
Shadow rendering techniques for mobile devices

Henrique Araújo
henriquecmaraujo@tecnico.ulisboa.pt

ABSTRACT
With an increase in demand for games in smartphones, effi-
ciency in rendering techniques for mobile devices is becoming
more and more important. Shadows play an important role
in the rendering of a scene, making it more believable, but
rendering them can take a big toll in the device resources.

Multiple solutions of rendering hard shadows, which could
later be improved to render soft shadows, were presented.
After comparing these solutions we concluded that the most
suitable algorithm for shadow rendering in a mobile environ-
ment is Shadow Mapping due to its efficiency and adaptability.

With the base algorithm chosen, multiple techniques to im-
prove the visual quality of the shadow produced, by introduc-
ing a penumbra to the shadow and even a variable one.

Some of these solutions were chosen, from the results of pre-
vious studies, to be developed into a mobile app that would
allow to further test and verify if one or more of these solu-
tions could viably produce a realistic shadow while having an
acceptable performance in a mobile environment.

From these solutions we noted than Percentage Closer Filter-
ing in junction with Percentage-Closer Soft Shadows were
the most viable solution, being able to provide variable soft
shadows with a good performance, while also being easily
adaptable into different scenes.

Author Keywords
Real-Time Shadows; Mobile Shadows; OpenGL ES; Shadow
Maps; Variable Soft Shadows; Mobile Environment.

CCS Concepts
•Computing methodologies → Rendering; •Human-
centered computing→Mobile devices;

INTRODUCTION
Since the development of the first mobile devices, there as
been a huge increase in their usage. These devices started
out as simple means for communication, but they became
more and more sophisticated as the demand for newer and
better devices rose, achieving a point were it is a necessity
in our lives, allowing us to become closer to our friends and
family, no matter the distance, to manage our bank accounts,
to be able to immediately buy something we need or to search
for anything we want to, and to entertain us, with an ever so
increasing offer of mobile games.

As the market for games in mobile devices increases, so does
the need to improve the image quality in these games, to

make them more realistic, good looking, and ultimately more
appealing.

One way we can improve the image quality is by drawing
shadows as realistically as possible. To achieve this, we need
to find the best algorithm for shadow rendering that is both the
most accurate possible, but also not to demanding to the mo-
bile device, in order to preserve the frame rate of the displayed
scene and the device’s battery.

OBJECTIVES
The main objective of this research is to compare multiple
existing base algorithms for achieving shadow rendering in a
mobile environment, choose the most suitable one, and com-
pare it’s multiple adaptations to achieve variable soft shadows
by comparing the measurements of their performance and real-
ism, to conclude which would be the best solution in a mobile
environment. The goal is to answer the following questions:

• Which basic shadow rendering algorithm is best to be
adapted into rendering variable soft shadows for mobile
phones?

• Which adaptations are there and which should we use?

• Which of the chosen adaptations perform the best?

• What is the reason behind the performance of each chosen
adaptation?

• Is any of the solutions performance acceptable for real time
rendering?

RELATED WORK

Mobile environment
As Andrew Gruber[7] states, although having some similari-
ties, mobile devices have different needs and applications than
desktop or even laptop computers, as such we need to take
into consideration those needs and adapt our algorithm to the
device.

Smartphones are smaller and lighter than normal computers
and have an expected long battery duration, this leads to a
necessity for smaller and weaker hardware that wont overheat
as much nor consume as much energy.

As we want to have a good battery duration we also need
to reduce the power usage of the device while running our
application.

Some of these differences may include:

• Graphics Processing Unit (GPU) sharing memory with
other device components, as opposed to a desktop com-
puter which has it’s own dedicated video memory.

• Dynamic clock and voltage scaling.

• Central Processing Unit (CPU) big.LITTLE Architecture,
where the size, power and efficiency of the CPU cores is
asymmetrical, usually four more powerful ones and four
more efficient.

• Tile-based Rendering, where the screen-space is divided
into multiple tiles according to the Graphics Memory
(GMEM) size for more efficient rendering.

• Other technologies adapted to the mobile environment, for
example, OpenGL ES.

Shadow rendering techniques
There are multiple ways in which we can render shadows in a
scene.

Between those, the three most commonly used are Shadow
mapping, shadow volumes and ray tracing, due to their effi-
ciency, reliability or accuracy.

Shadow Mapping
Shadow Mapping[12] consists in rendering the Scene from the
point of view of the light source. We only need to store the
depth for each pixel, since we only need information that tells
us if a given point is in shadow or not. The generated image
represent the depth of the lit points. If any given point has a
higher depth than the generated image, that point is in shadow.

There is a need to introduce a tolerance threshold for the depth
test which does not guarantee a perfect representation of the
shadow. This forces us to fine tune the tolerance threshold for
each scene, while still getting some shadowing problems.

The advantage that the Shadow Mapping brings us is the adapt-
ability of the base algorithm, which allows us to implement
solutions that can, at least, mitigate the shadow mapping prob-
lems.

Shadow Volumes
The shadow Volumes technique[4] creates a space in shadow.
For each triangle, it traces lines with each vertex and the point
of light creating a pyramid shaped volume that represents the
volume in which all the points are in the shadow of the triangle.

This can be achieved without ray tracing, by using the normal
rasterization. To do this, we render the triangles of the shadow
volume to the stencil buffer. First, for the front facing triangle
we increment the stencil buffer in case the object in a pixel is
deeper than the triangle. Otherwise we decrement the stencil
buffer for the back facing triangles.

The Shadow Volumes algorithm also has it’s problems, it’s
not as easy to work upon. It makes transforming the resulting
shadow into a soft shadow harder. It is also quite costly in
performance, since we create a volume for each of the scene’s
triangles.

Ray Tracing
Using ray tracing to draw shadows consists of shooting a ray
for each pixel.

When a ray is shot, we check for the first collision with an
object of the scene and from the point of intersection between
the ray and the object we shoot anew ray called a shadow
feeler to the direction of the light. If the ray intersects with
another object than the pixel should be shadowed.

This algorithm is a very close representation of real life light
behaviour, being very accurate. The downside is that it is
extremely demanding.

Choosing between Shadow Volumes, Shadow Maps and Ray

Tracing
Ray tracing is too much demanding. For this reason we can
rule out ray tracing as a viable solution to draw shadows using
mobile devices currently on the market.

Fidelity wise, shadow volumes produce a better result since
it does not have problems like light leakage or shadow acne,
and it has pixel perfect quality, as opposed to shadow mapping
which a pixel in a shadow map might not correspond to a pixel
from the camera view, leading to some imperfections.

In terms of efficiency, shadow mapping is faster than shadow
volumes, since it only has to render the distance from the
light to the objects of the scene, opposed to creating multiple
shadow volumes that must be checked multiple times and add
much more complexity to the scene.

Shadow maps are also more versatile than shadow volumes,
since we have an image in which we can work on, as opposed
to volumes, which add a layer of complexity to be able to
adapt and achieve soft shadows.

For this reason, the use of shadow volumes was discarded in
favor of using shadow mapping with some adaptations.

Achieving Soft Shadows with fixed penumbra
Due to Shadow Mapping versatility, the shadow map generated
can be adapted and changed so it is possible to have a shadow
with a penumbra in a given scene.

The solutions for this are many, with different degrees of
realism and performance, usually one being the trade off of
the other.

Percentage-Closer Filtering (PCF)
PCF achieves a soft shadow by sampling multiple points of
the shadow map instead of one, getting the values of a grid,
calculating the shadow that each of those pixels would result
and averaging these results.

The shadow that PCF renders comes with banding issues.
Irregular sampling of the shadow map can be used to trade-off
banding problems for some shadow noise.

PCF also accentuates the self-shadowing issue. There are three
ways we can solve this, by using a depth gradient, by render-
ing the midpoints into the shadow map which still requires a
depth bias for thin objects and render back faces into shadow

maps, which only works for closed objects and has some light
bleeding for large PCF kernels.

Variance Shadow Maps (VSM)
VSM [9] changes the way we store the shadow map. Instead
of storing only depth value, it store the depth value together
with it’s square value. The shado map is then filtered so we
can fetch a position on the VSM and then use Chebyshev’s
inequality (1) to determine the percentage of which the pixel
is in shadow.

P(d < z)<= max(σ2/(σ2 +(d−µ)2,(d < µ))) (1)

To avoid some self shadowing problems, σ2 is clamped to a
small minimum variance parameter, so if the variance is too
small and wavery this minimum value will make it constant.

Another consideration to take is that every object of the scene
should be rendered to the shadow map, to avoid bad shadow
results.

Light bleeding might also appear if 2 overlapping occluders
have a big distance between them. The use of a threshold to
remap shadow intensity can be used to mitigate this problem.

Convolution Shadow Maps (CSM)
CSM [1] approximates the depth values of a normal shadow
map by transforming it into a wave function so that we can use
Fourier (2) to deconstruct it and return a blurred map when
rendering the shadows.

f (d,z)≈ 1
2 +2∑

M
k=1

1
ck cos(ck.d)sin(ck.z)−2∑

M
k=1

1
ck sin(ck.d)cos(ck.z) (2)

CSM can have light bleeding issues but the higher the number
of passes (higher M) the lower is the light bleeding problem.

Another problem present is the ringing effect, which can be
mitigated by multiplying each k-th sum by exp(−a(k/M)2),
flattening the rings generated by Fourier, lowering the number
and brightness of the rings.

Exponential Shadow Maps (ESM)
ESM [2], similarly to CSM, approximates the depth values of
a normal shadow map but using an equation. In ESMs case it
uses an exponential approximation seen in equation 3.

exp(k ∗ (z−d)) = exp(k ∗ z)∗ exp(−k ∗d) (3)

We should tune the value K to achieve the desired shadow
results. A smaller value has more of a blur, but the shadow
might get less dark in result. On the contrary, by using a higher
k, the shadow gets darker, but it has less of a blur. This can be
countered by over darkening the resulting shadow.

ESM also has a problem with light bleeding that cannot be
avoided.

Comparing VSM, CSM and ESM
Generally speaking, the solution which requires less memory
tends to be the faster at pre-filtering. Since ESM only stores the

Figure 1. VSM, CSM and ESM compared.

scale factor (R32 value), as opposed to VSM storing Minimum
Variance and the Bleeding Reduction Factor (R32G32 value)
and CSM storing multiple textures and the Absorption Factor
(N * R8G8B8A8 value), ESM is the best performing solution.

In figure 1 [3], we can see the shadows produced by each of
the algorithms and their corresponding performance.

CSM produces the best looking shadow, but it can’t achieve
a good enough performance so that it should be tested in a
mobile environment.

Both VSM and ESM also produce a good quality shadow and
at a much better performance, thus these solutions will be the
ones developed to achieve a soft shadow map.

Achieving shadows with variable penumbra
Percentage Closer Soft Shadows (PCSS) [6] is the current
State of the art for drawing shadows. It adaptively blurs the
shadow map according to the distance between the light and
the occluder and the distance between the occluder and the
desired point to shadow in the shadow receiver.

First step is the blocker search. Here we check for the oc-
cluders in a grid space of the shadow map and average their
depth.

Then we estimate the width of the penumbra by using the
rule of three between the width’s of the light and the desired
shadow penumbra and the distance from the light to the oc-
cluder and the occluder to the shadow receiver, as demon-
strated in equation 4.

wpenumbra =
pz

s− zavg

zavg
wlight (4)

We can finally proceed with a normal shadow map filtering,
using any of the soft shadow approaches that were discussed
before and tweak their blur to achieve a harder or softer shadow
according to the penumbra size calculated.

IMPLEMENTATION
This work was developed in partnership with Samsung, which
provided a Samsung Galaxy Note 9, thus the implementation
is focused to run on Android operating systems.

Since the application was developed for android, Android
Software Development Kit (Android SDK) was chosen for it’s

development, and, although generally coded in Java (since An-
droid runs on a Java virtual machine), the App was developed
mostly in C/C++ through the Java Native Interface (JNI).

Considering the related work, the shadow mapping imple-
mentations were focused on PCF, VSM and ESM to achieve
a soft shadow, together with PCSS to enable variable sized
penumbrae.

With all of the prepositions defined for our application,
an already existing project was chosen to work upon
and implement our shadow rendering improvements. The
project used was OpenGL ES SDK for Android from
ARM (available here: https://github.com/ARM-software/

opengl-es-sdk-for-android), since it already had a simple Per-
spective Shadow Mapping example, which it was used to
implement PCF, VSM, ESM and PCSS.

Algorithm Implementation
Shadow Mapping
The base Shadow Mapping was already implemented in the
base project, which was latter adapted to fit the needs of the
improved algorithms.

To create a shadow map a a texture was created to hold it’s
values. This texture was defined to hold only the depth val-
ues (GL_DEPTH_COMPONENT24). The minification and
magnification filters were set to use nearest filtering and the
wrapping method used was clamping.

The base project had GL_TEXTURE_COMPARE_MODE set
to GL_COMPARE_REF_TO which would diretly compare
the depth of the point accessing the shadow map to the value
of the shadow map and return either 0 or 1, if it was in shadow
or not. This value was changed to GL_NONE to be able to
adapt it.

A Frame Buffer Object (FBO) was created and the texture was
bound to it.

With the texture to hold the shadow map values created, the
shadow map can now do a rendering pass from the position of
the camera. This is done by binding the FBO with the shadow
map texture, and doing a rendering pass. The color values to
be written can all be disabled, since the rendering pass will
only record the depth values.

After the values are written into the shadow map, we pass it to
the normal rendering pass.

In the fragment shader, each position will be transformed into
the light space and then will access the shadow map. The
returned value is then compared to the transformed position
depth, if the value in the texture is lower, the point is in shadow,
otherwise it is in light. In the comparison a threshold is in-
serted to mitigate the shadow acne problem. This value needs
to be adjust for different scenes since it also introduces light
bleeding problems.

PCF implementation
PCF also uses the shadow map generated by a basic Shadow
Map solution, the difference is present in the fragment shader,
where the shadow map is accessed multiple times and the

average is calculated. The percentage in which the point is in
shadow is determined by the average calculated.

This is done by offsetting the transformed position and access-
ing the shadow map with the offset value, multiple times while
summing the values returned from the comparison of the value
in the shadow map and the depth of the transformed position
(which is either 0 or 1), and then returning the sum divided by
the total amount of accesses.

The amount of accesses is defined by the tap, for example, a
tap of 5 corresponds to 5x5 accesses since they are accessed
within a square. The offset is calculated with the positions of
this square, which has the original position ate the middle.

VSM implementation
Due to how VSM works, there were some changes that had to
be done to our implementation.

As before, we created and bound the texture that would old
the shadow map. The first difference is in the filtering, which
was changed to GL_LINEAR since we could take advantage
of this so our shadow map could be less aliased.

The next difference is in the stored value, instead of storing
the depth value, the values stored will be the red and green
values (one component for each moment for variance calcu-
lation). So instead of using GL_DEPTH_COMPONENT24,
glTexImage2D was used with GL_RG32F.

A render buffer was also generated and bound so the shadow
map was created correctly.

These were then bound to one FBO, as done previously.

To render the shadow map we disabled the blue and alpha col-
ors using the color mask, since it only needs two components.

The fragment shader pass of the VSM had to be changed too.

Listing 1. Moments calculation
f l o a t d e p t h = g l_FragCoord . z ;
f l o a t moment2 = d e p t h * d e p t h ;

f l o a t dx = dFdx (d e p t h) ;
f l o a t dy = dFdy (d e p t h) ;
moment2 += 0 . 2 5 * (dx*dx+dy*dy) ;

c o l o r = vec4 (depth , moment2 , 0 . 0 , 0 . 0) ;

As seen in listing 1, we got the gl_FragCoord.z, which corre-
sponds to the depth value on that fragment, and stored it in the
red value. In the green value we store the square of the depth,
adjusted using partial derivative to give it a bias per pixel.

In the normal rendering pass, the fragment shader also has to
be adapted.

Instead of getting only the depth value from the shadow map,
we now get two values, the two moments (depth and depth
squared) needed to calculate the variance, as demonstrated in
listing 2.

https://github.com/ARM-software/opengl-es-sdk-for-android
https://github.com/ARM-software/opengl-es-sdk-for-android

Listing 2. Variance calculation
f l o a t v a r i a n c e = moment . y

− (moments . x * moments . x) ;
v a r i a n c e = max (v a r i a n c e , 0 . 0 0 0 0 5) ;

The minimum value of the variance is set to mitigate some
shadowing problems.

With the variance calculated we can then calculate the per-
centage in which the point is in shadow, as shown in listing
3.

Listing 3. Shadow calculation using variance
f l o a t d = modelDepth − moments . x ;
f l o a t p_max = s m o o t h s t e p (

0 . 0 ,
1 . 0 ,
v a r i a n c e / (v a r i a n c e + d*d)

) ;

The smoothstep function is used to mitigate the light leaking
problem with overlapping shadows.

The p_max value is then returned and multiplied by the color
to return the point shadowed.

ESM implementation
The ESM implementation was easily implemented with what
had already been done. The filter used by ESM is the same as
the one used by VSM, and since ESM uses a depth value from
the shadow map, it only needs the x value returned from the
access to the shadow map.

Thus, in the fragment shader, after getting the filtered value
the shadow can be calculated.

Listing 4. Shadow calculation using exponential
f l o a t c = 1 0 0 . 0 ;
f l o a t shadow = clamp (

exp (−c * (modelDepth − smDepth)) ,
0 . 5 ,
1 . 0

) ;

The shadow calculation is show in listing 4. The c value
changes the penumbra size of the shadow. The exponential is
then clamped between 0.5 and 1 (totally in shadow and totally
in light respectively), for when the exponential falls over those
values.

PCSS implementation
As previously established, PCSS is composed by three steps.

The first step is the blocker search, where, similarly to PCF,
the values of an area in the shadow map will be accessed
but averaging the depths returned instead of the comparison
between depths. The points that are not in light are discarded
from the average, while the ones that are in shadow are counted
in.

The average is then calculated and returned, except if there
were no points in shadow, in which -1.0 is returned and the
shadow calculation is bypassed, since the point is fully lit.

After getting the average depth, the width of the penumbra
needs to be calculated. In this step, the distance between the
position and the block is needed as well as the average depth
returned in the blocker. With these values, the ratio between
the distance from the point to the blocker and the blocker to
the light is returned.

The returned value is later used to get the desired penumbra
size, changing the values used by the soft shadow solutions.

EVALUATION METHODOLOGY
To be able to gather multiple metrics to measure the perfor-
mance of each solution in multiple scenes, the Snapdragon
Profiler, developed by Qualcomm (available here: https://
developer.qualcomm.com/software/snapdragon-profiler), was
used. This program can show multiple data points available
from a smartphone which uses a snapdragon processor. The
particular model of the Samsung Galaxy Note 9, provided by
Samsung, has a Qualcomm Snapdragon 845 and a Qualcomm
Adreno 630.

The Snapdragon Profiler is installed in the computer, which is
then connected to the smartphone via USB. This profiling tool
also allows for data to be recorded and exported as a CSV file,
which can be processed and used to better visualize the data
recorded.

From the multitude of metrics available in the profiler, a special
importance was given to to metrics recording CPU, memory
and GPU usage, since these are the most important parts for
our application to run smoothly and to verify where the most
stress is located.

Framerate is the measurement defined as the number of frames
that are presented in a second, designated as Frames per Sec-
ond (FPS). It is one of, if not the most widely used measure-
ment to determine the performance of a graphical application.
For this reason it was measured and used as one of the metrics
for the tests. It was calculated in the app by counting each
render pass and dividing it by a timer.

Android Studio was also used to check the Logcat, where the
average FPS for each minute was printed, and also for taking
snapshots of the device’s screen.

We also had multiple scenes for testing, each with it’s own
object, from the McGuire Computer Graphics Archive [8],
imported using tinyObjLoader library, available at: https:
//github.com/tinyobjloader/tinyobjloader.

These objects were bunny.obj [11], dragon.obj [10] and
sponza.obj [5].

RESULTS
Since there are multiple endpoints for tweaking parameters,
as well as multiple scenes and solutions, preemptive, although
extensive test was done to take some preliminary conclusions
as well as to conduct other, more specific tests were conducted
to confirm some of the conclusions drawn before.

https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.qualcomm.com/software/snapdragon-profiler
https://github.com/tinyobjloader/tinyobjloader
https://github.com/tinyobjloader/tinyobjloader

Algorithm Sponza Dragon Bunny
PCF 3x3 tap 47.0 18.0 39.2
PCF 5x5 tap 35.1 15.0 31.3
PCF 7x7 tap 21.8 10.3 21.7
VSM 3x3 filtering 24.2 14.6 26.8
VSM 5x5 filtering 17.8 11.8 20.6
VSM 7x7 filtering 12.8 8.0 15.3
ESM 3x3 filtering 50.3 18.5 42.0
ESM 5x5 filtering 44.2 17.9 38.7
ESM 7x7 filtering 38.4 16.5 34.8

Table 1. Average FPS with 7x7 PCSS tap, 1080*2220 map

Preliminary Test
This preliminary test was focused on comparing the framer-
ate performance of each algorithm, using 3x3, 5x5 or 7x7
tap/filtering of the shadow map.

These algorithms were used together with PCSS since the
main objective of this study is to conclude if soft shadows in
real time rendering in a mobile app is achievable and viable.
A 7x7 tap was used to introduce some resource demands and
check how well each solution would perform under it.

The size of the shadow map was defined to be 1080 by 2220
(equal to the size of the screen). This value was defined as
to be a good compromise between performance and visual
quality.

The results of these tests are presented in table 1.

There is some valuable insight obtained by comparing these
results.

The fact that VSM is the most demanding solution is con-
firmed, although it was more demanding than previously
though. This could be due to the fact that VSM uses two
color values from the shadow map instead of one depth value.

ESM consistently got better results than PCF. This was increas-
ingly noticeable the bigger the tap/filtering used. This makes
sense, although ESM and PCF both have the same amount of
accesses to the shadow map, what each of those solutions do
with those values in between is different. PCF after each tap
evaluates if that point is in shadow or not so that the average of
the shadow values can be determined, on the other hand ESM
only averages the values that it got from the shadow map and
later uses that average to calculate the shadow value. Since
ESM does less calculations between accesses this behavior is
expectable.

It was also shown that a variable penumbra shadow in real
time rendering is achievable and, with further tweaking, it was
possible to achieve a framerate of 60 FPS.

Performance comparison
Guided by the preliminary tests, the next tests were done using
the dragon scene using the same settings together with 5x5
filtering/tap of the shadow map, to compare each solution
using the data available in the Snapdragon Profiler.

As previously though, figure 2 shows us that VSM has a bigger
toll on memory usage in all aspects, from reading to writing

Figure 2. VSM, CSM and ESM compared.

and to total amount used. This is due to the fact that VSM has
to both read and write more data to the shadow map.

This also explains why VSM has a higher performance loss
against PCF and ESM in a mobile environment versus a desk-
top computer, since the memory is slower, the bottleneck that
memory represents to VSM is bigger.

ESM has a slight more memory usage than PCF. This is ex-
pectable, since ESM finishes a pass in the fragment shader
quicker than PCF which translates to more frequent memory
reads to access the shadow map values.

Comparing the usage of the shader resources, VSM naturally
has a lower usage, since it is being stalled on system memory
and has more complex instructions between shading calcula-
tions it ends up using less of the shaders resources. ESM and
PCF have similar usages, except for some minor differences.

We could also confirm that the application was not CPU in-
tensive, although there were some minor differences between
each solution.

Testing VSM
Since VSM can achieve the best visual results, multiple set-
tings were changed to check if a good VSM result could be
achieved with an acceptable level of performance. Sponza
scene was used due to it’s realistic representation and good
performance, while also being more susceptible to artifacts,
which would be easier to notice.

Starting out with the settings used in the preliminary test for
Sponza using VSM, we compared the visual quality that each
tap presented. A 3x3 tap resulted in shadow map with too
many noticeable artifacts. A 5x5 had some minor artifacts
compared to 7x7 which barely had any, but the performance
that a 5x5 tap brought led us to keep using it in further testing.

Next, the PCSS taps were changed. From this test we dis-
covered that decreasing the PCSS tap had a big performance
improvement while having little impact on the quality of the
image. A 3x3 PCSS tap was used onward, which could, at the
moment achieve an average of around 30 FPS.

The next change was the size of the shadow map, comparing
1080x2220 size with 810x1665 and 540x1110. The increase
in performance by diminishing the size of the shadow map
was not substantial, while the decrease in image quality was
noticeable. Because of this the size of the shadow map was
maintained as it was (1080x2220).

Finally, we compared VSM with these settings with similarly
performing ESM and PCF settings.

ESM was used with a 7x7 filtering size, a 4320x8880 shadow
map size and a 3x3 PCSS tap, achieving 35.5 FPS. PCF was
used with a 5x5 tap, a 4320x8880 shadow map size and a 3x3
PCSS tap, achieving 36.2 FPS.

By comparing these solutions visually, the conclusion was that
PCF was the better pick for a scene like this. Comparing it with
VSM, it was both better looking and better performing, and
ESM had some issues with the shadows due to it’s difficulty
in working alongside PCSS.

Comparing ESM with VSM
The previous test showed us that ESM was not a good solution
for a scene like Sponza. We concluded that PCF should be
used with a scene with many shadows and visually complex.

Still on the Sponza scene with the settings used from the com-
parison with VSM, we tried to improve the PCF performance
to try to achieve 60 FPS, while still having a good quality
shadow.

The first obvious change was the PCSS step, since, as seen
before, it increases the performance a lot without impacting
the shadow quality too much. This increased our average
framerate to 47.8 FPS.

Then the size of the shadow maps was tuned down. Different
sizes were tested and 1080x2220 was able to achieve 60 FPS,
being capped at 60 due to synchronization with the screen
frequency. Also to notice that 2160x4440 almost got to 60
FPS, averaging around 58.7 FPS, with better visual quality,
since the shadow map size proved to be important for the
quality of the shadow, although in this case it was not too
much of a difference, since these resolutions are already pretty
high.

With this we proved that variable soft shadows could be
achieved in a mobile environment with actual real-time perfor-
mance.

We also compared ESM and PCF in the bunny scene, to check
if ESM would have more of a chance in a visually simpler
scene, which in fact did.

Again using the tests from the preliminary tests, we determined
that we should start with PCF using a 3x3 tap and ESM using
a 5x5 filter tap, since both performed similarly. The PCSS was

then lowered to 3x3, which made both solutions achieve 60
FPS.

The resulting images showed that, in this case ESM could
behave good enough as to provide a good quality shadow, so
good in fact as to be better than the one PCF produced.

Further testing the bunny scene using ESM and changing the
shadow map size showed that we could increase the size to
1620x3330 while still achieve 60 FPS. Only by increasing to
2160x4440 did we fall bellow 60 FPS, achieving 55.7 FPS. To
mention that these increases got rid of some artifacts present
in the bunny surface, so it might be better to use a slightly
higher resolution with a lower performance.

CONCLUSION
Three solutions to achieve a soft shadow were chosen to be
developed and tested, PCF, VSM and ESM, since these were
regarded as being the most viable solutions available.

PCSS was also implemented so a variable soft shadow could
be implemented. We were able to combine this with the imple-
mented soft shadow techniques, although ESM proved to be
more difficult to implement it, and providing a final shadow
that can have some problems, depending on the complexity of
the scene.

From the multiple tests conducted to each of these solutions
with different scenes and settings, we were able to take multi-
ple conclusions.

VSM was not able to provide a good quality shadow at a low
performance, since other solutions could have better looking
shadows at a similar performance. When VSM produced a
good shadow, it was at some high performance costs, making
it not viable for mobile environment.

ESM as some inconsistency and bad shadowing problems
when used with PCSS, this makes it only acceptable to use in
certain scenes, when it can be better than PCF.

PCF proved to be the best solution to use overall, being able
to achieve good quality shadows with good performance on a
mobile device.

We can conclude that shadows with a variable penumbra can
actually be rendered in real-time in a mobile environment, at
least with a powerful enough device.

REFERENCES
[1] Thomas Annen, Tom Mertens, Philippe Bekaert,

Hans-Peter Seidel, and Jan Kautz. 2007. Convolution
Shadow Maps. Rendering Techniques 18 (2007).

[2] Thomas Annen, Tom Mertens, Hans-Peter Seidel, Eddy
Flerackers, and Jan Kautz. 2008. Exponential shadow
maps.. In Graphics Interface. ACM Press.

[3] Louis Bavoil. 2008. Advanced soft shadow mapping
techniques. In Presentation at the game developers
conference, Vol. 2008.

[4] Franklin C Crow. 1977. Shadow algorithms for
computer graphics. Acm siggraph computer graphics 11,
2 (1977).

[5] M. Dabrovic. 2002. Sponza. (2002).
http://hdri.cgtechniques.com/~sponza/files/

[6] Randima Fernando. 2005. Percentage-closer soft
shadows. In ACM SIGGRAPH 2005 Sketches.

[7] A. Gruber. 2019. Mobile GPU approaches to power
efficiency. Technical Report. Qualcomm.

[8] M. McGuire. 2017. Computer Graphics Archive. (July
2017). https://casual-effects.com/data

[9] Kevin Myers. 2007. Variance Shadow Mapping.
Retrieved May 11 (2007).

[10] Stanford University. 1996a. Dragon. (1996).

[11] Stanford University. 1996b. Stanford Bunny. (1996).

[12] Lance Williams. 1978. Casting curved shadows on
curved surfaces. In Proceedings of the 5th annual
conference on Computer graphics and interactive
techniques.

http://hdri.cgtechniques.com/~sponza/files/
https://casual-effects.com/data

	Introduction
	Objectives
	Related Work
	Mobile environment
	Shadow rendering techniques
	Shadow Mapping
	Shadow Volumes
	Ray Tracing
	Choosing between Shadow Volumes, Shadow Maps and Ray Tracing

	Achieving Soft Shadows with fixed penumbra
	Percentage-Closer Filtering (PCF)
	Variance Shadow Maps (VSM)
	Convolution Shadow Maps (CSM)
	Exponential Shadow Maps (ESM)
	Comparing VSM, CSM and ESM

	Achieving shadows with variable penumbra

	Implementation
	Algorithm Implementation
	Shadow Mapping
	PCF implementation
	VSM implementation
	ESM implementation
	PCSS implementation

	Evaluation Methodology
	Results
	Preliminary Test
	Performance comparison
	Testing VSM
	Comparing ESM with VSM

	Conclusion
	References

