 1.3701 0.0027 27.5644
0.8967 0.0286 7.121 1.1365 0.0093 15.5063 1.3764 0.0026 27.9443
0.903 0.0278 7.2912 1.1429 0.009 15.7825 1.3827 0.0025 28.331

0.9093 0.0271 7.4638 1.1492 0.0087 16.0596 1.389 0.0024 28.7153
0.9156 0.0264 7.6393 1.1555 0.0085 16.3406 1.3953 0.0023 29.0977
0.922 0.0257 7.817 1.1618 0.0082 16.6244 1.4016 0.0023 29.4888

0.9283 0.025 7.9979 1.1681 0.0079 16.9106 1.4079 0.0022 29.8938
0.9346 0.0243 8.1811 1.1744 0.0077 17.1989 1.4142 0.0021 30.286
0.9409 0.0236 8.3673 1.1807 0.0074 17.4924 1.4205 0.002 30.6799
0.9472 0.023 8.5565 1.187 0.0072 17.786 1.4269 0.002 31.0817
0.9535 0.0224 8.7477 1.1933 0.007 18.0841 1.4332 0.0019 31.4952
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! Γ ffi ! Γ ffi ! Γ ffi
1.4395 0.0018 31.9029 1.6793 0.0005 49.5096 1.9191 0.0002 71.394
1.4458 0.0018 32.3097 1.6856 0.0005 49.9967 1.9255 0.0002 71.9872
1.4521 0.0017 32.7185 1.6919 0.0005 50.5633 1.9318 0.0002 72.6758
1.4584 0.0017 33.1417 1.6982 0.0005 51.0784 1.9381 0.0002 73.1555
1.4647 0.0016 33.5525 1.7046 0.0005 51.6402 1.9444 0.0002 73.8884
1.471 0.0015 33.9819 1.7109 0.0005 52.1375 1.9507 0.0002 74.5997
1.4774 0.0015 34.416 1.7172 0.0004 52.6335 1.957 0.0002 75.311
1.4837 0.0014 34.8366 1.7235 0.0004 53.1744 1.9633 0.0002 76.0661

1.49 0.0014 35.2485 1.7298 0.0004 53.7092 1.9696 0.0002 76.585
1.4963 0.0013 35.6986 1.7361 0.0004 54.3184 1.976 0.0002 77.223
1.5026 0.0013 36.1283 1.7424 0.0004 54.8046 1.9823 0.0002 78.0633
1.5089 0.0013 36.5667 1.7487 0.0004 55.3781 1.9886 0.0002 78.5046
1.5152 0.0012 37.0134 1.7551 0.0004 55.9164 1.9949 0.0001 79.275
1.5215 0.0012 37.464 1.7614 0.0004 56.4987 2.0012 0.0001 80.099
1.5278 0.0011 37.9107 1.7677 0.0004 57.0543 2.0075 0.0001 80.6935
1.5342 0.0011 38.3616 1.774 0.0003 57.5951 2.0138 0.0001 80.9793
1.5405 0.0011 38.8312 1.7803 0.0003 58.1507 2.0201 0.0001 81.8224
1.5468 0.001 39.2733 1.7866 0.0003 58.6616 2.0264 0.0001 82.5976
1.5531 0.001 39.7217 1.7929 0.0003 59.3178 2.0328 0.0001 83.383
1.5594 0.001 40.2214 1.7992 0.0003 59.8737 2.0391 0.0001 83.9755
1.5657 0.0009 40.6511 1.8055 0.0003 60.4444 2.0454 0.0001 84.7052
1.572 0.0009 41.1271 1.8119 0.0003 60.9868 2.0517 0.0001 85.2545
1.5783 0.0009 41.5905 1.8182 0.0003 61.7111 2.058 0.0001 85.9317
1.5846 0.0008 42.0703 1.8245 0.0003 62.2187 2.0643 0.0001 86.5997
1.591 0.0008 42.5444 1.8308 0.0003 62.8077 2.0706 0.0001 87.3484
1.5973 0.0008 43.0237 1.8371 0.0003 63.451 2.0769 0.0001 87.8355
1.6036 0.0008 43.4795 1.8434 0.0003 63.9639 2.0832 0.0001 88.7253
1.6099 0.0007 43.9737 1.8497 0.0003 64.6355 2.0895 0.0001 89.5154
1.6162 0.0007 44.4685 1.856 0.0002 65.1924 2.0959 0.0001 90.0191
1.6225 0.0007 44.9664 1.8623 0.0002 65.769 2.1022 0.0001 90.8624
1.6288 0.0007 45.4451 1.8687 0.0002 66.416 2.1085 0.0001 91.6364
1.6351 0.0007 45.9526 1.875 0.0002 66.99 2.1148 0.0001 92.0267
1.6414 0.0006 46.4462 1.8813 0.0002 67.6793 2.1211 0.0001 93.0351
1.6478 0.0006 46.9627 1.8876 0.0002 68.1907 2.1274 0.0001 93.4891
1.6541 0.0006 47.4606 1.8939 0.0002 68.8472 2.1337 0.0001 94.3442
1.6604 0.0006 47.9512 1.9002 0.0002 69.5684 2.14 0.0001 94.7804
1.6667 0.0006 48.4592 1.9065 0.0002 70.1646 2.1463 0.0001 95.9366
1.673 0.0005 49.0061 1.9128 0.0002 70.836 2.1527 0.0001 96.8302
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! Γ ffi ! Γ ffi
2.159 0.0001 97.4482 2.3988 0 126.8652
2.1653 0.0001 97.8753 2.4051 0 128.429
2.1716 0.0001 98.9213 2.4114 0 128.6548
2.1779 0.0001 99.5715 2.4177 0 129.8596
2.1842 0.0001 100.4229 2.4241 0 130.4772
2.1905 0.0001 101.165 2.4304 0 131.4195
2.1968 0.0001 101.7972 2.4367 0 132.0587
2.2032 0.0001 102.6183 2.443 0 132.6356
2.2095 0.0001 103.3237 2.4493 0 133.9373
2.2158 0.0001 104.0371 2.4556 0 134.8715
2.2221 0.0001 104.9279 2.4619 0 135.5872
2.2284 0.0001 105.4146 2.4682 0 136.3218
2.2347 0.0001 106.4893 2.4745 0 137.178
2.241 0.0001 107.0218 2.4808 0 138.3713
2.2473 0.0001 108.1602 2.4872 0 138.6782
2.2536 0.0001 108.884 2.4935 0 139.88

2.26 0.0001 109.6022 2.4998 0 141.3747
2.2663 0.0001 110.2289 2.5061 0 141.7056
2.2726 0.0001 111.1854 2.5124 0 142.3253
2.2789 0.0001 112.0914 2.5187 0 143.6906
2.2852 0.0001 112.809 2.525 0 144.0796
2.2915 0.0001 113.4282
2.2978 0.0001 114.5414
2.3041 0.0001 115.5488
2.3105 0.0001 116.2418
2.3168 0.0001 116.601
2.3231 0.0001 117.3532
2.3294 0.0001 118.0722
2.3357 0.0001 119.1078
2.342 0 119.9322
2.3483 0 120.7954
2.3546 0 121.2256
2.3609 0 122.3803
2.3672 0 122.6994
2.3736 0 123.7263
2.3799 0 125.0194
2.3862 0 125.8216
2.3925 0 126.2476

Table B.1: Data for the excitation force Fd1
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! Γ ffi ! Γ ffi ! Γ ffi
0.0005 0.1957 0 0.2403 0.1704 0.0672 0.4802 0.1125 0.8379
0.0068 0.1957 0 0.2466 0.1692 0.0742 0.4865 0.1108 0.8769
0.0131 0.1956 0 0.253 0.1679 0.0816 0.4928 0.1092 0.9171
0.0194 0.1955 0 0.2593 0.1666 0.0896 0.4991 0.1076 0.9585
0.0258 0.1954 0 0.2656 0.1653 0.0981 0.5054 0.106 1.0013
0.0321 0.1952 0 0.2719 0.164 0.1071 0.5117 0.1043 1.0453
0.0384 0.195 0 0.2782 0.1626 0.1167 0.518 0.1027 1.0906
0.0447 0.1947 0.0001 0.2845 0.1612 0.1269 0.5243 0.1011 1.1373
0.051 0.1945 0.0002 0.2908 0.1598 0.1377 0.5307 0.0995 1.1852
0.0573 0.1942 0.0002 0.2971 0.1584 0.1491 0.537 0.0979 1.2347
0.0636 0.1938 0.0004 0.3034 0.157 0.1612 0.5433 0.0963 1.2855
0.0699 0.1934 0.0005 0.3098 0.1555 0.174 0.5496 0.0947 1.3378
0.0762 0.193 0.0008 0.3161 0.154 0.1874 0.5559 0.0931 1.3913
0.0826 0.1925 0.001 0.3224 0.1526 0.2015 0.5622 0.0916 1.4465
0.0889 0.192 0.0014 0.3287 0.1511 0.2164 0.5685 0.09 1.5031
0.0952 0.1915 0.0018 0.335 0.1495 0.232 0.5748 0.0885 1.5612
0.1015 0.1909 0.0023 0.3413 0.148 0.2483 0.5811 0.0869 1.6209
0.1078 0.1903 0.003 0.3476 0.1465 0.2655 0.5875 0.0854 1.6822
0.1141 0.1897 0.0037 0.3539 0.1449 0.2834 0.5938 0.0839 1.7449
0.1204 0.189 0.0046 0.3602 0.1434 0.3021 0.6001 0.0824 1.8096
0.1267 0.1883 0.0056 0.3666 0.1418 0.3217 0.6064 0.0809 1.8757
0.133 0.1876 0.0068 0.3729 0.1402 0.3421 0.6127 0.0794 1.9434
0.1394 0.1868 0.0082 0.3792 0.1386 0.3635 0.619 0.0779 2.0128
0.1457 0.186 0.0097 0.3855 0.137 0.3856 0.6253 0.0765 2.0841
0.152 0.1852 0.0115 0.3918 0.1354 0.4087 0.6316 0.075 2.1569
0.1583 0.1843 0.0134 0.3981 0.1338 0.4327 0.6379 0.0736 2.2317
0.1646 0.1834 0.0157 0.4044 0.1322 0.4577 0.6443 0.0722 2.3082
0.1709 0.1825 0.0181 0.4107 0.1305 0.4836 0.6506 0.0708 2.3866
0.1772 0.1816 0.0209 0.4171 0.1289 0.5105 0.6569 0.0694 2.4666
0.1835 0.1806 0.0239 0.4234 0.1273 0.5384 0.6632 0.068 2.5488
0.1898 0.1796 0.0272 0.4297 0.1256 0.5673 0.6695 0.0667 2.6328
0.1962 0.1785 0.0309 0.436 0.124 0.5973 0.6758 0.0653 2.7187
0.2025 0.1774 0.0349 0.4423 0.1224 0.6283 0.6821 0.064 2.8063
0.2088 0.1763 0.0393 0.4486 0.1207 0.6604 0.6884 0.0627 2.8963
0.2151 0.1752 0.044 0.4549 0.1191 0.6936 0.6947 0.0614 2.988
0.2214 0.1741 0.0492 0.4612 0.1174 0.7279 0.7011 0.0601 3.0821
0.2277 0.1729 0.0548 0.4675 0.1158 0.7634 0.7074 0.0588 3.1779
0.234 0.1717 0.0608 0.4739 0.1141 0.8001 0.7137 0.0576 3.2757
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! Γ ffi ! Γ ffi ! Γ ffi
0.72 0.0563 3.3759 0.9598 0.0217 8.9419 1.1997 0.0067 18.3846

0.7263 0.0551 3.478 0.9661 0.0211 9.139 1.206 0.0065 18.6876
0.7326 0.0539 3.5826 0.9724 0.0205 9.3385 1.2123 0.0063 18.9936
0.7389 0.0527 3.6894 0.9788 0.02 9.5411 1.2186 0.0061 19.3026
0.7452 0.0516 3.7979 0.9851 0.0194 9.746 1.2249 0.0059 19.6143
0.7516 0.0504 3.909 0.9914 0.0188 9.954 1.2312 0.0057 19.9308
0.7579 0.0493 4.0219 0.9977 0.0183 10.1647 1.2375 0.0055 20.2471
0.7642 0.0482 4.1375 1.004 0.0178 10.3782 1.2438 0.0053 20.5678
0.7705 0.0471 4.2552 1.0103 0.0173 10.5948 1.2501 0.0052 20.8875
0.7768 0.046 4.3753 1.0166 0.0168 10.8134 1.2565 0.005 21.2145
0.7831 0.0449 4.4979 1.0229 0.0163 11.0353 1.2628 0.0048 21.5454
0.7894 0.0439 4.6225 1.0292 0.0158 11.2607 1.2691 0.0047 21.8763
0.7957 0.0428 4.7495 1.0356 0.0153 11.4882 1.2754 0.0045 22.211
0.802 0.0418 4.8792 1.0419 0.0149 11.7181 1.2817 0.0044 22.5459

0.8084 0.0408 5.0109 1.0482 0.0144 11.9512 1.288 0.0042 22.8876
0.8147 0.0398 5.1456 1.0545 0.014 12.1862 1.2943 0.0041 23.2317
0.821 0.0389 5.2821 1.0608 0.0136 12.4246 1.3006 0.0039 23.5787

0.8273 0.0379 5.4214 1.0671 0.0132 12.6669 1.3069 0.0038 23.9244
0.8336 0.037 5.5632 1.0734 0.0128 12.9109 1.3133 0.0037 24.2776
0.8399 0.0361 5.7075 1.0797 0.0124 13.1576 1.3196 0.0035 24.6311
0.8462 0.0352 5.8542 1.0861 0.012 13.4075 1.3259 0.0034 24.9882
0.8525 0.0343 6.0036 1.0924 0.0116 13.6604 1.3322 0.0033 25.3462
0.8588 0.0334 6.1553 1.0987 0.0113 13.9151 1.3385 0.0032 25.7113
0.8652 0.0326 6.3097 1.105 0.0109 14.1734 1.3448 0.0031 26.079
0.8715 0.0318 6.4669 1.1113 0.0106 14.4352 1.3511 0.003 26.4469
0.8778 0.0309 6.6262 1.1176 0.0103 14.6983 1.3574 0.0029 26.8162
0.8841 0.0301 6.7886 1.1239 0.0099 14.9653 1.3638 0.0028 27.1888
0.8904 0.0294 6.9539 1.1302 0.0096 15.2351 1.3701 0.0027 27.5644
0.8967 0.0286 7.121 1.1365 0.0093 15.5063 1.3764 0.0026 27.9443
0.903 0.0278 7.2912 1.1429 0.009 15.7825 1.3827 0.0025 28.331

0.9093 0.0271 7.4638 1.1492 0.0087 16.0596 1.389 0.0024 28.7153
0.9156 0.0264 7.6393 1.1555 0.0085 16.3406 1.3953 0.0023 29.0977
0.922 0.0257 7.817 1.1618 0.0082 16.6244 1.4016 0.0023 29.4888

0.9283 0.025 7.9979 1.1681 0.0079 16.9106 1.4079 0.0022 29.8938
0.9346 0.0243 8.1811 1.1744 0.0077 17.1989 1.4142 0.0021 30.286
0.9409 0.0236 8.3673 1.1807 0.0074 17.4924 1.4205 0.002 30.6799
0.9472 0.023 8.5565 1.187 0.0072 17.786 1.4269 0.002 31.0817
0.9535 0.0224 8.7477 1.1933 0.007 18.0841 1.4332 0.0019 31.4952
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! Γ ffi ! Γ ffi ! Γ ffi
1.4395 0.0018 31.9029 1.6793 0.0005 49.5096 1.9191 0.0002 71.394
1.4458 0.0018 32.3097 1.6856 0.0005 49.9967 1.9255 0.0002 71.9872
1.4521 0.0017 32.7185 1.6919 0.0005 50.5633 1.9318 0.0002 72.6758
1.4584 0.0017 33.1417 1.6982 0.0005 51.0784 1.9381 0.0002 73.1555
1.4647 0.0016 33.5525 1.7046 0.0005 51.6402 1.9444 0.0002 73.8884
1.471 0.0015 33.9819 1.7109 0.0005 52.1375 1.9507 0.0002 74.5997
1.4774 0.0015 34.416 1.7172 0.0004 52.6335 1.957 0.0002 75.311
1.4837 0.0014 34.8366 1.7235 0.0004 53.1744 1.9633 0.0002 76.0661

1.49 0.0014 35.2485 1.7298 0.0004 53.7092 1.9696 0.0002 76.585
1.4963 0.0013 35.6986 1.7361 0.0004 54.3184 1.976 0.0002 77.223
1.5026 0.0013 36.1283 1.7424 0.0004 54.8046 1.9823 0.0002 78.0633
1.5089 0.0013 36.5667 1.7487 0.0004 55.3781 1.9886 0.0002 78.5046
1.5152 0.0012 37.0134 1.7551 0.0004 55.9164 1.9949 0.0001 79.275
1.5215 0.0012 37.464 1.7614 0.0004 56.4987 2.0012 0.0001 80.099
1.5278 0.0011 37.9107 1.7677 0.0004 57.0543 2.0075 0.0001 80.6935
1.5342 0.0011 38.3616 1.774 0.0003 57.5951 2.0138 0.0001 80.9793
1.5405 0.0011 38.8312 1.7803 0.0003 58.1507 2.0201 0.0001 81.8224
1.5468 0.001 39.2733 1.7866 0.0003 58.6616 2.0264 0.0001 82.5976
1.5531 0.001 39.7217 1.7929 0.0003 59.3178 2.0328 0.0001 83.383
1.5594 0.001 40.2214 1.7992 0.0003 59.8737 2.0391 0.0001 83.9755
1.5657 0.0009 40.6511 1.8055 0.0003 60.4444 2.0454 0.0001 84.7052
1.572 0.0009 41.1271 1.8119 0.0003 60.9868 2.0517 0.0001 85.2545
1.5783 0.0009 41.5905 1.8182 0.0003 61.7111 2.058 0.0001 85.9317
1.5846 0.0008 42.0703 1.8245 0.0003 62.2187 2.0643 0.0001 86.5997
1.591 0.0008 42.5444 1.8308 0.0003 62.8077 2.0706 0.0001 87.3484
1.5973 0.0008 43.0237 1.8371 0.0003 63.451 2.0769 0.0001 87.8355
1.6036 0.0008 43.4795 1.8434 0.0003 63.9639 2.0832 0.0001 88.7253
1.6099 0.0007 43.9737 1.8497 0.0003 64.6355 2.0895 0.0001 89.5154
1.6162 0.0007 44.4685 1.856 0.0002 65.1924 2.0959 0.0001 90.0191
1.6225 0.0007 44.9664 1.8623 0.0002 65.769 2.1022 0.0001 90.8624
1.6288 0.0007 45.4451 1.8687 0.0002 66.416 2.1085 0.0001 91.6364
1.6351 0.0007 45.9526 1.875 0.0002 66.99 2.1148 0.0001 92.0267
1.6414 0.0006 46.4462 1.8813 0.0002 67.6793 2.1211 0.0001 93.0351
1.6478 0.0006 46.9627 1.8876 0.0002 68.1907 2.1274 0.0001 93.4891
1.6541 0.0006 47.4606 1.8939 0.0002 68.8472 2.1337 0.0001 94.3442
1.6604 0.0006 47.9512 1.9002 0.0002 69.5684 2.14 0.0001 94.7804
1.6667 0.0006 48.4592 1.9065 0.0002 70.1646 2.1463 0.0001 95.9366
1.673 0.0005 49.0061 1.9128 0.0002 70.836 2.1527 0.0001 96.8302
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! Γ ffi ! Γ ffi
2.159 0.0001 97.4482 2.3988 0 126.8652
2.1653 0.0001 97.8753 2.4051 0 128.429
2.1716 0.0001 98.9213 2.4114 0 128.6548
2.1779 0.0001 99.5715 2.4177 0 129.8596
2.1842 0.0001 100.4229 2.4241 0 130.4772
2.1905 0.0001 101.165 2.4304 0 131.4195
2.1968 0.0001 101.7972 2.4367 0 132.0587
2.2032 0.0001 102.6183 2.443 0 132.6356
2.2095 0.0001 103.3237 2.4493 0 133.9373
2.2158 0.0001 104.0371 2.4556 0 134.8715
2.2221 0.0001 104.9279 2.4619 0 135.5872
2.2284 0.0001 105.4146 2.4682 0 136.3218
2.2347 0.0001 106.4893 2.4745 0 137.178
2.241 0.0001 107.0218 2.4808 0 138.3713
2.2473 0.0001 108.1602 2.4872 0 138.6782
2.2536 0.0001 108.884 2.4935 0 139.88

2.26 0.0001 109.6022 2.4998 0 141.3747
2.2663 0.0001 110.2289 2.5061 0 141.7056
2.2726 0.0001 111.1854 2.5124 0 142.3253
2.2789 0.0001 112.0914 2.5187 0 143.6906
2.2852 0.0001 112.809 2.525 0 144.0796
2.2915 0.0001 113.4282
2.2978 0.0001 114.5414
2.3041 0.0001 115.5488
2.3105 0.0001 116.2418
2.3168 0.0001 116.601
2.3231 0.0001 117.3532
2.3294 0.0001 118.0722
2.3357 0.0001 119.1078
2.342 0 119.9322
2.3483 0 120.7954
2.3546 0 121.2256
2.3609 0 122.3803
2.3672 0 122.6994
2.3736 0 123.7263
2.3799 0 125.0194
2.3862 0 125.8216
2.3925 0 126.2476

Table B.2: Data for the excitation force Fd2
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Appendix C

Code hand book

C.1 Introduction

The next sections introduce a guide to the use of the developed code. The reading of this manual

should always be accompanied by the theory in chapter 3. The manual will cover the required stages to

setup and run the different modules of the code. This excerpt was only tested with Microsoft Windows

and Linux/Unix (using WSL – Windows Subsystem Linux feature of Windows); nevertheless, Python

should interpret equally on any other operating system (OS).

C.2 Setup

As referred before, the routine was developed in Python. Python is an interpreted programming

language, so the first requirements is to have python3 installed. After that, it is also necessary to have the

modules: numpy, mpmath, scypy, sympy, pylab and, optionally, pymp (only available on Linux/Unix OS).

An alternative to the individual installation of these is the installation of a Python distribution platform,

such as Anaconda.

It is also advisable to have a python editor as some of the features that can be changed are embed-

ded on the code.

If the studied system is complex and the calculations are slow, consider using the PyMP module,

and for that (if in Windows) use WSL or install a Linux/Unix SO, equipped with openMP, for parallel

computing.

All the python packages are available with pip or conda; WSL is an open source feature of windows,

available in the store (for free) and openMP should be in the list of installations of linux as ”sudo apt-get

install libomp-dev”.

C.3 Overview

The algorithm is divided into three main modules:
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• Elements.py – Module responsible for the elements and element list

• System.py – Module responsible for the system definitions and their simulation

• PMPsolver.py – Module for the optimization of the problem

The remaining files are auxiliary, either for calculations or for visualization/inspection tools.

• Graphics.py – Functions to make graphs of several types

• LobattoQuad.py – Gauss-Lobatto quadrature points and weights

• optimization mp.py – Modified scypy module to work with mpmath

• linesearch mp.py – Modified scypy module to work with mpmath

C.4 Elements module: useful definitions and methods

In this sections some of the useful definitions and methods present on the Elements module are

discussed. There are more methods in this module, but some of those are mostly useful for the use

of other modules, and not to the user directly. For more information on these, see the code and the

commentary.

This module is used to create elements and lists of elements. For this, the Element and the Ele-

ments classes are defined here. The remaining functions present in this file are used to create Elements

objects (lin elements dt, lin elements nelem, elements nodes, elements nodes, load) in different ways.

There is also a method to calculate the complete integral (along all the elements) of any value dependent

on the elements and time.

C.4.1 Element

Each element object contains the following information:

• Element.n – Degree of approximation np

• Element.np1 – np + 1

• Element.dt – Time interval of the element ∆te

• Element.ti – Initial time of the element test

• Element.tf – Final time of the element tef (derived from the previous)

• Element.n variables – Number of variables the element approximates (example for a PMP prob-

lem: 2nx + nu – nx for state variables, nx for co-state variables and nu for the control variables)

• Element.constants – Matrix with all the cei;j of the approximated variables. Each row is a different

variable and each column a different polynomial degree
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Element.assign

Still within the element definition, the Element.assign method may prove helpful to assign a values

to a specific variable or all variables.

Inputs:

• constants array – Array of the constants to assign to the specific variables

• variable numbers – Correspondence of the variables to which assign the previous constants (the

first variable is number 0)

Example: if the element approximates 3 variables, assign a constant value 2 to the first and the third

variable (assuming np = 2).

>> example element.assign([2,0,0,2,0,0],[0,2])

Element.calculate

Calculates the specific value of a variable in a given point.

Inputs:

• tau – Local time [-1,1]

• variable numbers – Variable correspondence in the element to calculate (the first variable is num-

ber 0)

Example: if the element approximates 3 variables, get the value of the second variable at the middle

of the element (fi = 0).

>> example element.calculate(0, (1,) )

C.4.2 Elements

The Elements object contains the following attributes:

• Elements.n – np

• Elements.np1 – np + 1

• Elements.Element list – List of element objects

• Elements.Node list – List of time nodes (boundary of elements in Element list)

• Elements.nelem – Number of elements in Element list

• Elements.n variables – Number of variables the element approximates (example for a PMP prob-

lem: 2nx + nu – nx for state variables nx, for co-state variables and nu for the control variables)
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Elements.save

This method, as the name suggests, saves the all the elements. It is done by writing the data to a

separate text file. Keep in mind, if the file is already filled, the information will be erased.

Inputs:

• file – Name of the file (example: ’savefile.txt’)

Example: for elements of degree np = 2, Elements.n variables = 3 and 3 elements has the formatting

in table C.1

Element list with nvars=3 and n=2

element ti= t0
st, dt= ∆t0: c0

1;0; c0
1;1; c0

1;2; c0
2;0; c0

2;1; c0
2;2; c0

3;0; c0
3;1; c0

3;2;

element ti= t1
st, dt= ∆t1: c1

1;0; c1
1;1; c1

1;2; c1
2;0; c1

2;1; c1
2;2; c1

3;0; c1
3;1; c1

3;2;

element ti= t2
st, dt= ∆t2: c2

1;0; c2
1;1; c2

1;2; c2
2;0; c2

2;1; c2
2;2; c2

3;0; c2
3;1; c2

3;2;

Table C.1: data file formatting

Elements.calculate

This method can be used to calculate specific variables at a given time instant. It works similarly to

Element.calculate method, but incorporates a search to find the element for the given time.

Inputs:

• time – Time point to calculate [0, T]

• variable numbers – Variable correspondence in the element to calculate (the first variable is num-

ber 0)

Example: if the element approximates 3 variables, get the value of the second variable at 22 s.

>> example elements.calculate(22, (1,) )

C.4.3 calculate function

Calculates the integral or average of a given functions along all the elements.

Inputs:

• elements – Elements object

• var num inputs – Correspondence of the variables that input the function

• lambda functions – List of lambda (python anonymous funtions) functions which take the exact

correspondence of var num inputs to give the function value
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• time (optional) – Set to ”True” if any of the functions is time dependents

• average (optional) – Set to ”False” if the desired outhput is the integral instead of the average

• n int (optional) – Number of Gauss-Lobatto integration points (the default is 3)

Example: Calculate the average of (x1 − x2)2. In the elements, x1 is the first variable and x2 the

second.

>> f = lambda x1, x2: (x1 - x2)**2

>> average = calculate function(example elements, (0, 1), [f])

C.4.4 Elements creation methods

The rest of the ”Elements.py” file contains functions to create Elements objects.

lin elements dt

Creates equal elements using a constant ∆te . If T is not a multiple of ∆te the last element will be

truncated.

Inputs:

• delta t – The constant ∆te

• T – Final time of the last element

• n – np

• nvars – Number of variables the element approximates (example for a PMP problem: 2nx + nu – nx

for state variables nx, for co-state variables and nu for the control variables)

lin elements nelem

Creates equal elements using a constant ∆te by specifying the number of elements.

Inputs:

• n elem – Number of elements

• T – Final time of the last element

• n – np

• nvars – Number of variables the element approximates (example for a PMP problem: 2nx + nu – nx

for state variables nx, for co-state variables and nu for the control variables)
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elements nodes

Creates elements with nodes at specified points. It assumes the first node in the list is 0 and the last

is T.

Inputs:

• node list – List of custom nodes (example: [0, 0.2, 1, 2])

• n – np

• nvars – Number of variables the element approximates (example for a PMP problem: 2nx + nu – nx

for state variables nx, for co-state variables and nu for the control variables)

elements dt

Creates elements with specified ∆te .

Inputs:

• dt list – List of custom nodes (example: [0.2, 0.4, 0.2])

• n – np

• nvars – Number of variables the element approximates (example for a PMP problem: 2nx + nu – nx

for state variables nx, for co-state variables and nu for the control variables)

load

Recreates the elements using previous saved files (see table C.1).

Inputs:

• file – File with the formatting of C.1 (example: ’savefile.txt’)

C.5 System module: useful definitions and methods

The System module is responsible for system definitions and simulation (forward or backward). This

module defines only one class: ”System”. The creation of a system object requires several parameters.

These are placed as arguments of System.

This module is completely independent from the PMPsolver module, as it can be used to simply

simulate a system. It requires the Element module, with a valid ”Elements” object to run a simulation.

The results of the simulation are stored in the ”Elements” object.

The creation of the System may take some time, as it transforms the f function into anonymous, and

readies the integrals to be made.
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C.5.1 System creation

The system object becomes fully created after its command ”system = System(...)” but it requires a

series of inputs:

• xvars – Input variables. List of symbolic variables (sympy.Symbol())

• uvars – Output variables. List of symbolic variables (sympy.Symbol())

• n – np

• Ass (only if linear) – State space matrix A

• Bss (only if linear) – State space matrix B

• state function (only if nonlinear) – State function f. Array of symbolic functions

• xcorr (optional, but recommended) – Correspondence of the index of xvars to the variables index

in the elements. By default is set to be xcorr = (0, 1, ..., nx)

• ucorr (optional, but recommended) – Correspondence of the index of uvars to the variables index

in the elements. By default is set to be ucorr = (nx, nx+1, ..., nx+nu)

• linear (recommended) – Set it to ”True” if the system is linear (don’t forget the state functions

change to matrices). By default is ”False”

• forward (optional) – Set it to ”False” if the simulation is supposed to be done backwards in time. By

default is ”True”

• n int (optional but recommended) – Number of Gauss-Lobatto integration points

• multiprocessing (optional) – Set to ”True” to simulate with multiprocessing capabilities. It is required

openMP and PyMP

• tolerance (optional) – Safety parameter for nonlinear simulations. If the relative change between

iterations is smaller than the tolerance value, then finish simulating the element

Example: create the system ẋ = (x3
2 ; u):

>> xVariables = [sympy.Symbol(’x1’), sympy.Symbol(’x2’)]

>> uVariables = [sympy.Symbol(’u’)]

>> f = [xVariables[1]**3, uVariables[0] ]

>> sys = System(xVariables, uVariables, state function = f, n = 2, xcorr = (0,1), ucorr = (2,), n int = 4)

# assuming there is an Elements object where x1, x2 and u correspond to the first, second and

#third variables respectively
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System.simulate el

After the system creation, it is now possible to simulate it. This method performs the simulation for

each element.

Inputs:

• element – Element object to simulate

• Boundary condition – List containing the boundary conditions (initial or final value) of the Element

object

• max it (optional and only if nonlinear) – Limit of iterations to which apply the fixed point method.

Default is set to 10

Example: simulate the previous system
“

sys: ẋ = (x3
2 ; u)

”
with the boundary condition x(t = 0) =

(1; 0) and T = 2. u is a unit step on t = 0:5.

>> # Sys is already created from previous example. Create Elements with 4 elements and np = 2

#nodes: 0 - 0.5 - 1 - 1.5 - 2

>> elements example = lin elments nelem(nelem = 4, T=2, n=2, nvars = 3)

>> for i in range(1, len(elements exapmle.Element list)): # build the step

>> # assign to the third variable a constant 1 value, only for elements 1, 2 and 3 (ti = 0.5, 1 and 1.5)

>> elements example[i].assign(mpmath.matrix([1,0,0]), (2,))

>> bc = [1, 0]

>> for el in elements example.Element list:

>> Sys.Simulate el(el,bc)

>> bc = el.calculate(1) #change boundary condition for the next element

>> Graphics.Plot variables(example elements,(0, 1)) # graphical function to be discussed later

>> Graphics.show()
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(a) x1 (b) x2

Figure C.1: system simulation example output

C.6 PMPsolver module: useful methods

This module is responsible for the optimization of control problems with fixed terminal time and with

boundary conditions at initial time. It requires all the previous modules to work (Elements and System).

It is defined a single class here: PMPsolver. The creation of a object from this class implies the

calculation of an Hamiltionain function, the creation of the – system (System object) and therefore the

preparation of its simulation and finally it will prepare for the optimization of u be it continuous or ”on/off”.

C.6.1 PMPsolver creation

The PMPsolver object becomes fully created after its command ”solver = PMPsolver(...)” but it re-

quires a series of inputs:

• functional – Symbolic function (sympy) with the function to maximize (if minimization use -functionl)

• system – System object, imposed as a functional restriction

• T – Terminal time tf

• n – np

• n int – number of Gauss-Lobatto integration points

• cx (optional) – Cost associated with final states, used for –f boundary condition

• nelem (optional if there is already a Elements object) – To create a new Elements object

• delta t (optional if there is already a Elements object) – To create a new Elements object

• xBC – Boundary condition of x. Input in the form os list. If not given the progam will assume

x(t = 0) = 0

• u init – Initial value of u (constant). If not given, the itearions will start with u = 0
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• ctrl type – Control type: ”continuous” or ”on-off”

• save file (optional) – Name of the file to save which each full iteration (through all elements), the

Elements object will be saved. See Elements.save above. if not given the solution will not be

saved between iterations

• start from file (optional) – To load an appropriate Elements object for the simulation

• display (optional) – ”Full” for all the information about the calculations to appear on screen, ”None”

to show nothing. By deafault is set to ”Full”

C.6.2 PMPsolver.solve()

This method will proceed to the simulation and optimization of the problem.

Example: solve the maximization problem J = −x2− (k(1− x))2 subjected to ẋ = −x + k(1− x) with

T = 7:5. Calculate the average J

>> xVariables = [sympy.Symbol(’x’)]

>> uVariables = [sympy.Symbol(’k’)]

>> f = [-xVariables[0] + uVariables[0]*(1 - xVariables[0])]

>> J = -(xVariables[0]-1)**2 - (uVariables[0]*(1 - xVariables[0]))**2

>> Jl = sympy.lambdify( [[xVariables[0], uVariables[0]]], J, modules = ”mpmath”) #anonymous function

to calculate the average

>> Sys = System(xVariables, uVariables, n = 3, state function=f, n int = 5)

>> solver = PMPsolver(J, Sys, 7.5, 3, 5, nelem = 40, xBC = [0], u init = [0], save file= ”example.txt”)

>> solver.solve()

>> print(calculate function(solver.elements, (0,2), Jl)) #calculates the average of J

>> Graphics.Plot Variables(solver.elements, (0, 1, 2), names = (’x’, ’\lambda’, ’k’))

>> Graphics.show()

output: [-0.5666652958070061...]
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(a) x1 (b) – (c) k

Figure C.2: System optimization example output

C.7 Graphics module

This is a secondary module to plot quantities. Its main methods are Plot functions and Plot variables.

This module definition is separate from the System and PMPsolver modules, to keep Independence from

them. it is possible to plot and analyze simulations and optimizations, without going through the definition

of the system or the PMP problem.

C.7.1 Plot variables

Plots the specified variables of an Elements object.

Inputs:

• elements – Elements object with the relevant data

• var numbers – Tuple or list of the variables to plot

• nb points (optional) – Number of time points to calculate

• names (optional) – List of names to each plotted variable (needs to be the same size as var numbers)

• label (optional) – It is possible to plot in the same axis with a second call to the Plot variables

function (variables with the same name). This adds a legend to each plot of the same variable. If

the legend is required, call it after all the plots are done for each figure

C.7.2 Plot function

Plots specific custom functions of the Elements object and time.

Inputs:

• elements – Elements object with the relevant data

• var num inputs – Each function to calculate need to have the same number of inputs and in the

same order. This input specifies the order of the inputs

• lambda functions – List of Functions to plot, in the form of lambda functions, whose inputs corre-

spond to the var num inputs in the Elements object
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• nb points – number of points to evaluate

• names – name of the custom functions (needs to be the same size as lambda functions)

• label (optional) – It is possible to plot in the same axis with a second call to the Plot variables

function (variables with the same name). This adds a legend to each plot of the same variable. If

the legend is required, call it after all the plots are done for each figure

• time – Set to True if any of the functions is time dependent. If that is the case, the time argument

should be the last argument of the lambda function. (example fun = lambda vars,time: ...)

Example for Plot variables and Plot function: from the previous optimization, plot x; –; k and J for the

first iteration and the last iteration.

>> first = Load(”control it0 example.txt”)

>> last = Load(”control it9 example.txt”)

>> Graphics.Plot Variables(first, (0, 1, 2), names = (’x’, ’\lambda’, ’k’), label=”First iteration”)

>> Graphics.Plot Variables(last, (0, 1, 2), names = (’x’, ’\lambda’, ’k’), label=”Last iteration”)

>> #Jl is created in last example

>> Graphics.Plot function(first, (0,2), Jl, names = [’J’], label = ”First iteration”)

>> Graphics.Plot function(last, (0,2), Jl, names = [’J’], label = ”Last iteration”)

>> for num in Graphics.get fignums():

>> Graphics.figure(num)

>> Graphics.legend(loc=”best”)

>> Graphics.show()
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(a) x1 (b) –

(c) k (d) J

Figure C.3: Graphics example output

C.8 Convergence and stopping criteria

There are various locations on which it is possible to change stopping criteria and the speed of the

convergence. Now it will be explained how to do this. Acknowledge first that there are several cycles

that my need stopping criteria:

• Nonlinear simulation;

• Control and simulation;

• Main cycle

The different possibilities of criteria were not explored with this work, but they can be easily added if

required.

C.8.1 Nonlinear simulation stopping criteria and convergence

The simulation of nonlinear systems is done recurring to the fixed point method. This method has

some known ways of improving the speed of convergence, these also went beyond the scope of this
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work, but may be added latter. It was implemented one off these, as an experiment, using a relaxation

factor such that:

ce
it=i

= (! − 1)ce
it=i−1

+ !g
“

ce
it=i−1

”
(C.1)

This factor ! is by default set to 1 (the regular fixed point method). It is possible to change it in a

PMPsolver object as the .state relaxation attribute (choose a value between 0 and 1)

Also, in the System module it is possible to change the tolerance factor for nonlinear systems, which,

as explained before, is referent to the minimum change to continue the iterations.

Another way to stop the nonlinear simulations is to change the max it parameter in the simulate

method.

C.8.2 Continuous control and simulation

Unlike the on-off control, which is computed with the best of two scenarios, the continuous control

offers a lot more flexibility. For this case, several optimizations and simulations may be needed to reach

a convergence. Up to this date, the only one stopping criteria was added for this: maximum number of

iterations. To change this, do it directly in the optimize e simulate method of PMPsolver and change the

number in the ”while” cycle.

It can also be reasonable to add a tolerance for these (similarly to the nonlinear simulation), but this

wasn’t yet done since it would possibly slow down the calculations.

C.8.3 Main cycle

The main cycle is in the PMPsolver .solve() method, it provides the basis to go from the optimization

and state simulation to the co-state calculations. The stop to this cycle is also being done in the function

by the number of iterations. To change this number, do it in the said function and change the number in

the ”while” cycle.

For this it is difficult to have a good measure of convergence, but something else may be added latter

on.
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