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Abstract—�e worldwide cities face a growing massi�cation

of population [1] and, consequently new challenges arise,

including the purse of sustainable urban mobility. With the

growing population and increasing private vehicle demand,

tra�c jams become more prevalent, a�ecting mobility and

creating air pollution. In this context, public transport modes

are essential to meet travellers’ needs, contribute to residents’

quality of life, and o�er convenient and safe travel modes for

non-residents. �e adequate o�er is, nevertheless, dependent

on the correct understanding of the real tra�c dynamics

within the city, which is generally challenged by the need to

acquire individual trip data, understand commuting patterns,

and lack of multimodal views.

�is work aims at addressing these challenges by propos-

ing an approach to infer Origin-Destination (OD) matrices

from smart-card validations able to: i) detect multimodal

commuting patterns from individual trips, ii) e�ciently

detect vulnerabilities on the network pertaining to walking

distances and trip durations, and iii) decompose tra�c �ows

in accordance with calendrical rules and user pro�les, and

iv) support context-aware descriptive analytics. In addition,

and given the fact that automated fare collection (AFC)

systems can assume an only-entry-or-exit control, unimodal

and multimodal models for alight bus stop inference are

further proposed in this thesis.

Lisbon city is used as the study case, with the afore-

mentioned contributions being assessed over the CARRIS

and METRO transportation network. �e gathered results

show that 70% alighting stops can be estimated with high

con�dence degree from CARRIS smart-card data and with

the presence of METRO smart-card data constitutes an im-

provement of 10% . �e inferred OD matrices allowed the

identi�cation of vulnerabilities in the network, o�ering CAR-

RIS new knowledge and a means to understand multimodal

dynamics and validate OD assumptions. �e contributions of

our work were developed in the context of the ILU project, in

close cooperation with the primary bus operator in Lisbon,

CARRIS, and the Lisbon City Council (CML).

Index Terms—sustainable mobility, alighting stop inference

, multimodality, georeferenced multivariate time series

I. Introduction

With the increasing population in urban cities and chang-

ing society lifestyles, the governances around the world are

making an e�ort to become smart cities to satisfy the needs

and improve the citizens’ quality life. So, one of the strategic

elements to become smart cities, is a sustainable urban

mobility system [2], combined with policies to discourage

the use of individual transport [3]. Indeed, the investment on

intelligent transportation systems technologies can support

transportation planning, improve the service given in public

transports [2], and consequently increase the a�ractiveness

to the use of collective transport. In this context, the Lisbon

City Council (CML) is establishing e�orts to collect the

available tra�c data and provide it to projects that can

promote sustainable mobility.

In this context, this research aims to analyze multimodal

public transport data in order to study passenger �ow be-

haviour in a regular urban context, and as well to identify

events of the situational context a�ecting the tra�c demand.

�is work is being conducted in the context of the ILU

project [4], an innovating and pioneering project that is

commi�ed to optimizing the urban mobility in the Lisbon

city by combining multiple sources of tra�c data. �e Lisbon

city is, in fact, used as the study case in this work, with

tra�c �ow analysis being performed from raw smartcard

validations gathered from the primary bus operator, CARRIS,

and subway operator, METRO.

�e remainder of the present research work is organized

as follows. Section II describes previous related works to the

researched area alighting stop inference and OD matrix esti-

mation and shows the main contributions in the �eld. Section

III describes the real-world problem, proposes a solution and

outlines its advantages . Section IV shows the practicalities of

the proposed solution, discusses its limitations and assesses

the solution considering data visualisations and performance

metrics. Section V of the document describes the set of

instructions for using the developed tool.

II. Related work

A. Aligthing Inference

Whenever the smart card is used in the public transport

vehicle, an electronic record is generated and registered in the

AFC system. Until now, the public transport operator CARRIS

only registers passengers’ entries at each bus stop (boarding

or entry-only count data). For future work on passenger

�ow analysis, the exit count data cannot be extracted from

the available data and therefore has to be inferred. �e

literature on this topic outlines several implementations to

di�erent transport systems worldwide, which di�er mainly

by the set of assumptions implemented. To overcome this

problem, the literature suggests several solutions to di�erent

transports systems worldwide, which may di�er by the set of
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assumptions that the authors use. �erefore, it is presented

a list of some important assumptions to this research:

1) Passengers will start their next trip at or near the stop
alighting location of their previous trip.

2) Passengers end the last trip of the day at the stop where
they began their �rst trip of the day.

3) Passengers do not walk more than a certain threshold to
transfer.

4) Using the second assumption, the alighting stop of the
last segment trip is estimated considering the boarding
stop of the �rst segment trip of the day if the route taken
in the last segment trip is related with the previous �rst
segment taken in the day. Otherwise, it is assigned the
�rst stop boarding the next day.

5) If an alighting stop cannot be estimated, it is analyzed for
certain period similar transactions to assign a successful
alighting stop, for example, days when there is only one
travel segment registration.

6) �e time of candidate alighting stop must occur before
the next registered boarding stop in the smart card.

7) If the maximum transfer distance between segments is
exceeded, it means that the passenger has carried out
an intermediate travel segment, in a di�erent transport
mode, and in this case, the alighting stop is not estimated.

�e table I outlines some papers where the authors ap-

plied these assumptions in di�erent modes of transport and

di�erent cities in the world:

TABLE I

Literature review for alighting estimation

Literature Mode Location Assumptions

Barry, et al. (2002) [5] Subway New York City 1 and 2

Barry, et al. (2009) [6] Subway,

bus,

ferry

New York City 1 and 2

Nunes, et al. [7] Bus Porto 1, 2 and 7

Li, et al. (2011) [8] Bus Jinan, China 1 and 2

Zhao, et al. (2007) [9] Rail Sys-

tem

Chicago 1,2 and 3

Munizaga, et al.

(2012) [10]

Bus Santiago, Chile 1, 2 and 3

Trépanier, et al.

(2007) [11]

Bus Canada 1, 3, 4 and 5

Farzin, et al. (2008)

[12]

Bus S. Paulo, Brasil 1, 2 and 3

Nassir, et al. (2011)

[13]

Bus S. Minneapolis-

Saint Paul (USA)

1, 2, 3 and 6

Wang, et al. (2011)

[14]

Bus London, UK 1 and 2

Gordon, et al. (2013)

[15]

Bus London, UK 1, 2 and 3

To visualize the alighting stop problem, Barry, et al. [5]

analyzes some possible travel cases in his study, where the

destinations of the trip segments may be correct, or incor-

rectly inferred, pu�ing into practice the assumptions cited

above by him (assumptions 1 and 2). �us, it is represented

the possible travel cases in �gure 1, for a trip with two only

segments, which may take place within 24 hours.

Fig. 1. Study trip cases with two segments

In short, in case 1, trips are correctly inferred, while in

case 3 and case 4, stops may not be correctly inferred because

they do not respect �rst assumption (the destination of the

previous trip corresponds to the nearest stop). �is may occur

when the passenger chooses to walk or use another transport

mode, such as the subway. For cases 2 and 4, since the

�rst stop boarding does not match the last stop alighting,

the second assumption will not allow the correct inferences

of the �nal destination. Since these cases correspond to a

time window of one day, it’s neglecting the cases in which a

passenger begins the journey on a certain day and ends on

the next day.

To implement an algorithm that obeys these restrictions,

Nunes, et al. [7], suggest a methodology that estimates the

exits, by connecting the trip segments for each passenger,

for one day. Brie�y explaining the algorithm proposed by

Nunes et al. [7]: �rstly, the transaction records are ordered

by their smart card identi�er and chronologically. �en,

for each passenger card, the carried transactions, along a

day, are analysed. For the transaction in analysis, possible

stop candidates who are upstream of that boarding stop

are collected. Moreover, for each of these stops, choose the

closest to the departure point of the next segment trip (the

distance between the estimated landing stop and the boarding

stop in the next segment is called the walking distance or

transfer distance). For the last transaction carried out by

the passenger, the stop near the departure point of the �rst

transaction of the day is chosen. If the user made only one

trip segment, then the algorithm cannot infer the exit stop.

�is distance travelled by foot between stops is calculated

using the euclidean distance .According to the study by

Nunes only considers as possible alighting stops candidates,

those below the threshold of 2000 meters. Hora, et al. [16]

uses the same methodology, but was able to demonstrate

that Manha�an distance, Di,j , is a more realistic measure to

represent walking distances, compared to Euclidian distance.

In this case, the threshold used was 3000 meters.

�ere are several proposals and assumptions in the scien-

ti�c community [10] [5] [17] [9] [18] to make inferences of

exit stops for an only-control system. For example, Barry, et
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al. [5] compared the results with real station exit counting,

which is extremely di�cult in an entry only system con-

trol. Zhao, et al. [9] and Wang, et al. [14] compared the

results with data from surveys. Alsger, et al. [18] conducted

a sensitivity analysis, using the di�erent assumptions, for

example, the author validates the trip duration regarding the

number of transfers. �e research found with most complete

validation work was performed by Munizaga, and Palma

(2014) [10].

Munizaga, and Palma (2012) [10] proposes a methodology

for alighting stop estimation in the public transport system,

where it was estimated 80 per cent of the boarding trans-

actions, and that percentage it was used to build origin-

destination matrices. Later, Munizaga, and Palma (2014) [19]

follows the analysis methodology of Devillaine, et al. (2013)

[17] in order to validate the assumptions made in the last

article (2012). �e author performs an endogenous validation,

which means analysing the data to verify each assumption

accepted and detect anomalous behaviour, to propose new

rules. �ese new rules were tested with an exogenous vali-

dation, with 53 recruited students volunteers.�e records of

its boarding transactions (made in a past week) were given to

the students, and then they were asked to validate the results

of the model performed over the student transactions—this

validation showed that the model was able to estimate

correctly 79 per cent of the cases.

B. OD matrices Typology

Various studies use the representation of OD matrices to

explain the �ow of passengers in a transport network. In the

literature, we can �nd two types of trips used to build the

OD matrices. For example, if a person decides to travel from

A (home) to B(son’s school, where spent its time less than 5

minutes) and then goes to C (workplace), can we say that the

origin is A and the destination is C (one trip), or it should

be origin A to destination B and also origin B to destination

C (two trips). In fact, in the literature, many emphasize this

distinction, however there is not a �xed denomination in

order to distinguish the types of travel.

Cui, tel al. [20] refer that bus passenger trips can be de�ned

into two concepts ”linked trip” and ”unlinked trip”.

�e concept ”unlinked trips” characterizes trips where the

passenger uses only a bus between boarding and alighting.

Moreover, linked trip means one or more unlinked trips

compose that, and the origin is the �rst the boarding on

the �rst ”unlinked trip” and destination is the alighting stop

from the last unlinked segment trip.

Mamei, Marco, et al. [21] estimate of individual trips from

mobile phone positioning data (call detail records (CDR), and

it summarizes in the literature review of OD matrices data

extraction, in two ways: (1) in time-based matrices (tOD) and

(2) Routine-based matrices (rOD, or OD by purpose).

1) Time-based matrices (tOD) estimates the user’s

movements, observed within a given time window,

without merging any segments into one. �e observa-

tion of all segments until reaching the destination can

be advantageous and a disadvantage because it depends

on the purpose of the research. �ese OD’s can be

advantageous when we are not focused on observing

trip routines, but with the peculiarities of a given day.

2) Routine-based matrices (rOD, or OD by purpose)

which means the analysis of commute trips, for exam-

ple, routine trips, home-work commute, home-school

commute derived from a trip generation model. Seg-

ments of observed CDRs are merged to obtain the parts

of a commute trip (for example, home-to-work and

work-to-home).

C. Commute trip generation
Commuting travel is relevant to the formation of rOD

matrices, and many studies show how to summarize commut-

ing travel from unlinked segments. Ali, et al. [22] develop a

methodology based in some assumptions to extract commute

trips from smart card data collected from a public transport.

Basically the leg segments and transfers are identi�ed and un-

necessary data is trimmed o�. Figure 2) shows six segments

summarized in only three journeys, one between home to

work (as we can see in �gure 2); work to shop a�er 17 pm;

and then shop to home.

Fig. 2. Study trip cases with two segments

Fig. 3. Figure from [22]

Ali, et al. assumes that activity time, like work time,

requires at least 30 min. So if two consecutive segments have

more than 30 min, it is considered an activity; otherwise,

it is a transfer point. So, it can be concluded that positive

transfers that take more than 30 min can be considered an

activity. However, this assumption cannot be applied in all

type of public transport operators, because some waiting time

for route services (especially bus) can be more than 30 min

(is the case of some days and stop location where passenger

density is low and the waiting time for a bus can last at least

1 hour). Nevertheless, [13] considers that activity should last

at least 30 min, And, the maximum waiting time for a person

to transfer cannot exceed 90 min.

III. Proposed Solution

In this section, two methodologies are described to ap-

proach estimating exits for transactions that occurred in

the CARRIS system (public bus transport) and a model to

generate commuting trips. Finally, it is described as the

representation of origin and destination OD to show the �ow
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of passengers and other metrics to represent the network’s

functioning. �erefore, solution development phases are as

follows:

1) preprocessing of the public tra�c data from the bus

operator CARRIS;

2) consolidation smart-card transaction from AFC sys-

tem from bus operator CARRIS and subway operator

METRO;

3) alighting bus stop inference model is required to know

passengers’ disembark points in the bus network be-

cause CARRIS is a system that only requires to tap

the smart card when the passenger enters (only-entry

system);

4) alighting dual-mode stop inference model, that traces

the passenger path in the transport mode bus and sub-

ways. �is model is proposed to improve the limitations

of the aforementioned bus model III-A1;

5) derive commute travels journeys from the trip segments

produced by alighting stop inference model;

6) inference of OD matrices that explain the passenger

�ow between di�erent network locations (stops, Taz,

statistical sections);

7) inference of OD matrices that explain the past state of

the network, according to with metrics such as time,

distance, and the number of transfers spent between

an origin and destination, time and distance spent in

a journey, percentage of journeys that used subway

within;

8) display dynamic OD in a graphical dashboard, with

the possibility of �ltering and parameterization, such

as time window, location granularity, and passenger

typology, among others;

9) description and corporation of the situational context

within georeferenced multivariate time series.

�e datasets with transactions under analysis come from

the Lisbon bus transport (CARRIS) from the period of Octo-

ber 2018 and October 2019. �e auxiliary dataset from the

Lisbon subway operator (METRO) corresponds to the period

of October 2019. CARRIS is the leading bus operator, and

in 2018 and 2019 it served a total of 125684 and 139496

passengers, respectively. Due to the fact of having been able

to consolidate the data for October 2019, from the METRO

operator and CARRIS operator, the analysis will be more

focused on this period (October 2019).

A. Alighting Stop Inference
�is section aims to present a methodology for estimating

the alighting of the passenger for each boarding transaction,

collected from the entry-only AFC system of operator CAR-

RIS. �e �rst model - Bus Model- can only visualize the

travel segments in the CARRIS systems while the second

model - Dual-mode model - can trace the passenger’s path

in the bus (CARRIS operator) and metro (METRO operator)

transport modes. Both models proposed can estimate the

missing information, that is, the alighting stop and time of

each transaction from the bus operator.

1) Bus Model: �e algorithm acts on the travel segments

of each passenger, on a given day. �is means that the

algorithm’s �rst step is, precisely, to collect from the database

and transactions occurred during one day. It is necessary

to emphasize that the CARRIS operator’s period of activity

occurs between day X at 04:00:00 t and day X + 1 at

03:59:59, and therefore will be that interval to be extracted.

�is process is carried out for all days of October and the

transactions, collected from each day, are sorted by card

identi�er and then chronologically. In short, the algorithm

can be described in these following steps:

1) Collect transactions {T1, T2, ....Tp} for passenger S,

ordered chronologically.

2) If the passenger only made one trip segment during the

day, the process ends, and we move on to step one to

analyze the path of a new passenger.

3) If the algorithm is dealing with T1, then information

regarding the geographic location and time boarding is

saved.

4) For each segment Tn where n belongs to {1, .., p} is

estimated the alighting stop and time.

a) If n belongs to {1, .., p− 1} , then for each stop

that is upstream of the entry stop and on the

route of the transaction Tn, the distance to the

boarding stop of the next segment is calculated

Tn+1. It is chosen as the alighting stop, the one

that is closest to the boarding stop of the next trip

segment Tn+1.

b) If n is p , then for each stop that is upstream of the

entry stop and on the route of the transaction Tp,

the distance to the boarding stop of the next seg-

ment is calculated T1. It is chosen as the alighting

stop, the one that is closest to the boarding stop

of the �rst segment performed during the day T1.

5) As soon as the algorithm estimates the information

needed for each transaction, other transactions from

another passenger will be analyzed. �e process ends

when analyses all transactions that occurred during the

mentioned interval.

2) Dual Mode Model: �is new model proposed for

alighting stop inference aims to �ll the gaps of the previous

model. �e bus operator network does not have enough

services to meet all passengers’ needs, and therefore some

passengers use more than one mode of transport to reach

their destination. Since the METRO (public subway operator)

provided subway transactions data from the same period

of bus transactions data, this new algorithm will overcome

inference errors produced by the previous model. It will be

able to trace the path passenger in both modes of transport

(bus and subway). �e inferential errors in the estimation

of bus stops will subsist, because some passenger uses other

modes of transport such as a boat, train, bicycles, among

others. In short, the algorithm can be described in these

following steps:
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1) Collect transactions {T1, T2, ....Tp} for passenger S,

ordered chronologically, where transactions can come

from subway or bus operators.

2) If the passenger only made one trip segment during the

day, the process ends, and we move on to step one to

analyze the path of a new passenger.

3) If the algorithm is dealing with T1, then information

regarding the geographic location and time boarding is

saved, whether subway or bus.

4) For each segment Tn where n belongs to {1, .., p} is

estimated the alighting stop and time, but if Tn corre-

sponds to a transaction that occurred in the subway,

then it isn’t necessary to estimate anything, then the

algorithm move on to the next transaction.

a) If n belongs to {1, .., p− 1} , then for each stop

that is upstream of the entry stop and on the

route of the transaction Tn, the distance to the

boarding stop of the next segment is calculated

Tn+1. It is chosen as the alighting stop, the one

that is closest to the boarding stop of the next

trip segment Tn+1. Tn+1 can be a metro or bus

transaction.

b) If n is p , then for each stop that is upstream of the

entry stop and on the route of the transaction Tp,

the distance to the boarding stop of the next seg-

ment is calculated T1. It is chosen as the alighting

stop, the one that is closest to the boarding stop

of the �rst segment performed during the day T1.

T1 can be a metro or bus transaction.

5) As soon as the algorithm estimates the information

needed for each transaction, other transactions from

another passenger will be analyzed. �e process ends

when analyzing all transactions that occurred during

the mentioned interval.

In the two estimation models, other a�ributes are calcu-

lated for each transaction besides the exit stop location and

timestamp, such as walking distance, transfer time, path

distance, travel time, next mode used (this last a�ribute is

only calculated in the second model proposed).

B. Trip Generation for commuting travel
�e generation of commuting trips aims to derive, from

a set of travel segments, the origin and the proposed desti-

nation location and therefore, the travel segments between

these two points are no longer described. �e result of this

derivation is interesting from the point of view of analysis,

planning and improvement of the transport public system.

An application of the output of this model can be applied

in the following example: if there is a high demand between

point A to point C, and there is a transfer point at B, then the

operator can rethink the routes, in order to take passengers

from point A to C, without transfers. �e proposed model is

based on the following ideas:

• A passenger who makes a commutative journey is

willing to repeat the same route frequently. �erefore, a

threshold is de�ned to eliminate passengers that do not

reach this limit.

• Among the transfers made during the day, only the

transfer with the most extended time interval is con-

sidered activity time (work, school) and should have a

bigger time interval than the stipulated.

• If the distance between segments is above a certain

threshold, previously de�ned, then there may exist trip

segments incorrectly estimated by the inference model.

In short, the algorithm can be described by the following

steps:

1) Collect trip segments {V1, V2, ....Vp} for passenger S,

ordered chronologically.

2) Applying the �rst rule described, we only assume that

passengers have commuting trips if they have made at

least 18 trips during the month.

3) Applying the third rule, the distance between all seg-

ments must be less than 1000 meters, so the algorithm

will be �ltering incorrectly inferred trips. �e distance

between the last stop of the day and the �rst stop of

the day must be less than 700 meters.

4) Of all transfers performed by the passenger, the one

with the most extended time interval is chosen (e.g.

transfer from Sl to Sl+1). Applying the second rule

described above, this interval must be more than one

hour.

5) If all restrictions are respected then the two journeys

are derived, the outward journey is from the boarding

stop S1 to alighting stop of Sl and the return journey

is from boarding stop of Sl to alighting stop Sp.

C. Origin-Destination Matrices
Conventionally, origin-destination (OD) matrices are ta-

bles that describe people movement between locations, but

other metrics are placed to represent the status of CARRIS

transport network in this solution, such as the number of

transfers needed between the origin and destination. OD

matrices are extremely useful for planning and improve the

public transportation system.

In this dissertation, matrices with two di�erent contents

were developed:

• Time-based matrices(tOD) Matrices that only show

demand between origin and destination with the count-

ing of trip segments.

• Routine-based matrices (rOD) Matrices that present

demand between origin and destination with the count-

ing of commuting trips (outward and return journey).

�is solution allows �ltering the content of the matrices

through the following parameters:

1) Select range of days;

2) Time window between 0 am and 12 pm;

3) Select one and more week days;

4) Filtering by title card;

5) Select origin/boarding routes or stops;

6) Select destination/alighting routes or stops;
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As previously mentioned, this dissertation it was con-

cerned with study other metrics besides the passenger �ow

between points. And therefore, for each type of matrix (rOD

or tOD) some metrics are provided, in addition to the demand

between origin and destinations.

In the tOD matrix it is possible to view the following

metrics in the cells:

1) Passenger counting

2) Percentage of trips when the passenger uses subway

transport a�er performing a bus trip segment.

In the rOD matrix it is possible to view the following

metrics in the cells:

1) Travel information: information on the path taken

inside the buses is displayed in the cells of the matrix.

Information regarding transfers are discounted.

a) Passenger counting: Count of passengers who

made the journey between origin and destination;

b) Mean and median Transfers: Average value that

re�ects the number of transfers needed for it from

origin to destination.

c) Mean and median travel time : application of

media and median on the table a�ribute Travel

Time;

d) Mean and median travel distance: application

of media and median on the table a�ribute Path

distance ;

e) Percentage of journeys with metro segment :

when the passenger uses subway transport within

a journey.

2) Transfer information: information regarding time

and distance spent between travel segment transfers.

a) Passenger counting: Count of passengers who

made the transfer between destination and origin.

b) Mean and median transfer time: average and

median value that re�ects the time spent walking

and/or waiting between transfers. ;

c) Mean and median transfer distance average

and median value that re�ects the walking dis-

tance between transfers.

Finally, the matrices can assume di�erent granularities in

origin and destination location. In other words, instead of

origin and destination bus stop, it can be an aggregation of

stops located in a geographic area. �e spatial aggregations

of stops considered are as follows:

1) Tra�c analysis zones (TAZ): A tra�c analysis zone

is a geographical unit used in conventional transport

planning models.

2) Statistical sections: a section is a territorial unit

corresponding to a continuous area of a single parish

with about 300 housing units.

IV. Results

A. Data description
Table II shows that characterizes the datasets that contain

the transactions carried out by passengers in the periods of

October 2018 and 2019. �e characteristics under analysis

are the number of stops, routes, passenger identi�ers, and

transactions found in the datasets. And comparing October

2019 against the same month of 2018 there was an increase

regarding all the a�ributes, described in the table, namely an

increase of 12.9% of passengers and an increase of 13.6% of

transactions in the AFC system.

TABLE II

Summary description of the 2018 and 2019 datasets

. October 2018 October 2019

Stops 2070 2152

Routes 85 93

Passengers 724703 818297

Boarding Count 9 993 762 11 360 893

B. Model’s Comparison
�is subsection compares the performance of the two

proposed models (bus model and dual-mode model). �e most

successful model with the best performance is the one that

can infer the largest possible number of transactions with

its respective exit stop. From the transactions in which it

was estimated an exit, it is necessary to understand which

models best ful�ls the following assumption: passengers will

start their next trip near the stop alighting location of their

previous trip.

Fig. 4. Di�erence between estimation models in October 2019.

�e orange bar plot in Figure 4 shows the results obtained

for the dual-mode model (the model that traces the path of

passengers within the metro and bus networks) whereas the

blue bar plot represents the ones for the bus model (the model

that traces the path only within the bus network ). It can be

observed an interesting phenomenon: part of the transactions

that were not estimated (around 50% that belong to the group

of single trips) by the bus model, are now estimated by the

dual-mode model. �ese transactions correspond to situations

in which the passenger used the bus to travel to a point in

the city and later used the metro to take o� at another point,

or the opposite, the passenger boarded the metro and later

the bus. In short, the dual-mode model manages to infer the

exit stop for a more signi�cant number of transactions.
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Fig. 5. Accumulative percentage of passenger walking in its transfers.

Figure 5.9 helps to understand which two models were

able to ful�l the assumptions be�er. �is graph represents

the cumulative percentage of travel segments regarding the

distance travelled in the transfer done a�er the trip segment.

According to the assumption, a passenger tends to transfer

with the shortest possible distance, so the model with more

travel segments with a lower distance of transfer will have

higher accuracy. Up to 200 meters of distance walked, the

number of segments tends to be the same, however, a�er

passing this limit, the dual-mode model tends to have more

travel segments with increased transfer distance. �e dual-

mode model converges more quickly to 80% of travel seg-

ments with a transfer distance below 500 meters while the

bus model only reaches this percentage when it reaches 600

meters of transfer distance. So, multimodal models tend to

be more accurate in estimating the exits to the only-control

system (in the case of buses). �e dual model estimated more

travel segments and with greater precision (less walking

distance in 80% of segments), because the travel segments

travelled in the metro become visible. If we integrate data

from other modes of transport such as trains, bicycles, boats,

the model will be more robust.

C. Dual mode data analysis
Since the dual mode model achieves be�er performance,

consequently we will proceed the investigation with the

results of this model. So, this subsection will explore and

discern the output generated by the dual mode model.

Figure 6 shows the proportion of the number of bus trip

segments, in which the next segment was performed on the

bus (le� bar) and the metro 8(right bar). It is concluded that

about one third of the travel segments, the next segment was

performed in the metro. Of the total number of passengers,

64% passengers used the metro at least once during the day,

in order to complete its journey.

Figure 7 describes the function and density of the boarding

for each of the three titles chosen in analysis, during the

period of 1 October 2019. �e following card types were

chosen because they correspond to di�erent age groups:

418/Sub23 is used by a target group age between 11 and

23 years old e; Navegante +65 is used by the elderly over

Fig. 6. Percentage of trip segment where the next segment was metro or

bus, in October 2019

Fig. 7. Density of boarding by card title

65 years old; and the Navegante Metropolitano can be any

age group, except those previously mentioned. Observing

the density of passengers entering during the day, we see

that title 418/sub23 has the same density function as the

title Navegante Metropolitano. �ere is a peak density of

boarding into the network at around 8 am and 6 pm, for

both titles. We can suppose that it corresponds to students

going to teaching institutions and returning home. Moreover,

the entries in the other title may mean travelling to the

workplace and returning home. �e card type designated as

“Navegante +65”, directed to the elderly, presents a higher

density of entries during the period from 11 am to 4 pm,

without relevant peaks, and the function curve avoids the

peaks of the other mentioned titles.

D. Trip Generation for commuting travel analysis

In this section, an investigation on the commuting trips

will be carried out. �e process of generating commuting

trips resulted in 3258394 journeys.

TABLE III

Counting of journeys by number of transfers performed during he

journey

Number of transfers Count of journeys Percentage (%)

0 2 463 307 75.5

1 561 212 17,22

2 150 696 4,62

3 52 066 1,6

equal and more than 4 31488 0,97
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Table III shows the percentage and the absolute value of

how many journeys made each number of transfers. As can

be expected, we observed a higher number of trips without

transfers (75%). About 17.22 % of commuting trips required a

transfer. 7.19 % corresponds to trips that required more than

two transfers.

Fig. 8. Activity time distribution

During the generation of commuting movements, it was

also possible to calculate the passenger’s time at his destina-

tion. �erefore, �gure 8 shows the distribution and statistics

associated with the activity time (time spent a�er reaching

the a�racting destination). As you can see in the statistical

data box, the minimum time was 3600 seconds, that is

one hour because it was the minimum time imposed on

the algorithm to perform an activity. �e activity time lies

between 3 hours, 43 minutes and 9 hours 22 minutes. On

the other hand, the median corresponds to 6 hours and 36

minutes, which is expected for most workers or students. In

the distribution �gure, we can see a peak around 9 hours

of activity and then the passenger distribution suddenly

decreases.

Fig. 9. Sankey representation for bus journeys for the purpose of later

traveling on the metro, top 10 most frequent

�e Sankey representation in �gure 9 shows the top 10

connections in which passengers travelled by metro a�er

making one of the connections (bus journey) shown in the

�gure. Mentioning the main results, we can say that stop 1229

of row 748 receives four connections from others the stops of

the same route, 16500 journeys. It should be emphasized that

this destination stop is located in ”Marques de Pombal”, and

in that same place there is a metro connection through two

lines (yellow and blue), so we can assume that passengers

go to that stop to later make a trip on the yellow or blue

line. If in the future, CARRIS and METRO join forces to

consolidate the service network for the population bene�t,

these bus plus metro connections can be revised to create

direct bus connections, in order to avoid the overload on the

metro stations.

E. Analysis of OD Matrices
�is section explains and investigates the �nal product

that dynamically visualizes the �ow of passengers and other

metrics in the network, which is called origin-destination

matrices. �anks to this new visualization implemented in the

ILU project’s scope, the CARRIS operator will be able to trace

the path of the passengers; �nd out how many passengers

are heading to a speci�c location at a particular time; check

for bus overloads; among other applications.

Fig. 10. Matrices with passenger �ows in 2-hour periods during the 2nd of

October, on route 759, with TAZ granularity

Figure 10, represents eight matrices referring to trips made

on route 759, and the stops are grouped geographically by

TAZ’s. Each matrix contains trips made in 2 hours, on the

2nd of October. �e �rst line with two matrices corresponds

to the following periods: from 6 am to 8 am and 8 am to 10

am. �e second line contains three arrays from the following

periods: 10 am to 12 am, 12 pm to 2 pm, and 2 pm to 4 pm.

the third line contains the matrices of the following periods:

4 pm to 6 pm, 6 pm until 8 pm, 8 pm until 10 pm. All matrices

share the legend of boarding TAZ’s that is in the �rst line,

in the horizontal. Furthermore, all matrices share the legend

of landing TAZ’s that is in the last column, vertically. Notice

that the �gure shows only a few TAZ’s in Lisbon, where 759

route has stops.
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Observing �gure 10 and its matrices, we can draw the

following interesting events: the largest passenger �ow oc-

curred from 8 am to 10 am, with boardings at the TAZ Santa

Maria Maior to exit TAZ Penha de França; between 6 am

to 12 am and in the a�ernoon between 4 pm and 8 pm,

there is a greater �ow of passengers between TAZ; there is

passenger �ow boarding and alighting between stops on the

same TAZ; it is possible to envision an interesting event: in

the period from 8 am to 10 am, the largest passenger �ow

occurs between Marvila (Chelas) to Marvila (Marechal Gomes

da Costa). In this last referred TAZ there is a subway station.

And at the end of the day from 6 pm to 8 pm, the largest

�ow of people occurs on the reverse route, from Marvila

(Marechal Gomes da Costa) to Marvila (Chelas).

�is research line will be useful to further understand

which geographic areas in the city of Lisbon are a�racting

more passengers and generating more passengers’ demand,

along the di�erent day periods.

F. Situational Context Discovery in Data

During the development of this research work, the e�ect

of the situational context on urban public transport data was

also analyzed, and wri�en in the article ”On the Need to

Combine Sources of Situational Context in Public Transport

Data Analysis”, within the scope of the European Transport

Conference 2020 (ETC).

�e analysis carried out relates to boardings in the bus

network, that is, boarding transactions are aggregated and

transformed into discrete multivariate time series. �e aggre-

gation of data in a time series may in some cases transmit

the demand over a long time on a route or even a stop.

Fig. 11. E�ect of the game event on bus stops

Figure 11 is a perfect example that shows the disruptive

e�ect of an event planned in close stops. �e 11 (a) provide

graphical view of passenger boarding in the bus stops near

to the ”Luz” stadium in the period of 2 of October and 15 of

October of 2019. In the Sunday day, 7 of October, between

17h30 and 19h10 a soccer game was played between the

”Sport Lisboa e Ben�ca” and ”Futebol Clube do Porto” teams

and both a�ract thousands of fans in the country to the

stadiums.

In order to correlate same week day, we highlighted the

Sundays, and we zoom the day where the event occurred. �e

zoomed visualization is also highlighted in period between

70 minutes before and a�er. A regular Sunday such day 14 of

October has the expected behaviour which it is high �ow in

working days than the weekends. However in the day 7 there

is a strong evidence of disruptive event due to the presence

of a outlier 30 minutes a�er and 50 minutes a�er of the end

of the game.

V. Tool Visualization

�is section presents the visualization tool implemented

in the ILU project’s scope, with the support of CARRIS and

the Municipal Council of Lisbon. �is tool was developed

in Python with Plotly and Dash packages, and it allows the

presentation of origin and destination matrices and comple-

mentary relevant information.

Fig. 12. Interface for matrix display

Figure 12 corresponds to the graphical interface responsi-

ble for parameterizing the matrices. �e output elements that

can be viewed on the page are: statistical report (�g. 13 ) ;

the matrix (�g. 14); map with routes chosen (�g. 15).

Fig. 13. Violin and stripplot with general matrix assessment

VI. Conclusion

�is work provides novel contributions to the �eld of OD

matrix estimation using passengers’ boarding count data.

In summary, the present dissertation provides both useful

insights from theoretical and practical perspectives.

Firstly, we propose alighting stop inference models over

the passengers’ paths in the absence and presence of multi-

modal views, and further extended classical assumptions. �e

multimodal model demonstrated that alighting stop could be

more accurately inferred for each transaction, in overall it
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Fig. 14. Graphical visualization of the matrix, showing the journey demand

between TAZ’s

Fig. 15. Map displaying all the routes of CARRIS network

was able to estimate the exits for 82% transactions from the

input dataset (more 10% than the unimodal model), and 85%

transactions corresponding to entire segments. In addition,

the alighting stop inference is easily parameterizable to

comprise assumptions on the maximum walking distances

and waiting times on route transfers.

In addition, the proposed approach for inferring origin-

destination matrices yields �ve unique contributions. First,

we allow inference to consider multimodal commuting pat-

terns, detecting individual trips undertaken along di�erent

operators. �is was shown to be an essential step since nearly

20% of journeys in the Lisbon’s transportation network

require one or more transfers.

Second, we support dynamic OD inference along param-

eterizable time intervals and calendrical rules, and further

support the decomposition of tra�c �ows according to the

user pro�le. Moreover, we allow user to parameterize the

desirable spatial granularity and visualization preferences.

�ird, our solution e�ciently computes several statistics

that support OD analysis, helping with the detection of vul-

nerabilities throughout the transport network. In particular,

statistics pertaining to commutation needs, walking distances

and trip durations are supported.

Fourth, and �nally, we show that the proposed solution

is compliant with context-aware descriptive analytics by

segmenting the periods in accordance with the available sit-

uational context and inferring context-speci�c OD matrices.

�e contributions were validated with our stakeholders,

CARRIS and CML, and have resulted in an accepted scienti�c

manuscript accepted and presented in the European Trans-

port Conference (ECT’2020), one extended abstract accepted

in XIV Congreso de Ingenierı́a del Transporte (CIT’2020), one

manuscript submi�ed in the European Transport Research

Review (ETTR) journal, and four institutional presentations.
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[11] M. Trépanier, N. Tranchant, and R. Chapleau, “Individual trip desti-

nation estimation in a transit smart card automated fare collection

system,” Journal of Intelligent Transportation Systems, vol. 11, no. 1,

pp. 1–14, 2007.

[12] J. M. Farzin, “Constructing an automated bus origin–destination matrix

using farecard and global positioning system data in sao paulo, brazil,”

Transportation research record, vol. 2072, no. 1, pp. 30–37, 2008.

[13] N. Nassir, A. Khani, S. G. Lee, H. Noh, and M. Hickman, “Transit

stop-level origin–destination estimation through use of transit schedule

and automated data collection system,” Transportation research record,

vol. 2263, no. 1, pp. 140–150, 2011.

[14] W. Wang, J. P. A�anucci, and N. H. Wilson, “Bus passenger origin-

destination estimation and related analyses using automated data

collection systems,” 2011.

[15] J. B. Gordon, H. N. Koutsopoulos, N. H. Wilson, and J. P. A�anucci,

“Automated inference of linked transit journeys in london using fare-

transaction and vehicle location data,” Transportation research record,

vol. 2343, no. 1, pp. 17–24, 2013.

[16] J. Hora, T. G. Dias, A. Camanho, and T. Sobral, “Estimation of origin-

destination matrices under automatic fare collection: the case study of

porto transportation system,” Transportation Research Procedia, vol. 27,

pp. 664–671, 2017.

[17] F. Devillaine, “Towards a reliable origin-destination matrix from mas-

sive amounts of smartcard and gps data: application to santiago in:

Zmud, j., lee-gosselin, m., munizaga, ma, carrasco, ja (eds.). transport

survey methods; best practice for decision making,” 2013.

[18] A. A. Alsger, M. Mesbah, L. Ferreira, and H. Sa�, “Use of smart

card fare data to estimate public transport origin–destination matrix,”

Transportation Research Record, vol. 2535, no. 1, pp. 88–96, 2015.

[19] M. Munizaga, F. Devillaine, C. Navarrete, and D. Silva, “Validating

travel behavior estimated from smartcard data,” Transportation Research
Part C: Emerging Technologies, vol. 44, pp. 70–79, 2014.

[20] A. Cui, Bus passenger origin-destination matrix estimation using auto-
mated data collection systems. PhD thesis, Massachuse�s Institute of

Technology, 2006.

[21] M. Mamei, N. Bicocchi, M. Lippi, S. Mariani, and F. Zambonelli, “Eval-

uating origin–destination matrices obtained from cdr data,” Sensors,
vol. 19, no. 20, p. 4470, 2019.

[22] A. Ali, J. Kim, and S. Lee, “Travel behavior analysis using smart card

data,” KSCE Journal of Civil Engineering, vol. 20, no. 4, pp. 1532–1539,

2016.

10


