
SoC-FPGA Accelerated BDD-Based Model Checking

Rúben Alexandre Pereira Teixeira
Instituto Superior Técnico,Universidade de Lisboa,Portugal

INESC-ID
ruben.teixeira@tecnico.ulisboa.pt

Abstract

Model Checking is considered one of the most
important tools in formal verification, com-
monly used to verify hardware and software
requirements. One of most important break-
throughs in Model Checking was the use of
Binary Decision Diagrams (BDDs) to signif-
icantly improve the runtime and allowing to
tackle larger problems. Because of the funda-
mental problem that plagues state space ex-
ploration systems, Model Checkers are con-
sidered too much time consuming in order to
be widely used.

In this paper, we propose a HW/SW archi-
tecture that uses SoC-FPGA devices to im-
prove Bdd based Model Checkers runtimes.
We develop a base architecture and two mod-
ifications for a total of four different architec-
tures. The end result comes close but does not
improve in terms of performance with regards
to a full software implementation.

Keywords

Model Checking, Binary Decision Diagram,
SoC-FPGA, Hardware/Software System.

1 Introduction

A Model Checker is a verification tool that verifies
if a given Model follows a set of properties. This
is performed by state exploration: the state space

of the model is explored until a state is found that
does not follow the property, or every state has been
explored. A type of Model Checker, called Symbolic
Model Checkers use Binary Decision Diagram (BDD)
to efficiently encode the state space and to efficiently
explore it.

Due to the nature of state space exploration, the
bigger the model the more time consuming a Model
Checking becomes. This problem can be overcome
by providing more efficient implementations of BDD
operations.

2 Related Work

The usage of hardware controllers to accelerate the
performance of Model Checkers is almost done to ex-
plicit Model Checkers. These types of Model Check-
ers represent the state space explicitly and share very
little similarity with Symbolic ones.

Works exist that tried to implement simple Bdd
operations in hardware [3] or using an accelerator like
a GPU [2] or a vector machine[1]. These works do
not implement the operations necessary for Model
Checking, only a small subset of BDD operations.

3 Background

Symbolic Model Checking represents state space by
using BDDs. The properties are specified using Tem-
poral Logic. Temporal Logic is a Logic used to rea-
son about events over time. Checking a Temporal
Logic property is performed by a recursive step that
computes a state transition at every iteration (among

1



other operations, depending on the type of property).
This computations eventually reach a fixed point, at
which point the Model Checking is over.

Model Checkers calculate state transitions by per-
forming BDD operations. These operations are:
And,Exist, Relational Product and Substitution.
With these four operations it is possible to imple-
ment the verification of Temporal Logic.

A BDD is a binary tree like structure composed by
terminal and non-terminal Nodes. A non-terminal
Node is associated to a variable and has two chil-
dren, Then and Else. Terminal nodes are two, that
represent the constant Zero and the constant One.
The Then children encodes the boolean function that
arises when the variable is set to 1 and the Else chil-
dren encodes the boolean function that arises when
the variable is set to 0.

Operations over BDD are performed in a recur-
sive manner. They take BDD nodes as input and
output the resulting BDD node. They are usually
implemented using a recursive approach and because
they are non-destructible, its common to implement
a Computation Cache to store the results.

The operations can be divided into two phases, Ap-
ply and Reduce. The Apply phase fetches the Nodes
and the variable to which they are associated. Oper-
ations are performed when both Nodes have the same
variable. If one Node has a smaller variable, the chil-
dren of that Node are used as the arguments to the
child operation, while the other Node is sent along.
When both Nodes have the same variable, both their
children are sent as the arguments to the recursive
call. The Apply phase defines a Simple Case at which
point the recursion ends. This simple case depends
on the operation. For example, the And operation
return the Constant Zero if one of its inputs is Zero,
as the And of Zero is always Zero.

The Reduce phase creates and stores the result
of the Apply phase into Nodes. It also performs a
search over the Nodes that already exist in order to
reuse them if possible. The common implementa-
tion of BDDs reuses Nodes that already exist to save
space. This type of implementation is called Reduced
Ordered Binary Decision Diagram (ROBDD) and is
characterized by not only reusing existing Nodes but
by also imposing a fixed variable order, such that the

Figure 1: The schematic of the hardware controller
implementation.

children of a variable cannot have a variable bigger
than their parent.

4 HW/SW Architecture

The proposed HW/SW architecture implements a
BDD Controller that performs the four BDD opera-
tions mentioned earlier. A Model Checker configures
the hardware and then awaits for it to end.

The proposed architecture is depicted in Figure 1.
The Depth Controller and the Memory Access are
the proposed modules to implement the BDD Op-
erations. The Memory Access module provides an
abstraction over the memory so that the Controller
can perform BDD operations without having to worry
about memory transfers and data coherence with the
software system. The HPS system houses the CPU
that runs the software.

The modules communicate through Avalon inter-
faces. The arrows move from the Master to the Slave
interface. The Avalon Memory Mapped (Avalon-
MM) interface provides a memory type of interface
where the master can set an address and perform
read and write operations. The Avalon Streaming
(Avalon-ST) interface sends data from a Source in-
terface into a Sink interface. Data only moves in one
direction but more Avalon-ST interfaces can be used
to provide a full-duplex type of communication.

Memory management is made by utilizing a Paging
approach. Memory is divided into Pages where each
page stores Nodes. In our implementation Pages are
also associated to variables and as such every Node

2



Figure 2: Depth Controller

inside a Page has the same variable. A page transfer
is performed by request from the Memory Access IP.
When it detects it needs access to a given Node, it
asserts an interruption line. A interrupt routine con-
figures the DMA with the necessary data to transfer
the page and acknowledges the Memory Access IP
which then awaits until the transfer is complete.

The Depth Controller is the module that performs
the BDD operations. The schematics for the Con-
troller are show in Figure 2. The process of access-
ing memory is performed using a send/receive type
of interface with the Memory Access IP. The Con-
troller sends a request, containing information over
the type of data it needs to access as well as the op-
eration, write or read, and the Memory Access sends
the result back, if any.

The implementation of the Depth Controller re-
sembles an iterative implementation, that utilizes a
LIFO to keep track of Requests and Results. Dur-
ing a BDD operation a current Request is set, the
initial one being set by the software to start the op-
eration. This Request is then processed either by the
Apply or the Reduce modules shown. This depends
on the state of the Request. The result of the Mod-
ules then creates new requests that are either stored
in the LIFO or set to be processed, or pops Requests
from the LIFO and sets them as current Requests, if
the module produced a result from Reduce or Simple
Cases. This process continues until eventually there
is no more valid current Requests or Requests stored
in the LIFO. This ends the operation and the HPS
can fetch the final result.

Figure 3: The CoBDD module

4.1 CoBDD

The CoBDD modification is a proposed alteration to
the previous architecture that does not store node
data in the FPGA SDRAM. Instead the Depth Con-
troller interfaces with the HPS to request it to per-
form any operation related to Nodes. The CoBDD
modification is provided in a Module that hides the
interfacing with the HPS from the Controller. The
CoBDD module is thus responsible for performing the
part of the Apply phase that fetches Nodes as well as
the part of the Reduce phase that searches or inserts
Nodes.

Figure 3 showcases the CoBDD module diagram.
The module awaits for data from the Apply or the
Reduce modules and sends it to the HPS. It then
awaits for the HPS to insert the result which is used
as the output of the stage that is being processed.

4.2 Bounded-Depth

The Bounded-Depth architecture augments the
Depth architecture by storing and processing mul-
tiple requests at the same time. A Data structure
called a Context stores various requests as well as
their state, ValidApply and ValidReduce, in a bit-
field. The Apply and Reduce phases are now per-
formed over every Request inside the Context whose
valid bit is set.

An iteration of the Bounded-Depth algorithm per-

3



Figure 4: Bounded-Depth Controller

forms a phase, Apply or Reduce, from a Context and
the Next Context and creates a New Context and a
New Next Context. The Bounded-Depth Controller
schematics is represented in Figure 4. Contexts are
also stored in a LIFO type structure. After each
phase, the result of the phase dictates how the con-
texts are moved and stored. For example, if the cur-
rent phase was an Apply that only performed Simple
Cases, then the previous Context must be Reduced.
The previous Context is stored and as such a transfer
from the Stored Context into the Current Context is
made. The Context that had the results of the simple
cases (New Context) is transfer to the Next Context
in order for the Reduce phase to have access to the
results computed.

Like the Depth Controller, this process is started
by the HPS setting the first Request in the first Con-
text. Afterwards the Controller iterates until it per-
forms a Reduce operation on the first Context, at
which point the final result is calculated and the HPS
can then access it.

4.3 Bounded-Depth CoBDD

The CoBDD and the Bounded-Depth modifications
can be implemented simultaneously. The result-
ing architecture thus utilzes the Bounded-Depth ap-

proach to store and process Requests and the CoBDD
approach to perform operations that require Node
data.

5 Results

The results where obtained by running a Model
Checker, NuSMV, that utilizes a BDD package,
CuDD, to perform the BDD operations. Since our
data structures are different than the ones used by
CuDD, we perform a conversion from the CuDD for-
mat into our format. We then use the data converted
to run our implementation of the proposed architec-
ture.

The results where collected from one example
model that came with the Model Checker. We mea-
sured the times taken to perform the Relational Prod-
uct operation, due to the fact that it is the most
important and the most time consuming. The And
and Exist operations are in a way also tested since
the Relational Product operation simplifies into these
operations for some cases.

The implementation of the architectures proposed
has a frequency of 100 MHz. The critical path is
present in our modules and as such there is room for
improving the maximum frequency.

Table 1: Resource usage by implementation

Architecture ALM
M10K
Blocks
needed

M10K
Blocks
used

Depth 7,562 281 368
Depth CoBDD 6,619 89 124
Bounded-Depth 9,144 312 394

Bounded-Depth CoBDD 12,652 124 165
Total 32,070 397 397

The resources utilized by each architecture are
shown in Table 1. The Bounded-Depth CoBDD has
an unusual higher amount of Adaptive Logic Module
(ALM) usage because the Quartus Compiler imple-
mented several optimizations in order to reach 100
MHz of frequency. Since the other implementation
had more leeway, and the optimizations are typi-

4



Table 2: The time results for 8 Relational Product operations in the msi trans example.
Operation
Number

CuDD
Depth

(no load)
Depth
(load)

Depth
(no CoBDD

Bounded-Depth
(no load)

Bounded-Depth
(load)

Bounded-Depth
CoBdd

37 1.499 2.056 2.036 2.135 2.186 2.182 2.058
41 1.347 1.750 1.669 1.652 1.841 1.828 1.712
81 1.173 1.835 1.693 1.608 1.856 1.818 1.562
85 2.497 2.861 2.816 2.769 3.011 2.997 2.637
89 2.675 3.042 3.009 3.042 3.181 3.173 3.053
93 3.223 3.482 3.466 3.433 3.663 3.650 3.417
97 1.635 1.803 1.791 1.890 1.940 1.937 1.959
101 1.174 2.078 1.925 1.743 2.201 2.161 1.845

cally not done when the design is already within the
frequency requested, they end up using less ALMs.
Blocks needed are the minimum amount of memory
needed. Because blocks might not be fully utilized or
in order to meet certain timings, it is often the case
that more blocks are used than the minimum.

Table 2 showcases the times taken for each Rela-
tional Product operation. We profiled 8 operations.
The preload indicates whether Node data was already
present in the FPGA SDRAM or not. All the archi-
tectures run at the same frequency and use the same
parameters and as such the differences in time corre-
spond to the differences in architecture.

As can be seen, none of our architecture reaches
or surpasses the CuDD time. Still, because the im-
plementations can reach higher frequencies with bet-
ter optimizations, we expected the architectures to
be able to at the very least, match the times of the
CuDD software. In this case, the operation is not per-
formed faster, but at least in the case of the Depth
and Bounded-Depth approaches, it frees the HPS to
perform other operations.

At the same time, in order to compare approaches,
certain parameters where not fine tuned to the point
where they could improve the times. As an exam-
ple, the CoBDD implementations can use more RAM
memory to store Cache. Therefore there are still po-
tently improves to be made.

6 Conclusion

The implementations of the architectures did not im-
prove the performance when compared to the soft-
ware package. Still, due to how close the results
where to match the time taken, and since the imple-
mentations can still be optimized further, it should
be possible to provide an implementation that at the
very least matches the software implementation.

Regardless, further work on this area should focus
on maximizing memory throughput. BDD operations
are a very memory heavy type of computation. Even
though FPGAs are not recommended to deal with
memory heavy algorithms, they offer a higher degree
of control over how memory is accessed and as such
there is potential to develop an architecture that sig-
nificantly improves BDD operations.

Further work should therefore focus on SoC-
FPGAs with high amounts of memory and high mem-
ory throughput, and the architectures should focus
on trading logic for memory. As seen in our architec-
tures, memory is more important than the amount of
logic circuitry available.

References

[1] Ochi, H., Ishiura, N., Yajima, S.: Breadth-
first manipulation of SBDD of boolean functions
for vector processing. In: Proceedings of the
28th conference on ACM/IEEE design automa-
tion conference - DAC (91). ACM Press (1991)

5



[2] Velev, M.N., Gao, P.: Efficient parallel GPU algo-
rithms for BDD manipulation. In: 2014 19th Asia
and South Pacific Design Automation Conference
(ASP-DAC). IEEE (Jan 2014)

[3] Yoneda, T., Ishigaki, T.: Hardware acceleration
for bdd manipulations (01 2000)

6


	Introduction
	Related Work
	Background
	HW/SW Architecture
	CoBDD
	Bounded-Depth
	Bounded-Depth CoBDD

	Results
	Conclusion

