
Mapping Urban Areas Leveraging the Analysis of
Ground-Level Imagery with Convolutional Neural Networks

Henrique Metelo Rita de Almeida

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Doutor Bruno Emanuel da Graça Martins
Prof. Doutor Jacinto Paulo Simões Estima

Examination Committee

Chairperson: Prof. Doutor Luís Manuel Antunes Veiga
Supervisor: Prof. Doutor Bruno Emanuel da Graça Martins

Members of the Committee: Prof. Doutor João Carlos Gomes Moura Pires

January 2021

Acknowledgements

First of all, I would like to thank Professor Bruno Emanuel da Graça Martins and Professor Jacinto

Paulo Simões Estima for their commitment in providing me support for the last year and a half, especially

during the unusual times of the last few months. Their knowledge and suggestions were essential for

the development and completion of this work.

I would also like to thank my family, especially my parents and brother, not only for providing me the

motivation and the chance to study at Instituto Superior Tećnico, but also trying to help and review my

work in every way that was possible to them.

I would also like to acknowledge the importance of the work developed by computer science com-

munity in general. All the help and tools that are publicly available online were a huge contribution to

this dissertation and enabled me to test different approaches to my problems without having to build

implementations from the ground-up.

Finally, I would like to thank my friends and professors who provided me the motivation and guidance

that I needed during these challenging, but also amazing, 5 last years of my academic life at Instituto

Superior Técnico.

Henrique Metelo Rita de Almeida

For my family,

Resumo

Os avanços tecnológicos verificados em dispositivos móveis têm vindo a permitir um acesso cada

vez mais fácil a ferramentas fotográficas, como a câmara de um smartphone. Este facto, juntamente

com os avanços nas tecnologias de conectividade, criou a possibilidade de uma partilha simples de

fotografias na web. Em plataformas como o Flickr ou Geograph, é possível encontrar-se uma quanti-

dade quase infinita de imagens partilhadas, frequentemente acompanhadas de informação de geolo-

calização. Estas constituem fontes de informação das quais se podem extrair detalhes sobre a área

onde foram obtidas. Esta dissertação tem como objetivo a exploração da informação disponível nes-

tas colecções de modo a criar dois tipos de mapeamento: o uso dado ao terreno e a beleza cénica.

Nestes mapeamentos, as imagens ao nível do solo podem fazer a diferença na obtenção de resultados

mais precisos. O procedimento desenvolvido consiste numa recolha de fotografias sobre uma região,

seguido da geração de mapeamentos do terreno, através do uso de redes convolucionais e recorrentes,

de modo a combinar a informação proveniente de sequências fotográficas. O método apresentado pos-

sibilita o uso de um modelo de mapeamento automático alternativo ao mapeamento manual do terreno,

mesmo quando aplicado em áreas onde existe uma variação significativa na densidade de fotografias

disponibilizadas por zona. No final deste trabalho, são apresentados dois mapeamentos, um do uso do

terreno e outro de beleza cénica, que permitem exemplificar de que maneira o uso de redes convolu-

cionais e recorrentes pode ser aproveitado para a análise e extração de informação de sequências de

imagens.

Abstract

The technological advancements in mobile devices have allowed people to easily take pictures and

share them on the web. Within platforms like Flickr and Geograph.uk, we find an almost infinite number

of community-shared pictures, often containing the location where they were taken, which might provide

information about the surrounding area. This paper proposes an approach that aims to exploit such

information to tackle two mapping tasks, land-use and scenic-beauty mapping, which are two examples

for which ground-level photos can be the key to achieve accurate results. The procedure explored in this

work consists of collecting data for a study region, which comprises the city of London, and generating

mappings for both tasks by making use of convolutional and recurrent neural networks. This work

presents the results obtained by aggregating images into sequences, which are initially processed by a

convolutional neural network and transformed into sequences of features that are then fed to recurrent

neural units, in order to combine their information and extract projections for either land-use or scenic-

beauty mapping. The proposed method presents itself as an automated alternative to hand-annotations

for terrain mapping, and as an improvement over the analysis of individual images. In the end, the result

of applying the methods proposed in this work is presented in the form of two maps for the study region,

one for land-use classes and one for scenic beauty, which were automatically generated based on the

information extracted from the available set of community-shared photographs.

Palavras Chave

Keywords

Palavras Chave

Dados Geo-Espaciais

Informação Partilhada em Redes Sociais

Mapeamento de Uso da Terra

Mapeamento de Beleza cénica

Redes Convolucionais Profundas

Redes Recorrentes

Keywords

Geospatial Data

Community-Shared Information

Land-Use Mapping

Scenic-Beauty Mapping

Deep Convolutional Neural Networks

Recurrent Neural Networks

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Statement . 1

1.3 Contributions . 2

1.4 Organization of the Document . 3

2 Concepts and Related Work 5

2.1 Fundamental Concepts . 5

2.1.1 Supervised Learning with Deep Neural Networks 5

2.1.2 Convolutional Neural Networks for Image Classification 8

2.1.3 Recurrent Neural Networks for Sequence Classification 10

2.2 Related Work . 12

2.2.1 Mapping Urban Areas Leveraging Ground-Level Imagery 13

2.2.1.1 Previous Approaches Leveraging Feature Extraction 14

2.2.1.2 Previous Approaches Leveraging Convolutional Neural Networks 15

2.2.1.3 Further Work on Land-Use and Scenic-Beauty Mapping 18

2.2.2 Advanced Neural Models for Image Classification 18

2.2.2.1 DenseNet . 19

2.2.2.2 EfficientNet . 21

3 Approach to Terrain Mapping Based on Deep Neural Networks 27

3.1 The Proposed Approach to Land-Use Mapping . 27

3.2 Model Architecture . 29

3.3 Data Sources . 31

3.4 Overview . 33

i

4 Experimental Evaluation 35

4.1 Methodology and Evaluation Metrics . 35

4.2 Convolutional Neural Networks for Image Analysis . 36

4.3 Sequence Analysis . 41

4.4 Maps with Obtained Results . 44

4.5 Overview . 45

5 Conclusions and Future Work 47

5.1 Summary of Contributions . 47

5.2 Future Work . 47

Bibliography 51

ii

List of Figures

2.1 First two steps of a convolution operation . 9

2.2 A convolution operation with dilation. By having a dilation factor of 1 it is possible to use

a 2 × 2 filter to cover a 3 × 3 region, though some information will be lost due to the

ignore units of input. The work of Zhou et al. (2015) shows that these convolutions allow

a 3.6× decrease in the number of parameters with only a 1% decrease in accuracy in a

classification problem. 9

2.3 LeNet-5 structure. Based on an illustration from LeCun et al. (1998). 11

2.4 A RNN feedback loop is presented in a). In b), this same loop can be seen unfolded for

different timesteps. Based on an illustration from Khan et al. (2018). 11

2.5 An LSTM cell. The three gates inside each cell are highlighted in blue: a) Forget Gate; b)

Input Gate; c) Output Gate. The red circles represent update operations, by using + for

addition and × for multiplication operations. The sigmoid and hyperbolic tangent functions

are represented by σ and tanh, respectively. xt represents the input at timestep t, while

the cell state and hidden state are represented for both the previous timestep (ct−1 and

ht−1) and the current timestep(ct and ht). 13

2.6 Examples of edges extracted from a develop area (left) and an undeveloped area (right).

From Newsam and Leung (2019). 13

2.7 Standard procedure when using a CNN model. From Srivastava et al. (2020). 18

2.8 Variable Input Siamese Network proposed in Srivastava et al. (2020), in order to extract a

single land use class from a variable set of images collection from GSV. 18

2.9 Accuracy for each of the 16 classes, by obtaining a classification for each photograph and

using the averaging technique (CNN-AVG), and by using the Siamese Network with an

Average Aggregator (VIS-CNN with AVG). From Srivastava et al. (2020). 19

2.10 A new stream (Overhead Image Stream) was added in order to complement the analysis

of ground-level imagery. From Srivastava et al. (2019). 20

2.11 DenseNet Block. The arrows represent the flow of feature vector maps between convolu-

tion layers. 20

iii

2.12 CNN with DenseNet blocks. The blocks are interleaved with a convolution (in blue) and a

pooling layer (in green) to reduce the dimensionality of the output. 20

2.13 MBconv Block. The arrows represent the flow of feature vector maps between layers. . . 22

2.14 Architecture for the baseline EfficientNet-B0 network. Mainly constituted by Mobile In-

verted Bottlenecks(MBConv). 22

2.15 Standard Convolution by applying N Dk ×Dk filters to an input with M channels 23

2.16 Depthwise Separable Convolution. First, one Dk×Dk filter is applied to each channel M .

Second, N 1 × 1 filters are applied to the result of the previous operation, resulting in a

similar output to the standard convolution but with a reduced number of parameters . . . 23

3.1 Illustration of the model and procedure that is planned to be used to process ground-level

imagery and extract a land usage mapping . 30

3.2 AugMix procedure. The raw image begins by being processed in several transformation

sequences. The resulting augmented images are then combined, along with the original

input, in the last step. From Hendrycks et al. (2019). 31

3.3 Scenic-Or-Not game interface. The user should use a scale from 1 to 10 to rate the scenic

beauty of the presented photograph. 33

4.1 Sub-region division for the Land-use and Scenic Beauty tasks, colored according to the

Land-Use classes. 38

4.2 Region used for Image to Image analysis, colored according to the Land-Use classes. . . 39

4.3 Distribution of the scenicness scores obtained from the Scenic-Or-Not Game. 41

4.4 Automatically generated Land-use map. 44

4.5 On the left, part of the raster automatically generated based on the obtained predictions

for land-use, using the sequence analysis approach. On the right, part of the raster cre-

ated based on the land-use data obtained via the Urban Atlas 2012 data. 45

4.6 Automatically generated scenicness map. 46

4.7 On the left, part of the raster automatically generated based on the obtained predictions

for scenic beauty, using the sequence analysis approach. On the right, part of the raster

created based on the land-use data obtained via the Urban Atlas 2012 data. It is possible

to observe a correlation between the scenic beauty and the use given to a place. 46

iv

List of Tables

2.1 Results for a 45-way land use classification problem. Based in Zhu et al. (2019). 16

2.2 Accuracy results based on different granularities. Based in Zhu et al. (2019). 17

2.3 CIFAR10 results with Data Augmentation . 21

2.4 Comparison between the EfficientNet architectures and current deep neural models, for

different levels of accuracy. 24

2.5 Manual and compound scaling on ResNet-50 . 25

4.1 Support for each land-use classed based on the sub-region used for testing. 38

4.2 Results for the simple architectures evaluated in the land-use task. 40

4.3 Results for the complementary methods and techniques evaluated in the land-use task. . 40

4.4 Results for the complementary methods and techniques evaluated in the scenic-beauty

task. 41

4.5 Support for each land-use classed based on the sub-region used for testing. 42

4.6 Land-use task results using photographic sequences . 43

4.7 Scenic-Beauty task results using photographic sequences 43

v

vi

1Introduction
1.1 Motivation

The recent growth in the number of community-shared geotagged ground-level images, mainly due

to the increasing use of smartphones for photographic purposes, has provided a new source of infor-

mation which may help identifying geographical features of the surroundings in which each photograph

was taken. Several projects, such as the Flickr Creative Commons Dataset1 and the Geograph.uk2,

were created with the intent of collecting and aggregating large sets of georeferenced pictures which

might prove useful for a vast array of tasks, such as terrain mapping tasks. Several recent works, such

as in Leung and Newsam (2010) and Zhu et al. (2019) have explored this idea by employing state-of-

the-art image analysis methods to create a variety of mappings, in which ground-level georeferenced

photographs have proven to be advantageous when compared with the more traditional use of top-down

satellite images.

Previous studies (Newsam and Leung, 2019) have focused on collecting and analyzing images

one by one, and then trying to produce mappings by associating a class to each single image. Some

studies (Srivastava et al., 2020) have considered an alternative approach in which the information of

several images could be combined in order to improve the extracted mapping. The aim of this work is

to build a model based on a similar alternative, where instead of making an analysis image by image,

the model generates a representative sequence of photographs for each unit of area and then extracts

a mapping by leveraging state-of-the-art deep neural networks. To evaluate the quality and performance

of the envisioned model, I will focus on two tasks, generating land use and scenic beauty mappings.

1.2 Thesis Statement

In urban areas, mapping land use is critical for local governments that intend to execute smart and

informed city planning initiatives in order to provide sustainable growth of the urban fabric. Land usage

stands for the use that is given by humans to a certain occupied area. Some examples of land use

categories are Residential areas, Industrial areas, Sports facilities, or Commercial zones.

The task of creating these mappings usually cannot be accomplished using satellite level images

1http://www.flickr.com/explore
2http://www.geograph.org.uk/

http://www.flickr.com/explore
http://www.geograph.org.uk/

as, although certain areas can be analysed relying on top-down images (e.g. sports facilities by iden-

tifying soccer fields), most of times, certain details that might be the key to obtain such mappings can

only be captured from a ground-level perspective, such as building facades (e.g. store fronts). As

a consequence, the production of this type of maps usually requires hand-annotations, obtained by

survey-based methods, which imply significant manual labour. Therefore, it is not possible to keep these

maps up to date on a regular basis. Some efforts (Qui et al., 2019) were made to create new approaches

that introduced an automation component, using inference strategies, but this did not remove the need

for a set of manual annotations. This work mainly focuses on leveraging community-shared ground-level

images to fully automatize this mapping by making use of state-of-the-art neural network architectures.

Other concept which is hard to quantify from a top-down view is the scenic beauty of a place. A

region with a high scenicness score consists in a area which possesses aesthetically pleasing natural

features, such as mountain ranges or natural parks. Obtaining an absolute scenic score that can depict

a region is usually a hard task to achieve, as it might vary according to one’s definition of scenic beauty.

In addition, this measure is also affected by a variety of factors, such as the field of view (i.e. area

captured by the camera lens), the flora or the human presence (e.g. man made buildings), which can

only be determined by taking into consideration a ground-level view of the area.

The main dataset explored in this work also features scenic beauty scores for a range of images,

which were obtained by averaging scores attributed by three or more people. As a consequence, this

work also explores an automated approach to the task of mapping scenic beauty, based on the model

obtained for land-use mapping. This approach will consider the same testing region of the previous task

and will also explore the relation between land-use classes and scenic beauty score.

1.3 Contributions

The work developed for this thesis aims to provide the following contributions:

• The application and evaluation of the most recent state-of-art Convolutional Neural Network(CNN)

architectures to the task of land-use mapping based on image-to-image analysis, using data col-

lected from both Geograph and the Urban Atlas. Recently presented architectures, such as the

EfficientNet(Tan and Le, 2019), have provided the possibility to train models with increased accu-

racy, while using a lower number of tuning parameters. As such, it would be interesting to find

how these novel architectures would behave in the tasks considered for this thesis. In addition, a

variety of new methods, such as the AugMix(Hendrycks et al., 2019) augmentation technique, are

tested in order to evaluate its impact on the mapping results.

• The proposal a mapping technique, based on the analysis of sequences of images by making use

of recurrent neural networks. In this work, this technique is studied and applied to the previously

mentioned tasks of land-use and scenic beauty mapping.

2

• Evaluation of the proposed mapping technique on the task of land-use mapping, by comparing

the obtained results with those of alternative methods proposed in previous works. The models for

sequence analysis are built on top of the CNN architecture that provided the most promising results

for image-to-image mapping tasks. The impact of other factors, such as the variation in the size

of the sequence of images, are also presented in this work. Overall, this evaluation suggests that

the proposed method presents equal or slightly improved results when compared with previously

tested method when applied to land-use mapping.

• The application of the same convolutional and recurrent neural network architectures to the task

of scenic beauty mapping, based on the images collected for the task of land-use mapping and by

using the information provided in the Scenic-Or-Not game3, which provides average scenicness

scores for photographs collected from Geograph, based on reviews given by at least 3 different

people.

Overall, the main goal of this work is to present a model that can successfully tackle a terrain

mapping task in an automated way based only on previously available knowledge and community-shared

ground-level photographs from the study region. The desired final output of the model consists in a raster

map that can effectively portrait a study region based on a set of classes or scores that are gathered

based on the information extracted from images. The data and code used for the development of this

work are available at github.com/Henrique97/ThesisFinalWork.

1.4 Organization of the Document

This dissertation is divided into sections which are presented in the following order: In Section 2,

I provide a brief explanation about some basic concepts related to deep neural network models, which

play a key role in this work, along with several works that address the use of community-shared ground-

level images to produce mappings for a variety of tasks, such as land use, land cover or scenic beauty.

Section 3 presents a definition of the objectives of the proposed work, along with a short description of

the methodology and data sources that I have used in this work. In Section 4, I present some details

of the used methodology along with the results for both of the explored tasks. Finally, in Section 5 I

present an overview of the work as well as possible paths to further expand the proposed approach for

automated terrain mapping.

3http://scenicornot.datasciencelab.co.uk/

3

github.com/Henrique97/ThesisFinalWork
http://scenicornot.datasciencelab.co.uk/

4

2Concepts and Related

Work

2.1 Fundamental Concepts

This section describes fundamental concepts for the understanding of the proposed work. It is di-

vided into two parts with the intent of providing some basics about neural networks, and then proceeding

to expand on the subject of Convolutional Neural Networks (CNNs) for image classification.

2.1.1 Supervised Learning with Deep Neural Networks

The elementary unit which composes neural networks is commonly referred to as the perceptron.

A perceptron is a unit capable of generating an output from a given set of inputs by obtaining an inter-

mediate value resulting from a linear combination of the inputs, and then passing it through a non-linear

function that is usually referred to as an activation function. In practice, for a set of inputs x = {x1, ..., xn},

we can combine them according to the formula:

p =

n∑
i=1

wi × xi + b (2.1)

In the previous equation, w = {w1, ..., wn} is used for representing the weights associated with each

input, and b represents a bias term. For a binary classification program we can then obtain a map to two

classes, using sign(.) as the activation function, thus having Å· as {0,1}, as follows:

ŷ = sign(p) (2.2)

Taking into consideration general classification problems, a single perceptron by itself can only be

considered a linear classifier. This derives from the fact that there is only one output which results from

a linear combination of the inputs, ruling out the possibility to depict functions that are not linearly sep-

arable, such as the XOR function. However, joining multiple perceptrons into a network of connected

layers not only allows us to obtain better classification results, by increasing the processing power of

the model, but also allows us to find solutions for problems that are not linearly separable. This is the

idea behind neural networks, which base their behaviour on a simple model of a network of biological

neurons, with the neurons being represented by the perceptrons that in turn are disposed in an intercon-

nected structure, corresponding to a network. A simple neural network structure that is commonly used

is the Multi-Layer Perceptron (MLP), composed by several connected layers of perceptrons, each of

them representing a processing level in the network’s hierarchy. The first and last layers are responsible

for receiving the input and presenting the output, respectively, with the middle layers, also named hidden

layers, performing the processing. By adding hidden layers we can increase the processing power of

the network. A MLP containing a large number of hidden layers is often referred to as a deep neural

network.

In order to use a neural network to obtain a correct mapping between an input and output for a

specific problem, the network needs to be trained, which requires tuning all the network parameters

(i.e. all weights and biases). The most common approach to address this issue, considering the su-

pervised learning paradigm, which makes use of ground truth samples for which we already know the

correct mapping, is known as backpropagation. Backpropagation begins by calculating the difference

between the expected and the predicted outputs, according to the network’s current state, and uses that

information to tune the network’s parameters according to the obtained error. The difference between

the predictions and the ground-truth is assessed through a loss function (e.g. the least mean square

error in the case of regression problems) to obtain an error associated with the network’s predictions.

After this step, this error is used to update the weights and biases wij , with i representing a node with j

input weights, which can be achieved by calculating the gradient of the error function with respect to the

parameters of the network, and using the following rule to update the weights:

wt+1
ij = wtij + η

∂E

∂wij
(2.3)

In the previous equation, t represents the current training iteration, η the learning rate of the network

and wt+1
ij is the updated value of the weight wij .

By using the generalized delta rule, it is possible to send the error backwards to previous layers,

which allows separate gradient calculations for the hidden and output layers. Looking at the output layer,

the computations are simple and can be done by using the following formulas:

∂E

∂wij
= δixj with δi = (yi − ŷi)× f ′i(pi) (2.4)

In the previous equation, yi and ŷi are the expected and predicted output for node i, respectively,

f ′ is the derivative of the activation function chosen for the node, and pi is the linear combination of the

inputs for the node i, similar to what happens in Equation 2.1. As we can see in the formulas, if the

activation function is differentiable we can use backpropagation to deal with learning.

For a hidden layer k, the gradient can be calculated by applying the chain rule, using the gradients

of the subsequent layers according to the formula:

δki = f ′(pki)
∑
j

wk+1
ij × δk+1

j (2.5)

6

It is important to be aware of some problems that might affect a network’s performance when using

backpropagation on deep networks. One example, known as the gradient instability problem, consists

on vanishing or exploding gradients that can be expected for some activation functions when considering

networks with more than a couple of hidden layers. This problem leads to difficulties when tuning some

hidden layers, especially the first ones. An illustrative example is the use of a sigmoid activation function,

in which the derivative is always smaller than 0.25. In a network with 6 layers this would result in a

maximum update factor of 0.00024 for the first layer, which would make it impossible to effectively train

the network. To deal with this issue, other activation functions can be used in these cases, such as the

ReLU function Hahnloser et al. (2000) which has its derivative between 0 and 1.

Due to the benefits of using gradient descent to iteratively tune a network by reducing the loss

function, backpropagation is the most widely used technique to train neural networks. To improve the

performance of the training algorithm, several optimizations were built on top of the traditional applica-

tion of the gradient descent method Ruder (2016). These optimizations aim to help achieving faster

convergence of the network’s parameters, reducing the computational cost. One simple optimization

for gradient-based learning is to avoid the traditional gradient calculation over all of the training dataset.

This is achieved by employing a variation of the standard algorithm such as Stochastic Gradient Descent

(SGD), which performs one parameter update per sample, or mini-batch gradient descent, which divides

the dataset into smaller batches and makes an update for each one of them. On top of these techniques,

other types of methods aim to further improve performance, while also dealing with some of the issues

when using gradient-based learning. One of the most commonly used methods to help parameters to

converge faster is known as Adaptive Moment Estimation (ADAM). In essence, ADAM joins the benefits

of other optimimizers, such as AdagGrad and RMSprop, into one algorithm and helps achieving faster

convergence at a lower cost by adapting the learning rate individually for each parameter, according to

its importance. To achieve this, ADAM stores a chunk of the last training steps to generate running av-

erages of past gradients and their squares, and uses this information to choose an appropriate learning

rate for each weight parameter. Considering E[δ]t and E[δ2]t the running averages for the last gradi-

ents and the corresponding squares, respectively, we can make a parameter update according to the

following formula:

wti = wt−1i − η√
Ê[δ2]t + ε

× Ê[δ] (2.6)

In the previous equation, Ê[δ2] and Ê[δ] are the result of a bias-corrected initialization for the running

averages, since these estimates begin with a value of zero and can remain with a small value for a long

time, which would slow down the parameter updates.

7

2.1.2 Convolutional Neural Networks for Image Classification

Convolutional Neural Networks (CNNs) are a type of neural network specialized in dealing with

high-dimensional data (e.g., images). Although the principles behind this type of network are the same

as those from standard neural networks, CNNs can provide dimensional filters that allows us to identify

patterns in an image, while keeping the number of learnable parameters significantly low when compared

to standard neural networks. To achieve this, CNNs employ the use of convolution operations to deal with

the dimensionality problem. The convolutional operation makes use of filters, which are composed of

trainable weights, and convolves them with the input. To give a clearer picture of the operation, consider

a 2x2 filter f and a 4x4 input matrix x shown below:

f =

2 3

1 4

 x =

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

The convolution operation would begin by flipping the filter along its height and width, resulting in:

f ′ =

4 1

3 2

With the filter flipped, considering a sliding window in the matrix with the size of the filter, the next

step is to slide the filter along the matrix’s width and height, calculating a weighted sum of the resulting

values inside each window. The above procedure will result in a 3× 3 matrix where for each cell yi, we

can obtain its value by using the formula:

yi =
∑
j

xj .wj (2.7)

In the previous equation, xj are the values for the input cells inside the sliding window and wj are the

associated weights for filter f . An illustration for this operation is presented in Figure 2.1. The resulting

2D output is the following:

y =

10 13 20

20 23 30

30 33 40

In a convolution operation, there are also some hyper-parameters that can be tuned in order to

control the dimensionality and other properties of the output, according to the problem specificities. The

8

Figure 2.1: First two steps of a convolution operation

Figure 2.2: A convolution operation with dilation. By having a dilation factor of 1 it is possible to use a
2 × 2 filter to cover a 3 × 3 region, though some information will be lost due to the ignore units of input.
The work of Zhou et al. (2015) shows that these convolutions allow a 3.6× decrease in the number of
parameters with only a 1% decrease in accuracy in a classification problem.

stride is a hyper-parameter that can be used to modify the jump size when sliding the filter through the

input, allowing us to decrease the dimensionality of the output, while the padding parameter is used to

add outer layers of zeros that work as a way to increase the output dimensionality. Both the decrease

and increase in dimensionality have several use cases such as object recognition and image de-noising,

respectively.

Considering the context of image classification, the idea behind the use of CNNs is to begin by

dividing an image into small groups of pixels, where local features can be extracted, and work the way

up until image wide features are identified, such as objects. To do this, CNNs usually aggregate a vast

number of different types of layers. Some of the most simple layers which are commonly found in a

network’s architecture are detailed next.

The main layers in a CNN are known as convolutional layers and are responsible by applying the

aforementioned convolutional operations. These layers can have a vast number of variable character-

istics such as filter size, stride, padding, as well as a dilation parameter. This last feature is related

to the fact that most convolutional layers resort to small sized filters to avoid having a large number of

trainable parameters, which can be damaging for problems requiring pixel-wise dense predictions (e.g.

segmentation). By using a type of convolution called dilated convolution, which employs a dilation, a

layer is capable of increasing the spatial range of a filter, in relation to the input, without increasing the

number of trainable weights, as shown in Figure 2.2.

Another common type of layer, found in CNNs, are the pooling layers. These layers are able to

9

down-sample the input by applying a pooling function, such as the maximum or the average function.

To exemplify, we can consider a pooling layer which applies a pooling function to a 2 × 2 region for a

4× 4 input and with stride 2. We can then picture the input as an aggregation of four 2× 2 regions and

for each one of them we will calculate the average of all its values. The result will be a 2 × 2 output

where each cell contains the average value for each region of the input. These layers provide not only a

more compact representation, but also some invariance that helps with the detection of similar objects

or forms with different scales, translations, or positions.

Finally, in the last part of a CNN, fully connected layers are usually present. Fully connected layers

are similar to the weight layers present in the MLPs and are usually used to combine the features of the

previous layers and map them to the desired classes that should be output.

It is important to keep in mind that both fully connected layers and convolutional layers usually use

non-linear activation functions, which allows the network to learn nonlinear mappings. These functions

are usually differentiable to enable gradient-based learning.

Looking at CNN training, it is important to notice that this type of networks tend to overfit, i.e.

although a network achieves good performance on the training set, it is not able to generalize for data

outside of this set. To deal with this issue we can employ several regularization techniques, such as

data augmentation, where we increase the size of the dataset by applying rotation, cropping, flipping

and other operations to some samples, in order to create newer ones. Other examples of regularization

ideas are the dropout-connect technique, which deactivates some of the network connections to force all

neurons to contribute to the output, and the batch-normalization method. Looking at batch-normalization

in more detail, during the training step, this method can be applied to reduce shifts in values in hidden

units (covariance shifts) that result from the need to adapt to changes that occurred in the distribution

of the activations from previous layers. By introducing a way to normalize the input at the layer level,

batch-normalization allows hidden units to converge faster, by reducing the need to adapt to the changes

in the output of previous layers, at each learning step.

To give a more clear picture of a CNN architecture, we can look at one of the most simple and

basic CNN, the LeNet (LeCun et al., 1998). In Figure 2.3 we can observe one variation of the LeNet

architecture, known as LeNet-5. This type of network has a total of 5 weight layers and its architecture

consists in two sets of one convolutional layer followed by one max-pooling layer, and one set of a

convolutional layer feeding two fully-connected layers.

2.1.3 Recurrent Neural Networks for Sequence Classification

In some cases, neural networks benefit of having loops in their structure, in which an output from a

neuron can be passed back to the network to be used in later processing stages, as shown in Figure 2.4.

This technique can lead to improvements in a network’s performance for situations where data presents

sequentiality, such as a time or spatial sequence, as it allows a set of inputs to be processed, while

10

Figure 2.3: LeNet-5 structure. Based on an illustration from LeCun et al. (1998).

Figure 2.4: A RNN feedback loop is presented in a). In b), this same loop can be seen unfolded for
different timesteps. Based on an illustration from Khan et al. (2018).

considering the previous states. Networks that present this behaviour are known as Recurrent Neural

Networks (RNN).

The capacity of storing short term information allows this type of networks to present a certain kind

of features that differentiate them from common networks.

Firstly, a RNN is capable of processing variable size inputs, due to the way it generates an output

by combining both input and the result from its previous state. This behaviour can be very valuable for

certain cases, such as video processing, where it enables the network to adapt its number of layers

according to the number of frames that need to be processed.

Another feature of RNNs is the fact that it can provide an output with variable length. This is possible

due the capacity of the network of storing information from previous inputs in a hidden state(ht), which

allows us to shape the output(yt) not only from the input, but also from the stored information from

previous states(ht−1). This can be applied when trying to make predictions based on sequences, such

as predicting the next state of a sequence.

11

Finally, it is important to mention that these networks are able to be efficiently trained due to having

the ability of sharing parameters for several processing steps. For each cycle in an RNN, the parameters

are kept the same, which largely reduces the number of variables that need to be tuned on the learning

steps. However, due to the dependency on a hidden state to act as a memory, this type of networks can

have difficulties storing knowledge from more than a few states away, losing information as it gets older.

To deal with this issue, some optimizations were introduced to allow networks to have improved memory

capacity, such as the gating mechanism found in Long Short-Term Memory networks (LSTM).

A LSTM network is a variation of a RNN in which each processing unit is divided in 3 gates, which

perform different tasks, as shown in 2.5. Unlike common RNNs, which only contain a hidden state(ht),

each unit in an LSTM, also known as a cell, receives and keeps an extra information vector, known as cell

state(ct), which is updated in an additive rather than a multiplicative manner, which allows the network

to keep a more stable memory, capable of holding long-term information. The first gate, known as forget

gate, is responsible for verifying what information should be kept from the previous cell state(ct−1), given

the hidden state from the previous layer(ht−1) and the new input(xt), and using a linear combination

of these variables as an input to a sigmoid function(σ). Next, the input gate filters the information of

the input and previous hidden state that is meaningful for the output by using a sigmoid function to

assess which values should be updated, and a hyperbolic tangent function(tahn) to obtain a vectorized

representation that can be added to the previous cell state. The results of these operations is combined

with the filtered cell state obtained in the forget gate. It is important to notice that the different types

of operations used in the cell state update (i.e. sum) and hidden state update (i.e. multiplication) are

the key to the long short-term memory of LSTMs as it allows them to keep both a long-term and short-

term memory information flow, respectively. Finally, the output gate is responsible for combining the

information from the input and previous hidden state, filtered by a sigmoid function, with the memory

stored in the cell state, to produce a new hidden state and output. Overall, a LSTM provides the ability to

smooth the loss of memory by introducing a cell state which is updated in an additive manner, allowing

the information to be lost at a much slower rate. Due to this behaviour, LSTMs avoid the vanishing

gradients issue, which heavily affects RNNs when the sequences provided as input are too long, though

it remains vulnerable to the exploding gradients issue.

2.2 Related Work

In this section I present some work that has already been done in this area. In section 2.2.1, I

discuss several approaches related to leveraging ground-level imagery to map urban areas, while in

section 2.2.2, I present some advanced and state-of-the-art neural models which will be used for feature

extraction in this work.

12

Figure 2.5: An LSTM cell. The three gates inside each cell are highlighted in blue: a) Forget Gate;
b) Input Gate; c) Output Gate. The red circles represent update operations, by using + for addition
and × for multiplication operations. The sigmoid and hyperbolic tangent functions are represented by σ
and tanh, respectively. xt represents the input at timestep t, while the cell state and hidden state are
represented for both the previous timestep (ct−1 and ht−1) and the current timestep(ct and ht).

2.2.1 Mapping Urban Areas Leveraging Ground-Level Imagery

Nowadays, most of the images used for terrain mapping and classification tasks are usually top-

down images, such as satellite imagery, as they are usually easier and faster to obtain, and cover big

areas. However, this type of pictures are not appropriate for some types of mappings, such as the

ones which are proposed in this work, due to the fact that they do not allow to capture certain obscured

details, such as building facades. As such, we can leverage ground-level imagery to achieve better

results in those tasks. Several works, have already used this type of images as a starting point to

develop mappings and classification techniques, usually recurring to community-shared images which

also provide the location where they were taken.

Figure 2.6: Examples of edges extracted from a develop area (left) and an undeveloped area (right).
From Newsam and Leung (2019).

13

2.2.1.1 Previous Approaches Leveraging Feature Extraction

The first type of approach used to leverage this data had its focus on feature extraction from

community-based images, in order to use it as a volunteer geographic information source (Newsam

and Leung, 2019). This work focused on dealing with the noisy and complex data that exists in these

types of photos, by applying a concept named proximate sensing (Leung and Newsam, 2010), which

in practice implies extracting low, medium and high level features, based on the visual content of the

photos, and use them along with simple classifiers, like a Support-Vector Machine (SVM), to map the

terrain in a set of classes.

The first application of proximate sensing suggested in this work is the use of ground-level imagery

to map land cover, which translates into identifying the physical materials that are present in the images,

such as grass, trees or concrete structures. This is a type of mapping that is easy to accomplish

using proximate sensing, as it only requires a low-level analysis. Although this mapping can also be

accomplished using satellite images, using proximate sensing allows us to obtain better results for cases

in which some of the visual features cannot be observed from an overhead perspective, usually due to

occlusion.

Looking at a more concrete example, we can apply proximate sensing to differentiate between

developed and underdeveloped regions. The authors have proposed this work as a proof of concept,

as previous works using overhead images can provide a ground truth for this problem, allowing to focus

the work on improving the effectiveness of proximate sensing. To achieve the desired mapping, the

work proposes to focus on the orientation of edges that can be extracted from the images, as developed

scenes tend to have a larger number of horizontal and vertical edges, that are associated with buildings

and other types of structures, as shown in Figure 2.6. By using a supervised learning approach we can

then feed these features to a SVM classifier with radial basis functions, and obtain a label for each image

in the dataset. Finally, by dividing an area into a set of tiles and using a binary classifier to aggregate

the results from the several images in each tile, we can obtain a land cover map.

After some optimizations, such as the use of a weekly-supervised learning framework and the use

of a more trustworthy dataset, the authors obtained a correct classification rate of 74.7% for an area of

100*100 km of Great Britain, which includes the London metropolitan area.

Although the results are promising, the work proposes further optimizations, such as the use of

bigger, but less trustworthy datasets, by including some filtering of pictures that should not contribute to

the final result, such as portraits.

The second application of proximate sensing, which is also more in line with the proposed work,

relies on ground-level imagery to map land use. This has a greater interest than land cover mapping, as it

is usually harder to rely on satellite images to complete this task. This time, a map of a university campus

was used, as it provided a ground truth map. The same methodology was used and the area was divided

into tiles. To achieve the land use mapping, the work proposed the use of a weekly-supervised training

set, as it provided better results in the previous task than the fully supervised approach. The algorithm

14

consisted in extracting a bag of visual words (Sivic and Zisserman, 2003) from each image, which were

then passed to a one-versus-all SVM architecture to associate a class to each image. Finally, the images

were aggregated according to the tiles they belong to, and the majority class was assigned to the tile.

Although this experience has achieved some fairly good results, there were situations where there was

clearly room for improvement.

The work also exemplifies the use of proximate sensing for public sentiment mapping, which trans-

lates into mapping sentiments, such as the scenicness of a location, and finalizes by suggesting some

improvement to the proposed methodologies, such as the combined use of overhead and ground-level

images.

2.2.1.2 Previous Approaches Leveraging Convolutional Neural Networks

Although feature extraction can be applied in certain contexts, it usually lacks in the capability to

generalize for other contexts and, in order to obtain improved results, it implies a lot of work cleaning

and sorting the data. To overcome this issue, we can use Convolutional Neural Networks (CNNs).

In Zhu et al. (2019), this idea is explored by making use of a novel CNN architecture to map 45

land usage classes for the city of San Francisco, resorting to large image sharing services, such as

Flickr. The proposed CNN consists of a two stream architecture, where one stream is responsible

for object recognition, with the other being used for scene recognition, as several tests pointed out

that the combination of both streams presented better results than just employing a simple one stream

architecture.

One of the main challenges faced by the authors was the lack of a ground truth map for fine-

grained mapping, which implied producing one by themselves. The idea to tackle this problem consists

of using the Google Places indexed points of interest to extract labels for certain locations that could

then be used to derive land use for a certain area. Although the achieved results were acceptable,

this technique added some degree of error to the ground-truth maps, due to wrong or misunderstood

labels and due to regions with conflicting labels, where different land use classes can be encountered

(i.e. there is no class for which the prediction score stands out from the rest), which can lead to regions

where there are conflicting labels. Looking at the use of CNNs for this task, the authors opted to employ a

Resnet101 (He et al., 2015), which provided the best relation between accuracy and efficiency, and used

a batch size of 256 of images coming from Flickr and Google platforms. Due to the noise in the available

data, a method named adaptive online learning can also be employed to obtain better performance. This

technique works as an alternative to a manual cleaning process, which would be impossible to apply due

to the size of the data, and tries to filter out the samples that the model struggles to classify. The idea

behind this behaviour is that the information in these ambiguous samples will most likely confuse the

model, rather than help its convergence, so the obtained results should not used for backpropagation.

To establish which samples should be used, considering a problem with n classes and the prediction

scores yi = [yi1, yi2, ..., yin] obtained for sample i, we compute the following formula to calculate the

15

Table 2.1: Results for a 45-way land use classification problem. Based in Zhu et al. (2019).

accuracy precision recall f1 score

SIFT 29.16 4.56 12.85 3.37
SIFT + FVE 31.20 5.01 13.67 3.67

ResNet101 (Pre-Trained) 37.87 7.92 18.98 5.59
ResNet101 (Fine-Tuned) 43.90 10.57 21.67 7.10

ResNet101 (Object) 46.73 12.30 25.41 8.29
ResNet101 (Two-stream) 49.54 14.21 29.06 9.54

probability of a sample being used:

pi = max(0, 2− exp |max(yi)− ȳi|) (2.8)

In the above formula, pi represents the probability of a sample i being used for training, max(yi)

identifies the top score obtained in the set of predictions (i.e. label that would be attributed to sample i),

and ȳi is the average score obtained, considering the predictions for all n classes.

We can then establish a threshold, for which the authors opted for 0.5, and avoid using samples with

a lower probability than the defined value. This method has proven to be beneficial, allowing a boost in

the accuracy of the model.

To test the effectiveness of this model, the results of performing end-to-end learning using the

proposed CNN architecture can be compared with more common approaches of performing feature

extraction and classification separately. In this work, the authors began by extracting hand-crafted fea-

tures using Scale-Invariant Feature Transform (SIFT). SIFT consists in a keypoint detector that allows

the extraction of features by identifying objects present in a picture, even when these present different

rotations, scales or positions. The obtained representations were then encoded as Bag of Visual Words

vectors (using k-means or Fisher Vector Encoding). Deep learning features were also extracted from

the last fully-connected layer of a pre-trained ResNet101 CNN (i.e. previously trained in the ImageNet

database). As presented in Table 2.1 we can observe that any of the end-to-end learning models, even

when compared to deep-learning features, are able to capture higher level semantics better than the

hand-crafted features. We can also notice that the best results were obtained when combining the two

streams into a single model, which resulted in a performance boost in terms of accuracy and mapping

metrics.

The obtained results were overall positive and provide a baseline for further improvements. The

authors have concluded that the two stream architecture has provided improved results over conven-

tional CNN, as objects can provide valuable information in certain cases, when mapping land use (e.g.

bicycles for a bicycle store). It was also possible to conclude that considering fine granularity can be

extremely beneficial, even for problems where coarser classes are to be derived. In Table 2.2, we can

observe that, for a problem with 5 top-level classes as the objective mapping, employing fine granularity

16

Table 2.2: Accuracy results based on different granularities. Based in Zhu et al. (2019).

45-way 16-way 5-way

Fine Granularity 46.7 61.8 75.6
Middle Granularity - 60.2 68.4

Coarse Granularity - - 49.3

resulted in more than a 25% difference in accuracy, when comparing with coarse granularity training.

This can be explained due to the fact that some of the concepts can be very different at the low granu-

larity level, while belonging to the same high granularity class. Some possible future improvements are

also to be considered for this or other works in the same area, such as the use of humans to provide

some guidance to the model, the processing of other types of information besides pictures (e.g. videos),

and the use of off the shelf object detectors to boost the object stream.

In Srivastava et al. (2020) another approach was taken in the use of ground-level images for land

use mapping. Instead of using community-shared image collections to fine-tune the model, the authors

opted for collecting images from Google Street View (GSV). This choice is justified by the fact that it

offers better and bigger coverage for urban areas than community-shared photographs, such as the

ones available at Flickr, as these tend to be concentrated in turistic areas. Adding to this, GSV pictures

also allow to avoid processing photographs that fail to characterize a certain region, such as selfies.

To extract features out of each picture, the authors used a VGG16 (Simonyan and Zisserman, 2014)

architecture, pre-trained in the ImageNet dataset, as it provided a strong baseline that would allow to

fine-tune the model for the given task.

To obtain the mapping, several street photos had to be analysed and aggregated to provide a

landuse class for each area. To accomplish this goal, two alternatives were introduced:

• The extraction of a class for each picture using a simple architecture, as shown in Figure 2.7, and

the combination of the results using majority voting or the use of a multi-layer perceptron to obtain

a class, after averaging the features.

• The use of a Siamese network (Bromley et al., 1993), that can receive a variable sized input (VIS).

This type of network allowed to work on several input vectors (i.e. images) while sharing the same

network weights. To obtain a landuse class, the feature representations of each image were then

combined using an aggregator. This resulted in the architecture pictured in Figure 2.8.

The model was applied to a multiclass mapping problem with 16 possible classes, in Île-de-France,

and an overall accuracy of 62.52% was obtained, using a VIS-CNN with an average aggregator, which

valued the most repetitive attributes that were present in the images feature vectors. Due to this out-

come, this model was able to achieve better results than previous works in the same area. However,

the accuracy of the model was not constant along all the different classes, as shown in Figure 2.9.

This is due to the fact that buildings from certain classes (e.g. government, heritage, religious) share

17

Figure 2.7: Standard procedure when using a CNN model. From Srivastava et al. (2020).

Figure 2.8: Variable Input Siamese Network proposed in Srivastava et al. (2020), in order to extract a
single land use class from a variable set of images collection from GSV.

some characteristics (e.g. statues), making it difficult to label some regions by only looking at building

facades. The authors proposed that this issue could be tackled by further improving the model using

community-shared pictures that could provide details about the building’s interior.

2.2.1.3 Further Work on Land-Use and Scenic-Beauty Mapping

An application that will be later discussed in the proposed work is the use of ground-level imagery

to map natural beauty. Several works have already addressed this task, some of them using CNNs as

a way to obtain better and more consistent results. One of the employed techniques that stands out in

Workman et al. (2017), relates to the addition of an input channel containing overhead imagery that is

combined with the analysis of ground-level photographs, in order to further improve the obtained results.

A similar method was applied in Srivastava et al. (2019), which expanded the work from the same

authors (Srivastava et al., 2020). Improved model accuracy was obtained by adding a new processing

stream that analysed satellite coverage of the urban-objects, in addition to the stream that processed

ground-level images, as seen in Figure 2.10.

2.2.2 Advanced Neural Models for Image Classification

In the last couple of years, several newly introduced neural models have presented highly improved

results in a range of tasks. In this section we will discuss the architecture of two of these advanced

models, the DenseNet and the EfficientNet.

18

Figure 2.9: Accuracy for each of the 16 classes, by obtaining a classification for each photograph and
using the averaging technique (CNN-AVG), and by using the Siamese Network with an Average Aggre-
gator (VIS-CNN with AVG). From Srivastava et al. (2020).

2.2.2.1 DenseNet

The DenseNet model Huang et al. (2016) is a deep neural model which presented greatly improved

results in image classification problems, when compared to other existing convolutional networks, due

to its unique set of features.

The most distinguishable feature of the DenseNet was its approach to shortcut connections. These

type of connections had already been used in several models, such as the ResNet model (He et al.,

2015), and enabled the network layers to produce an output combining both the pre-processed and post-

processed data, which proved to result in a more stable learning. The main innovation in the DenseNet

model, was the fact that each layer was able to receive the output from all the preceding layers, as it

is shown in Figure 2.11. This enabled deeper neural models to tackle the loss of information, while

allowing a better propagation of the error during the training phase, by avoiding the vanishing gradient

problem. Regarding the merging of the outputs from previous layers, unlike previous models where the

pre-processed data was added to the output, in the DenseNet model all the outputs are concatenated,

resulting in a clean representation of the results from all the preceding layers.

Due to the way the outputs are propagated to subsequent layers, the DenseNet suffers from a rapid

increase in the size of the input, and it is only able to combine feature maps with the same spatial size.

To deal with these issues, there is usually a small number of output channels, and a CNN is divided into

DenseNet blocks that end in a transition layer, responsible for reducing the dimensionality of the output.

This architecture is pictured in Figure 2.12.

Finally, it is important to notice that the results of activations from previous layers are left unaltered

by subsequent layers, which results in a conservation of the information learned by all layers. Therefore,

19

Figure 2.10: A new stream (Overhead Image Stream) was added in order to complement the analysis
of ground-level imagery. From Srivastava et al. (2019).

Figure 2.11: DenseNet Block. The arrows represent the flow of feature vector maps between convolution
layers.

each layer equally contributes to a global information vector. As a consequence of this behaviour, the

number of tunable parameters is also greatly reduced.

At the time it was presented, the DenseNet model was able to outperform all other neural models in

a range of classification tasks, obtaining improved results in several datasets, such as in the CIFAR10

dataset, which comprises a collection of 60000 32 × 32 images, divided in 10 classes. The obtained

results are shown in Table 2.3. Furthermore, the DenseNet was able to achieve a smaller error rate

while also reducing the number of parameters.

Figure 2.12: CNN with DenseNet blocks. The blocks are interleaved with a convolution (in blue) and a
pooling layer (in green) to reduce the dimensionality of the output.

20

Table 2.3: CIFAR10 results with Data Augmentation

Test Error

ResNet-110 6.41
DenseNet-100 4.62

ResNet-1001 4.5
DenseNet-250 3.6

2.2.2.2 EfficientNet

After the introduction of deep convolutional neural networks, such as the ResNet or DenseNet mod-

els, improving the performance of this kind of models has become a matter of scaling up its architecture.

This scaling can usually be done by increasing the depth of the network (i.e. increasing the number of

hidden layers), by enlarging each layer (i.e. increasing the number of channels), or by increasing the

input resolution. This was commonly achieved by manually tuning one or two of these dimension, which

not only was a slow process, but it would also lead to unoptimized results in terms of accuracy and

efficiency. Furthermore, as the number of parameters grew, the verified gain would diminish substan-

tially, until a point where the improvements did not have any impact (e.g. ResNet-101 and ResNet-1000

present similar performance).

To tackle the referred issue, a new scaling method, named compound scaling, was proposed in Tan

and Le (2019), which later originated a new type of CNNs, called EfficientNets. The idea behind this

technique is to uniformly scale the network along its three dimensions with the aim of optimizing the

networks performance, while reducing the need for more computational power.

The principle behind this idea is that given a certain value for available memory and available com-

puting power (FLOPS), the objective is to maximize the accuracy obtained by the model by adjusting

the network’s depth(d), width(w) and the resolution of the input(r). Due to the fact that there is a depen-

dency between all the variables, it becomes difficult to find the optimal solution to this problem, which

constitutes the reason why most of the networks used to be extended in only one dimension.

The compound method introduces a new procedure to obtain the optimal values for the variables.

To obtain the changes in each dimension, we compute:

d = αφ

w = βφ

r = γφ

s.t. :

α.β2 − γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

21

Figure 2.13: MBconv Block. The arrows represent the flow of feature vector maps between layers.

Figure 2.14: Architecture for the baseline EfficientNet-B0 network. Mainly constituted by Mobile Inverted
Bottlenecks(MBConv).

Where α, β, γ are fixed hyperparameters and φ establishes the constant growth for each dimension.

To begin with, a base network architecture was built to serve as a baseline model. Next, the authors

fixed φ=1 and performed a grid search for the optimal values of the hyperparameters α, β, γ. Finally, the

effectiveness of this method was tested by scaling the network according to φ.

To prove the performance difference between the use of this method and previous CNNs architec-

tures, the authors built a baseline model, named EfficientNet-B0 which follows the architecture presented

in Figure 2.14. This network is mainly constituted by Mobile Inverted Bottleneck convolutional blocks

(MBConvs), presented in Figure 2.13. These type of blocks were introduced in the MobileNetV2 (San-

dler et al., 2018) and were created with performance in mind, by reducing the number of parameters

needed in each block.

MBConv blocks work around the principle of depthwise separable convolutions. Unlike the normal

convolutions, in which we begin by applying each filter directly to all input channels, and then combining

the results of all channels, in depthwise separable convolutions we start by applying one single filter

to each input channel and only then combine the outputs using a 1 × 1 filter. This results in a great

reduction of parameters, and a reduction in the number of multiplication operations in the order of 8 to 9

times when compared to the number of multiplications executed in standard convolutions.

Looking at a practical example, pictured in Figure 2.15, we consider an input I with sizeDI×DI×M ,

with DI representing the height and width of an input feature map, and M representing the number of

input channels. A standard convolution would produce a DG×DG×N output, in which N is the number

of filters and DG represents the height and width of an output feature map. For this convolution, the

kernel would have size DK ×DK ×M ×N . Considering the above values, the resulting computational

22

Figure 2.15: Standard Convolution by applying N Dk ×Dk filters to an input with M channels

Figure 2.16: Depthwise Separable Convolution. First, one Dk ×Dk filter is applied to each channel M .
Second, N 1× 1 filters are applied to the result of the previous operation, resulting in a similar output to
the standard convolution but with a reduced number of parameters

cost would be:

D2
K ×D2

G ×M ×N (2.9)

For a Depthwise Separable convolution, as exemplified in Figure 2.16, we would begin by applying

only 1 filter for each input channel, resulting in a kernel with sizeDK×DK×M , which results in an output

of size DG × DG ×M . After this step, we obtain the final output by executing a pointwise convolution

using 1× 1 filters and combining the results across all input channels. Looking at the computational cost

of such operations, we obtain the following expression.

D2
K ×D2

G ×M +D2
G ×M ×N (2.10)

Comparing the computational cost between standard and Depthwise Separable convolutions:

23

Table 2.4: Comparison between the EfficientNet architectures and current deep neural models, for dif-
ferent levels of accuracy.

Accuracy Top-1 Accuracy Top-5 Parameters

EfficientNet-B0 77.3% 93.5% 5.3M
ResNet-50 76.0% 93.0% 26M

DenseNet-169 76.2% 93.2% 14M
EfficientNet-B1 79.2% 94.5% 7.8M

ResNet-152 77.8% 93.8% 60M
DenseNet-264 77.9% 93.9% 34M
EfficientNet-B7 84.4% 97.1% 66M

GPipe 84.3% 97.0% 557M

D2
K ×D2

G ×M ×N
D2
K ×D2

G ×M +D2
G ×M ×N

=
1

N
+

1

D2
K

(2.11)

Looking at the previous equation, and replacing N = 2048 and DK = 3 we conclude that Depthwise

Separable Convolutions costs 11.1% of the computational cost of a standard convolution (i.e. 9 times

faster).

To further increase the performance of these blocks we make use of both inverted residuals and

linear bottlenecks, which are based on the premises that a low dimensional subspace can capture the

information from feature maps, and that non-linear activations, such as the ReLU, lead to information

loss.

In order to improve the gradient flow to the initial layers, blocks use residual connections, such as

the ones found in the DenseNet. However, unlike previous networks, where the residual connections

are used between layers with a high number of channels, these connections are made between narrow

layers, which results in a decrease in memory and computational cost. This technique works based on

the above mentioned premises that the valuable information is still contained in the bottlenecks, allowing

us to connect these type of layers.

Taking into account the loss of information that results from the use of non-linear activations, and

the fact that blocks use residual connections between narrow layers, it is expected that these blocks

suffer from a considerable reduction in accuracy. To tackle this issue the authors proposed the use of a

convolution with a linear activation before merging the output with the initial activations. This addresses

the loss of information generated by non-linear function, without the need to increase the number of

channels in the narrow layers that contain the residual connections.

Looking back at the EfficientNet-B0 architecture, the model was then scaled up several times, using

the compound method, and a comparison was established between the EfficientNet family and the

current alternative models for different values of accuracy in the ImageNet Challenge. By looking at

Table 2.4 we can see that EfficientNets were able to obtain state of the art performance results while

using a much smaller number of tunable parameters.

24

Table 2.5: Manual and compound scaling on ResNet-50

Accuracy Top-1 FLOPS

ResNet-50(baseline) 76% 4.1B
ResNet-50(tuned depth) 78.1% 16.2B
ResNet-50(tuned width) 77.7% 14.7B

ResNet-50(tuned resolution) 77.5% 16.4B
ResNet-50(compound scalling) 78.8% 16.7B

The same compound scaling methodology was also applied to existent networks, such as the

ResNet model, and, as can be seen in Table 2.5, by fixing a certain constraint in computing power,

this technique was able to improve the result obtained via manual tuning.

To further evaluate the impact of this method, EfficientNets were also applied to a variety of datasets,

such as the CIFAR-10 and CIFAR-100, to assess its capability to transfer learning. EfficientNets obtained

state of the art performance for every dataset, surpassing all of the current CNNs models in most of

them, once again with a much lower number of parameters.

Considering that, by scaling EfficientNets, we are capable of further improve the overall accuracy of

neural models at a much lower cost than tuning a CNN manually, and due to the complexity of the task

in hands, the use of this family of networks, along with its compound scaling method can be extremely

beneficial for this work.

25

26

3
Approach to Terrain

Mapping Based on Deep

Neural Networks

This chapter presents an overview of the proposed approach. Section 3.1 details the procedure

used for the extraction of land-use and scenic beauty mappings. Section 3.2, provides a more detailed

view of the model and the methods employed in order to try and improve the overall performance in the

selected tasks. Section 3.3 presents and describes the sources of data used for this project. Finally,

Section 3.4 presents an overview of the contents of this chapter.

3.1 The Proposed Approach to Land-Use Mapping

Only recently have ground-level photographs been used in order to provide an alternative automated

solution for mapping tasks that were usually achieved adopting methods based in manual annotations.

Works such as Zhu et al. (2019), have established a strong base on how leveraging available ground-

level photos could impact tasks such as land-use mapping. Srivastava et al. (2019) works expanded

this idea and enhanced the current methods by combining multiple pictures in order to further improve

the accuracy of mappings. However, none of these previous approaches has explored the possibility

of a model that could look at a set of images as a sequence that represents a region, instead of only

analysing images individually.

My proposal consists in organizing photographs into sequences, based on the distance to a certain

interest area, and make use of a Recurrent Neural Network, together with a Convolutional Neural Net-

work model in order to better leverage possible links between pictures that might help further improve

the accuracy of the mappings for that area. To apply and test this approach, the following step-by-step

procedure was considered:

• Create a map for a study region based on available land-use data, provided via hand-annotations.

Aggregation of the available information into a meaningful set of land-use classes that can be used

in order to train and test the envisioned model.

• Transform the created map into a raster based on a defined resolution, in this case I considered

areas which are constituted by 25x25 meters cells. When a region with conflicts between different

mapping classes is found, the area is mapped according to the majority class. Due to the complex-

ity of land-use mapping, some classes are aggregated in order to create new and more meaningful

super-classes. One simple example is the aggregation of classes representing different urban fab-

ric densities into a urban fabric super-class.

• Collect ground-level photographs which provide geospatial information about the place they were

taken. Select a set of photographs which were taken inside the study region and overlay their

locations with the raster created in the previous step, in order to attribute a class to each picture,

according to the area it was taken in.

• Split the study region into four sub-regions. The photographs taken in three out of the four sub-

regions can be used for training while the forth sub-region can be used as a validation dataset. We

can use a cross-validation method to verify the model’s performance in each sub-region.

• Train a convolutional network in a simple classification task, in which the target classes are the

ones extracted in the previous step. This step is introduced due to hardware constraints in terms

of memory usage, which does not allow us to train an end-to-end deep neural network on a full

sequence of pictures. As such, this step will work as a pre-training phase for a segment of the

model’s weights, which will then be locked to allow the training of the remaining weights within the

memory constraints.

• For each of the 25x25m cells, produce a sequence of photographs in descending order according

to the distance to the centre of the square. For this ordering and based on the available coordinates

for each picture, we can make use of a metric such as the haversine distance to calculate which

photographs are closer to the centre of each square and can better depict its content:

D(x, y) = 2 arcsin

√
sin2(

x1 − y1
2

) + cosx1 cos y1 sin2(
x2 − y2

2
) (3.1)

In the previous equation, x and y are the points between which we calculate the distance and x1/x2

and y1/y2 are the latitude and longitude of each of those points, respectively.

• Train a recurrent neural network model in a classification task in which the input are the sequences

of images for three of the four sub-regions and the target classes are the land use classes attributed

to each square based on the data from the raster. Part of the model is initiated with the weights

obtained in the image to image pre-training phase. These weights are locked in order to reduce

memory usage and allow the tuning of the remaining weights by resorting to bigger sequences.

• Use the sub-region left out during training to evaluate the model’s performance and create a new

raster for this area based on the extracted land-use classes, in order to create a visual represen-

tation of the results that is easily comparable to the original raster.

Based on the data and procedure presented above, the previous task can be expanded in order to

contemplate the use of the same region for scenic beauty mapping by considering the following steps:

28

• Collect scenic-beauty scores available for photographs taken inside the region considered for the

previous task. For each image, a set of at least 3 scores that range from 0 to 10 are averaged in

order to obtain a single scenic beauty score for each image.

• Utilize the available information to train the same convolutional neural network architecture used

for land-use mapping. However, this time the classification layer is replaced by a linear regression,

as we now have a real value as target, instead of classes.

• Overlay the land-use raster with the pictures used in the scenic beauty task. Attribute scenicness

scores to the 25×25m squares based on the averaging of the scores of the pictures inside its area.

• Train a recurrent neural model in a regression problem with the scenicness scores as target and

using the sequences of images that were computed in the previous task.

• Extrapolate the results for the remaining tiles which do not possess any scenic beauty scores in its

area and create a raster that presents the obtained sceniccess scores for the study region.

The entire procedure was implemented in the Python1 programming language, as there already

many packages that facilitate the collection of data and the implementation of the desired model. Nam-

ing some of the most important tools, this work has made extensive use of the GDAL2 package, which

allowed me to translate and edit vector and raster geospatial data formats, and the Tensorflow 3 and

Keras 4 packages, which facilitated the creation and training of deep neural models based on the pro-

posed approach. Some of the more recent models and methods were also tested by recurring to specific

packages, such as an EfficientNet Tensorflow implemention5 based on the original paper (Tan and Le,

2019).

3.2 Model Architecture

The envisioned deep neural model can be divided in two segments, the feature extraction segment

(CNN) and the mapping extraction segment (RNN). Figure 3.1 illustrates this model.

In the first segment, a Convolutional Neural Network (CNN) is used analyse each picture individually.

For this purpose, I have made use of the EfficientNet model, as it has proven to provide state-of-the-

art performance with a small number of parameters on well known classification problems, such as in

the ImageNet Dataset (Russakovsky et al., 2015), when compared to similarly performing architectures.

This architecture also shown strong transfer of learning between similar classification problems. As

such, in order to speed-up the training phase of the envisioned model, I will make use of network

weights obtained through a pre-trained model on the ImageNet Dataset.

1http://www.python.org/
2http://gdal.org/
3http://www.tensorflow.org/
4http://keras.io/
5github.com/qubvel/efficientnet

29

http://www.python.org/
http://gdal.org/
http://www.tensorflow.org/
http://keras.io/
github.com/qubvel/efficientnet

Figure 3.1: Illustration of the model and procedure that is planned to be used to process ground-level
imagery and extract a land usage mapping

Besides the basic CNN architectures I also evaluate the performance of the following methods to

help in model training: the auto-augment (Cubuk et al., 2019) augmentation technique; the AugMix

(Hendrycks et al., 2019) augmentation technique; the supervised contrastive learning method (Khosla

et al., 2020).

The auto-augment method consists in a data augmentation technique which aims to automatically

find the optimal augmentation policies for a certain dataset. The result of this method consists in a set

of sub-policies which are randomly applied to data during the training phase. The authors of this paper

applied this method to several datasets, including the ImageNet dataset, and were able to improve the

state-of-the-art accuracy and the transfer learning capability amognst different datasets. Taking this into

consideration, I have made use of the list of sub-policies applied by this method in the ImageNet dataset,

which include a mixture of the following augmentations: automatic addition of contrast; histogram equal-

ization; posterization; solarization; shearing; translation; sharpness change; brightness change; color

changes; image inversion.

The AugMix data augmentation method combines ideas from several previous approaches to in-

crease the robustness of a network, allowing it to better deal with unforeseen corruptions in the testing

data. To achieve this, new training samples are formed by performing several augmentations of a raw

image, which are made by applying a chain of transformations to it, such as a translation or rotation, and

then mixing them together, along with the original image, using elementwise convex combinations, as

presented in Figure 3.2. Furthermore, the authors of this method propose the use of a Jensen-Shannon

Divergence consistency loss during training, in combination with the original supervised training loss, to

help the network obtain similar results for the augmented and original samples. For this work, this tech-

nique was applied by considering the following augmentations: automatic addition of contrast; histogram

equalization; posterization; solarization; shearing; translation.

The contrastive learning technique consists in a two step training approach. In the first step, the top

classification layer of the CNN model is removed, leaving the set of features as output of the model. The

model is then trained with the intent that pictures from the same class are close in the feature space

and that pictures from different classes are as far away as possible. For this purpose, a max margin

contrastive loss (Hadsell et al., 2006) is used. This loss function essentially equates the euclidean dis-

tance between feature vectors, in order to generate clusters in the feature space that should aggregate

the photographs from each class. The second step consists in adding the classification layer back and

make use of the pre-trained weights to extract classification results based on the aggregated feature

30

Figure 3.2: AugMix procedure. The raw image begins by being processed in several transformation
sequences. The resulting augmented images are then combined, along with the original input, in the
last step. From Hendrycks et al. (2019).

sets.

In the second segment, the main objective is to make use of a Recurrent Neural Network (RNN)

architecture to combine the features extracted in the previous steps in order to find links between images

that can prove to be advantageous for the generation of mappings, when compared to the previous

alternatives of mapping via an image-by-image analysis, as in Zhu et al. (2019), or via an aggregator

that combines features of multiple pictures by using pooling, similar to what was proposed in Srivastava

et al. (2019). To train this part of the model, I make use of a CNN with locked and tuned weights based on

the results of the best performing architecture and ancillary method from the training of the first segment

and, after removing the classification layer, I feed the last feature output into an RNN LSTM layer. Finally,

either a classification layer or linear regression layer is added on top, based on the desired output of the

task in hand.

3.3 Data Sources

To train the RNN CNN model for the identification of land use classes, the first step consisted of

collecting a large number of photographs, in order to provide a vast ground coverage for the city of

London. To achieve this, images were obtained by resorting to the Geograph.uk dataset.

The Geograph.uk dataset contains a collection of images that offer ground coverage for most of

the United Kingdom. Unlike other publicly available datasets, such as the Flickr Creative Commons

dataset, in which the photographs do not present any pattern or purpose, the Geograph.uk initiative was

created with the intent of dividing the U.K. in small 100m× 100m square tiles and collecting at least one

photograph that could identify the characteristics of each one of them. As a consequence, this dataset

presents a low number of noisy pictures, such as selfies or food photographs, as its images mostly focus

on relevant characteristics of the area around the place the photo making it ideal to train the model and

help identifying the appropriate mapping for the terrain.

After obtaining data samples, the second step was to obtain a ground-truth map for the study region

31

in which we could extract a set of land use classes that could be paired with the photographs. For this

purpose, I have collected the relevant data for the city of London via the Urban Atlas project from the

Copernicus Initiative6.

The Urban Atlas 2012 provides land use and land coverage mappings for a total of 785 Functional

Urban Area in Europe. The map provides a mapping according to a set of 27 classes, 17 urban classes

and 10 Rural Classes with minimum mapping units of 0.25 and 1ha, respectively.

Access to Urban Atlas data is provided via a set of files in a vectorized format. The vectorized data

is accompanied by a legend with information about several terrain characteristics, including land-use

data. The land-use data was embedded in each polygon and the vectorized data was then transformed

in a raster, as explained in the procedure in Section 3.1.

This work will focus on identifying land use classes for the urban areas of London and, to facilitate

the task, the number of classes is reduced to the following set of 8 super-classes, according to the

hierarchy established in the Urban Atlas 2012:

• Urban Fabric

• Industrial and commercial activities

• Land without use, construction sites and mining facilities

• Green Spaces and Sports facilities

• Arable land

• Pastures

• Water

• Forest

As a secondary objective, the models and photographic data from the previous task were also used

for the scenic beauty mapping. To obtain ground-truth data for this task, I have made use of scenicness

scores for photographs belonging to the Geograph.uk dataset, collected via the Scenic-Or-Not7 game.

This game consists of an online challenge in which people are presented an image from a certain area

and are asked to quantify the scenic beauty of the photographic set, according to a scale from 1 to 10,

as seen in Figure 3.3. Each score is then collected and each set of atleast of 3 collected score is then

averaged to obtain a final scenic score for each image. This is done with the objective of reducing the

subjectiveness of the score due to different people having different concepts of scenicness, though the

small number of reviews per picture still present large variance. The data compiled up to February 2015

is openly available via a TSV (tab-separated values) file which provides, for each image, its geospatial

6http://land.copernicus.eu/
7http://scenicornot.datasciencelab.co.uk/faq

32

http://land.copernicus.eu/
http://scenicornot.datasciencelab.co.uk/faq

Figure 3.3: Scenic-Or-Not game interface. The user should use a scale from 1 to 10 to rate the scenic
beauty of the presented photograph.

coordinates of the image, the Geograph Image ID and the attributed set of scores, along with its average

and variance.

3.4 Overview

In this chapter, I presented the procedure considered for the elaboration of this dissertation. In

Section 3.1 I briefly present the general objectives of this work along with an overview of the work

process, detailing the steps that were taken for the evaluation of each of the two selected tasks. In

Section 3.2 I give an insight of the envisioned model, as well as some methods that are implemented in

this work. Finally, Section 3.3 presented the sources of information which were used to collect both the

images and ground-truth data to train the model.

33

34

4Experimental Evaluation

This chapter presents the the experimental evaluation for the proposed mapping approach based on

the results obtained for a study region which comprises the urban area and suburbs of the city of London.

The procedure is mainly tested in the task of land-use mapping, with the secondary goal of verifying the

mapping process for the task of scenic beauty. The applied methodology is presented along with the

evaluation metrics for both tasks. After this introduction, the results for the image processing segment of

the model are presented. Finally, the results for the image sequence processing are presented for both

task, as well as rasters that portrait the region according to a set of land-use classes and scenicness

score. For the land-use task, the results are supported by graphs that identify the overall accuracy and

class-by-class accuracy and tables with other evaluation metrics, such as the F1 score, while for the

scenic-beauty task, tables with error metrics are used to evaluate the model’s performance.

4.1 Methodology and Evaluation Metrics

The task of land-use mapping presented in the work consists in a simple classification problem

where the goal is to accurately extract a class based on the information extracted from a single image

or set of images. For this purpose, a way to evaluate the performance of different models consists in the

use of metrics such as the accuracy, recall, precision and f1-score.

Considering C as the set of all possible classes, in order to obtain the values for accuracy, precision

and recall for a class i ∈ C, the formulas below can be applied by considering the variables tp as the

number of true positives, which identifies the correctly labeled samples for class i, fp as the number of

false positives, which identifies samples that were wrongly classified as belonging to class i, and fn the

number of false negatives, which consists in the samples belonging to class i that were wrongly labeled

as belonging to other classes.

Accuracy =
tp + tn

tp + tn + fp + fn
(4.1)

Precision =
tp

tp + fp
(4.2)

Recall =
tp

tp + fn
(4.3)

Finally the F1 score allows us to balance and combine the above precision and recall into a single

value, which provides a good metric for the accuracy of the model, regarding a certain class. This metric

can be obtained by using the result from the previous metrics and the formula below.

F1Score = 2 · Precision×Recall
Precision+Recall

(4.4)

For the task of scenic-beauty, instead of mapping a class, the objective is to extract a real value

which represents the scenicness that can be observed in a certain picture. A possible way to evaluate

the results is to estimate the difference between the obtained predictions and the original value. For

this purpose, we can use various statistics, such as the Root Mean Square Error (RMSE) between the

predicted and original values, or the Mean Absolute Error (MAE), as presented in the following formulas:

RMSE =

√∑n
i=1(ŷi − yi)2

n
(4.5)

MAE =

∑n
i=1 |ŷi − yi|

n
(4.6)

In the previous formulas, ŷi corresponds to a predicted value, yi corresponds to a original value,

while n represents the total number of predictions.

To provide a more accurate evaluation of the tested models, I have divided the study region into 4

sub-regions to follow a k-fold cross validation approach, which consists in feeding 1 of the sub-regions

as the testing set and using the remaining as training set. As a result, the model behaviour can then

be better estimated by averaging the evaluation metrics obtained for each of the folds. A map of the

sub-regions, colored according to the classes for land-use classification is presented in Figure 4.1. For

the task of scenic beauty, due to reduced number of pictures in the study region, I have opted to evaluate

the models by considering, for testing purposes, all the photos within the dataset used for the previous

task and, for training, the remaining photographs of the UK territory for which I was able to collect a

scenincess score.

4.2 Convolutional Neural Networks for Image Analysis

This section presents the results obtained for both Land-use and Scenic Beauty tasks by using

deep learning CNNs for image analysis. As mentioned in the previous chapter, due to memory usage

constraints, this work has been divided in two segments in order to improve the end results of the

experiments. Beginning by experimenting with a image to image analysis allowed to use more memory

intensive architectures and more easily test certain methods, such as data augmentation techniques. In

this section I present the results for the following experiments:

36

• Use of a DenseNet169 architecture with batch size 32 for information extraction.

• Use of an EfficientNet-B0 architecture with batch size 32 for information extraction.

• Use of an EfficientNet-B0 architecture with batch size 32 along with augmentations generated by

using the results obtained by applying the AutoAugment method in the ImageNet challenge.

• Use of an EfficientNet-B0 architecture with batch size 16 along with augmentations and a custom

loss fuction generated using the AugMix method.

• Use of an EfficientNet-B0 architecture with batch size 32 along with a supervised contrastive learn-

ing technique as presented in Khosla et al. (2020). This method consists in a two step approach in

which the layers of the network that precede the classification layer are tuned in a first step based

on the differences between the samples inside each batch in order to try and maximize the dis-

tance between photographs from different classes, and minimize it between the ones that belong

to the same class. In the second step, the network weights are then tuned in order to extract the

final class based on the differences between the ground-truth and predicted results.

The models were trained with adjusted parameters in order to maximize the batch size, taking

into account the memory restrictions of the system used for this work. This decision was based on

preliminary results obtained via the comparison of a EfficientNet-B0 (4 million parameters) with a batch

of 32 images with a EfficientNet-B4 (17 million parameters) with a batch size of 4, which pointed to

improved results with the EfficieNet-B0. As such, due to the fact that the increased batch size allows

to increase the speed and stability of the training process, I opted to make to use smaller network

architectures with bigger batches.

All of the CNNs used in this work receive as input images with resolution 224× 224 pixels. In order

to feed the collected photographs to the networks, for each image, we selected the biggest possible area

starting from its center, which allowed to keep the width and height equal, and cropped the rest of the

image. The resulting squared shaped picture was then resized in order to match the input resolution of

the CNNs.

For the task of land-use, the class attributed to each image is based on the class of the map cell

as presented in Figure 4.1. It is important to consider that the used photographs are community shared

and were not taken in the same year neither by the same person and device. Adding to that, the

geolocation always has an associated error that can vary according to how it was obtained. On the

contrary, the ground-truth map used for this task, the Urban Atlas 2012 was created by an official entity

and on a small period of time, based on hand annotations collected according to a standard procedure.

Weighting all these factors, it is clear that mixing these sources in order to train a model will result in an

associated error, as the lack of a standard in the data collected from Geograph.uk will result in noise,

and the fact that the photographs were not taken within a small timeframe means that the landscape

might have changed completely between the time the photos were taken, and the time Geograph.uk

mapped land-use classes for the considered area.

37

Figure 4.1: Sub-region division for the Land-use and Scenic Beauty tasks, colored according to the
Land-Use classes.

Sub-region 1 Sub-region 2 Sub-region 3 Sub-region 4
Train Test Train Test Train Test Train Test

Urban 93422 44138 130187 7373 116752 20808 133340 4220
Industrial and Commerce 104670 39176 126526 17320 124382 19464 140329 3517
No Use, Construction and Mining 1688 516 2179 25 2027 177 2194 10
Green Spaces and Sports 38007 14727 51413 1321 40507 12227 51713 1021
Arable 11699 380 12079 0 11496 583 12079 0
Pastures 21974 867 22840 1 22081 760 22841 0
Water 7565 2262 9552 275 7512 2315 9810 17
Forest 13283 548 13831 0 13220 611 13831 0

Table 4.1: Support for each land-use classed based on the sub-region used for testing.

Based on the discussed cross-validation approach, for evaluating the results of applying each CNN

model to the data, 4 test sub-regions were defined according to the map in Figure 4.1. The training data

was composed of the remaining 3 sub-regions, and in order to help and improve the results, some extra

photographs were collected from an outer region, as presented in Figure 4.2, and added to the training

set. These images were not used in the following image sequence due to the fact that generating and

using the extra cells in this region would drastically increase the time required to produce data and train

a model. Table 4.1 presents the support (i.e. the number of samples for each class) for each sub-region

divided by the 8 classes considered for this task.

The results obtained for the experiments are presented in Table 4.2 and Table 4.3, according to the

metrics of accuracy, precision, recall and F1-score, and also according to the results obtained separately

for each of the 8 classes.

As shown in Table 4.2, both the DenseNet model and EfficientNet Model performed almost similarly,

as expected, based on their similar performance in the ImageNet challenge. The only major difference

between these two architectures corresponds to a 34% decrease in the time taken for each training

38

Figure 4.2: Region used for Image to Image analysis, colored according to the Land-Use classes.

epoch for the EfficientNet Architecture.

Regarding the alternative techniques applied along the standard architecture, the AugMix augmen-

tations provided the most increases in performance for some of the classes, which should be correlated

with the fact that the original paper reports that this technique tends to allow to deal better with data

corruption and improve the transfer of learning between training and test datasets which do not present

the same data distribution. For the remaining evaluated methods, there was no noticeable improve-

ments when using the auto-augment augmentations or the contrastive learning pre-training technique.

Taking all into consideration, it was decided that the weights learned for the test with the EfficientNet-B0

architecture, along with AugMix augmentations were to be saved and used for the training and mapping

phases of the remaining work.

For the task of scenic beauty, due to reduced number of pictures in the study region, I have opted

to evaluate the models by considering, for testing purposes, all the photos within the dataset used for

the previous task that have scenicness scores, and for training, the remaining photographs of the UK

39

DenseNet-169 EfficientNet-B0
Precision Recall F-score Precision Recall F-score

Urban 0.578 0.680 0.618 0.590 0.623 0.604
Industrial and Commerce 0.608 0.535 0.565 0.596 0.588 0.589
No Use, Construction and Mining 0.0 0.0 0.0 0.057 0.010 0.012
Green Spaces and Sports 0.589 0.512 0.549 0.625 0.493 0.552
Arable 0.196 0.029 0.044 0.167 0.064 0.090
Pastures 0.209 0.305 0.231 0.191 0.331 0.241
Water 0.460 0.308 0.361 0.401 0.357 0.373
Forest 0.219 0.261 0.235 0.171 0.365 0.235
Macro Average 0.357 0.329 0.325 0.350 0.354 0.337
Accuracy 0.57 0.58

Table 4.2: Results for the simple architectures evaluated in the land-use task.

Auto-Aug AugMix Contrastive
Precision Recall F-score Precision Recall F-score Precision Recall F-score

Urban 0.585 0.644 0.608 0.760 0.841 0.796 0.588 0.633 0.608
Industrial and Commerce 0.600 0.559 0.576 0.572 0.636 0.596 0.597 0.575 0.579
No use, Construction and Mining 0.028 0.000 0.007 0.135 0.007 0.007 0.035 0.007 0.007
Green Spaces and Sports 0.630 0.500 0.554 0.638 0.488 0.551 0.630 0.481 0.548
Arable 0.170 0.046 0.066 0.166 0.058 0.084 0.148 0.046 0.066
Pastures 0.198 0.353 0.252 0.247 0.191 0.217 0.182 0.354 0.236
Water 0.417 0.371 0.391 0.441 0.246 0.313 0.424 0.354 0.383
Forest 0.195 0.320 0.240 0.186 0.324 0.236 0.181 0.318 0.235
Macro Average 0.353 0.349 0.337 0.393 0.349 0.350 0.348 0.346 0.333
Accuracy 0.570 0.57 0.58

Table 4.3: Results for the complementary methods and techniques evaluated in the land-use task.

territory for which I was able to collect scenicness scores. Unlike in the previous task, the data for the

scenicess score is extracted directly from the train and test dataset without recurring to a secondary data

source for this purpose which helps reducing the error associated with the ground-truth data. However,

the scenicness of a photo is not a concrete measure but rather a subjective term that can influenced

by a variety of factors, as explored in Seresinhe et al. (2018). By averaging a set of scores attributed

by different individuals we can more accurately portrait the scenicness of a photograph, though it will

still be a measure heavily influenced by the human expert’s perspective of scenic-beauty. As referred

before due to the desired output being a real value between 0 and 10, the classification layer of the

tested models will be replaced by a linear regression layer. The graph presented in Figure 4.3 presents

the support for the scenicness scores. As we can see, the scores follow a normal distribution with a

sligth inclination to lower scenicness values, as it was to be expected given that there is a prevalence of

urbanized area, which tends to negatively affect this score.

The results obtained for the experiments are presented in Table 4.4 according to the metrics of

RMSE and MAE. The models behave in a similar way to the previous task, though by looking at the

differences between the basic EfficientNet-B0 and the auto-augment model it is possible to observe

that this augmentation technique helps smoothing the predictions and reduce the RSME. This increase

in performance is to be expected, as we initialized the CNN with the weights from obtained from the

ImageNet challenge and, as the authors of the auto-augment technique report, applying this method

usually helps the transfer of learning between different but similar task.

40

Figure 4.3: Distribution of the scenicness scores obtained from the Scenic-Or-Not Game.

RMSE MAE
DenseNet-201 0.90 0.70
EfficientNet-B0 0.89 0.68
EfficientNet-B0 with auto-augment 0.88 0.69

Table 4.4: Results for the complementary methods and techniques evaluated in the scenic-beauty task.

4.3 Sequence Analysis

Based on the results of the previous tests, the next step of the experiments consists of applying the

method that provided the best results in Section 4.2 in order to build a sequence analysis model. For

this purpose, we exclude the top layer from the CNN architecture, we load and lock its weights based on

the previous training phase results, and use a wrapper (in this case, I make use of the TimeDistributed

wrapper1 class from the Keras package) so that it can be applied to multiple images for each learning

step. Next, the output features provided by the layers contained within the wrapper need to be processed

and combined. This is achieved by using a recurrent neural layer, which analyses the features as a

sequence of frames. This layer is composed by LSTM2 units implemented in the Keras package. Finally,

the output of the recurrent layer, is fed into either a classification or linear regression according to the

task of land-use or scenic beauty mapping, respectively.

Regarding the creation of the photographic sequences for the land-use task, as mentioned in Sec-

tion 3.1, the raster map obtained from the Urban Atlas is divided into 25x25m cells, to which a class

based on land-use data is attributed. Next, for each cell, the photos are sorted according to the distance

to its center and the sequence of the 10 closest images are attributed to it.

A major issue faced during this work was the fact that, given that the Geograph.uk dataset is gener-

ated via voluntary contributions, the photographs are not equally distributed throughout the study region.

As such, the quality of the produced sequences of images when it comes to the representing the con-

tents of the cell varies significantly according to the availability of photographs from its surroundings.

1http://keras.io/api/layers/recurrent_layers/time_distributed/
2http://keras.io/api/layers/recurrent_layers/lstm/

41

http://keras.io/api/layers/recurrent_layers/time_distributed/
http://keras.io/api/layers/recurrent_layers/lstm/

Sub-region 1 Sub-region 2 Sub-region 3 Sub-region 4
Train Test Train Test Train Test Train Test

Urban 282865 217803 472882 30800 257606 211346 473934 28843
Industrial and Commerce 109956 89888 191888 9711 101920 88156 193931 7557
No use, Construction and Mining 1824 2231 3990 139 2188 1584 4110 21
Green Spaces and Sports 113452 70876 180874 4735 76399 98704 178880 6731
Arable 7723 4332 12418 0 3920 7224 12418 0
Pastures 20602 21659 42533 0 17943 20134 42533 0
Water 8377 4553 12729 290 4475 7894 12957 62
Forest 14375 8792 12729 290 4475 7894 12957 62

Table 4.5: Support for each land-use classed based on the sub-region used for testing.

Initial tests suggested that there was a large decay in terms of the metrics used to measure the model’s

performance mainly due to the fact that even the closest image to the cell’s center was in an area that

did not belong to the same class as the cell it was trying to represent. A possible solution to this could be

reducing the granularity of the map, by increasing the cell size and, as a result, increase the chances of

having a photograph within each cell. However, this would seriously reduce the support for some of the

minority classes, as if we were presented with a bigger cell which, according to the Urban Atlas, could

be identified as 20% a minority class and 80% a majority class, the cell would only be seen as belonging

to the majority class. As such, the alternative found for this problem consisted in filtering the cells and

excluding those for which there is not at least one photograph within 2 kilometers of the cell and inside

a region with the same class as the target output. This allows not only to make use of the weight tuning

obtained in Section 4.2, but also verify the impact of using sequences of images, when compared to

single image analysis. Although this method is applied during the evaluation process, the final rasters

and result will also consider all the available cells. In order to speed up the training phase, multiple

followed samples of the same photographic sequences (i.e. adjacent cells with the same representative

sequences) have been removed and reduced to just 1 sample, as it still allows to train the model.

Based on the previous approach, table 4.5 presents the number of cells for each class. Based on

this data and on the sequences of images generated for each cell, I have evaluated the performance of

the model based on the following tests:

• Use a set of the 3 closest photographs to the center of each cell as input to a CNN architecture,

with its outputs combined via an aggregator, using average pooling. This architecture resembles

a simple process of combining features from multiple images, similar to what was applied in Sri-

vastava et al. (2020). The decision of using only 3 images is based on the fact that, due to the low

density of photographs in some areas, considering a large number of images would unbalance the

features collected from the nearest images.

• Variable sequence of 3, 5 and 10 photographs closest photographs to the center of each cell as

input to a shared CNN and its outputs combined via an LSTM layer.

The results for each of the tests are presented in table 4.6. The evaluation process also uses the

same cross-validation procedure that was used in Section 4.2 and the results represent the average

values obtained for the 4 sub-regions

42

Aggregator RNN 3 photos RNN 5 photos RNN 10 photos
Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score

Urban 0.769 0.888 0.826 0.784 0.877 0.826 0.789 0.884 0.830 0.792 0.863 0.827
Industrial and Commerce 0.666 0.489 0.563 0.635 0.519 0.572 0.659 0.513 0.578 0.597 0.553 0.573
No use, Construction and Mining 0.000 0.000 0.000 0.008 0.004 0.004 0.072 0.004 0.018 0.061 0.008 0.012
Green Spaces and Sports 0.682 0.667 0.669 0.665 0.674 0.674 0.699 0.659 0.677 0.719 0.665 0.690
Arable 0.314 0.056 0.096 0.146 0.100 0.120 0.174 0.131 0.149 0.178 0.087 0.110
Pastures 0.493 0.495 0.486 0.513 0.400 0.446 0.494 0.454 0.471 0.516 0.446 0.481
Water 0.578 0.463 0.513 0.583 0.513 0.544 0.530 0.556 0.547 0.549 0.524 0.532
Forest 0.485 0.390 0.429 0.500 0.277 0.353 0.474 0.469 0.456 0.520 0.420 0.458
Macro Average 0.498 0.431 0.448 0.479 0.420 0.442 0.486 0.459 0.466 0.491 0.446 0.460
Accuracy 0.714 0.713 0.718 0.715

Table 4.6: Land-use task results using photographic sequences

RMSE MAE
Aggregator 1.55 1.15
RNN 3 photos 1.13 0.90
RNN 5 photos 1.11 0.88
RNN 10 photos 1.10 0.87

Table 4.7: Scenic-Beauty task results using photographic sequences

As it can be observed in the presented results, the use of a sequence of images resulted in improved

results when compared to the use of a single image. When increasing the size of the sequence, it

is possible to notice that the model provides increased accuracy, especially when looking at smaller

sequences (between 3 and 5 pictures). However, it is also possible to verify that this improvement

associated with the increase in size of the available information starts to fade away when we get to

longer sequences (10 images), in which can notice small decreases and increases in the results from

different classes, based on the considered metrics. The most likely reason for this behaviour is that due

to the fact that we make use of a not so vast dataset of pictures.The quality of the sequences will also

suffer with the increase in the number of pictures used for each cell, as the most distant pictures will

often be far way from the cell’s area and will not provide any meaningful grounds to what should be the

class attributed to the image set. Comparing the RNN with the use of average pooling in the model with

the aggregator, the improvements in the results obtained by analysing sequences with a RNN are mainly

connected to better predictions in the regions with lower density of photographs, while still maintaining

the same accuracy for more densely packed regions.

For the task of scenic beauty, there was no map available that could provide scenic scores based

on the region, and the ground-truth data had to be collected based on the results obtained for individual

photographs. As such, in a similar way to what happened in the previous task, only some cells were se-

lected for the evaluation process, based on the existence of a classified photo within its region. Running

the same recurrent neural network models provided the results presented in Table 4.7.

Looking at the results, these present similarities to the ones obtained for the previous task. However,

the difference between the RNN architecture and the Aggregator is more prominent than in the previous

task. This is most likely related to the fact that the number of samples for this task is lower than the

ones used for land-use mapping, which also affects the image density in the studied areas, which will

have a bigger effect in the Aggregator, due to the use of a Average Pooling layer to combine the features

from different images. Another factor that might benefit the RNN model is the fact that samples that are

further away from the interest area might give some better initial clues about the desired output since

43

Figure 4.4: Automatically generated Land-use map.

there is usually a smooth transition in scenicness along a region (e.g. city to suburbs and suburbs to

coutryside), unlike in the previous task where there might be a fast shift in the land-use classes (e.g.

commercial area to urban fabric).

4.4 Maps with Obtained Results

Based on the data collected from the previous experiences, and considering the methods that pro-

vided the best results during the evaluation process, we can then generate raster maps based on the

predictions obtained with the sequence processing model. In Figure 4.4 I present the results of the

automated land-use mapping for the 4 sub-regions. In Figure 4.5 the 2 sub-regions that show the best

photographic density and class distribution are shown alongside the ground-truth map for the same

area. We can see that the model is able to produce an acceptable mapping of the area, very similar

to the ground-truth map, though it still shows some difficulties in differentiating small areas belonging to

minority classes.

For the task of scenic beauty, we can make use of the trained model, along with the sequences

generated for the land-use task and produce a scenic beauty map, as presented in Figure 4.6. It is

important to ackowledge the limitations in terms of accuracy associated with these predictions, due to the

subjectiveness of the target value and due to the lack of ground-truth data. However, by comparing the

extracted scenic mapping with the original land-use, as shown in Figure 4.7, an interesting observable

detail is that regions that are classified as belonging to classes that are expected to provide a more

scenic environment, such as forests or green urban areas, are colored as regions with a higher degree

of scenicness, which suggests that the extracted information allowed the production of a meaningfull

44

Figure 4.5: On the left, part of the raster automatically generated based on the obtained predictions for
land-use, using the sequence analysis approach. On the right, part of the raster created based on the
land-use data obtained via the Urban Atlas 2012 data.

scenic beauty map, based on this relation between scenicness and the ground-truth land use classes.

4.5 Overview

In this chapter, I presented the evaluation process that was conducted during the elaboration of this

dissertion, as well as the discussion of the obtained results. I have compared different approaches and

provided motives for the behaviours shown when using different methods, along with possible changes

that might lead to improvements on the results. I have assessed the data collected and tested the

proposed approach based on the results obtained in Section 4.2 and Section 4.3 with the objective of

producing automated versions of a land-use and scenic beauty map for the city of London, as presented

in Section 4.4.

45

Figure 4.6: Automatically generated scenicness map.

Figure 4.7: On the left, part of the raster automatically generated based on the obtained predictions for
scenic beauty, using the sequence analysis approach. On the right, part of the raster created based on
the land-use data obtained via the Urban Atlas 2012 data. It is possible to observe a correlation between
the scenic beauty and the use given to a place.

46

5Conclusions and Future

Work

5.1 Summary of Contributions

In this work, I have presented the results of a new mechanism for terrain mapping based on the anal-

ysis of sequences of images, using convolutional neural networks, recurrent neural networks, ground-

level photos obtained via the Geograph initiative and land-use data extracted from the Urban Atlas 2012

mappings.

The envisioned procedure was split into two segments which were tested in the urban area of the

city of London. For each segment, several alternatives were evaluated in order to verify which would

be the best combination of techniques that could be applied in order to improve the results. Based

on the tests evaluated in Section 4.2, the chosen CNN model for image analysis was the EfficientNet-

B0 model, along with the use of a set of optimal augmentations extracted for the ImageNet Dataset.

Based on the evaluation procedure described in Section 4.3, the envisioned model has provided slightly

improved results, when compared to the use of an aggregator (0.4% in Accuracy and 4% in terms of

F1-score) . Adding to that, the use of bigger sequences of photographs for the mapping task has shown

to be beneficial when considering the proposed approach. Finally, I have made use of the model to

create rasters with a minimum mapping unit of 25m× 25m, which portrait the study region according to

8 land-use classes (Urban Fabric; Industrial and commercial activities; Land without use, construction

sites and mining facilities; Green Spaces and Sports facilities; Arable land; Pastures; Water; Forest).

The secondary task of scenic-beauty mapping was also explored in this work by leveraging both the

dataset and evaluation results collected for land-use mapping. By applying the same principles I have

produced a scenic-beauty map for the same study region by training a model based on the scenicness

score obtained in the Scenic-Or-Not game, and expanding the obtained knowledge to map the remaining

region based on the photographic sequences generated in the previous task.

5.2 Future Work

Regarding future work, a possible way of expanding the presented method would be trying to in-

crease the used set of images, in order to obtain bigger and more accurate sequences that could help

improve the represention of each mapping tile. This could be done by recurring to Google Street View

API1 as explored in Srivastava et al. (2019).

Another alternative for future work would be using other augmentation methods, such as the one

presented in Yang and Soatto (2020), which consists of a Fourier Domain Adaptation method. This

method allows the augmentation of images, using the inverse Fourier Transform, from both real and

synthetic datasets so that there can be knowledge transfer between them. This could be used along

with the introduction of new synthetic and real data sources to further improve the model’s robustness

when it comes to the minority classes.

Based on the issue of the density of photographs for each area and the differences in the results that

were verified when processing sequences of images, a possible alternative for sequence processing that

could lead to improvements would be to replace the cell by cell analysis with the combination of multiple

sequences of pictures from neighbouring cells. This way, the mapping for each cell could weigh in the

results obtained for its neighbours, which would reduce the chance of errors associated with incorrect

predictions for a single cells’ images.

In terms of improving the results specifically for the scenic-beauty task, this work could be expanded

by following the procedure used in Qui et al. (2019). These authors suggest collecting more data by

generating hand annotations tasks along with interpolation techniques to generate a dataset that could

offer a wider terrain coverage.

Finally, a possible idea that would be interesting to explore is the use digital elevation maps (DEMs),

such as the EU-DEM2, in order calculate the viewshed of each photograph. The use of these maps

along the geolocation tags allows us to understand for which cells the line of sight might be blocked.

Calculating this measure can be accomplished by using algorithms such as the one presented in Floriani

and Magillo (2003) or, specifically for this task which makes use of ground-level photographs, by using

a more accurate approach based on the algorithm presented in Nutsford et al. (2015). This would allow

us to tune the sequences of images that represent a cell not only based on the distance to the center,

but also considering which photographs better capture the surrounding area.

1https://developers.google.com/maps/documentation/streetview/overview
2https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1

48

https://developers.google.com/maps/documentation/streetview/overview
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1

Bibliography

Bello, I., Zoph, B., Vaswani, A., Shlens, J., and Le, Q. V. (2019). Attention augmented convolutional

networks. ArXiv, abs/1904.09925.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1993). Signature verification using

a "siamese" time delay neural network. In Proceedings of the International Conference on Neural

Information Processing Systems, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for contrastive learning

of visual representations.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2019). Autoaugment: Learning aug-

mentation policies from data.

Deng, X., Zhu, Y., and Newsam, S. (2018). Spatial morphing kernel regression for feature interpolation.

IEEE International Conference on Image Processing (ICIP).

Floriani, L. and Magillo, P. (2003). Algorithms for visibility computation on terrains: A survey. Environment

and Planning B: Planning and Design, 30(5).

Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning an invariant map-

ping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’06), volume 2, pages 1735–1742. IEEE.

Hahnloser, R., Sarpeshkar, R., A. Mahowald, M., Douglas, R., and Sebastian Seung, H. (2000). Digital

selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition. CoRR,

abs/1512.03385.

Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer, J., and Lakshminarayanan, B. (2019). Aug-

mix: A simple data processing method to improve robustness and uncertainty. arXiv preprint

arXiv:1912.02781.

Huang, G., Liu, Z., and Weinberger, K. Q. (2016). Densely connected convolutional networks. CoRR,

abs/1608.06993.

Khan, S., Rahmani, H., Shah, S., and Bennamoun, M. (2018). A Guide to Convolutional Neural Networks

for Computer Vision. Synthesis Lectures on Computer Vision. Morgan & Claypool Publishers.

49

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., and Krishnan, D.

(2020). Supervised contrastive learning. arXiv preprint arXiv:2004.11362.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998). Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11).

Leung, D. and Newsam, S. (2010). Proximate sensing: Inferring what-is-where from georeferenced

photo collections. In IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion.

Newsam, S. and Leung, D. (2019). Georeferenced social multimedia as volunteered geographic infor-

mation. In CyberGIS for Geospatial Discovery and Innovation, pages 225–246. Springer.

Nutsford, D., Reitsma, F., Pearson, A., and Kingham, S. (2015). Personalising the viewshed: Visibility

analysis from the human perspective. Applied Geography, 62.

Qui, S., Achilleas, P., Bozzon, A., and Geert-Jan, H. (2019). Crowd-mapping urban objects from street-

level imagery. In Proceedings of the World Wide Web Conference.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla,

A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition

Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252.

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L. (2018). Inverted residuals and linear

bottlenecks: Mobile networks for classification, detection and segmentation. CoRR, abs/1801.04381.

Seresinhe, C. I., Moat, H. S., and Preis, T. (2018). Quantifying scenic areas using crowdsourced data.

Environment and Planning B: Urban Analytics and City Science, 45(3):567–582.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recog-

nition. arXiv preprint arXiv:1409.1556.

Sivic and Zisserman (2003). Video google: a text retrieval approach to object matching in videos. In

Proceedings IEEE International Conference on Computer Vision.

Srivastava, S., Vargas Munoz, J. E., Lobry, S., and Tuia, D. (2020). Fine-grained landuse characterization

using ground-based pictures: a deep learning solution based on globally available data. International

Journal of Geographical Information Science, 34(6):1117–1136.

Srivastava, S., Vargas-Muñoz, J. E., and Tuia, D. (2019). Understanding urban landuse from the above

and ground perspectives: A deep learning, multimodal solution. Remote sensing of environment,

228:129–143.

Tan, M. and Le, Q. V. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks.

CoRR, abs/1905.11946.

50

Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth, D., and Li, L. (2015).

The new data and new challenges in multimedia research. CoRR, abs/1503.01817.

Workman, S., Souvenir, R., and Jacobs, N. (2017). Understanding and mapping natural beauty. In IEEE

International Conference on Computer Vision (ICCV).

Yang, Y. and Soatto, S. (2020). Fda: Fourier domain adaptation for semantic segmentation.

Zhou, S., Wu, J., Wu, Y., and Zhou, X. (2015). Exploiting local structures with the kronecker layer in

convolutional networks. CoRR, abs/1512.09194.

Zhu, Y., Deng, X., and Newsam, S. (2019). Fine-grained land use classification at the city scale using

ground-level images. IEEE Transactions on Multimedia, 21(7):1825–1838.

51

	Introduction
	Motivation
	Thesis Statement
	Contributions
	Organization of the Document

	Concepts and Related Work
	Fundamental Concepts
	Supervised Learning with Deep Neural Networks
	Convolutional Neural Networks for Image Classification
	Recurrent Neural Networks for Sequence Classification

	Related Work
	Mapping Urban Areas Leveraging Ground-Level Imagery
	Previous Approaches Leveraging Feature Extraction
	Previous Approaches Leveraging Convolutional Neural Networks
	Further Work on Land-Use and Scenic-Beauty Mapping

	Advanced Neural Models for Image Classification
	DenseNet
	EfficientNet

	Approach to Terrain Mapping Based on Deep Neural Networks
	The Proposed Approach to Land-Use Mapping
	Model Architecture
	Data Sources
	Overview

	Experimental Evaluation
	Methodology and Evaluation Metrics
	Convolutional Neural Networks for Image Analysis
	Sequence Analysis
	Maps with Obtained Results
	Overview

	Conclusions and Future Work
	Summary of Contributions
	Future Work

	Bibliography

