
Autogame
Inês Paiva

Instituto Superior Técnico
Lisboa, Portugal

Abstract
Education plays a very important role in society, shaping
young people and giving them Education plays a crucial
role in society, shaping young people, and giving them the
necessary tools to accomplish their goals. However, edu-
cation sometimes fails in giving students motivation and
interest in learning. Gamification provides a solution to this
problem. Using gamified elements allows students to learn
in a more engaging and interactive way, motivating them
through competition with their colleagues and themselves.

Multimedia Content Production (MCP) is a Msc. course at
Instituto Superior Técnico that has been using gamification
for several years, achieving excellent results and receiving
positive feedback from students. However, the system cur-
rently used in this course to provide a gamification experi-
ence has some automation problems, which results in a lot of
time wasted by the professors to keep it running correctly.
This thesis aims to develop AutoGame, a gamified rule-

based system that uses rules to act on data and applies logic
to calculate the course’s gamified awards. Autogame was
created in the context of MCP but can be adapted and used
in other contexts.

Keywords: Autogame, Gamecourse, Gamerules, Gamifica-
tion, Gamification in Education, Rule-based system

1 Introduction
Education plays a crucial role in society, shaping young peo-
ple, and giving them the necessary tools to help them achieve
their goals. Being such an important part of human life, ed-
ucation has suffered and continues to suffer a considerable
evolution, as we try to keep on improving it, finding new
methods to make it as efficient as possible. One of the main
flaws of the educational system nowadays is that it is often
not motivational enough for students, making them unin-
terested in learning. Gamification is a strategy that utilizes
gaming elements in non-gamified contexts, one of these con-
texts being education, and it provides a whole new learning
experience. This method relies on giving experience points
to students for completing specific tasks. It has been used in
computer science courses and has proven to be a great way
to motivate students to learn and to give their best, giving
them friendly competition and rewarding them for their ef-
fort. Besides, it also helps the professors track their students
better, providing more detailed information about what their
students have been doing in the course.

Multimedia Content Production (MCP) is a course in the
Information Systems and Computer Engineering Master in
Instituto Superior Técnico (IST). This course has been using
gamification as its primary learning method for several years
and has been the subject of many studies that aim to under-
stand the impact of gamification on students’ motivation
and behavior. For this purpose, it was created a platform
called Gamecourse that works with other external sources:
Moodle 1, GoogleSheets 2, I am here [14], a QR module and
Smartboards [2]. This platform allows students to interact
with the course, submit their works, and check their progress.
Everything is graded using Experience Points (XP), and there
are online tasks (such as skill tree, and forums) and tasks
that can only be done in class (such as quizzes, attendances,
and answering questions). Also, students can decide which
tasks they want to do and in which order they want to do
them. As said above, there is a leader board in Smartboards
[2], which displays each student’s current progress, from the
one with more XP to the one with less, allowing them to
compare themselves with their peers. In the leader board, it
is also possible to access the student’s profiles and see where
they got their points from, the badges they have gathered,
and the skills from the skill tree they have completed.

Although this has shown excellent results throughout the
years, there are still many things to improve to make this
course even better, more automated, and more adaptable
to the different kinds of students. Nowadays, to calculate
the course’s awards (badges, grades, and completed skills),
a teacher must manually run a script and upload its result
to the leader board where the students can access it. The
automation of this platform will be the focus of this thesis,
and for that purpose, it will be created a rule-based system
to calculate the course’s awards.

This project’s objective is to create Autogame, a rule-based
system that will use Gamecourse’s data to calculate the stu-
dent’s awards and feed them back to the system. This system
must be automatic, incremental, efficient, and provide a so-
lution for the cases where a grade retraction happens. This
means that the system must be able to go back on awards
that were previously calculated if the data changes.

2 Related work
MCP uses Gamecourse, a platform that interacts with other
external sources, to provide the course’s gamification expe-
rience. Apart from that, teachers run a script that uses data
1https://moodle.org/?lang=pt
2https://www.google.com/sheets/about/

https://moodle.org/?lang=pt
https://www.google.com/sheets/about/


from those sources to calculate the course’s awards. This is
not an efficient or automatic process, so our solution is the
creation of a rule-based system.
A rule-based system uses rules to apply knowledge and

calculate outputs. These systems have shown results in areas
such as medicine, by helping the diagnose of multiple sclero-
sis [7] and tuberculosis [17]; and in other areas, for example,
in the integration of information in onboard devices [8].

In this section, we analyze the different kinds of rule-based
systems and their advantages and disadvantages. We divide
them into visual and non-visual, depending on how the rules
are created within the system.

2.1 Non-visual rule systems
This section describes the non-visual ways of creating rule-
based systems: propositional statements, audio, and Natural
Language Processing (NLP). These methods are detailed in
the following sub-sections, along with examples.

2.1.1 Propositional Statements. A propositional state-
ment is the most basic way of representing a rule, where
the rule has a format like "IF this condition occurs THEN
this happens". Using this method, it is possible to create
rules with all kinds of complexity levels. Although this is a
straightforward way of representing a rule, this can become
very confusing with the increase of the rule’s complexity.

Propositional statements have been used in the military
to help control a weapon system of systems [18]. In this
case, a rule-based system was created to help teach military
commanders to make fair use of weapon systems. To create
this, it was used a knowledge base and a rule base, which
could be edited by the administrators, making this a scalable
and flexible system.

2.1.2 Natural Language Processing. NLP uses linguis-
tics and artificial intelligence to extract information from
text [20]. This can also be applied to our case, allowing users
to write the rules in their own language, using their vocabu-
lary. Although it can be an excellent alternative to facilitate
the creation of rules, NLP techniques are still in a research
phase, meaning that they are not entirely reliable and are
still limited [10].
This method has been used in a framework that extracts

rules from online text [16], which uses NLP and text mining
methods to acquire knowledge from the internet and encode
it as rules. This framework uses existing knowledge about
a particular domain, including core concepts and deductive
relationships to extract rules.

2.1.3 Audio. The use of audio interfaces is a subject that
is starting to gain relevance in artificial intelligence, with
applications such as Siri and Alexa. D’este et al. have created
a medication review robot [5] to monitor the medication and
condition of aged patients using a rule-based system that
uses audio. The robot receives information from the patient,

takes sensor readings, uses the data gathered to make infer-
ences using the expert knowledge system, and then provides
the conclusions to the patient. The robot can consider the
patient’s changing condition, consult the medication review,
and give recommendations like eating something when the
patient has low blood sugar, reminding them to taker their
medications or reduce medication.

2.2 Visual rule systems
This section explains visual approaches to create rules in a
rule-based system, gives an example, and describes each of
the approaches’ advantages and disadvantages.

2.2.1 Flowcharts. A flowchart is a type of diagram that
describes an algorithm step-by-step, referring to every pos-
sibility and giving all of them a path that the system should
follow if the corresponding condition is met. Given that this
representation is so simple and provides such a clear path
to follow in each situation that may appear, flowcharts are
very popular in computer science. It has even been used in
teaching programming [9].
The use of flowcharts to create rules provides a more

visual representation, however, it has the disadvantage of
requiring a certain level of abstraction that undergraduate
users do not have. The use of flowcharts to create rule has
been implemented [13] and analyzed.

2.2.2 Matrices. Matrices are an alternative way to create
a clear visual representation of a rule. There are two inputs,
one represented in the rows and the other in the columns.
The output for each pair of inputs is represented in the corre-
sponding cell. This method has the upside of forcing the rule
base’s completeness because each cell should be filled, mean-
ing that every scenario is covered. On the other hand, it has
the downside of only allowing two inputs simultaneously,
making it impossible for the user to create more complex
rules that depend on more than two variables.

2.2.3 Drag-and-Drop. Drag and dropmethod [15] for cre-
ating rules uses a "filling in the blanks" design, where the
possible inputs and outputs for the system have been pre-
viously created. The user produces rules by choosing its
general form, and then it is possible to move the different
parts of the rule or add operators, which increases the com-
plexity of the rule. Then, the user must fill in blanks with
propositions to complete the rule. To ensure that the user has
some guidance during this procedure it was created a tool
to show possible actions, called feedforwards, and a tool to
help the user achieve a result based on his last action, called
feedbacks. This rule editor is as generic as possible, so it can
be adapted and used in different domains and by different
users, just by changing the primary inputs and outputs that
the system works with.

2.2.4 Rule Editor. Another method studied is a rule edi-
tor that provides a more visual way to create rules. This has



been used in tourism [11] by textitBalticMuseums: Love IT!
international project 3 which has an e-guide gamification
web service for tourists. This editor helps the addition, view,
modification, and deletion of rules for this service, which
users can use on their mobile devices. Also, in a project re-
garding the Internet of Things [21]. Here, the authors defend
that objects have events, states that can be used as conditions
and methods representing the results or actions. Using this
information, users could create a great variety of rules that
would interact with objects.

2.3 Gamification
As previously stated, gamification has been a subject of study
as a learning method and has shown promising results in
motivating students. This happens because games are inter-
active and engaging, something that education lacks some-
times. Gamification tries to combine gaming features and
education, making it more interesting for students. Compe-
tition, the feeling of accomplishment and improvement, and
receiving feedback and rewards for effort motivates students
and drives them to be better.

MCP consists of a semester-long MSc course in the Infor-
mation Systems and Computer Engineering degree at IST
and will be the primary environment of this thesis. This
course has been using gamification for the last several years
and is an excellent example of how it can motivate students
[4], clearly showing promising results in increasing motiva-
tion and participation. It uses six game elements: XP, levels,
a leaderboard, challenges, badges, and a skill tree. Students
are awarded XP for completing course tasks and can track
their progress and their colleagues’ progress using the leader-
board, which was created using Smartboards [2].

2.4 Discussion
This study helped identify different ways of creating rules
and understand them by analyzing real examples. These
examples helped understand which are the main advantages
and disadvantages of using each of the methods studied.
Although there are many ways of creating these systems,
few examples of these approaches are used in some cases.
In our case, we will be using a visual approach with a

rule editor because it does not require programming skills to
create rules, allowing the end-user to create and edit rules
without having the technical knowledge that some of the
other approaches require. Also, a graphical approach should
be easy to learn and use, giving the user almost setbystep
guidance on how to proceed. It is essential to make sure that
the editor that will be created allows for multiple inputs and
that it has an auto-complete feature that helps create new
rules.
Another thing that will be explored is implementing a

way for the system to deal with grade retractions, which is a

3http://bmloveit.usz.edu.pl/

feature that was not mentioned in the articles studied. Some
of the rules will depend on the teacher’s grades, and this
feature will make sure that the system undoes actions and
performs changes whenever these grades change.

3 Gamecourse
Gamecourse is a platform developed in PHP that was created
to support MCP and its gamification features. It represents
the link between teacher and students, and it is where all the
information regarding the course is stored. It allows students
to share their work with others, receive grades, check their
progress, among other things.
In the beginning, Gamecourse consisted of a set of static

web pages that were generated by a script that had to be
manually run and that displayed the game elements of MCP
[3]. In 2013, an MSc student started working on a web ap-
plication to replace this script as his MSc project, but it was
never finished [1]. Then, in 2016 André Baltazar developed
SmartBoards, a web application composed of a leaderboard
and profile pages for the students that allowed for customiza-
tion. Three years later, Alice Dourado improved the system
by making it more flexible, scalable, and configurable, which
allowed it to be applied to courses other than MCP [6]. In the
same year, Matilde Nascimento created a web application
that allowed teachers to keep track of the students that at-
tended lectures [14]. Nowadays, apart frommyself, two other
MSc students are working on this platform, Diana Lopes on
the back-end [12] and Patrícia Silva on the front-end [19].

In Fig. 1 we provide Gamecourse’s architecture. This sys-
tem uses multiple web applications that work together to
provide the students with a good gamification experience.
These web applications work as external sources of informa-
tion that provide data that is stored in the system’s database.
These sources are: GoogleSheets to store any grades the
teachers have to give manually; Classcheck used to keep
track of the students that attended lectures; Moodle, where
the students publish their works, receive grades, and com-
plete the quizzes; and QR module, used to track the students
that have participated in lectures. Each one of these sources
has its plugin responsible for retrieving its data and storing
it in the system’s database.

3.1 Database
One of the main components of GameCourse is a database
that stores all the information regarding the courses cre-
ated. This database consists of tables that can either regard
the system’s essential components or be related to specific
modules. The main tables are automatically created by the
system when the course is created, while the tables related
to specific modules will only be created when the module is
enabled.

The data from the external sources referred to in the pre-
vious subsection goes to a table called participation, where

http://bmloveit.usz.edu.pl/


Figure 1. Gamecourse’s architecture.

every action done by the students for the course is stored.
This is the information used to calculate the course’s awards,
such as badges, completed skills, and grades. To fill this ta-
ble, the administrator has to enable the plugin module and
set a periodicity with which the plugins will retrieve the
sources’ data. Then, from ClassCheck, the system will re-
trieve attendances; from Moodle, it will retrieve posts and
grades from quizzes and skills; finally, from GoogleSheets,
it will retrieve any other grade or badge that the teachers
need to award manually. Each line on this table refers to an
action performed by a student, such as attending a lecture
or completing a skill. From now on, we will refer to each of
these actions that go on this table as participation.

3.2 Expression Language
Gamecourse has its own expression language, created to be
a uniform and versatile way of interacting with the system’s
different modules. This language is structured with libraries
that include its functions. Some of these functions are al-
ways available because they are related to the system’s basic
concepts, whereas others only become available after the
corresponding module is enabled for the course.

The expression language is described in a dictionary that
has a list of all the libraries and functions available for a
course and information about the functions, such as its argu-
ments, definitions, keywords, respective libraries, and what
data type it returns.

3.3 Modules
Gamecourse allows the use of a set of modules, increasing
the complexity of the course’s gamification experience. The
administrator of the course has the power to enable or dis-
able the modules as he sees fit. Some modules require other
modules to be enabled, and enabling a module adds more
functionalities to the course’s platform. That is why Game-
course automatically adapts itself to make sure that it can
handle the increased complexity by changing the database

and adding new functions to the expression language. For
each module, there is a configuration page where the admin-
istrator can define its essential features and configure the
module’s view (i.e., how the module’s page is presented to
the users).

4 Gamerules
Gamerules is a rule system developed in Python by an MSc
student from IST, as a project thesis but was never finished.
This project’s objective was to create a rule system that
would substitute the script used for MCP, a gamified course,
to calculate the course’s awards. This was necessary in order
to make the system more automatic and efficient. Although
this was never finished, the system created already had a few
essential features implemented that would help Autogame.

4.1 Rules
A rule-based system is a system that applies human-made
rules to manipulate data. Gamerules, being a rule-based sys-
tem, requires the creation of a set of rules to work with.
These rules consist of text files, each containing a rule that
followed a specific structure (Fig. 2).

Figure 2. Generic rule used in Gamerules.

To be valid, a rule must have the following components:
name, description, when block, and then block. The name of
the rule is essential because it can be used as an argument
for another function. The description only exists to make
the rule more readable and give an idea of what it does.
The when block consists of a set of assignments, functions,
and conditions, and the then block is composed of a set
of assignments and functions that are only compiled if the
conditions in the previous block are true.

4.2 Rule parser
The rule parser is the part of the system that is responsible for
interpreting the rules. It does this by going through every
character on the rule file and looking for keywords that
indicate which part of the rule comes next. The parser starts
by saving everything after "rule:" as the rule name. It ignores
the comments because they do not need to be compiled and
are irrelevant to the system. After the comments, it looks for



"when:" and it will store each line of this block. Finally, it
saves everything after the keyword "then:" line by line, as
the actions of the rule.
The method of compiling the rules line by line makes it

impossible for the system to know how to run statements
that take for than one line, such as for loops. However, the
user can easily go around this by creating auxiliary func-
tions any time the system needs to run code more complex
than the rule parser can deal with. These functions can be
added to the system using special wrappers. For functions
used in the when block, it needs to have the @rule_function
wrapper, and for the ones used in the then block, there is the
@rule_effect wrapper.

4.3 Input and output
Gamerules, being a rule-based system, needs a set of facts
and rules to work with. These facts and rules that the system
receives consist of a set of text files. There are four categories
of files used as input for this system: course files, gamification
files, log files, and rules. The first one consists of two files,
one is a list of teachers, and one is a list of students. There
are three files for the second category: one for badges, one
for levels, and one for the skill tree. Finally, there are moodle
logs, moodle quiz grades and spreadsheet logs for the third
category. This last category of files is downloaded for each
of the external data sources and will be used to calculate the
awards.

As for the system’s output, it is a text file called indicators.
This file consists of a dictionary with all the awards that
were attributed to the targets. Each student is used as a key,
and the respective value is a dictionary with all the student’s
awards. Each of these awards has a name, a list of logs that
were used to calculate that award, and a set of arguments
depending on the type of award. There is a rating for skills,
for badges, there is a level, and for grades, there is XP.

4.4 Gamerules Procedure
Gamerules is a rule system, so it works by receiving facts and
rules and calculating results. In this case, the files described
in the last section, apart from the rules, work as facts. The
first thing that Gamerules does before even firing the rule
system itself is going through all of these files and saving its
data as system objects.

After gathering all the information necessary, it creates a
RuleSystem object using the path for the rules folder. When
this object is created, it automatically loads the rules folder
and compiles the rules using the rule parser. Then, it calls a
function that will fire the rule system, using the list of targets,
logs, and scope as arguments. The first two arguments come
from the text files used as input, whereas the scope can refer
to any variables that can be manually added to be accessible
in the rules, such as additional variables, such as the number
of classes.

The rule system, when fired, will go through every target
and fire each rule individually. When a rule is fired, the sys-
tem executes its preconditions, and if all the preconditions
are valid, it will execute the effects. If any of the precon-
ditions is False, it will not execute the effects, and it will
automatically continue to the next rule.

5 Autogame
The original plan for Autogame was to create a rule-based
system to complement MCP’s gamification experience and
replace the script that was used in previous years. How-
ever, when we planned this system, we did not know what
Gamerules was already able to do because it was unfinished,
and we never had any document describing its state. At the
beginning of this project, a considerable amount of time
was spent understanding how Gamerules worked, what it
could do, and what was usable for our system. After this
process was finished, we concluded that the rule system’s
base was already working, so we focused on its integration
with Gamecourse, which was already a monumental task.

Autogame (Fig. 3), as is, is a rule system that, although be-
ing independent, is completely integrated with Gamecourse.
It receives all of its inputs from Gamecourse, although in
different stages of the process, and writes its output directly
in the system’s database.

Figure 3. Autogame’s architecture.

5.1 Upgrading to python 3
One of the first problems we encountered when trying to
create Autogame was that Gamerules was written in ver-
sion 2 of Python, which no longer made sense when this
project began since there was already a version 3. So, the
first step on this road to Autogame was updating Gamerules
to python 3. This was achieved with the help of a tool from
Python called 2to3 4. Most of the changes made were simple
ones, such as exchanging function names, how a variable
4https://docs.python.org/3/library/2to3.html

https://docs.python.org/3/library/2to3.html


was encoded or how to make imports. However, given the
system’s complexity, this took a fair amount of time. After
finishing this process and replacing the text files that were
missing as input, we were already able to run Gamerules
despite some issues that would be solved later on.

5.2 From text files to database
Gamecourse is a system that has been evolving since its
creation, and as we previously discussed, one of the main
changes developed by Diana Lopes [12], was a set of plugins
that retrieve information from the external data sources to
the system’s database. When Gamerules was first created, it
needed to retrieve data from each source, which no longer
applies in our case because everything is now in one place
(Gamecourse’s database). With this improvement, we had
also to update Autogame so that it knewhow to communicate
with this database.

We established a connection with the database by using
MYSQL 5 libraries. The system needs a username and pass-
word to connect with the database, which the course ad-
ministrator must place in a file called credentials.txt. This is
essential to avoid manually writing this information in all
the required functions. Instead, the user only writes it in the
credential file, and the system has a function that reads the
file any time it has to access the database.

There are three situations when Autogame needs to access
Gamecourse’s database. First, to check when was the last
time the system ran, which we explain in section 5.6. Second,
to retrieve the rules’ targets, also explained in section 5.6.
Third, to write the system’s output. In this last case, our
system will write one line per student and achievement. The
awards are written in a table called award. Every award has
a course and a student, and the remaining elements depend
on the type of award. There are four types: badges, skills,
grades, and others.

5.3 Communication with Gamecourse
To fully integrate Autogame with Gamecourse, it was es-
sential that both could establish communication. This was
important for two main reasons: so that Autogame could use
Gamecourse’s expression language; and so that Gamecourse
could fire Autogame when necessary. Communication be-
tween the two systems would be easy to accomplish if both
systems were developed using the same language. However,
this is not the case. Gamecourse is in PHP, whereas Auto-
game was developed in Python. To create a channel for them
to communicate, we researched to find the best solution for
our problem. After testing some frameworks, we concluded
that the best way to create a channel between both systems
was by using a Transmission Control Protocol (TCP) socket.
For this, we created a PHP script that would act as a server

5https://www.mysql.com/

and a python one that would act as a client. At this point,
these scripts were run manually.

The next step was to make sure that the system could run
Gamecourse’s functions. Each time a Gamecourse function
is called in a rule, our system needs to create a client to
communicate with the server. To make sure that the server
does not close before Autogame finishes running, we made
a condition to keep the server socket open until Autogame
sends a message for it to close.

For Autogame to run, it needs to be called by Gamecourse.
This happens every time one of the plugins retrieves new
data from external sources. To make this possible, we created
a new PHP script that combines both the PHP server and the
Python client and is run by the plugins. This way, whenever
Autogame needs to run, it will open a server socket and any
clients necessary.
Finally, to make sure that the rule system does not run

over itself for a course or avoid trying to open a server socket
when it is already open, we created the Autogame table. This
table has a line for each active course of the system and one
for the server, which is the one with course number zero.
Autogame will only run for a course or create a server socket
if the respective line’s isRunning is at zero.

Figure 4. Autogame table.

5.4 Changing rule parser
After establishing communication with Gamecourse, we had
to ensure that our system recognized a Gamecourse function
and created the channel to run the function there. To do that,
first, we established that all these functions had to be called
using a specific structure, and then we changed the rule
parser so that it was able to recognize them. The structure is
the following:

𝐺𝐶.𝑙𝑖𝑏𝑟𝑎𝑟𝑦_𝑛𝑎𝑚𝑒.𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑛𝑎𝑚𝑒 (𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠)
Finally, with the rule parser changed so that it recognizes

the "gc" at the beginning of the line and saves everything
after it, we created the gc function, which opens a client
socket to communicate with Gamecourse. This way, when-
ever the rule parser finds one of these functions, it calls this
gc function that communicates with Gamecourse and sends
it all the arguments necessary to run the function. If the func-
tion’s output is a list, it encodes each item and sends them
separately. Then, Autogame decodes them and saves them

https://www.mysql.com/


as a Logline object in a list. These loglines are lines from the
participation table, which means that each one refers to an
action performed by a student. We created this object so that
it is easier to access any participation element if necessary.

5.5 Getting system’s targets
When Autogame was designed, one of its requirements was
that it had to be an incremental system, meaning that it
would only run new participations that occurred after the
last time the system had run. This was a high priority because
the old system always ran everything, which was inefficient
and wasted a lot of the administrator’s time.

To meet this requirement, we needed to find a strategy for
the system to run as few participations as possible while com-
puting the results correctly. Only running new participations
was never an option because the system would not keep in
memory the previous ones. It needs every participation to
compute a correct result. To solve this problem, we shifted
our focus from running as few participants as possible to
running for the least amount of targets as possible. While
results may vary if we do not consider all the participations,
targets are independent of each other, so running the system
only for a portion of the targets would not impact the output.

The first step to put this into practice was to create a crite-
rion for which targets the system would run each time. The
criterion is: running for every target with new participations
since the last time the system ran. This means that we avoid
recalculating awards for students who did not perform any
action or received any grade that would change the system’s
last output.
To accomplish this, we added a new column to the au-

togame table (Fig. 4), which saves the last time the system
ran. Every time our script is called, it checks if the system is
not already running for the course; if it is not, it updates the
course’s line on the table with the new timestamp and sets
the system as running. We chose to update the timestamp in
the beginning because if we updated it at the end, it would
create an interval of time between the system starting and
finishing where the participations that occurred in-between
would not be taken into account. This way, the system would
always know the last time it ran and could easily access this
information.
Finally, we created a function responsible for retrieving

the targets even before running the rule system itself. This
works by using the course and the timestamp of the last time
the system ran as arguments. Then, the function accesses
the participation table and, using these arguments, retrieves
a list of all the students that have participations posterior to
the timestamp.

5.6 Grade retractions
Another requirement that we set for Autogame at the begin-
ning of this project was that it had to know how to deal with
grade retractions and other changes that may affect what

the system had already calculated before. This requirement
is essential because professors may need to change a grade,
and this requires the system to retract what was previously
awarded.
To deal with this, before writing the output on the data-

base, Autogame always checks what is already there. We
covered every possibility and made sure that it knows how
to deal with every situation. For example, there may be up to
three lines on the participation table for a badge and target
because a badge can have up to three levels. Before awarding
a new level, the system checks how many lines are already
on the database regarding that badge and that student and
compares that value with the new level calculated. Then,
depending on the values, it knows if it has to delete, update,
or insert lines.
This method of dealing with retractions always makes

sure that the database’s awards are correct, but this imple-
mentation created a problem. Most of the rules related to
badges had a condition to ensure that a rule was only fired
if the level calculated was superior to zero (so, no awards
for badges with level zero). However, there is a possibility
that a student was previously awarded a badge, and after the
system recalculates, this student no longer deserves it, and
subsequently, the rule will not be fired. So, the badge will not
be deleted from the system, which obviously cannot happen.
To solve this issue, the rules were changed so that, even if
the new estimated level is zero, the system will fire the rule
and delete any necessary awards. If there are no lines to be
erased, the system will continue to the next rule.

5.7 MCP’s configuration
Autogame is an adaptable system, however, its primary ob-
jective, and focus of this dissertation, is to be used in MCP.
This section is intended to show how we configured the
system and created the rules to fit MCP’s purpose.

The first step was to create a config file where we inserted
the METADATA dictionary. This dictionary has information
that needs to be accessedwithin the rules, such as the number
of lectures or the maximum grade for the laboratories, and
by putting it in the config file, the system knows that it has
to add it to the scope of the rule system. Then, we create a
folder with the rules using the id of the course as the folder’s
name.
After the first configurations, we proceed to create the

rules. These rules all have a similar structure. First, we as-
sign some data using METADATA if necessary; we retrieve
students’ participations from Gamecourse and then perform
some actions on the data using auxiliary functions. We may
have one or more conditions for the rule if necessary, and
finally, we award the badge if the preconditions are met. In
Fig. 5 we provide the code for badge artist rule. In this case,
we wanted to award the badge depending on how many
posts with a rating greater than three the target had. So, we
retrieve all the participations that fit this description, then we



count how many there are, and finally, we compute the level
that is deserved depending on the number of participations.

Figure 5. Autogame rule: Artist badge.

Although Gamerules already had a set of functions cre-
ated to be used in the rules files, Autogame works differ-
ently, so the functions that existed did not fulfill our needs.
Gamecourse’s expression language made our task a lot eas-
ier because it provided a set of functions that allowed us to
retrieve filtered information from the database. However, we
still lacked some code to help us perform additional actions.
The functions used to write the awards in the database

(described in Section 5.6) are examples of functions added to
Autogame to ensure that the rules work as intended. Apart
from these, as we were creating the rules, we found new chal-
lenges that could not be solved with the existing functions,
developed a set of new functions that are now available for
any new course that uses Autogame.

6 Evaluation
To ensure the quality of Autogame, we conducted a thorough
evaluation to cover all the system aspects that might not
have been working as intended. This evaluation process was
composed of two phases: correctness tests and performance
tests. In this section, we will explain howwe conducted these
tests and what the results were.

6.1 Correctness Tests
For the first phase of Autogame’s evaluation, we conducted
a series of tests to assess if the system generates a correct
result. To do this, we compared our results using MCP’s
data from last semester with the results from the previous
system. We used a mockup of Autogame that we had created
to conduct these tests, where we replicated the database.
Using a python’s library called unittest 6, we created a

test for each one of the MCP’s rules. Each test compared
the number of students that received that award for both
systems, and if this number was the same, it compared each
one of the arguments of the students’ awards (badge level,
grade, skill rating, etc).

In the end, our system passed almost all of the tests, which
the exception of four. Three of these tests failed due to dif-
ferent data being used. This happened because some of the
6https://docs.python.org/3.0/library/unittest.html

awards calculated last year were not updated at the end of
the semester. So, we checked each of them and changed the
database’s data to have the correct result. After making these
changes, there was only one test that our system was failing,
the one for the Tree Climber badge rule. We investigated
this issue and found out that the previous system was mis-
calculating this award. For example, level one of this badge
is supposed to be awarded if a student completes a skill from
tier 2 of the skill tree, which means that the student has to
have a rating of at least 3 in one of those skills. However, the
previous system awarded the badge disregarding the skill’s
rating. So, both students who had this badge for the previous
system and not ours were in this situation. This means that
they were not supposed to have the award in the first place.

6.2 Performance tests
Good performance is a critical feature in any information
system. Ensuring the system can handle a lot of users and
rules was one of our main priorities when developing Auto-
game. To put the system to the test, we created some extreme
scenarios and checked how long the system takes to run, in
seconds, and how much memory is used.

6.2.1 Increasing system’s targets. For the first phase of
the performance evaluation, we created a set of tests where
we used all the 49 rules from MCP and gradually increased
the targets. The target used was always the same but with
different names. Then, using python’s libraries time 7 and
resource 8 we managed to calculate the running time, in
seconds, and memory usage peak, in Mebibytes, for each
test. To ensure that no external factors were altering the
results, we run the tests three different times and calculate
the average, provided in Table 1.

Table 1. System’s average running time (s) and memory
usage peak (MiB) when increasing the number of targets,
with 49 rules.

Targets Time Memory peak
10 3,55 22,87
50 12,32 26,03
100 25,03 29,88
200 52,34 37,79
500 140,15 61,98
750 207,43 82,44
1000 283,89 101,57

6.2.2 Increasing system’s rules. Using a similar process
has in the previous sections, we created a set of tests where
we gradually incremented the number of rules in the system,
using 100 targets, the students from MCP. For this case, we
used the same rule repeatedly, but with a different name so

7https://docs.python.org/3/library/time.html
8https://docs.python.org/3/library/resource.html

https://docs.python.org/3.0/library/unittest.html
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/resource.html


that the system would calculate different awards for each
rule. Using the same libraries as before, we ran the tests
three times and averaged the results, resulting in the values
in Table 2.

Table 2. System’s average running time (s) and memory
usage peak (MiB) when increasing the number of rules, with
100 students.

Rules Time Memory peak
5 3,73 22,27
10 6,20 23,17
25 15,56 25,46
50 31,57 29,13
75 49,42 32,81
100 67,78 36,83
150 105,73 44,38

6.3 Discussion
Autogame is a rule system that runs every time new data is
added to Gamecourse’s database. In our system, performance
assessment is vital because this system runs many times a
day, and it needs to be able to run as fast as possible and use
the least amount of the computer’s resources as possible. We
concluded that both the time and the memory usage peak
have a linear evolution for targets and rules for both tests.
This gives us an idea of the system’s load when using specific
numbers of targets and rules. For MCP’s case, the system
takes around 25 seconds and 30 MiB to run everything. How-
ever, it is essential to remember that this is an incremental
system and rarely will run for all the students. So, usually,
considering that the periodicity with which the system runs
will be low, the values will probably be somewhere between
3 and 15 seconds and 22 and 25 MiB.

7 Conclusions
For this dissertation, we developed a scalable and automated
rule system for a gamification course. Most of this work was
put into integrating this system in Gamecourse, the system
used for MCP. However, this can be adapted to other courses
and similar systems.
To develop our system, we initially had a longstanding

process of understanding and update Gamerules, the previ-
ous rule system that was never finished. Upon understating
the basics of Gamerules, we started the process of creating
Autogame and integrating it with Gamecourse. This was a
significant part of our work, from creating access to the data-
base, making the communication between PHP and Python,
and going through every scenario possible to ensure that the
rules could perform every task necessary.
The evaluation showed that Autogame was generating

the correct results, which was vital for our work. The perfor-
mance tests showed that it was capable of running in amatter
of seconds and without overusing the system’s memory.

Overall, the system in its current state can hopefully be
used inMCP in the next semester. It will provide an automatic
way for the system to calculate the course’s awards and will
make the task of keeping the gamification experience up and
running that much easier.
Although the system is working fine, and without any

issues, it can always be improved. One of the areas where the
system is lacking is in its interaction with the user. Creating
text files for each rule and adding configuration files is not
the most user-friendly way of using a rule system. Therefore,
the next step can be creating a User Interface (UI) for the
system, where the user will have the option of creating rules
on the browser. This can also make the creation of rules
easier by giving the users a list of existing functions.

References
[1] J. Amaral. 2013. Gamecourse. Master’s thesis. Instituto Superior Téc-

nico, Universidade de Lisboa.
[2] A Baltazar. 2016. SmartBoards. Master’s thesis. Instituto Superior

Técnico, Universidade de Lisboa.
[3] G. Barata, S. Gama, J. Jorge, , and D. Gonçalves. 2013. Engaging

engineering students with gamification. Proceedings of the fifth outing
of the International Conference on Games and Virtual Worlds for Serious
Applications (2013).

[4] G. Barata, S. Gama, J. Jorge, and D. Gonçalves. 2011. So Fun It Hurts –
Gamifying an Engineering Course. International Conference on Aug-
mented Cognition (2011).

[5] C. D’Este, D. Reid, and B. H. Kang. 2008. A Robotic Interface to
a Medication Review Expert System. International Symposium on
Ubiquitous Multimedia Computing (2008).

[6] A. Dourado. 2019. GameCourseNext. Master’s thesis. Instituto Superior
Técnico, Universidade de Lisboa.

[7] M. A. Ghahazi, M. H. Fazel Zarandi, M. H. Harirchian, and S. R.
Damirchi-Darasi. 2014. Fuzzy rule based expert system for diagnosis
of multiple sclerosis. IEEE Conference on Norbert Wiener in the 21st
Century (21CW) (2014).

[8] W. B. Guo, X. P. Hu, and J. Liu. 2006. Rule-based Reasoning in Onboard
Devices: An Intelligent Route Guidance System. IEEE International
Conference on Service Operations and Logistics, and Informatics (2006).

[9] D. Hooshyar, R. B. Ahmad, M. H. N. M. Nasir, and W. C. Mu. 2014.
Flowchart-based approach to aid novice programmers: A novel frame-
work. International Conference on Computer and Information Sciences
(ICCOINS) (2014).

[10] H. Isahara. 2007. Resource-based Natural Language Processing. In-
ternational Conference on Natural Language Processing and Knowledge
Engineering (2007).

[11] A. Kulpa, J. Swacha, and K. Muszynska. 2019. Visual Rule Editor for E-
Guide Gamification Web Platform. Federated Conference on Computer
Science and Information Systems (FedCSIS) (2019).

[12] D. Lopes. 2021. GameCourse Beyond. Master’s thesis. Instituto Superior
Técnico, Universidade de Lisboa.

[13] Mauro Mosconi and Marco Porta. 2000. A Data-Flow Visual Approach
to Symbolic Computing:Implementing a Production-Rule-Based Pro-
gramming System through a General-Purpose Data-Flow VL. Proceed-
ing 2000 IEEE International Symposium on Visual Languages (2000).

[14] M. Nascimento. 2019. I am here! Master’s thesis. Instituto Superior
Técnico, Universidade de Lisboa.

[15] J. Poli and J. Laurent. 2016. Touch interface for guided authoring of
expert systems rules. IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE) (2016).



[16] Hassanpour S., O’Connor M.J., and Das A.K. 2011. A Framework for
the Automatic Extraction of Rules from Online Text. (2011).

[17] A. R. C. Semogan, B. D. Gerardo, B. T. T. III, J. T. d. Castro, and L. F.
Cervantes. 2011. A Rule-Based Fuzzy Diagnostics Decision Support
System for Tuberculosis. Ninth International Conference on Software
Engineering Research, Management and Applications (2011).

[18] Yang Shanliang, Fu Yuewen, Zhang Peng, and Huang Kedi. 2013. Im-
plementation of a rule-based expert system for application of weapon
system of systems. International Conference on Mechatronic Sciences,

Electric Engineering and Computer (MEC) (2013).
[19] P. Silva. 2021. GameCourseUI. Master’s thesis. Instituto Superior

Técnico, Universidade de Lisboa.
[20] M. Stanojevic and S. Vranes. 2005. A Natural Language Processing for

Semantic Web Services. EUROCON 2005 - The International Conference
on "Computer as a Tool" (2005).

[21] T. Tuomisto, T. Kymäläinen, J. Plomp, A. Haapasalo, and K. Hakala.
2014. Simple Rule Editor for the Internet of Things. International
Conference on Intelligent Environments (2014).


	Abstract
	1 Introduction
	2 Related work
	2.1 Non-visual rule systems
	2.2 Visual rule systems
	2.3 Gamification
	2.4 Discussion

	3 Gamecourse
	3.1 Database
	3.2 Expression Language
	3.3 Modules

	4 Gamerules
	4.1 Rules
	4.2 Rule parser
	4.3 Input and output
	4.4 Gamerules Procedure

	5 Autogame
	5.1 Upgrading to python 3
	5.2 From text files to database
	5.3 Communication with Gamecourse
	5.4 Changing rule parser
	5.5 Getting system's targets
	5.6 Grade retractions
	5.7 MCP's configuration

	6 Evaluation
	6.1 Correctness Tests
	6.2 Performance tests
	6.3 Discussion

	7 Conclusions
	References

