
Playing Soccer with Unknown Teammates
João Francisco Lopes Pirralha Supervisor: José Alberto Rodrigues Pereira

Sardinha

ABSTRACT
Robotic soccer allows researchers to attempt to solve many
challenges in the field of artificial intelligence. One such
challenge is collaboration with unknown teammates, without
any sort of pre-coordination, which is known as ad hoc team-
work. Advances in ad hoc teamwork enable collaboration
in multi-agent systems to be more robust and versatile com-
pared to traditional coordination mechanisms, as it addresses
situations such as collaboration with agents developed by
different people, with legacy agents that cannot be modified
and even with humans. Some current work in the literature
attempts to address this challenge by reusing experience
with past teammates to adapt to new ones, for example by
acting using previously learned policies. This thesis ex-
tends the state-of-the-art approach in order to also deal with
unknown teammates that might be significantly different
from past teammates, while still leveraging what was previ-
ously learned. To achieve this, a current unidentified team
is detected either as being a known team or unknown, by
observing if the team’s behavior is consistently similar to the
past behavior of a known team. If it is detected as unknown,
the agent selects the previously learned policy whose team
it considers to be most similar to the unknown team, which
is then improved online, as a source for parameter sharing
transfer learning.

Author Keywords
Artificial intelligence, ad hoc teamwork, autonomous
agents and multiagent systems, reinforcement learning

1. INTRODUCTION

1.1 Motivation
As autonomous agents increase in number, robotic or virtual,
more situations arise where multiple agents need to cooper-
ate as a team in order to achieve their objectives. However,
it is not always possible to know in advance the teammates
which an agent will end up with. As such, it is desirable to
have a dynamic and versatile mechanism for collaboration
that does not rely on pre-coordination.

One such situation in the human world is pick-up soccer,
where players, that do not belong to a fixed team, gather
to play a match. Players often play with others whom they
had limited or no contact, so they need to quickly observe
each other’s capabilities and adapt. This situation could also
happen in robotic soccer. Robotic soccer teams usually have
communication and coordination mechanisms, but we can
consider a challenge where multiple independent robots are
gathered to play a soccer match with random teammates,
lacking common mechanisms, e.g. the RoboCup drop-in
challenge [20]. Advances in such a challenge could be rele-
vant for other domains, such as rescue robots from different
sources that need to work together during a catastrophe,
which is a prominent example in the literature[25]. Such
advances could also be useful for having robust systems

where agents can collaborate with older and limited agents
that cannot be modified, or even collaborate with humans.

These situations are framed within the problem of ad hoc
teamwork[25], where agents need to cooperate with un-
known teammates without relying on previously developed
mechanisms for coordination or communication. These
agents, often called ad hoc agents, must be able to quickly
find an adequate strategy to act efficiently. Unlike multia-
gent learning, ad hoc agents are developed independently
from their teammates.

Some of the current work in the literature [4] attempts to
address the ad hoc teamwork problem by leveraging prior
knowledge about past teammates. However, new teammates
may be arbitrarily different from past ones; thus, using pre-
viously learned behavior may be ineffective. We believe that
the ad hoc teamwork approach is still useful in this situation,
as it allows to reuse knowledge about the dynamics of the
environment and teammates, enabling to learn to coordinate
faster than just a pure reinforcement learning [27] approach.

1.2 Problem
This thesis addresses a research problem where an ad hoc
agent may encounter unidentified teammates which may
be known or unknown, when performing a task. The task
involves playing a game of Half Field Offense (HFO) [17],
described in Section 2. In this environment, one team of
agents attempts to score a goal and another defends. The
possible teams are: AUT MasterMinds, Base, Cyrus,
Gliders, HELIOS and YuShan. These teams are those
used in [4], with one missing exception (Axiom) as there
were technical difficulties in successfully executing it. The
ad hoc agent joins an unidentified teammate belonging to
one of those teams in the offense and both play against two
defensive HELIOS players, one of which is a goalkeeper.

1.3 Contributions
The contributions of this thesis are the following:

1. Two methods for identifying known teams: one based
on comparing predictions of the next state according to
historical data of each of the known teams to the real next
state (similar to the presented in [4], but using a model
based on a Multi-Layer Perceptron (MLP)); and a second
based on discriminating each team directly also according
to historical data.

2. An extension to the methods of identifying known teams
to also detect unknown teams, where the agent observes
if the unidentified team is consistently identified as being
the same known team across multiple observations – if
not, then the team probably is unknown;

3. The use of parameter sharing transfer learning techniques
in order to adapt a policy learned from one team to a
different one, online. As far as we are aware, this is a
novel use of transfer learning within the field of ad hoc
teamwork.



2. HALF FIELD OFFENSE
RoboCup [18] is a soccer competition played by au-
tonomous agents that has several leagues. It has several
environments for researchers to empirically test and validate
ideas, such as algorithms and agent architectures. While it is
best known for its robotic leagues, it also provides simulated
ones, namely the 2D subleague of the RoboCup Simulation
League.

To provide a more tractable problem, Stone et al. proposed a
subtask of the 2D Simulation League called Keepaway [26].
In this task, one team attempts to keep the ball from the
other team, which attempts to take it, within a small region.
This task is episodic – the episodes end if the taking team
takes the ball or if it leaves the region. In addition to the
smaller state space than the full league, it also has less sub-
objectives, making it more suitable for directly comparing
methods.

In order to test the scalability of algorithms that have good
performance in Keepaway to more complex environments,
without going directly to the full league, Kalyanakrishnan et
al. proposed the Half Field Offense (HFO) [17]. Similarly
to Keepaway, which it extends, HFO is also a subtask of
the 2D Simulation League. In this task, one offense team
attempts to score a goal, while a defense team attempts to
prevent it. It is played within one half of the soccer field and
it is an episodic task – the episodes end if the offense scores
a goal or if the ball gets captured by the defense or leaves
the playing area. HFO can be viewed as problem for both
the offense and the defense, but the authors only focus on
the former.

Hausknecht et al. [14] released an open source1 implemen-
tation of the HFO. Previous work on the HFO (such as
Kalyanakrishnan et al. [17]) did not release source code,
making it inaccessible for many potential users. It is built
on top of the RoboCup 2D simulation platform and it is the
environment used throughout this thesis. The authors pro-
posed a primary evaluation metric, Goal Percentage, which
is defined as the percentage of trials with a goal scored. They
also proposed a secondary one, Time to Goal (TTG), which
is defined as the number of time steps required to score a
goal, for the trials that end with one scored. This release
allows to develop a partial team and already includes two
teams that can be used for automated teammates: HELIOS
(specifically the 2013 release [2]) and HELIOS Base [1]
(also known as Agent2D). An instant of a match in this
HFO implementation can be observed in Figure 1.

This HFO release provides access to both low and high-level
state spaces. The low-level state space is an egocentric view-
point based on HELIOS’ world model. It contains features
related to the agent such as its position and orientation, as
well as other features pertaining to the ball and other agents.
For a 2 VS 2 match, it has 86 features. The high-level state
space is a more compact representation and may allow the
agent to generalize easier. For a 2 VS 2 match, it has 24
features. When using a Deep Q-Network (DQN) with this
environment, it should only have fully-connected layers, as
the state is not based on raw data such as an image. Agents
cannot directly observe each others’ actions, as there are no
such features in any of the state spaces.

1https://github.com/LARG/HFO

Figure 1: A match of HFO played by two offensive play-
ers (in yellow) against two defensive players (including a
goalkeeper in purple).

The actions are also provided in different levels of abstrac-
tion: low, medium and high. There are four low-level actions
(dash, turn, tackle and kick) and they are parameter-
ized by power and angle. The medium-level actions (kick
to, move to, dribble to and intercept) are still
parameterized (by coordinates and speed). The high-level ac-
tions (move, shoot, pass, dribble, catch, reduce
angle to goal, defend goal, go to ball and
mark player) are discrete and thus suitable for an algo-
rithm such as DQN (pass and mark player are param-
eterized but by a discrete argument identifying a player).
They are composed by low level actions, parameterized
following Agent2D’s strategy. According to the release’s
manual, the applicable high level actions for the offense
team are shoot, pass and dribble when the agent has
the ball; and move, go to ball and reorient when
it does not.

3. RELATED WORK
Barrett et al. [4], based on Barrett’s PhD thesis [3], presents
an approach to ad hoc teamwork where the ad hoc agent
reuses experience with previous teammates when encoun-
tering new ones. For this purpose, they proposed a general-
purpose algorithm called Planning and Learning to Adapt
Swiftly to Teammates to Improve Cooperation (PLASTIC).
This algorithm assumes that there are similarities between
past teammates and new ones (while this may not always be
true, the authors consider that often there are some). Given
enough time, PLASTIC enables the ad hoc agent (but not
necessarily the team) to act optimally if its past experience
correctly predicts the new teammates and their behavior is
fixed.

The authors focus on a limited version of the ad hoc team-
work problem where they make the following assumptions:

• the ad hoc agent has previous experience with past team-
mates;
• all agents in the team share a common objective;
• there are no explicit communication protocols;
• the teammates do not learn and their behavior does not

change.

PLASTIC is fundamentally based on:

https://github.com/LARG/HFO


• acquiring knowledge of past teammates either by learning
about them or receiving hand-coded knowledge;
• forming beliefs about the current teammates (about which

acquired knowledge best fits them);
• using those beliefs and the knowledge of past teammates

for planning;
• updating the beliefs by observing the current teammates’

behavior.

This general-purpose algorithm has two realizations,
PLASTIC-Model and PLASTIC-Policy. As suggested by
their names, PLASTIC-Model is a model-based approach
that learns models of past teammates (offline, via supervised
learning [5] methods), while PLASTIC-Policy is a model-
free approach that learns policies to cooperate with past
teams. PLASTIC-Model then selects the models that best
predict the current teammates for planning, while PLASTIC-
Policy similarly selects the policy that best reflects the cur-
rent team for acting.

The authors argue that PLASTIC-Policy is more adequate
for complex problems with large state spaces, as it can
use function approximation techniques - they state that it
is more effective in HFO as planning in PLASTIC-Model
needs many samples and has problems with inaccuracies
in the environment modeling. As such, the solution of this
thesis is based on PLASTIC-Policy – it extends it to also
consider the possibility of an unknown team and to use
a special policy improved online for that case. However,
they state that PLASTIC-Model, by being able to use a
model for each teammate (instead of each team), would be
more appropriate for heterogeneous teams (as PLASTIC-
Policy selects a policy that best reflects the entire team,
not considering individual teammates). Additionally, they
also suggest it would be better suited for teams that change
behavior (not explored in their work).

3.1 PLASTIC-Policy
PLASTIC-Policy directly collects samples from the envi-
ronment and uses them to learn a policy for a team, using
existing reinforcement learning algorithms. The authors
suggest using Fitted Q Iteration (FQI) [10] for learning the
policies. This thesis uses DQN to learn the policies as it is
more efficient than FQI.

PLASTIC-Policy uses the Polynomial Weights Algorithm
(PWA) [6] (1) to update the belief of each known team
given the current team’s behavior in the observed transition.
The loss for PWA is given by 1 minus the probability of the
observed behavior, for each team. However, it is not possible
to directly obtain this probability, as it is not given by the
policies. To address this, the authors use instead a model
to estimate it, in particular via a nearest neighbor based
approach. For each state s and its next state s′ that the agent
observes, it finds the past sample 〈ŝ, â, r̂, ŝ′〉 whose state ŝ
is most similar to s and then uses the difference between s′
and ŝ′ to estimate a probability. In contrast, this thesis uses
models based on neural networks to estimate this probability
without searching all of the stored previous samples at each
inference. This possibly also allows for better models.

belief ← belief · (1− η · loss)∑
belief · (1− η · loss)

, η ≤ 0.5 (1)

4. LEARNING, IDENTIFYING AND ADAPTING TO
TEAMMATES

The problem (Subsection 1.2) is addressed with an archi-
tecture (Figure 2) based on Barrett’s PLASTIC-Policy [4],
comprised of a training and an execution phase. In the train-
ing phase, the agent builds a library of policies, with one
policy for each of the known teams. The agent can collect
and train on as much experience as needed. In the execution
phase, the agent needs to identify the current team either as
one of the known teams or as an unknown team. If the team
is known, the agent will ideally use the policy previously
trained with it, else it will use a policy that is improved
online. A team is considered to be unknown if the agent
has determined it is not one of the teams it knows. It is
considered unidentified if the agent has not yet determined
if it is one of the known teams or unknown.

Ad hoc agent

Used by

Policies
SelectsPolicy selection

Ad hoc agent's action
Action selection

State and reward

Environment

Teammates'
actions

Team

Agent

Agent

...

Previously
learned

Learned
online

Unknown
team?

ImprovesTrue

Belief

Joint action

Figure 2: Overview of the architecture (execution phase),
inspired by PLASTIC-Policy.

4.1 Policies for known teams
Policies for known teams are learned in the training phase
using DQNs. It is appropriate for this problem as it ap-
proximates Q-values for discrete actions. This subsection
describes how the policies are modeled and how the hyper-
parameters are adjusted through a non-extensive search.

This adjustment is performed using an HELIOS teammate
as a representative. This teammate was selected as it is one
of those with the fastest execution times. While potentially
biased, this simplification is performed in order to reduce
the number of policies needed to be learned for this purpose.
In the case of subjectively similar results, the value closest
to the initial hyper-parameters (according to literature) is
chosen.

4.1.1 State and action spaces
The HFO environment provides both low level and high
level state feature sets. Both feature sets are experimented.
As usual when employing DQN, the most current states are
concatenated for its input. The 4 most recent states will be
used, as often used in the literature (e.g. Mnih et al. [21]).
This concatenation may allow the agent to extract more
complex features, such as more insights in the behavior of
other agents.

The high level action set provided by the HFO environment
is used, as the lower level action sets are parameterized by
continuous values and thus unsuitable for DQN. When it
does not have the ball, the agent can move (according to
team Base’s [1] strategy), go to the ball and reorient (the



agent stops and recovers stamina). When it has the ball, it
can dribble, shoot and pass it. To model these conditions
for the actions, the DQN algorithm is modified according
to Lanctot et al. [19] such that the DQN does not consider
illegal actions, by forcing the probability of illegal actions
to be zero when acting and ignoring them when determining
maxa′∈A(st+1) during the update.

4.1.2 Reward function
The reward function (2) is used. It positively rewards the
agent when the offense team scores a goal and is neutral
otherwise. There is no reward shaping, so the agent will
not learn behavior that exploits the reward function in un-
intended ways. Barrett’s [4] reward function (3) presented
some issues in terms of the agent attempting to play too de-
fensively until the maximum time step limit, even if scaled
to [−1, 1].

r(s, a) =

{
1 if the offense team scores a goal
0 otherwise

(2)

r(s, a) =


1000 if the offense team scores a goal
−1000 if the defense team scores a goal
−1 otherwise

(3)

4.1.3 Initial hyper-parameters
The hyper-parameters/modeling from Table 1 are used as
a starting point. They are based on the work by Mnih et
al. [21], with some adjustments to the target network update
frequency and final exploration rate by Hasselt et al. [28]
which are also used in later extensions of DQN. The opti-
mizer is also changed to Adam, as used in Hessel et al. [15].

Hyper-parameter/
modeling Value

DQN extensions None
Hidden layers (fully con-
nected)

One layer with 512 hidden
units with Rectified Linear
Unit (ReLU) activation

Minibatch size 32 samples
Replay memory size 1 million samples
Agent history length 4 states
Target network update
frequency

7500 updates

Discount factor 0.99
Action repeat None
Update frequency 4 time steps
Optimizer Adam
Learning rate 0.0000625
Initial exploration
(ε-greedy)

1

Final exploration 0.01
Final exploration time
step

1 million time steps

Replay start size 50,000 samples

Table 1: Initial hyper-parameters based on literature. Re-
fer to Mnih et al. [21] for a detailed description.

4.1.4 Hyper-parameter and modeling adjustment

Some of the hyper-parameters and modeling approaches
from Table 1 are adjusted through a non extensive search.

1. Using the low level feature set, the first hyper-parameter
to be adjusted is the train frequency. A higher train fre-
quency (that is, lower number of time steps between
each training) may allow to train the policies in less wall
clock time, which would be saved during the other hyper-
parameter/modeling searches. A train frequency of 1 is
compared to the train frequency of 4 from Table 1.

2. The low level feature set is compared to the high level fea-
ture set, to determine which modeling approach provides
better performance.

3. A deeper topology of the Q-network is experimented,
consisting of two hidden layers of 256 and 64 ReLU
respectively. This topology is not extensively fine-tuned.
It may ease transfer learning in Subsection 4.3 by not
updating the weights of the first or even both layers.

4. Some extensions to the DQN algorithm are evaluated,
in terms of modeling: Double DQN [28] and Dueling
DQN [29]. All fully connected layers are doubled for
the Dueling DQN. However, neither of these extensions
showed to be beneficial in this problem in Subsection 5.2.

4.1.5 Policy training and effectiveness
Policies are trained for every known team and each trained
policy is then evaluated with all known teams (Subsection
1.2). Ideally, for each agent the best policy should be the
one that was trained with it. With such result, it will be
beneficial to identify the team the agent is playing with, in
order to select the most optimal policy.

4.2 Policy selection
PLASTIC-Policy needs to identify the team in order to select
the policy to be used during the execution phase. This is
performed using belief losses that are calculated for each
observed transition, which are then used to update the belief.
The following subsubsections present how these beliefs are
calculated.

4.2.1 Identifying known teammates
PLASTIC-Policy’s approach involves scanning known tran-
sitions for each team in order to find the past transition
whose initial state is most similar to the initial state of the
observed transition. Then it uses the difference between the
next state of the known transition and the observed new state
as a loss. This scanning procedure may have a significant
impact in execution performance, so this thesis focuses on
creating models for the belief loss during the training phase,
which are then used in the execution phase. The samples
contained in the DQN replay buffers are used to create these
models.

4.2.1.1 Predicting the next state
One alternative is to predict the next state, which includes
changes dependent on the team. For each known team, an
MLP is trained (hyper-parameters in Table 2): given an ob-
servation consisting of 4 concatenated states and an action
(one-hot encoded), the output is the difference between the
new state s′ and the previous state s (s′ − s is predicted
instead of s′ since, as pointed out in [16], the relative tran-
sitions may be similar for many state-action pairs). This is
an adaptation of the method employed in PLASTIC-Policy,



Hyper-parameter Value
Hidden layers
(fully connected)

Four layers with 256, 192, 128 and
96 units respectively with ReLU ac-
tivation and He initialization

Output layer Linear (no activation) with the size
of the used state feature set, using
uniform He initialization

Loss Huber
Optimizer Adam
Learning rate 10−2 for 750 iterations, 10−3 for

150 iterations, 10−4 for 75 iterations
and 10−5 for 25 iterations, for a total
of 1000 training iterations

Batch size 214 (adjusted for training speed)
Regularization L1 and L2 of 10−6

Table 2: Hyper-parameters for the predictive approach
(not extensively adjusted).

where an MLP is used to obtain s′ instead of scanning past
transitions directly.

During execution, for each known team:

1. The difference is predicted and added to the previous
state;

2. The resulting predicted new state is clipped to the maxi-
mum and minimum values of the features;

3. A loss is measured between the real new state and the
predicted one using the Huber loss.

This loss vector is then normalized.

4.2.1.2 Discriminating teams
Another alternative is to discriminate between the known
teams. This is modeled as a multi-class classification prob-
lem. An MLP is trained (hyper-parameters in Table 3),
where the inputs correspond to the previous 4 concatenated
states, an action (one-hot encoded) and the new state. The
outputs are one-hot encoded vector representations of the
known teams, where the first position denotes the transition
was drawn from the first team’s replay buffer and so on. The
training data is naturally balanced, as each team’s policy has
an associated replay buffer of equal size. The output of this
MLP can then be used to obtain a loss vector as follows:
loss vector = 1− output vector.

4.2.1.3 Advantages and disadvantages of each alterna-

tive
The alternative based on discriminating teammate behavior
is an easier problem and as such should result in a better loss.
However, every time a new team is added to the library, it
needs to be retrained. For development and testing purposes
of this thesis, it means one MLP needs to be trained for
each set of possible known teams that are explored. The
alternative based on predicting teammate behavior is more
versatile, being able to just add a new MLP for a new team.
However, it is slower, as multiple MLPs need to be inferred
during execution. The discriminative approach is shown as
having better results in Subsection 5.4.

4.2.2 Belief updating
To update the agent’s belief during execution, algorithms
such as the Polynomial Weights Algorithm (PWA) [6] (1)

Hyper-parameter Value
Hidden layers
(fully connected)

Four layers with 256, 128, 64, 32, 16
and 8 units respectively with ReLU
activation and He initialization

Output layer Softmax activation with as many out-
puts as there are known teams, using
uniform Glorot initialization

Loss Categorical cross-entropy
Optimizer Adam
Learning rate 10−2 for 350 iterations, 10−3 for 75

iterations, 10−4 for 50 iterations and
10−5 for 25 iterations, for a total of
500 training iterations

Batch size 214 (adjusted for training speed)
Regularization L1 and L2 of 10−6

Table 3: Hyper-parameters for the discriminative ap-
proach (not extensively adjusted).

(used in Barrett’s work) or the update rule used in Expo-
nentially Weighted Forecasters (EWFs) [7] (4) can be used.
Higher values of η make the belief converge more quickly.
EWF seemed to initially have better results than PWA in
Subsection 5.4. A Bayesian update is not used for the dis-
criminative approach (which gives probabilities) since, as
pointed out in [4], a single update may set a belief to zero.

belief ← belief · e−η·loss∑
belief · e−η·loss

, η > 0 (4)

4.2.3 Belief loss for unknown teams
It is not feasible to train the described MLP’s during execu-
tion with samples acquired from the current team, as they
are unlabeled data. As such, the belief loss for an unknown
team must be obtained by other means.

Considering that the vector of belief losses for known teams
sums to 1, if there is a team whose loss for the observed
transition is smaller than 0.5 (in other words, more than
half of the probability) then the agent probably is playing
with that team. Otherwise, if there is no such team, then
the agent probably is playing with an unknown team. As
such, a simple heuristic approach is to use 0.5 as the loss
for the unknown team: if there is a team where the model is
confident across multiple transitions it should be identified,
otherwise the agent should recognize the team as unknown.
These results are smoothed across multiple transitions by
the algorithms used for the belief update.

If the vector of losses of known teams summed to another
value, the loss for an unknown team would thus be half of
that value. This approach needs at least two known teams:
with only one known team it would always have a loss of
zero.

4.3 Policy for an unknown team
This subsection presents our approach to learning a policy
for unknown teams via transfer learning. In face of an
unknown team, the agent can start by acting with a policy
learned within its library. Such policy will probably be better
than acting randomly or starting to learn a new policy from
scratch. One heuristic is to use the policy whose team the
agent considers to be most similar to the unknown team. To
do that, the agent can keep a second belief vector where



the loss of an unknown team is not considered (to avoid
numerical issues in the main belief, such as individual beliefs
possibly being zero). It can then act with the policy whose
team has the highest value in that second belief vector. This
is equivalent to ignoring the possibility of an unknown team.

Assuming the agent has better performance while playing
with a teammate using a policy trained for it than a policy
trained for another teammate, this strategy will produce non-
optimal behavior. However, training a policy from scratch is
also not desirable, as it would produce worse performance
for an extended period of time. Ideally the agent would
leverage its past training while improving by observing the
team’s behavior.

4.3.1 Adapting a selected pre-trained policy
One approach is to select a pre-trained policy and adapt it to
the unknown team, using it as a source for parameter sharing
transfer learning [31]. This selection can be done by using
the second belief vector and selecting the team whose belief
is highest after a certain amount of time steps (e.g. 1000).
This policy is then used dynamically like the remaining.

However, training this policy online may result in some in-
stability as the outputs of the network might change abruptly
with just a few updates. As such, the following possible
improvements to this transfer learning approach are also
tested, in order to possibly improve the stability:

1. Use larger batch sizes, which may result in more similar
gradients between updates;

2. Freeze the weights of the first hidden layer of the DQN,
resulting in less weights to update; this is usual practice
when employing parameter sharing transfer learning [31];

3. Reduce the learning rate, resulting in smaller updates;

4. Use samples from the selected known team, possibly
avoiding overfitting in the initial replay buffer.

In order to perform exploration to learn more about the
unknown teammate, the agent acts with the same 0.01 ε-
greedy exploration presented in Table 1 when using this
policy for acting, during PLASTIC-Policy’s execution.

5. RESULTS
This section presents results that were used to validate the
solution described in the previous section.

5.1 Evaluation procedure
This subsection presents the tasks and metrics used to evalu-
ate the solution.

5.1.1 Task
The main task consists in repeatedly playing HFO episodes,
where an ad hoc agent plays with a teammate belonging
to one of the six possible teams (Subsection 1.2) in the
offensive against two defensive HELIOS players, including
a goalkeeper. This task varies in the teammate’s team and in
the ad hoc agent’s behavior:

1. For training a policy where the ad hoc agent knows the
teammate, it plays for up to 400 thousand episodes and
creates a policy using the observed transitions (10 runs).

2. For testing the policy selection mechanisms, scenarios
involving different subsets known teammates are evalu-
ated (these subsets are: all teams known; an example with

three known teams; an example with five known teams)
(100 runs).

3. For testing the policy improved online for an unknown
team, the agent is forced to treat the unidentified team as
unknown and to adapt from a pre-determined policy (10
runs). The resulting policy is evaluated over 50 thousand
episodes.

To obtain the policies that are used in further subsections
after the policy hyper-parameter and modeling adjustment
(Subsection 5.2), for each team the policy that scores the
highest among the last 5 evaluations of each run is selected2.
Each run uses a random seed.

5.1.2 Metrics
The fraction of episodes ending in goal is used to evaluate
the performance of policies. It is equivalent to the goal per-
centage metric in Hausknecht et al. [14]. In order to evaluate
our approach during the training phase, the agent is tested
every 5000 episodes with the policy learned until that point
(that is, with static DQN weights and no exploration) during
500 episodes. Each policy is trained for 10 independent runs
(ideally more runs would have been performed).

The fraction of trials where the correct team has maximum
belief (among all teams in the belief vector) is used for
evaluating the policy selection. It is evaluated over the first
1000 to 10,000 time steps after meeting an unidentified
teammate. This evaluation is performed for 100 trials.

The online policy improvement also uses the fraction of
episodes ending in goal as a metric. It is evaluated without
exploration every 1000 episodes, for 1000 episodes with
static DQN weights. Each experiment is performed for 10
independent runs.

The plots used to present the results also show 95% con-
fidence intervals, obtained using the bootstrap method [9]
with 1000 resamplings3.

5.2 Policy hyper-parameter and modeling adjustment
In this subsection, the learning of policies for known teams
is adjusted according to Subsection 4.1. An HELIOS team-
mate is used as a representative to adjust hyper-parameters
and the modeling.

Increasing the train frequency from every 4 time steps (Fig-
ure 3) to every time step (Figure 4) (less time steps between
updates results in more frequent training) has no negative
impact in the performance, but allows to train a policy in a
smaller amount of episodes (400 thousand for the former
and 200 thousand for the later). This also may result in
some wall clock time savings, depending on the number of
episodes used (e.g. around 33 hours instead of 36-38 for
each run of Figure 4 and Figure 3, respectively).

The high level HFO state feature set (Figure 5) has signifi-
cantly lower performance than the low level set (Figure 4).
This may be caused by insufficient or inadequate features
for DQN. One hypothesis is the angles: in the low level
feature set they are encoded as a sinus-cosinus pair, avoiding

2Due to time constraints, the policies were selected only among
the first 4 runs.
3As there are few runs, the results for a run are not averaged first –
this results in smaller plotted errors than expected.



0 40 80 120 160 200 240 280 320 360 400
Episode (thousands)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 e

pi
so

de
s e

nd
in

g 
in

 g
oa

l

Figure 3: Train frequency
of 4 time steps (low level
state feature set; 512
ReLU).

0 20 40 60 80 100 120 140 160 180 200
Episode (thousands)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 e

pi
so

de
s e

nd
in

g 
in

 g
oa

l

Figure 4: Train frequency
of 1 time step (low level
state feature set; 512
ReLU).

discontinuities, while in the high level feature set they are a
single scalar.

The deeper topology with two hidden layers of 256 and 64
ReLU respectively (Figure 6) had improved results over a
single layer of 512 ReLU (Figure 4) – the latter reached
a performance of 0.4 to 0.45 starting at around episode
100 thousand, while the former barely went over 0.4. In
general, deeper networks allow to learn a representation that
is composed by simpler representations [13], which may
present an advantage.

0 20 40 60 80 100 120 140 160 180 200
Episode (thousands)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 e

pi
so

de
s e

nd
in

g 
in

 g
oa

l

Figure 5: High level fea-
ture set (train frequency of
1 time step; 512 ReLU).

0 20 40 60 80 100 120 140 160 180 200
Episode (thousands)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 e

pi
so

de
s e

nd
in

g 
in

 g
oa

l

Figure 6: Hidden layers
with 256 and 64 ReLU
(low level state feature set;
train frequency of 1 time
step).

Regarding extensions to the original DQN [21], neither Dou-
ble DQN [28], Dueling DQN [29] nor their combination
improved the performance in this environment. Therefore,
these extensions are not used in the following subsections.

In summary, relatively to Table 1 are used: two fully con-
nected hidden layers of 256 and 64 ReLU respectively; and
an update frequency of 1 time step.

5.3 Learning and evaluating policies
Team Base and Gliders reached an average fraction
of episodes ending in goal of around 0.3 to 0.4 us-
ing the adjusted hyper-parameters and modeling, AUT
MasterMinds, Cyrus and HELIOS a fraction of around
0.4 to 0.5 and YuShan around 0.5.

The policy that is used for each team in the following subsec-
tions was selected among the last 5 evaluations of each of the
first 4 runs, as described in Subsubsection 5.1.1. Each policy
was then compared against all teams for 1000 episodes for
each combination. The results are present in Table 4. As can
be observed, the most effective policy for each teammate is
often the policy it was trained with, with the exception of

Policy (the team it was trained with)
AUT Base Cyrus Gliders HELIOS YuShan

A 0.481 0.334 0.359 0.375 0.408 0.330
B 0.336 0.392 0.367 0.363 0.298 0.389
C 0.451 0.403 0.481 0.395 0.432 0.432
G 0.351 0.380 0.375 0.391 0.365 0.390
H 0.467 0.411 0.375 0.411 0.456 0.356

Team

Y 0.343 0.399 0.384 0.402 0.361 0.530

Table 4: Policy effectiveness (given by fraction of
episodes ending in goal) when playing with all possi-
ble teams. The most effective policy for a given team is
highlighted in bold. The rows are identified by the initial
letter of the teams. Each combination played for 1000
episodes.

HELIOS. This result may suggest that some teams do not
allow to explore certain plays as effectively as others.

5.4 Evaluating the policy selection within the ad hoc
agent

This subsection presents the results of the policy selection
mechanisms described in Subsection 4.2.

5.4.1 Only known teams
Once again, an HELIOS teammate is used as a representa-
tive to adjust the belief updating, between PWA and EWF
(Subsubsection 4.2.2). For this purpose, the discriminative
approach (Paragraph 4.2.1.2) is used, as it is more compu-
tationally efficient. The results with PWA can be observed
in Figure 7. The results with the update rule used in EWFs
can be observed in Figure 8 for η = 1 and Figure 9 for
η = 10. The update rule used in EWFs with η = 1 seemed
to perform the best up to the first 300 time steps, while
PWA seemed to have slightly better results up to 700 time
steps. As the first time steps are of higher concern in ad hoc
teamwork, the EWF with η = 1 approach was chosen.

0 100 200 300 400 500 600 700 800 900 1000
Time step

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 tr

ia
ls 

wi
th

 m
ax

im
um

 b
el

ie
f

autmasterminds
base

cyrus
gliders

helios
yushan

Figure 7: Discriminative
approach, using PWA with
η = 0.5.

0 100 200 300 400 500 600 700 800 900 1000
Time step

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 tr

ia
ls 

wi
th

 m
ax

im
um

 b
el

ie
f

autmasterminds
base

cyrus
gliders

helios
yushan

Figure 8: Discriminative
approach, using EWF with
η = 1.

The loss approach is then decided between the predictive
approach (Paragraph 4.2.1.1 – Figure 10) and discrimina-
tive approach (Paragraph 4.2.1.2 – Figure 8), again using
HELIOS as a representative. As can be observed, the dis-
criminative approach identifies the correct team significantly
faster (the predictive approach is plotted for 10 thousand
time steps). This may be due to it being easier to learn
compared to the predictive approach.

For the remaining teams, by around 400 time steps the agent
correctly identified the team at least for 90% of the trials,
using the update rule used in EWFs with η = 1 and the
discriminative approach.



0 100 200 300 400 500 600 700 800 900 1000
Time step

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 tr

ia
ls 

wi
th

 m
ax

im
um

 b
el

ie
f

autmasterminds
base

cyrus
gliders

helios
yushan

Figure 9: Discriminative
approach, using EWF with
η = 10.

0 1 2 3 4 5 6 7 8 9 10
Time step (thousands)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 tr

ia
ls 

wi
th

 m
ax

im
um

 b
el

ie
f

autmasterminds
base

cyrus
gliders

helios
yushan

Figure 10: Predictive ap-
proach, using EWF with
η = 1.

5.4.2 Considering the possibility of an unknown team
Considering an example of three known teams (the first three
by alphabetical order - AUT MasterMinds, Base and
Cyrus) and three unknown teams (Gliders, HELIOS
and YuShan – identifiable as ”unknown”), the agent can
correctly identify all teams (tested for all six possible teams
individually) for the majority of trials after 1000 time steps,
except for Gliders, which it misidentifies as Base (Fig-
ure 11). One possibility is that the discriminative model
used for the belief loss failed to create strict enough bound-
aries, such that most Gliders transitions fall within the
boundaries of Base in the model and are classified as such.
The agent correctly identified every known team at least for
90% of the trials by around 200 time steps, but the unknown
teams it correctly identified were for only around 50% to
65% of the trials by around 1000 time steps.

Considering another example where five teams are known
(all except for Gliders), there is an increase in identifi-
cation performance for unknown teams (Figure 12). The
agent correctly identified every team for 80% to 90% of the
trials by around 500 time steps. Compared to three known
teams, the agent believes a known team is unknown for more
steps in the beginning (Figure 13 for three known teams and
Figure 14 for five known teams). This may be due to having
more possible teams, so the model gives more varied predic-
tions, causing it to take longer to converge to a known team
and having a greater bias for the unknown possibility. The
results for the remaining known teams are similar to Figure
14.

0 100 200 300 400 500 600 700 800 900 1000
Time step

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 tr

ia
ls 

wi
th

 m
ax

im
um

 b
el

ie
f

autmasterminds
base

cyrus
unknown

Figure 11: Three known
teams (team Gliders).

0 100 200 300 400 500 600 700 800 900 1000
Time step

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 tr

ia
ls 

wi
th

 m
ax

im
um

 b
el

ie
f

autmasterminds
base

cyrus
helios

yushan
unknown

Figure 12: Five known
teams (team Gliders).

5.5 Policy for an unknown team
In this subsection are presented the results of the approach
for adapting a policy to an unknown team, based on param-
eter sharing transfer learning [31]. A case where the agent
is playing with a YuShan teammate and only knows AUT

0 100 200 300 400 500 600 700 800 900 1000
Time step

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 tr

ia
ls 

wi
th

 m
ax

im
um

 b
el

ie
f

autmasterminds
base

cyrus
unknown

Figure 13: Three
known teams (team
AUT MasterMinds).

0 100 200 300 400 500 600 700 800 900 1000
Time step

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 tr

ia
ls 

wi
th

 m
ax

im
um

 b
el

ie
f

autmasterminds
base

cyrus
helios

yushan
unknown

Figure 14: Five known
teams (team AUT
MasterMinds).

MasterMinds is used for illustrative purposes (this is the
case with the biggest possible growth according to Table 4).
Adapting a pre-trained policy often results in achieving bet-
ter performance faster (Figure 15) when compared to train-
ing a new policy from scratch (Figure 16), particularly in
the initial episodes.

0 5 10 15 20 25 30 35 40 45 50
Episode (thousands)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 e

pi
so

de
s e

nd
in

g 
in

 g
oa

l

Figure 15: Adapting
a policy from AUT
MasterMinds to
YuShan.

0 20 40 60 80 100 120 140 160 180 200
Episode (thousands)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 e

pi
so

de
s e

nd
in

g 
in

 g
oa

l

Figure 16: Training a
policy for YuShan from
scratch.

Some training instability can be observed when performing
straightforward parameter sharing transfer learning (Figure
17 illustrates a particularly bad run of Figure 15). The
following possible improvements to this approach are thus
tested using the same YuShan case:

1. Using a larger batch size of 256 instead of 32. However,
in order to compensate for the added computational cost
and possibly reduce overfitting, the DQN updates are only
performed every 4 time steps. Figure 18 presents a seem-
ingly more steady growth than Figure 15, particularly in
the first 20 thousand episodes, with only a small perfor-
mance decrease (possibly related to the more infrequent
updates).

2. Freezing the weights of first hidden layer of the DQN
prevented the agent from improving. This may be related
to the particular DQN topology that was used. The layer
was kept frozen for the entire duration of the runs.

3. Reducing the learning rate to a fourth (0.0000625/4) re-
sulted in smaller updates and thus a slower improvement,
while still displaying some instability.

4. Initially using samples from the source policy did not
help.

As such, we conclude that only using a larger batch size may
present an advantage in this scenario.



0 5 10 15 20 25 30 35 40 45 50
Episode (thousands)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 e

pi
so

de
s e

nd
in

g 
in

 g
oa

l

Figure 17: Adapting
a policy from AUT
MasterMinds to
YuShan: a single run
illustrating training
instability.

0 5 10 15 20 25 30 35 40 45 50
Episode (thousands)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 e

pi
so

de
s e

nd
in

g 
in

 g
oa

l

Figure 18: Adapting
a policy from AUT
MasterMinds to
YuShan: batch size of
256 and training frequency
of 4 time steps (Figure 15
repeated in blue).

6. CONCLUSION
This thesis aimed to address the problem of ad hoc teamwork
when teammates may be unknown (never used for training).
It was explored in the context of a two versus two match
of HFO, where the ad hoc agent plays in the offense along
with a teammate. For this purpose, an architecture based
on PLASTIC-Policy [4] was developed. In this architecture,
policies are learned for known teams via DQNs and added
to a library of policies. A policy is then selected during
execution with an unidentified team via a belief. Compared
to PLASTIC-Policy, this architecture uses DQN instead of
FQI for learning the policies, uses different mechanisms
for identifying teammates (based on MLPs), extends these
mechanisms to also identify if the team is unknown and
adapts a policy from a known team to an unknown one.

To obtain a belief loss for a transition, two approaches were
proposed: one based on predicting the next state (which
depends on the team) and another based on directly dis-
criminating its behavior among the known teams. These ap-
proaches are based on building a model using the transitions
stored in the replay buffers of the DQNs. The discriminative
approach proved to perform better, possibly for being easier
to learn. However, it needs to be retrained every time a new
team is added to the library. These belief losses are then
combined across multiple transitions using an algorithm
such as the update rule used in EWFs [7].

However, the original PLASTIC-Policy is unable to identify
whether the unidentified team is in the library of known
teams or not. To obtain the belief loss of a team being
unknown these approaches cannot be used, as the transitions
currently being observed are unlabeled (the agent does not
know if they belong to previously encountered team or an
unknown one). A simple approach based on an heuristic
artificial belief was introduced, where the belief loss of
the team being unknown is half of the sum of the known
teams’ belief losses: if a team has less than half of the
total loss/more than half of the probability then the model
is confident in it; otherwise, if all teams have less than half
of the probability, then the model is not confident in any
of them and the team probably is unknown. However, this
approach is flawed since as more teams are introduced, there
is less probability of the model identifying the same team
consistently across multiple transitions, creating a bias for
unknown.

If the ad hoc agent identifies a team as unknown, it then
switches to a special policy improved online. As learning a
new policy from scratch would be impractical in this setting,
the ad hoc agent uses an existing policy as a source for
parameter sharing transfer learning [31]. This source can
be selected as the known team the agent considers to be
most similar to the unknown team according to its belief
(however, in Subsection 5.5 were chosen combinations of
teams that allowed to observe the performance growth more
easily). Several possible improvements were also tested,
where increasing the batch size resulted in a more steady
growth but in slightly reduced performance (possibly related
to the more infrequent training that was used to compensate
for the additional computational cost).

6.1 Limitations and future work
The first main limitation of this work is the simplistic un-
known team detection. While it appears to work with some
success in our experiments, its robustness has to be thor-
oughly tested. When there are many known teams it is
expected that the model will have more varied predictions
across multiple transitions, biasing the agent for the team
being unknown. Future work on this area could involve
applying more robust and well-studied techniques, namely
in the field of anomaly detection [8]. Another possibility
could be approaches based on the entropy of the transitions’
belief losses.

The second main limitation of this work is the online policy
adaptation. While the policy can remain reasonably stable,
there was no meaningful observed improvement in the first
moments (e.g. the first 1000 episodes), which are of greater
importance in this setting. Future work in this area could in-
volve studying some of the work mentioned in Yang Yu [30],
namely using better exploration techniques [22] [12], using
model-based methods for augmented DQN features [23]
[24] and exploring meta-learning approaches [11].

7. REFERENCES
1. Akiyama, H., and Nakashima, T. Helios base: An open

source package for the robocup soccer 2d simulation.
In RoboCup 2013: Robot World Cup XVII, S. Behnke,
M. Veloso, A. Visser, and R. Xiong, Eds., Springer
Berlin Heidelberg (Berlin, Heidelberg, 2014), 528–535.

2. Akiyama, H., Nakashima, T., and Yamashita, K.
Helios2013 team description paper. RoboCup (2013).

3. Barrett, S. Making Friends on the Fly: Advances in Ad
Hoc Teamwork. PhD thesis, The University of Texas at
Austin, Austin, Texas, USA, December 2014.

4. Barrett, S., Rosenfeld, A., Kraus, S., and Stone, P.
Making friends on the fly: Cooperating with new
teammates. Artificial Intelligence (October 2016).

5. Bishop, C. M. Pattern Recognition and Machine
Learning (Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg, 2006.

6. Blum, A., and Mansour, Y. Learning, Regret
Minimization, and Equilibria. Cambridge University
Press, 2007, 79–102.

7. Cesa-Bianchi, N., and Lugosi, G. Prediction, Learning,
and Games. Cambridge University Press, 2006.



8. Chandola, V., Banerjee, A., and Kumar, V. Anomaly
detection: A survey. ACM Comput. Surv. 41, 3 (July
2009).

9. Efron, B. Bootstrap methods: Another look at the
jackknife. Ann. Statist. 7, 1 (01 1979), 1–26.

10. Ernst, D., Geurts, P., and Wehenkel, L. Tree-based
batch mode reinforcement learning. J. Mach. Learn.
Res. 6 (dec 2005), 503–556.

11. Finn, C., Abbeel, P., and Levine, S. Model-agnostic
meta-learning for fast adaptation of deep networks. In
Proceedings of the 34th International Conference on
Machine Learning, D. Precup and Y. W. Teh, Eds.,
vol. 70 of Proceedings of Machine Learning Research,
PMLR (International Convention Centre, Sydney,
Australia, 06–11 Aug 2017), 1126–1135.

12. Fortunato, M., Azar, M. G., Piot, B., Menick, J.,
Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis,
D., Pietquin, O., Blundell, C., and Legg, S. Noisy
networks for exploration, 2019.

13. Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

14. Hausknecht, M., Mupparaju, P., Subramanian, S.,
Kalyanakrishnan, S., and Stone, P. Half field offense:
An environment for multiagent learning and ad hoc
teamwork. In AAMAS Adaptive Learning Agents (ALA)
Workshop (May 2016).

15. Hessel, M., Modayil, J., van Hasselt, H., Schaul, T.,
Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar,
M., and Silver, D. Rainbow: Combining improvements
in deep reinforcement learning, 2017.

16. Hester, T., and Stone, P. Texplore: real-time
sample-efficient reinforcement learning for robots.
Machine Learning 90, 3 (Mar 2013), 385–429.

17. Kalyanakrishnan, S., Liu, Y., and Stone, P. Half field
offense in RoboCup soccer: A multiagent
reinforcement learning case study. In RoboCup-2006:
Robot Soccer World Cup X, G. Lakemeyer, E. Sklar,
D. Sorenti, and T. Takahashi, Eds., vol. 4434 of Lecture
Notes in Artificial Intelligence. Springer Verlag, Berlin,
2007, 72–85.

18. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa,
E., and Matsubara, H. Robocup: A challenge problem
for ai. AI Magazine 18, 1 (Mar. 1997), 73.

19. Lanctot, M., Lockhart, E., Lespiau, J.-B., Zambaldi, V.,
Upadhyay, S., Pérolat, J., Srinivasan, S., Timbers, F.,
Tuyls, K., Omidshafiei, S., Hennes, D., Morrill, D.,
Muller, P., Ewalds, T., Faulkner, R., Kramár, J., Vylder,
B. D., Saeta, B., Bradbury, J., Ding, D., Borgeaud, S.,
Lai, M., Schrittwieser, J., Anthony, T., Hughes, E.,
Danihelka, I., and Ryan-Davis, J. Openspiel: A
framework for reinforcement learning in games, 2020.

20. MacAlpine, P., Genter, K., Barrett, S., and Stone, P.
The robocup 2013 drop-in player challenges:

Experiments in ad hoc teamwork. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (2014), 382–387.

21. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H.,
Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D.
Human-level control through deep reinforcement
learning. Nature 518, 7540 (Feb. 2015), 529–533.

22. Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S.,
Chen, R. Y., Chen, X., Asfour, T., Abbeel, P., and
Andrychowicz, M. Parameter space noise for
exploration, 2018.

23. Pong*, V., Gu*, S., Dalal, M., and Levine, S. Temporal
difference models: Model-free deep RL for
model-based control. In International Conference on
Learning Representations (2018).

24. Racanière, S., Weber, T., Reichert, D., Buesing, L.,
Guez, A., Jimenez Rezende, D., Puigdomènech Badia,
A., Vinyals, O., Heess, N., Li, Y., Pascanu, R.,
Battaglia, P., Hassabis, D., Silver, D., and Wierstra, D.
Imagination-augmented agents for deep reinforcement
learning. In Advances in Neural Information
Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., vol. 30, Curran Associates, Inc.
(2017), 5690–5701.

25. Stone, P., Kaminka, G. A., Kraus, S., and Rosenschein,
J. S. Ad hoc autonomous agent teams: Collaboration
without pre-coordination. In Proceedings of the
Twenty-Fourth Conference on Artificial Intelligence
(July 2010).

26. Stone, P., Sutton, R. S., and Kuhlmann, G.
Reinforcement learning for RoboCup-soccer keepaway.
Adaptive Behavior 13, 3 (2005), 165–188.

27. Sutton, R. S., and Barto, A. G. Reinforcement Learning:
An Introduction, second ed. Adaptive Computation and
Machine Learning series. MIT Press, USA, 2018.

28. van Hasselt, H., Guez, A., and Silver, D. Deep
reinforcement learning with double q-learning, 2015.

29. Wang, Z., Schaul, T., Hessel, M., van Hasselt, H.,
Lanctot, M., and de Freitas, N. Dueling network
architectures for deep reinforcement learning, 2015.

30. Yu, Y. Towards sample efficient reinforcement learning.
In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18,
International Joint Conferences on Artificial
Intelligence Organization (7 2018), 5739–5743.

31. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H.,
Xiong, H., and He, Q. A comprehensive survey on
transfer learning. Proceedings of the IEEE 109, 1
(2021), 43–76.

http://www.deeplearningbook.org

	1 Introduction
	1.1 Motivation
	1.2 Problem
	1.3 Contributions

	2 Half Field Offense
	3 Related Work
	3.1 PLASTIC-Policy

	4 Learning, identifying and adapting to teammates
	4.1 Policies for known teams
	4.1.1 State and action spaces
	4.1.2 Reward function
	4.1.3 Initial hyper-parameters
	4.1.4 Hyper-parameter and modeling adjustment
	4.1.5 Policy training and effectiveness

	4.2 Policy selection
	4.2.1 Identifying known teammates
	4.2.1.1 Predicting the next state
	4.2.1.2 Discriminating teams
	4.2.1.3 Advantages and disadvantages of each alternative

	4.2.2 Belief updating
	4.2.3 Belief loss for unknown teams

	4.3 Policy for an unknown team
	4.3.1 Adapting a selected pre-trained policy


	5 Results
	5.1 Evaluation procedure
	5.1.1 Task
	5.1.2 Metrics

	5.2 Policy hyper-parameter and modeling adjustment
	5.3 Learning and evaluating policies
	5.4 Evaluating the policy selection within the ad hoc agent
	5.4.1 Only known teams
	5.4.2 Considering the possibility of an unknown team

	5.5 Policy for an unknown team

	6 Conclusion
	6.1 Limitations and future work

	7 REFERENCES 

