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Resumo

Os projetos de trabalho de campo arqueológico resultam na recolha de artefactos históricos (por exem-

plo, fragmentos de cerâmica) que precisam de ser classificados de acordo com categorias estabeleci-

das, que na área são referidas como tipologias. Estas categorias agrupam objetos com caracterı́sticas

semelhantes (ou seja, semelhança na forma geral, no carácter das peças componentes como aros e

pegas, e na técnica e estilo de decoração), permitindo aos arqueólogos determinar a origem das peças

encontradas num local especı́fico (se são autóctones), a sua idade, ou a idade do local.

A categorização das peças de cerâmica é atualmente realizada por arqueólogos através de um

procedimento inteiramente manual, envolvendo a análise de ilustrações de linhas padronizadas. Mais

recentemente, os artefactos de cerâmica sob a forma de fotografias a cores fornecem um formato al-

ternativo para a classificação da cerâmica. Uma vez que a análise manual levanta problemas para a

categorização atempada de um grande número de artefactos, existe interesse em abordagens autom-

atizadas para sugerir tipologias a artefactos arqueológicos.

Com esta motivação, um conjunto de técnicas estado da arte, baseado na utilização de redes neu-

rais convolucionais, é proposto para classificar automaticamente tanto diagramas de linhas a preto-e-

branco como fotografias a cores de fragmentos de cerâmica. Uma avaliação abrangente das aborda-

gens propostas é apresentada, discutindo as limitações associadas ao desequilı́brio de classes ou à

falta de grandes conjuntos de dados de treino.

Palavras-chave: Arqueologia Computacional, Classificação de Imagens, Meta-aprendizagem,

Aprendizagem com Redes Profundas, Visão Computacional, Inteligência Artificial
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Abstract

Archaeological fieldwork projects result in the collection of historical artifacts (e.g., pottery sherds) that

need to be classified according to established categories, which in the area are referred to as typolo-

gies. These categories group objects with similar characteristics (i.e., similarity in the overall shape, in

the character of component parts such as rims and handles, and in the technique and style of deco-

ration), allowing archaeologists to ascertain the origin of pieces found in a specific location (if they are

autochthonous), their age, or the age of the site.

The categorization of pottery sherds is presently done by archaeologists through an entirely manual

procedure, involving the analysis of standardized line illustrations. More recently, pottery artifacts in the

form of color photographs provide an alternative format for pottery classification. Since manual analysis

raises problems for the timely categorization of a large number of artifacts, there is interest in automated

approaches for suggesting typologies to archaeological artifacts.

With this motivation, a set of state-of-the-art techniques, based on the use of convolutional neural net-

works, is proposed to automatically classify both standardized black-and-white line diagrams and color

photographs of pottery sherds. A comprehensive evaluation for the proposed approaches is reported,

discussing limitations associated with class imbalance or lack of large training datasets.

Keywords: Computational Archeology, Image Classification, Meta-learning, Deep Learning,

Computer Vision, Artificial Intelligence
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Chapter 1

Introduction

During the course of archaeological fieldwork, one of the most commonly recorded artifacts is pottery

vessels, frequently in the form of incomplete broken sherds. The fragments prove to be essential in

approaching the study of the everyday life of the ancient societies that produce them, their customs and

traditions. Since their inception, during the Neolithic period (approximately 12,000 years ago), ceramic

vessels are one of the most prevailing materialities in pre-industrial contexts. In terms of conservation,

and considering other objects composed of metals and/or other organic materials, pottery is compara-

tively stable. Potsherds, in archaeological settings, can provide answers to many questions, with some

of the most important ones corresponding to the dating of the artifact, in conjunction with its discov-

ery context, and its specific purpose. In order to better group these ceramic findings, various ceramic

type series were developed that allow for the relative dating of different pottery types, with, in some in-

stances, the classification granularity specifying the generation in which the object was assembled (e.g.,

terra sigillata).

In the aftermath of an archaeological excavation, post-excavation analyses are conducted taking into

account the types of found artifacts and the questions that archaeologists have previously posed. Sum-

marily, the analysis can be divided into three steps: (i) archaeologists clean the extricated objects and

inventory them, (ii) both the shapes and materials of the artifacts are analyzed and manually sketched,

(iii) taking into account the previously ascertained object properties typologies are assigned. The afore-

mentioned artifact sketches are produced due to two main properties. First, it is an effective mode of

recording the overall formal and decorative characteristics of the extracted artifacts. Secondly, by both

schematizing and interpreting the potsherd in the sketched diagram, these black-and-white drawings

provide a comparative frame of reference that allows to both share a view of the materials recorded in

archaeological works and compare them with other instances from typological series or other archae-

ological contexts. The aforesaid process is frequently a lengthy one, taking months, sometimes years,

with the elapsed time being a function of the fieldwork’s object volume. Alternatively, a divergent artifact

recording method is frequently employed: color photographs. When compared with the aforementioned

sketching procedure, photographs eliminate the need for an expert sketch artist thus ameliorating the

cataloging process. On the other hand, such method raises additional difficulties (e.g., background

1



Figure 1.1: Side-by-side example of an artifact’s photograph and its corresponding black-and-white line
diagram. Image obtained from an article by Stibbe about Laconian pottery [2].

uniformity or fragment representation).

For a successful comparison, concerning the black-and-white diagrams, these must be standardized,

following the widely accepted standard divided in two-parts as shown in Figure 1.1. On the left, a

cross-section of the object presents the vessel profile and interior; on the right, the exterior view of the

artifact is represented. Additionally, if the pottery has decoration on the rim, this is portrayed above the

upper axis, while if the vessel bottom is decorated, the motives are depicted below the lower axis. In

order to facilitate the measurement of similarity amongst artifacts, often a manual visual assessment is

carried out. Therefore, using computational techniques to relate and classify automatically potsherds

to their typologies can contribute to making inventory and catalog processes faster. An example of

these techniques are machine learning methods leveraging deep neural networks. With the ability to

use deep learning, automatic image classification techniques progressed significantly [1]. State-of-the-

art methods for the classification of images are, in the context of archaeological pottery classification,

especially pertinent: they have the potential to support the automatic, very accurate, and interpretable

classification of the artifacts in the form of both black-and-white diagrams and color photographs.

1.1 Objectives

The scope of this dissertation is the development of methods for image classification tasks in the context

of diagrams and photographs of retrieved archaeological pottery artifacts. These classification tasks

consist in categorizing the images in the aforementioned formats into typologies.

More concretely, the principal goal was the experimentation and study of the application of super-

vised machine learning algorithms to the above-mentioned data domain. These algorithms, specifically

deep convolutional neural networks, were studied in conjunction with state-of-the-art techniques (e.g.,

data augmentation approaches, self-training) for image classification tasks in order to bolster classifica-

tion performance.
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In addition, contrasting convolutional neural network architectures are explored and testing over dif-

ferent possible structures for the inputs to the considered deep neural networks is performed, namely

a comparison between single-input and two-input architectures, i.e., one single image containing both

views of the object compared with two images each containing only one view.

In conclusion, due to the diminutive nature of the studied datasets, when compared with the volume

of data usually required for deep neural network training, this work also aims to explore the effectiveness

of state-of-the-art few-shot learning techniques when applied to the pottery classification tasks. As to

mitigate the above-mentioned data problems, the use of unlabeled data instances is often considered

as a complement to the generally much smaller set of labeled instances and, consequently, is likewise

evaluated in this dissertation in the form of self-training techniques.

1.2 Methodology

The introductory tasks of this work were in their totality data related. Concerning the black-and-white

diagram dataset, classes that did not respect certain minimum size standards were pruned from the

dataset while in parallel procuring additional data instances in order to complete certain minority classes.

A similar class pruning process was also performed in the color photograph dataset. Afterward, the

unlabeled dataset was obtained through the search and extraction, using semi-automatic methods, of

data instances from various archeology publications.

Following the initial data preparation tasks and considering two of the state-of-the-art convolutional

neural network architectures, the EfficientNet [3] and DenseNet [4], a survey of the best-performing data

augmentation techniques was effected, with MixUp [5] and AugMix [6], after some preliminary tests,

emerging as the best performing candidates for the image classification task. The aforementioned data

augmentation techniques were then applied in all subsequent tests.

Taking into account the structure of the images of the black-and-white diagram dataset, an alterna-

tive two-input structure, corresponding to the two views present in the aforementioned images, for the

considered architectures was made apparent and tested as an alternative to the standard single-input

neural network.

Afterward, an exploratory study of the state-of-the-art techniques for few-shot learning was per-

formed with two methods presenting the best results. These methods, both leveraging meta-learning

approaches where a classification algorithm is applied over representations learned by the convolutional

neural networks, were then explored in conjunction with the previously mentioned data augmentation

techniques and the different architectures.

Finally, regarding the unlabeled data instances, exclusive to the black-and-white diagram dataset,

the state-of-the-art technique Noisy Student [7], which aims to improve image classification accuracy

by leveraging unlabeled examples, due to its high performance in the ImageNet classification task, was

applied over the models trained with the aforementioned techniques.

The implementation of the various systems produced in the context of this work was achieved by

the use of the Python programming language, since it is the de facto machine learning language. In

3



additional detail, the Tensorflow1 deep learning library was the chosen framework for both the imple-

mentation of the architectures and their training.

As previously mentioned, the training of the convolutional neural network models was performed

leveraging two datasets, namely the black-and-white diagram and color photograph datasets. Both

datasets were partitioned in a similar structure where a cross-validation split with 5 folds, with 80%

of data instances used for training and 20% for testing. Due to the highly imbalanced nature of both

datasets, evaluation metrics such as accuracy are prone to be biased towards the majority classes,

consequently, the evaluation of the models trained in the course of this work is achieved through the

precision, recall, and f1 metrics. Since the training of all models is performed in a cross-validation

manner, each of the aforementioned metrics is computed by averaging the folds’ scores.

1.3 Results and Contributions

The principal techniques and contributions of this work can be summarized as follows:

• A method leveraging deep convolutional neural networks for the classification of historical pottery

artifacts is proposed. In this method, a convolutional neural network is trained using either black-

and-white diagrams or photographs of the extracted artifacts. Particularly, two state-of-the-art

convolutional neural network architectures are considered for this effect, namely the DenseNet [4]

and the EfficientNet [3]. The proposed network is, before being trained on the domain dataset,

pre-trained on the extensive ImageNet [8] dataset.

• Considering the significance of data augmentation techniques in the regularization of neural net-

works and its particular importance in small datasets, the use of data augmentation methods such

as MixUp [5] and AugMix [6] is proposed in the context of the classification of pottery artifacts into

typologies. These techniques generate new examples from the original data instances combating,

in this way, the tendency of convolutional neural networks to overfit small datasets.

• Taking into account the techniques that have been developed specifically for the few-shot learning

setting, an approach based on two of these techniques [9, 10] is proposed in this dissertation with

the goal of combating the small number of samples in the pottery artifact datasets. In this method,

a certain classifier is applied over the representations learned by the convolutional neural network

model, which was trained over the artifact dataset. Several classifiers are proposed, namely k-

nearest neighbors, random forest, and logistic regression.

• Leveraging unlabeled data instances available in large quantities is one of the possible paths to

improve performance in image classification tasks. The Noisy Student method [7], the state-of-

the-art in the ImageNet classification task, provides a procedure for the incorporation of unlabeled

images in model training. In this dissertation, the application of the Noisy Student procedure to

the training of models using the black-and-white diagram dataset is proposed. In the case of the

1http://www.tensorflow.org/
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considered artifact diagram dataset, first, a model leveraging data augmentation is trained over the

available data instances, subsequently, this model is used to label the unlabeled data instances,

and posteriorly these newly labeled instances are used for the second phase of training.

• A novel labeled dataset of examples of pottery artifacts diagrams is introduced. The dataset is

comprised of, in its majority, artifacts from a set of data from a real-world archaeological excavation

scenario. Moreover, due to the small size of certain classes in the aforementioned set of diagram

examples, additional black-and-white diagrams were extracted from various academic articles (in

the archeology field) in order to complete the aforesaid minority classes.

• The compilation of a dataset of unlabeled black-and-white diagrams depicting recovered archae-

ological pottery artifacts. These drawings were extricated from various specialized archaeological

sources in a semi-automatic manner, totaling approximately 3000 instances. Since the number of

labeled diagrams is potentially small, as is the case in this work, an unlabeled set of data instances

can conceivably temper some of the training difficulties related to small datasets.

• Considering the multiple mediums in which pottery artifacts can be depicted in, a concomitant ex-

ploration of the classification of pottery color photographs is performed. In order to do so, a new

color photograph pottery dataset is presented. From an existing online catalog of photographs of

pottery artifacts, the new dataset, comprised of a subset of the classes contained in the aforemen-

tioned catalog, is formed.

• The above-mentioned methods were tested and evaluated in the considered datasets in a compre-

hensive series of experiments. The results for the black-and-white pottery diagram dataset report

higher performances when leveraging the AugMix data augmentation technique in conjunction with

the meta-learning approach and trained following the Noisy Student procedure. In the same man-

ner, regarding the color photograph dataset, using the AugMix data augmentation and employing

the meta-learning approach achieved the highest performance.

The best performing model, which leveraged unlabeled images, achieved 60.51% in the f1 score

regarding the black-and-white diagram dataset. On the other hand, for the color photograph dataset the

highest scoring model, when taking into consideration the f1 score, achieved 77.53%.

The implementation of the various techniques that were studied in this dissertation can be found on

a GitHub repository2.

1.4 Thesis Outline

The remaining sections of this dissertation are arranged in the following manner:

• Chapter 2 defines the elementary concepts and related work. Firstly, Section 2.1 presents an

overview of the theoretical background of neural networks and convolutional neural networks in the

2http://github.com/tomas-olliv/cnn-pot
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context of supervised learning. Then, an in-depth study of the two state-of-the-art convolutional

neural network architectures considered for this work, EfficientNet and DenseNet, is presented

in Section 2.2. Finally, Section 2.3 reviews several techniques that aim to apply automatic learn-

ing algorithms to the task of classifying diagrams or photographs of archaeological pottery into

typologies.

• Chapter 3 presents the proposed method for the classification of images (photographs or drawn

diagrams) of pottery artifacts into typologies. The proposed method is composed of several tech-

niques, which are detailed in this chapter.

• Chapter 4 details the experimental evaluation of the proposed methods. The chapter first presents

an analysis of the datasets used in this work, the experimental methodology employed for the

performed tests, and an overview of the model optimization strategies chosen for model training.

Moreover, the experimental results for the black-and-white diagram dataset are presented and

analyzed together with a study of the learned representations by applying the t-SNE technique. In

conclusion, the analysis of the results for the experiments regarding the color photograph dataset

is presented.

• Finally, Chapter 5 identifies the conclusions emanated from the performed research and estab-

lishes some new directions for future work.
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Chapter 2

Concepts and Related Work

In this chapter, both the fundamental concepts supporting the developed image classification systems

(e.g., convolutional neural networks), as well as related work pertaining to the classification of archae-

ological pottery diagrams and color photographs into preestablished typologies, are introduced. Firstly,

Section 2.1 introduces artificial neural networks and, due to both their suitability and prevalence in solv-

ing image classification tasks, convolutional neural networks. Secondly, Section 2.2 reviews the two

state-of-the-art convolutional neural network architectures employed in this dissertation: DenseNet and

EfficientNet. Finally, four papers that established, in a systematic way, techniques for the classification

of diagrams and photos of archaeological pottery artifacts are analyzed.

2.1 Supervised Learning with Deep Neural Networks

Machine learning concerns with automatically learning patterns from a set of data instances, i.e., the

available data from a certain problem domain. These data instances, grouped in a training set, are used

by the machine learning algorithm to adjust the parameters of a model that reflects the data. When the

data instances contained in the training set are labeled, i.e., the category of each instance is known,

this additional knowledge can be leveraged using algorithms from the denominated supervised learning

approach. A commonly utilized group of techniques that learn from labeled training sets are the so-called

artificial neural networks.

2.1.1 The Perceptron

The main unit of computation within an artificial neural network is the perceptron. The perceptron model,

using the concept of a neuron proposed by McCulloch and Pitts [11], was first used by Rosenblatt [12]

to describe information storage, recollection, and the influence of information on behavior in the human

brain. In the standard perceptron model for binary classification, an input vector x = x0, x1, ..., xm is

transformed into an output value of 0 or 1, corresponding to one of two different classes. Each one of

the elements of the input vector x is weighted by the parameters in a weight vector w = w0, w1, ..., wm,

producing an output that will later be fed to an activation function, as shown in Equation 2.1. One of the
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weights, i.e., w0, is called the bias, and it shifts the hyperplane that separates the two classes of inputs

(i.e., the perceptron corresponds to a linear classifier, with the weight vector defining a hyperplane that

separates the classes). The value in the input vector x corresponding to the bias is set to one.

net(x) =

m∑
i=0

wi · xi (2.1)

A nonlinear activation function f(x), that reproduces the firing behavior of a neuron, is used as a threshold

to determine the class of the input. The activation function is usually defined as follows for binary

classification:

f(x) =

1 x ≥ 0

0 x < 0

(2.2)

When learning a perceptron model from a set of pre-labeled data instances, the weight vector w

must be updated taking into account the label of the current input and its predicted class. By iteratively

visiting different training examples, the perceptron will learn the parameters of the hyperplane separating

the data instances through a function that measures the classification error. In order to do so, the error

(i.e., the loss) in each iteration can be defined to correspond to the difference between the target value

(i.e., the label of the input training data) and the output of the perceptron. An hyperparameter η, called

learning rate or step size, is added to the function defining the updates in order to encode how sensitive

the weights of the network are to the classification error. A high learning rate will cause the weights

to oscillate considerably, and thus this hyperparameter is usually set to a small constant. Equation 2.3

formalizes the way in which the perceptron learns, called the perceptron learning rule:

wnew = w + η · (t− o) · x (2.3)

In the previous equation, t is the target and o is the output of the perceptron. In a more general case, in

which the activation function or the loss function are defined differently, training can rely on minimizing an

error function using the gradient descent method. This algorithm works by taking steps in the direction

of the negative gradient of the current point, this way approximating the local minimum in each step.

By applying this method, a more general learning rule (Equation 2.4) is reached that allows for greater

flexibility in the choice of the function that measures the classification error.

wnew = w − η · ∇E(w) (2.4)

2.1.2 The Multi-Layer Perceptron

In order to obtain good results in classification, a single perceptron is often not enough. This was first

made evident by Minsky and Papert [13], which described the inability of a single perceptron to classify

data that is not linearly separable. To improve the performance of the classification, multiple perceptrons

can be organized in layers, with each of the layers connected by weighted links. In one such multi-layer

perceptron architecture, there are three types of layers: input, hidden and output. The first receives the
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original input and transforms it into an intermediate result. The hidden layers receive the previous layer’s

output and, using an activation function, produce an output to the next layer (hidden or output). Finally,

the output layer receives the input of the previous layer and produces an output that corresponds to a

final prediction.

The effectiveness of the multi layer perceptron (MLP) model depends completely on the weights

connecting the different layers. Therefore, before an actual classification is done, these weights must be

learned from examples for the data that will be classified. This is done by applying a technique called

back-propagation, first introduced by Rumelhart et al. [14]. In back-propagation, as in the perceptron

learning algorithm, the error of the predictions is minimized. There are several different error functions

that can be defined to achieve this goal, depending on the actual goal. Common examples include

the cross-entropy function (Equation 2.6) for classification problems, or the mean squared error for

regression. For both binary and multi-label classification purposes, the cross-entropy is one of the most

commonly used loss functions. Binary cross-entropy is defined with a basis on a likelihood function, i.e.,

the probability of a given target t (i.e., class) knowing the parameters w of the model, as expressed in

Equation 2.5.

p(t|w) =

K∏
k=1

otnk · (1− ok)1−tk (2.5)

For expressing this idea as an error function, the negative logarithm of the likelihood is taken. By

applying the negative logarithm to Equation 2.5 and using the logarithmic identities, the cross-entropy

error equation is reached:

E = − ln (p(t|w)) = −
K∑
k=1

(tk · ln (ok) + (1− tk) · ln (1− ok)) (2.6)

In the previous Equations 2.5 and 2.6, tk is the target value (i.e., the actual class of observation k) and

ok the current output, with the k subscript indexing the t and o vectors both with dimension K (i.e., the

total number of observations).

In order to minimize the loss function from Equation 2.6, its gradient is taken with respect to the

weights wij of the network. Using the sigmoid (Equation 2.8 with α = 1) as the activation function, and

considering that ok = σ
(
w> · xk

)
, a new expression is reached:

∂E

∂w
=

K∑
k=1

(ok − tk) · xk (2.7)

The logistic sigmoid function used in the definition of ok is, in turn, defined as:

σ(x) =
1

1 + e−α·x
(2.8)

For multi-class classification problems, a commonly used activation function is the softmax function,

which, in this context, takes a vector net, comprised of the weighted inputed values for all available M

classes and returns, for a certain class i, the computed probability for a given x. Considering neti =
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w>i · x, the predicted probability for class i, using the softmax activation function, is expressed as:

σ(net)i =
eneti∑M

m=1 e
netm

(2.9)

The softmax activation thus provides a probability distribution over M classes. Using Equation 2.9

as a basis for the likelihood function and taking its negative logarithm, employing a similar process

to the derivation of the binary cross-entropy error, a loss function for multi-class classification, named

categorical cross-entropy, is in this manner defined:

E = −
K∑
k=1

M∑
m=1

tk,m · ln(ok,m) (2.10)

In the previous equation, M denotes the total number of classes, ok,m the probability of instance k

belonging to class m, and tk,m represents, in binary form, whether instance k truly belongs to class m.

In back-propagation, Equation 2.4 is used in a recursive manner across the network to update the

layer’s weights. This process is first done in the output layer and then used in the previous layers (until

the input layer is reached) through the chain rule of differential calculus. The back-propagation algorithm

has thus two phases: the first one transforms the input that is fed to the neural network and outputs a

class. The second one adjusts the network’s weights to achieve a better classification performance,

through the chain rule of differentiation.

The choice of an activation function in the intermediate layers of a neural network has an important

effect on the nonlinear mapping that is learned. Comparing two different activation functions, namely

the logistic sigmoid (Equation 2.8) and the leaky ReLU (Equation 2.11, where k corresponds to a leak

factor controlling the size of the output when the unit is inactive), some differences can be observed in

the outputs that they generate. In a sigmoid function the output is contained in [0, 1] while, in the leaky

ReLU case, the output has no upper limit.

f(x) =

x x > 0

k · x x ≤ 0

(2.11)

The sigmoid activation function has, however, an inherent flaw, namely the vanishing gradient prob-

lem. This occurs when the gradient of the activation function becomes exceedingly small (near zero)

and, consequently, the weights will not be updated, causing the neural network to stop learning. Back-

propagation originates this problem due to the application of the chain rule during parameter updating,

with the derivatives of the activation functions of consecutive layers (starting from the final layer) be-

ing multiplied throughout the network, causing in some cases the earlier layers to compute very small

gradient values, with deeper networks exacerbating this effect. As the derivative of the sigmoid func-

tion, expressed in Equation 2.12, outputs values in the interval ]0, 0.25], during back-propagation, deep

networks composed of layers featuring this activation function will propagate backwards gradients of

exponentially diminishing size, with the gradients reaching the first layers nearing zero.
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∂σ

∂x
= σ (x) · (1− σ(x)) (2.12)

Because the minima of the loss function is needed for the back-propagation algorithm, the search for

these points may encounter saddle points. Despite having gradient zero, saddle points are not minima of

the loss function, thus causing a slower convergence. In order to solve this problem, some optimization

algorithms extend the general idea of gradient descent. One of these improvements is the Nesterov

momentum [15], which turns the optimization problem more amenable by taking the gradient with respect

to another variable: the momentum of the previous ∆wij is added to wij . This way, it is possible to

circumvent points that, in next iterations, would drift away from the minima.

∆wij = α ·∆woldij − η ·
∂E

∂(α ·∆woldij + wij)
(2.13)

In the previous equation, η is the learning rate, and α represents the momentum. The tuning of the

learning rate parameter η must, however, be done manually.

Another widely used optimization algorithm is the Adaptive Moment Estimation (ADAM) approach,

proposed by Kingma and Ba [16]. In ADAM, a moving average of the gradients of the weights (Equa-

tion 2.14) and its square (Equation 2.15) is used in the weight update. These rolling averages allow the

learning algorithm to mitigate the risk of a detour in the minima search. In order to be able to adjust the

decaying rates of both moving averages, two hyperparameters are used, namely γ1 and γ2 ∈ [0, 1].

MA

[
∂E

∂wij

]
= (1− γ1)

∂E

∂wij
+ γ1MA

[
∂E

∂wij

]old
(2.14)

MA

[
∂E

∂wij

2]
= (1− γ2)

∂E

∂wij

2

+ γ2MA

[
∂E

∂wij

2]old
(2.15)

In an effort to mitigate very small gradient values, an estimation of these values is used instead, as

shown in Equations 2.16 and 2.17.

M̂A

[
∂E

∂wij

]
=
MA

[
∂E
∂wij

]
1− γ1

(2.16)

M̂A

[
∂E

∂wij

2]
=
MA

[
∂E
∂wij

2
]

1− γ2
(2.17)

Using the previous result, the final update rule is shown in Equation 2.18.

wij = woldij − M̂A

[
∂E

∂wij

]
η√

M̂A
[
∂E
∂wij

2
]

+ ε

(2.18)

In the previous equations, MA is the moving average and ε is a parameter corresponding to a small

number, to prevent division by zero.

The aforementioned optimizations intend to improve the learning algorithm. There are, however,

11



0 3

2 1

1

1 2 1 0

2 3 2 5

2 3 4 0

2 6 2 5

13 1 2 1 0

2 3 2 5

2 3 4 0

2 6 2 5

13 9 1 2 1 0

2 3 2 5

2 3 4 0

2 6 2 5

13 9

19

1 2 1 0

2 3 2 5

2 3 4 0

2 6 2 5

13 9

19 9

1

Figure 2.1: Example of a convolution operation. The kernel, shown in blue, is applied with a stride of
size two, leading to a feature matrix shown in green.

other aspects of the learning process that can be enhanced, such as possible cases of overfitting. A

model is said to overfit when it is too specific to its training data. A commonly used technique that tackles

this issue is dropout [17], which works by deactivating neurons with a certain constant probability during

the training phase. In this way, every neuron has a better chance to contribute to the final predictions,

this way adding more generality to the produced model.

2.1.3 Convolutional Neural Networks

In the previous subsection, multi-layer perceptrons and general concepts related to training neural net-

works were discussed. Image classification problems often rely on a particular type of neural network,

referred to as convolutional neural network. This type of network uses a mathematical operation called

convolution as the main computation, instead of the standard matrix multiplication used in multi-layer

perceptrons. Convolutional filters, in addition to other types of layers, are used to obtain the main fea-

tures of the input data. This is particularly relevant in the learning of data that is grid-structured (e.g.,

two-dimensional images). Convolutional filters are repeatedly applied in the input matrices, providing in

this way a new output. The filters are applied using the convolution operation, in which each element of

the filter is multiplied, element to element, with the corresponding elements of the input matrix having

the same relative position (i.e., the filter is applied as a sliding window). All the results of the these

multiplications are then summed, providing a new element in an output matrix. An example of this can

be seen in Figure 2.1, where a filter (in blue) is applied on a feature matrix (in white) resulting in a new

feature matrix. Furthermore, the intermediate steps of the application of the convolutional filter (in light

green) on the original feature matrix can be observed.

More formally, the convolution of two real functions, g(x) and h(x), can be defined as follows:

∫ +∞

−∞
g(t) · h(x+ t)dt (2.19)

Depending on the size of the output matrix (i.e., a function of the domain of the input), a different

stride size may be used in the application of the filter. The stride size establishes the index of the next

element of the feature vector to be used (e.g., with a stride size equal to 2, the filter will be applied in

the element x1,3 if it was applied in x1,1 in the previous iteration, which is exactly what is depicted in

Figure 2.1, specifically in the first two applications of the filter). Equation 2.20 formulates the size of the

output matrix of a convolutional filter in function of the edge size e (i.e., either height or width) of the input
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Figure 2.2: The LeNet-5 architecture. The convolution operation is depicted in green and the max-
pooling in red, whereas the final fully-connected layers are portrayed in purple.

matrix, the stride size s, and the filter size f .

enew = floor

(
e− f + s

s

)
(2.20)

Another type of layers used in convolutional neural networks are pooling layers. In a pooling filter,

instead of multiplying element to element the filter with the input matrix, a certain function (e.g., the

average or the maximum) is applied to a predefined number of input elements.

Both convolutional and pooling filters are usually much smaller than the original input matrix, and

thus down-sampling occurs when the filter is applied, allowing for a more general set of features, in

comparison with the original input. After a filter is applied, in order to guarantee that a nonlinear mapping

is learned, one of the previously mentioned nonlinear activation functions (e.g., the leaky ReLU) is used

to process the results.

Convolutional models frequently also employ fully-connected layers, where filters have the size of

an element (i.e., one column per one row), thus behaving similarly to the layers within a multi-layer

perceptron (Equation 2.1). Fully-connected layers are useful to learn non-linear mappings from the

general features that a convolutional layer outputs.

To illustrate the use of the aforementioned concepts, an analysis of a complete convolutional neural

network architecture is given next, specifically the LeNet architecture. Using the neocognitron model

first introduced by Fukushima [18] as a base architecture, LeCun et al. [19] developed a pioneering con-

volutional neural network structure named LeNet to single out hand-written numbers. This architecture

uses the previously introduced concepts: convolution, pooling and fully-connected layers. The LeNet-5

architecture shown in Figure 2.2 has 7 layers, namely two convolution layers followed by pooling layers

with an average function, and three fully-connected layers at the end of the network. It should be noted

that the output of the pooling layer, in this particular architecture, is processed with a sigmoid function.

The pooling layers have a size of two rows per two columns and the filter is applied with a stride size

of two. The final fully-connected layer uses a radial basis function per class to determine the squared
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difference of the input and the weight vector, as shown in Equation 2.21.

oi =

N∑
j=1

(xj − wij)2 (2.21)

Due to the very large number of parameters in typical convolutional neural networks, model training

will most likely overfit. Besides the previously mentioned dropout method, a technique called data aug-

mentation can be used to mitigate overfitting, by creating a bigger dataset for training. New instances

are created by applying a set of operations on the original data. For instance, when applied to images,

data augmentation can be based on rotating, flipping, cropping, scaling, and/or changing the color tem-

perature of the original images, this way creating a bigger training set with variations on the original

instances.

2.2 Advanced Neural Models for Image Classification

Deep neural networks, the learning algorithms that serve as the base for the classifiers here developed,

have a a wide range of applications in the computer vision domain, namely image classification. This

section provides an in-depth description of two convolutional neural network architectures, namely the

DenseNet and EfficientNet architectures.

2.2.1 DenseNet Architecture

Section 2.1.3 introduced the basic building blocks of convolutional neural networks, together with one

of the first concrete architectures of this type, i.e., the LeNet-5 [19]. The aforementioned architecture

is, however, very shallow, having only seven layers and about 60 thousand learnable parameters. In

order to increase the performance of models following this type of architecture, various methods can be

used. Moreover, an increment in the number of trainable parameters of convolutional neural networks

can further bolster results. An example of this idea is the AlexNet architecture [20], which increases

the depth of the LeNet-5 network to eight layers (excluding pooling layers), considerably raising the

number of trainable parameters to 60 million. The previously mentioned architecture, which achieved

good results in the ILSVRC-2012 [8] competition, illustrated the classification power of deeper networks

with a larger number of trainable parameters.

Another significant advance in the classification potential of convolutional neural networks was put

forward with the ResNet architecture [22]. The novelty of this architecture resides in the addition of the

possibility of bypassing certain layers using shortcut connections. The aforementioned connections op-

erate by adding the input x of the network to the output f(x) of a posterior convolution layer (Figure 2.3),

i.e., xl = fl(xl−1)+xl−1, with l indexing the network’s layers. This addition operation allows for a varying

degree in the non-linearity of the learning process, and enables the preservation of preceding informa-

tion. Depending on the complexity of the input that is to be classified, more or less convolutional layers

are skipped. These shortcut connections allow, in this way, substantially deeper architectures to con-
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verge quicker. This makes the use of deeper architectures a viable option to improve the classification

over previous architectures. However, several authors noted that a vastly deeper convolutional neural

network architecture is not always beneficial. For instance, He et al. [22] compared a ResNet archi-

tecture with 1202 layers with a similar architecture with 110 layers, concluding that the deeper ResNet

architecture did not achieve better results.

The DenseNet architecture was introduced by Huang et al. [4] to ameliorate the flow of information

in the training of convolutional neural networks. In the ResNet architecture, the only information that

was propagated forward, using the shortcut connections, was the input, that was then summed to the

resulting feature matrix. However, in the DenseNet architecture, each layer propagates its feature matrix

to all subsequent layers (compare Figure 2.4 with Figure 2.3). This way, and considering l to be an index

over the architecture’s layers, l− 1 feature matrices will be transmitted to layer l. In order to accumulate

additional information during training, these propagated layers are then concatenated to each layer’s
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own feature matrix, i.e., xl = fl([x0,x1, . . . ,xl−1]). Such concatenated propagated layers serve as

collective knowledge for the whole convolutional neural network since they represent all the previous

knowledge (i.e., learned parameters), and will not be modified (i.e., trained) after being transmitted to a

posterior layer. In a standard convolutional neural network architecture, there exist L, with L being the

number of total layers, connections between layers. Because the different layers must be propagated

to subsequent layers, L×(L+1)
2 connections must be used in the DenseNet architecture. In order to be

able to curb the rise in the number of each layer’s feature matrices, the authors focused on the growth

rate hyperparameter k (i.e., how the number of feature matrices evolves throughout the network) which,

in the DenseNet architecture, is attainable to be of a small to moderate size. Huang et al. showed

that a DenseNet architecture with a growth rate of 12 was sufficient to surpass, in terms of accuracy, the

best outcome of a ResNet architecture in the Street View House Numbers dataset [23]. Moreover, in this

performance comparison, the authors found that the number of parameters needed by both architectures

to achieve similar error rates in the aforementioned dataset is quite disparate. DenseNet used only half of

the 1.7 million parameters employed by the best ResNet model. This diminutive number of parameters,

when compared with other architectures, can be attributed to the general knowledge (i.e., the feature

matrices propagated to subsequential layers) implicitly captured by the architecture, which promotes

parameter efficiency. The effective use of parameters in the DenseNet architecture can additionally

hinder potential overfitting due to the less complex nature of an architecture with fewer parameters.

In more detail, the DenseNet architecture is composed of convolution layers, pooling layers, dense

blocks, and a transition layer, as shown in Figure 2.4. The dense blocks are the main learning units of

this architecture, being comprised of multiple 1× 1 and 3× 3 convolution layers with the aforementioned
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shortcut connections between them. The aforesaid 1 × 1 convolutional layers, called bottleneck layers,

are used by the authors to diminish the rising number of the layer’s feature matrices, while the 3 × 3

filters are responsible for extracting the relevant features from the received input. Consequently, the

1×1 filter inside the dense block is placed before the main 3×3 convolution layer in order to facilitate the

computation of this convolution operation. In order for the down-sampling to occur throughout the archi-

tecture, dense blocks are separated by so-called transition layers, which contain a batch normalization

unit, a 1× 1 convolutional filter, and a 2× 2 average pooling layer. One of the possible implementations

of this architecture is DenseNet-121 (i.e., with 121 as the architecture’s depth), shown in Figure 2.5.

The diagram shows the convolutional neural network with four dense blocks separated by the aforemen-

tioned transition layers. Each dense block is comprised of 6, 12, 24, and 16 layers, respectively. For

the relevant feature matrices to be extracted from the input image, a convolution filter of size 7× 7, with

a stride size of two, must first be applied to the input. The result of this application can be seen in the

convolution block of Figure 2.5. Subsequently, a 3 × 3 max-pooling filter is also applied, with a stride

of size two. Then, the resulting feature matrices are supplied to the sequence of four dense blocks,

parted by transition layers, which, as previously said, perform the main portion of the learning process.

Afterwards, the resulting 7 × 7 feature matrices are subjected to a 7 × 7 average global pooling (i.e., in

this case, the size of the filter is equal to the size of the feature matrices). Finally, the classification is

obtained by using a 1000-dimensional (i.e., number of categories in the dataset that was used to assess

the performance) fully-connected layer, followed by the application of the softmax activation function. In

this architecture, the k hyperparameter (i.e., the growth factor in the dense blocks) is set to 32 and, as

can observed in Figure 2.5, the first dense block receives 64 feature matrices from the previous layer,

and adds them to the features matrices produced by the 6 layers inside the dense blocks (i.e., 6 × 32),

totaling the 256 features matrices indicated in the diagram.

2.2.2 EfficientNet Architecture

More recently, Tan and Le [3] introduced the EfficientNet architecture, based on the idea that instead

of adjusting only the depth of a convolutional neural network, as in the previously mentioned architec-

tures, scaling should be made over three different dimensions: depth, width, and resolution. As seen

before, deeper architectures, in general, produce more accurate models, although considerably deeper

networks do not present significantly better results than moderately deep architectures. Furthermore,

a network’s width can also be adjusted to improve performance, but only until a certain point, and af-

terwards the performance gains begin to rapidly diminish. Yet another dimension that can be scaled in

order to achieve better performances is the resolution of the images provided as input, again up to a

given limit. Due to the fact that the improvements obtained by scaling each of the individual dimensions

are considerably limited, the authors introduced the concept of compound scaling.

The underlying idea is that when the architecture’s depth is increased, because larger receptive fields

are accessible, higher resolution input images can be better leveraged. If the network’s width is likewise

scaled, this can provide the architecture with the ability to grasp features that have a finer grain. The

17



x

Convolution
layer 1 × 1

Batch
normalization

Depthwise
convolution
layer 3 × 3

ReLU

Batch
normalization

6 · α

Global average
poolingReLU

Fully con-
nected layer

Fully con-
nected layer

ReLU

Scale

Sigmoid

ReLU
Squeeze-and-excitation

Convolution
layer 1 × 1

Batch
normalization

+

identity x

Figure 2.6: Diagram of a MBConv6 3× 3 block. In a yellow box, next to the first 1× 1 convolution layer,
it can be observed how α, i.e., the tensor’s channels, are scaled with an expansion ratio of 6. The +
operation represents matrix addition.

compound scaling concept, which adjusts all 3 network dimensions (i.e., d, w and r) considering their

interplay is thus formally defined as:

d = αφ, w = βφ, r = γφ (2.22)

subject to α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

In the previous equation, d represents the depth, w the width, and r the image resolution. A parameter

called compound coefficient, denoted by φ, is the scaling parameter of the network’s three dimensions,

and α, β, and γ are constants that represent the resource distribution for each one of these dimensions.

The constants are subject to the previous condition in order to guarantee that the computation cost of a

different φ grows with 2φ. Moreover, the β and γ parameters grow quadratically, while α grows linearly,
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because these two represent two-dimensional units but, on the contrary, depth is one-dimensional.

The aforementioned concepts were tested by Tan and Le using a baseline network called EfficientNet-

B0. The authors designed this network with basis on a method used by Tan et al. [24], where a search

with multiple objectives (e.g., latency and accuracy) was done in order to maximize an accuracy metric

for a certain model. In this case, the authors wanted to maximize the model’s accuracy whilst using

relatively low FLOPS (i.e., computational cost). The optimization problem is thus formalized as follows:

max
x

Accuracy(x) ·
[

Flops(x)

T

]w
(2.23)

In the previous expression, x represents a network model, Accuracy(x) is a function which maps a

model to an accuracy score, Flops(x) is a function of the computational cost of a certain model, T is the

intended target FLOPS, and w is a hyperparameter that adjusts the compromise between the two metrics

and that was set by the authors at −0.07. Using Equation 2.23 and the search method introduced by Tan

et al. [24], the authors reached the baseline architecture named EfficientNet-B0 from which subsequent

versions and improvements build upon. This architecture has a main block named the mobile inverted

bottleneck (MBConv) which is optimized with the squeeze-and-excitation technique [25]. As can be seen

in Figure 2.6, the aforementioned block is composed of two convolution layers, a depthwise convolution

layer, and the squeeze-and-excitation optimization. In a depthwise convolution layer, a sole filter is

applied to each of the input channels of the feature matrix and, because new features must be created

from the input channels, a pointwise convolution (i.e., a 1× 1 convolution) is then applied to the results.

This two-step procedure differs from a standard convolutional layer, in which both filtering and feature

creation are achieved concomitantly. In the case of its application in the EfficientNet-B0 architecture,

this approach is able to attain a computational cost about 9 times smaller than when implemented using

standard convolution layers [26], as can be deduced by Equation 2.24 where the quotient between the

computational cost of the depthwise convolution and that of the standard convolution layer is calculated,

with Dk denoting the kernel size, Df the feature matrix size, M the number of channels in the input, and

N the number of output channels.

D2
k ·M ·D2

f +M ·N ·D2
f

D2
k ·M ·N ·D2

f

=
1

N
+

1

D2
k

(2.24)

The first layer of the MBConv block, i.e., the 1 × 1 convolution layer that can be seen in Figure 2.6,

is responsible for scaling up the number of channels in the block’s input. Such scaling of the number

of channels was devised by Sandler et al. [27] as an improvement over previous architectures (i.e.,

MobileNetV1). In exploring the intuition that channels in convolutional neural networks might be embed-

dable into a subspace with low dimensionality, the authors embedded in the last convolution layer of the

MBConv block multiple channels into a vastly smaller number of feature matrices. However, because

the application of non-linear activation functions (e.g., ReLU) in a channel dissipates the channel’s data,

an amplification in the number of channels prior to the reduction of dimensionality is operated, so that a

channel’s information can possibly be retained in at least one of the remaining channels. In the case of

the MBConv6 block (Figure 2.6), the channel’s scaling factor, also called expansion ratio, has a value of

19



22
4x
22
4

3x
3

32
11
2x
11
2

Convolution I

16
11
2x
11
2

MBConv1 3x3

24
56
x5
6

2 x MBConv6 3x3

40
28
x2
8

2 x MBConv6 5x5

80 14
x1
4

3 x MBConv6 3x3

112 14
x1
4

3 x MBConv6 5x5

192 7x
7

4 x MBConv6 5x5

320 7x
7

MBConv6 3x3

1x
1

1280

Convolution II

7x
7

1x
1

1280

FC

Figure 2.7: Diagram of the baseline architecture, named EfficientNet-B0. As can observed, this network
is composed of various MBConv blocks in conjunction with convolution, pooling, and fully-connected
layers. As in the previous figures, the convolutional filters are depicted in green, whilst the pooling
operations, in this case, average pooling, are represented in red. On the other hand, the fully-connected
layers are depicted in purple. Some layers with the same characteristics are, in this architecture, placed
consecutively, with the number of these layers being depicted in the diagram by the multiplying constant
placed before the layer’s name.

6 (specifying in this way the type of MBConv).

In contrast, the squeeze-and-excitation optimization has the objective of enhancing the learning pro-

cess in convolutional neural networks by adding to the learned model dependencies between the mul-

tiple existing input channels. This is achieved in two phases; first the squeeze phase uses a global

average pooling filter in each of the channels, this way producing statistical descriptors for the afore-

mentioned channels. Then, these channel descriptors are used in the consequent excitation phase to

learn interdependencies between channels. Such dependencies are exposed by the use of a non-linear

function, in this case a ReLU, that is preceded by a fully-connected layer that diminishes the number of

channels in order to curb the resulting model’s complexity, and succeeded by another fully-connected

layer that reestablishes the original number of channels. This learned non-linearity is then followed by

a sigmoid activation function, and finally a scaling block, that is defined as the channel-wise product

between the learned scalars and the feature maps, is applied.

The EfficientNet-B0 architecture is mainly composed of a series of connected MBConv blocks, as

seen in Figure 2.7. These blocks are placed sequentially in the network, although with minor differences

between them, particularly in the size of the filter that is applied in the depthwise convolution layer, and

in the expansion ratio that is to be applied to the block’s input channels. The choice of both the size

of the layer and the expansion ratio, also called transforming factor, is limited by the search space that

was chosen by Tan and Le, i.e., 3 × 3 and 5 × 5 for size of the depthwise filter, and a value for the

transforming factor that is compatible with the number of output channels of the corresponding layer

on the MobileNetV2 architecture [27] adjusted by a factor of 0.75, 1 or 1.25. Moreover, the number

of consequent layers of the same type (e.g., MBConv6 5 × 5) at a certain stage of the architecture is
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also obtained by maintaining, summing, or subtracting one from the number of repeated layers in the

correspondent stage in the MobileNetV2 architecture. Finally, the type of block had also a search domain

that, in this case, consisted of a standard convolution filter, a depthwise convolution, and the MBConv

block. The optimal architecture, resultant of the aforesaid search, is composed of various types of layers:

two convolutional layers, MBConv blocks, and a fully-connected layer.

Building on the EfficientNet-B0 architecture, Tan and Le created 7 better performing architectures

(e.g., EfficientNet-B1, EfficientNet-B2, etc.) by scaling the baseline architecture using the compound

scaling method in two phases: firstly, with the compound coefficient φ parameter set at one, a grid

search was made to find the value of the depth, resolution, and width constants; secondly, using these

newfound values for the three dimensions, different values for the φ parameter were tested.

In order to evaluate the performance of the scaled EfficientNet architectures, the authors used Ima-

geNet as the training and testing data. During these experiments, the authors chose to use a state-of-

the-art activation function, namely the Swish activation function. The aforementioned function is defined

in Equation 2.25, with σ as the sigmoid function, and β as a constant or as a parameter that can be

trained. Ramachandran et al. [28] introduced this activation function, which was the result of an auto-

matic search with the intention of finding new activation functions, that, when compared with the ReLU

activation function, achieved improved results in the classification of the ImageNet dataset. Specifi-

cally, in a MobileNet architecture originally with a ReLU activation function, Swish improved the model’s

accuracy by 2.2%.

f(x) = x · σ(β · x) (2.25)

Comparing the results of these architectures against various other state-of-the-art convolutional neural

network architectures on the ImageNet dataset [8], Tan and Le found that, when grouping architectures

with similar accuracy scores, the corresponding EfficientNet architecture (e.g., EfficientNet-B2 is con-

tained in the third worse group of architectures when taking into account the accuracy of each network)

always had both substantially less parameters (in average 5.7 times less) and considerably fewer num-

ber of FLOPS (in average 11 times less) than the remaining competing architectures, while maintaining,

if not marginally bettering, the classification accuracy.

2.3 Processing Archaeological Figures and Classifying Pottery

The intuition that the classification of pottery diagrams into typologies can be automatized has already

been explored in previous works. Even though the majority of such techniques do not leverage neural

networks to construct automatic classification models, in this section, four existing methods that perform

automatic pottery typology classification are described.
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2.3.1 Classifying and Visualizing Roman Pottery using Computer-scanned Ty-

pologies

Christmas and Pitts [29] presented two methods for the categorization of various types of pottery, one

manual and one automatic. The automatic algorithm is based on k-means clustering. First introduced

by Lloyd [30], this approach uses unlabeled data to look for agglomerations of points, i.e., sets of in-

stances with similar characteristics. For points to be considered part of a certain cluster (agglomeration)

of points, they must have a small distance to the rest of the points of their cluster (i.e., intra-cluster

distance), and a considerable distance to the points in other clusters (i.e., inter-cluster distance). Equa-

tion 2.26, which in the k-means algorithm is to be minimized, formalizes this notion:

K∑
k=0

∑
x∈Ck

‖x− µk‖2 (2.26)

In the previous equation, µk is the centroid (i.e., average point) of cluster k and Ck the set of points

(i.e., data instances) of cluster k. The number of intended clusters (i.e., the number of different types of

artifacts, in this particular application) must be first chosen when the k-means algorithm is to be applied.

After this initial choice, the points are assigned to the cluster with the nearest centroid. These newly

attributed points are then used to calculate the new cluster centroid, and the process is repeated until

all the centroids stabilize, i.e., do not change significantly. The points in this particular application are

vectors of measures that are relevant to discern between different types of pottery. These measures

were calculated by using the multiple standardized drawings of the Camulodunum series [31] that were

automatically extracted and then segmented. The authors chose to use various measures of the arti-

facts, such as the vertical centroid (centroidv), the height of the artifact, the artifact’s width and height,

or its circularity, i.e., the closeness from 0 to 1 to a perfect circle, as given by Equation 2.27:

circularity =
4π · area

perimeter2
(2.27)

The result of the application of the k-means algorithm to these data points is depicted in Table 2.1, and

the method achieved an accuracy of 69.7%, when comparing the number of correctly identified data

instances in the cluster of the corresponding typology with the total number of objects assigned to the

cluster, and weighting the accuracy of each cluster with the cluster’s size (i.e., number of instances in the

cluster). As can been see in Table 2.1, artifacts that belong to the platters or the bowls classes are better

classified, taking into account the higher total number of instances from these categories in the dataset,

compared to the remaining classes. The authors conclude that, for commonplace pottery categories

(e.g., bowls), the automatic classification technique can transform the categorization of artifacts into a

more objective process.

Concerning manual classification, the authors used different techniques with the aim of extracting

new insights from the various measures computed for each of the pottery diagrams. The different tech-

niques compared aspects of the artifacts, including similarities between objects found in different sites,

similarities between the shapes of different artifacts, and how do the different artifact form groups (e.g.,

22



True class Total B
ea

ke
rs

B
ow

ls

B
ut

tb
ea

ke
rs

C
ar

ro
ta

m
ph

C
up

s

D
ef

ru
tu

m
am

ph

G
irt

h
be

ak
er

s

Ja
rs

Pe
de

st
al

be
ak

er
s

P
la

tte
rs

Fl
ag

on
s

Fl
as

ks

Ju
gs

Li
ds

M
or

ta
ria

to
p

ba
se

(in
va

lid
)

Beakers 22 77 9 14
Bowls 70 14 80 3 3

Butt beakers 15 27 7 53 7 7
Carrot amph 1 100

Cups 9 100
Defrutum amph 6 83 17
Girth beakers 7 57 14 14 14

Jars 12 8 17 25 17 25 8
Pedestal beakers 12 8 42 50

Platters 45 4 96
Flagons 15 7 7 73 13
Flasks 10 10 10 20 20 40
Jugs 11 9 91
Lids 19 89 11

Mortaria 6 17 83
top 4 75 25

base 7 14 29 57
(invalid) 13 8 92

Table 2.1: Outcome of the k-means algorithm in the form of a confusion matrix [29]. Column Total rep-
resents the total number of instances of a certain pottery type, and column True class the set of pottery
categories. The remaining columns correspond to the found clusters that were manually assigned to
one of the classes. Each of the numbers in the aforementioned columns expresses the percentage of a
certain class in the cluster. Depicted in bold are the correct classifications for each one of the clusters.

bowls, platters, etc.) cluster. The first method consists in plotting a histogram for each one of the

archaeological sites, from which the pottery artifacts were obtained. These histograms, as depicted

in Figure 2.8, portray the number of vessels that have a certain centroidv/height ratio in a particular

site. To be able to compare the distributions of the histograms from the various sites, the authors used

the Bhattacharyya distance [32], as shown in Equation 2.28. This measure of dissimilarity is used to

compare, in a pairwise manner, the previously mentioned histograms, in order to conclude which were

the most similar sites. Moreover, since this dissimilarity measure is not constant across all the pottery

vessels from a certain site, in order to further analyze the similarity between sites, Bhattacharyya dis-

tances for each pair of locations are computed considering each of the sites’ diagrams individually. In

this way, the analysis of the dispersion of the calculated distances between two sites can further indicate

their similarity (e.g., small dispersion of the Bhattacharyya distance between the vessels of a certain pair

of sites combined with a low Bhattacharyya distance between locations suggests similarity).

Bn,m = − ln

(∑
x∈X

√
hn(x) · hm(x)

)
(2.28)

In the previous equation, hn and hm represent the height of the histogram bar respectively for histogram

n and m being compared. The same process was then used by the authors, but this time using two-
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Figure 2.8: Histograms for some of the sites analyzed using the centroidv/height measure [29].

dimensional histograms, i.e., with width/height and centroidv/height as measures. This technique,

which returns the most similar site for each of the locations, allowed the authors to conclude that the

differences between the objects found in various sites were, besides in the weight of each category in

the overall collection of objects, in the physical measures (e.g., height) of the pottery. Such differences

can be observed by comparing the sites which had a cultural context in which butt-beakers (type of pot-

tery vessel used for drinking) were widely used, and sites with military and colonial environments where

these types of objects were not common. In the first type of sites (e.g., Canterbury and Silchester), a

peak in the 0.4 centroidv/height area can clearly be discerned. However, in the sites with a different

environment (e.g., Exeter and Colchester) this peak is absent, showing, in this way, a pronounced dif-

ference between these locations. Due to this, Christmas and Pitts concluded that the centroidv/height

measure can be advantageous in subsequent analyzes of Roman pottery.

2.3.2 Arch-I-Scan

Following a different approach, Tyukin et al. [33] developed a software for smartphone devices, named

Arch-I-Scan, which takes advantage of built-in cameras to scan complete pottery vessels or sherds and

performed real-time classification of these objects, assigning each scanned artifact to a vessel typology.

In order to do this, video input is first captured in a 2-dimensional frame structure by the smartphone’s

camera. Originally presented by Dalal and Triggs [34], Histogram of Oriented Gradients (HOG) is a

technique which produces features from images by computing histograms of gradient directions for each

of the image cells (i.e., small fractions of the original image). This technique was employed over the

captured video to generate feature vectors of every video frame, which resulted in approximately 100000

feature vectors, with each vector having a number of attributes in the thousands, per frame. Due to time

constraints, the authors chose to model the classification task as low-level recognition, i.e., a classifier is

built for each one of the existing typologies, being only able to classify its type versus all the others. Using
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Figure 2.9: Classification scenario using the Arch-I-Scan software, where four artifacts, each of a distinct
class, are scanned and fed to the previously mentioned 10 classifiers. As it can be observed, two of the
classifiers, represented by the blue circle and white square, correctly labeled their objects while the
remaining two pottery artifacts, which do not have a detector, are not identified. Consequently, there are
no false positives in this detection scenario.

10 complete pottery vessels, each corresponding to a different typology, a mapping was done between

these pottery vessels and the features vectors that resulted from the application of the HOG technique to

the captured images (average of 100 images per typology), with each image producing a feature vector

of size 2400. As to create more robust classifiers, images of the negative class (i.e., images that are not

of the classifier’s typology) were also mapped to a category, with each of the image’s feature vector being

completed using the same aforementioned procedure (i.e., images converted into a feature vector using

the HOG method). A detector, one for each of the 10 classes, was then conceptualized. For each one of

the feature vectors, a positive or negative value corresponding to the instance’s class was returned. By

weighting the contribution of each of the features xi with a certain weight wi, and adding a certain bias

factor b, the predicted class for a certain data instance is computed, as shown in Equation 2.29.

D(x) =

2400∑
i=1

(xi · wi) + b (2.29)

The authors have specifically used Support-Vector Machines [35], a technique for learning a linear

classifier which maximizes the distance of a hyperplane separating two classes of data points, to learn

the discriminant’s parameters. After this parameter learning is completed for each of the classes’ de-

tectors, object detection can be performed by employing the 10 different detectors simultaneously to an

image. The classifier of the artifact’s true type should label the object as the positive class, and the re-

maining classifiers should label the artifact as pertaining to the negative class. Tyukin et al. [33] report no

considerable number of false positives (i.e., objects erroneously classified as part of the positive class by

the detectors of irrelevant classes) in their experiments, confirming the robustness of this pottery vessel

detection method.
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2.3.3 Content-based Image Retrieval for Historical Glass

van der Maaten et al., in a problem setting analogous to this work, developed a content-based image

retrieval system [36] to provide assistance to archaeologists in the classification of historical artifacts by

automatizing parts of the categorization process which, in its manual mode, corresponds to a classifica-

tion by matching the artifact to a typology from a reference collection. The content-based image retrieval

system fetches similar images to a certain query image (i.e., the image of the artifact to be classified),

leveraging measures that are based on particular features of the images.

Utilizing the image retrieval system for the classification of glass artifacts, with the possible categories

of these objects being determined through the typologies defined by Kottman [37], presents certain

difficulties, namely the absence of particular aspects from the reference typologies (e.g., the real texture

of the artifact to be classified, in contrast with the abstract texture of the reference typology) and thus

compels the use of the artifacts’ outer shape features for similarity measure. van der Maaten et al., in

this case, employed the similarity measure based on shape contexts introduced by Belongie et al. [38].

Three basic steps are performed to compute the shape context similarity, namely preprocessing the

images, computing the shape context descriptors, and calculating the similarity. Moreover, the prepro-

cessing stage, which has the aim of extracting the outer shape of the query image, entails five substeps:

(i) application of a Canny edge detector [39], (ii) linking of edges which are not connected leveraging a

morphological dilation operation [40], (iii) a negation operation in conjunction with a bucket fill is applied,

in this way binarizing the colors of the foreground and background (i.e., the background becomes black,

whilst the artifact is filled in white), (iv) a morphological erosion operator [40] is used to remove erro-

neous edges, and, finally, (v) a Sobel edge detector [41] is employed, thus obtaining the outer shape of

the original image. Leveraging the newly generated outer shape of the artifact, shape contexts are then

computed. These shape contexts describe the shape’s global information by a set of points that are a

result of sampling from the outer shape’s border, with the shape context descriptors encoding both the

distance and angle of a point to the remaining sampled points. Lastly, the similarity between images is

ascertained with the k-nearest neighbors algorithm.

Whilst the aforesaid retrieval system, taking into account the experiments performed by van der

Maaten et al., achieved unsatisfactory results for damaged artifacts, it nevertheless provides an im-

provement over manual classification, lowering both the duration of the classification and possible hu-

man errors.

2.3.4 Ranking Systems for Computer-Aided Single-View Pottery Classification

More recently, in the context of the multidisciplinary ArchAIDE European project1 [42], with the main

objective of providing automatic classification tools to complement both archaeological fieldwork and

post-excavation analyses, a software platform was developed to automatically categorize extracted pot-

tery artifacts (e.g., terra sigillata) into typologies. The recognition and classification component of this

platform is based on the deep learning approach developed by Itkin [43], specifically for this project.

More concretely, Itkin focused on the categorization of pottery sherds leveraging color photographs. In
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this technique, two different approaches were explored, namely an appearance-based classification (i.e.,

based on the decorative aspects of the artifact) and a shape-based classification.

Appearance-based classification consists in the categorization of artifacts into typologies by taking

into account as the main differentiating factor the decorative drawings and the employed colorization.

As is the case in our work, Itkin reported a diminutive number of training instances, with a multitude

of classes presenting only some dozen instances. Consequently, a method based on transfer-learning

was enforced, i.e., a pre-trained model, trained on a considerably more numerous and general dataset

is then fine-tuned to a specific domain. Based on the aforementioned intuition, the authors chose to

fine-tune a model leveraging the ResNet-50 architecture [22], which was previously trained on the Ima-

geNet dataset [8]. Instead of pursuing a standard neural network classification, maintaining the original

structure of the ResNet-50 architecture, in this case, an alternative path was pursued: (i) the interme-

diate representations lodged at the end of each of the architecture’s first five blocks are extracted, thus

resulting on five feature tensors, (ii) global average pooling is applied to each of the feature tensors, (iii)

the five feature vectors are concatenated, (iv) dropout, with a drop rate of 80%, is employed to combat

possible overfitting and aid generalization, (v) fine-tuning is performed by a set of fully-connected layers

with a ReLU activation, (vi) dropout is applied once more, and (vii) the final classification is performed. It

should be noted that in the previous learning process, the ResNet architecture from which the five fea-

ture tensors are extracted is “frozen” (i.e., the ImageNet weights are maintained, no parameter adjusting

is performed), with only the fully-connected layers being trained.

Since the data instances used for the appearance-based classification consist of photographs, fre-

quently taken in different circumstances, certain techniques were employed as to promote a more robust

classifier, namely to mitigate issues related to changes in lighting and background environments of the

input images. For the first aspect, in order to simulate, in training, different lighting conditions, the

luminosity (i.e., brightness) of the input image’s pixels were scaled by a factor sampled from a distri-

bution, with each of the image’s three channels being scaled by three different sampled values. As

it pertains to environment variance, the employed solution consists in background removal, leveraging

GrabCut [44]. Considering that the GrabCut technique is not fully automatic, an algorithm that automa-

tizes the foreground extraction was developed and posteriorly applied over the available training images.

The algorithm can be summarized in three basic steps: (i) identify the background by sampling colors of

the image’s border, (ii) generate a distance image composed of the distances between each pixel and

the nearest sampled background pixel and binarize the image according to a distance threshold (i.e.,

the background in black and the foreground in white), and (iii) apply GrabCut, with the newly segmented

areas labeled as background or foreground.

In opposition, shape-based classification is based on the geometry of the found artifacts: the shape

of the pottery fragment is compared to a reference collection of standardized artifact diagrams with

a known typology. Since color information was not to be taken into consideration in this approach,

transfer learning was not used. In consequence, a synthetic data generation procedure, with the goal

of mitigating the diminutive dataset, was developed that, from the outlines of the available potsherd

images, produces a virtual model of the pottery artifact, which is then fractured in a randomized manner,
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thus emerging a synthetic sherd that is added to the training data in the form of its outline. To generate

the model of the artifact, a three-dimensional object, from its sherd in an efficient fashion, the sherd’s

profile is projected onto the xz plane and it is then rotated around the z axis. Since each of the profile’s

points (px, py), when rotated around the z axis, forms a circle perpendicular to z, the three-dimensional

artifact’s points can be modeled according to:

x2 + y2 = p2x ∧ z = py (2.30)

Using the previously defined circles, the fractures are attained with the intersection of a certain randomly

defined three-dimensional plane with the circles corresponding to the profile’s points. Point sampling is

then applied in order to obtain the discrete points used for the training.

The learning process, leveraging the synthetic profiles, is achieved with the OutlineNet architecture,

based on the PointNet architecture [45] introduced by Qi et al.. A two-input approach was utilized in the

architecture: one input encodes the position (i.e., coordinates) of the points while the other the angle at

the location of the points (in relation to the outline). Each of these two inputs is propagated in separate

paths, both are given as input to separate multilayer perceptrons with four layers, with the two results

being concatenated and passed, now in conjunction, to another multilayer perceptron (two layers). Next,

max-pooling is applied over the product of the previous multilayer perceptron and is then passed to the

final multilayer perceptron, performing the final classification.

As it pertains to appearance-based classification, Itkin reports accuracies of 55.2% in an experiment

using more than 700 images from 49 different classes while, on the other hand, shape-based classifica-

tion over approximately 400 images from 42 classes only achieved 18.9% accuracy.

2.4 Overview

The fundamental concepts of artificial neural networks in conjunction with a set of state-of-art tech-

niques combining the convolutional neural network architectures and the methods for pottery photo-

graph/diagram classification leveraging disparate learning algorithms was presented in this section.

In what concerns the convolutional neural network architectures, despite the EfficientNet architecture

clearly presenting better results in the ImageNet classification task when compared with the DenseNet

architecture, both architectures were employed due to their contrasting structure (e.g., a 7× 7 first con-

volution kernel in the DenseNet architecture vs. a 3× 3 in the EfficientNet architecture) and consequent

potential divergent response to this work’s examined datasets.

The automatic classification systems produced in this research combine various aspects present

in the previously analyzed pottery classification methods, namely the use of the k-nearest neighbors

algorithm, taking advantage of models trained on general datasets (i.e., ImageNet), or leveraging the

representations learned by the convolutional neural network model. In the next chapter, a detailed

analysis of the various techniques composing the pottery classification systems is put forth.

1http://www.archaide.eu
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Chapter 3

The Deep Convolutional Neural Model

for Archaeological Pottery

Classification

The detailed presentation of the structure of the CNN-based system for pottery image classification is

accomplished in this chapter. The proposed method is composed of three distinct components: the

convolutional neural network architecture, the model training procedure, and the meta-learning classifi-

cation. Figure 3.1 depicts an outline of the various components of the developed classification system

and their interplay in the context of the black-and-white pottery diagrams.

The first component, the convolutional neural network architecture, serves as the basis for the rest of

the proposed approaches. Section 3.1 presents the two studied structures. These convolutional neural

networks are trained over the datasets that are the aim of this dissertation and generate, in this way,

automatic classification models.

The procedure for model training, composed of self-training and data augmentation, is the second

component of the classification system. First, self-training, by leveraging unlabeled instances from the

domain of the classification task, previously trained models are used to label the available unlabeled

images. These newly labeled images are subsequently added to the existing labeled data instances and

then used to train a new, more robust model featuring various types of noise. The technique is presented

in Section 3.2.1. Secondly, in order to combat potential overfitting, data augmentation techniques are

deployed during the training of the convolutional networks, with the considered techniques being detailed

in Section 3.2.2.

Finally, the third component features the meta-learning approach to classification. The procedure

leverages the models generated by the training of the convolutional neural networks using the above-

mentioned methods. In this procedure, the classification layer of the generated models is removed in

order to extract the learned representations for each of the data instances. These representations are

then used to train a supervised classifier (e.g., logistic regression) that performs the final classification.
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Figure 3.1: Overview of the proposed approach for the black-and-white diagram dataset.

The details of this method are presented in Section 3.3.

The subsequent sections of the chapter detail the various techniques that compose the aforemen-

tioned method for pottery image classification. In conclusion, a summary of the chapter is presented in

Section 3.4.

3.1 Convolutional Neural Network Architectures

In this section, the two alternative input structures for the convolutional neural network architectures are

presented, namely a standard single-input image classification architecture and a two-input architecture

where each view is propagated through separate convolutional neural networks.

3.1.1 Single Input Convolutional Neural Network Architecture

The proposed single-input structure, the most frequent network disposition in image classification tasks,

is the base architecture of this work. In this setting, the images are simply propagated through the

model up to the final classification fully-connected layer. For this approach, the considered architectures,

analyzed in detail in Section 2.1.3, were the DenseNet-201 and the EfficientNet-B3.

3.1.2 Two-Input Convolutional Neural Network Architecture

As previously mentioned in Chapter 1, the diagrams in question are composed of two views. Con-

sequently, to potentially take advantage of the knowledge of the data instances’ structured format, a

two-input-based architecture was developed. In order to accomplish this, two separate convolutional

neural networks are placed in parallel: one receiving the left part of the image and another the right part

of the input image. The input images are propagated through both models, with the last layers’ output of

both individual models being concatenated. Such a vector is linked to a fully-connected layer (i.e., the

final classification layer with the classes’ dimensionality) performing the model’s prediction. Once more,
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the DenseNet-201 and EfficientNet-B3 architectures were considered, but now, taking into account the

two-input format, in a pairwise disposition, i.e., two DenseNet-201 or EfficientNet-B3 models.

3.2 Model Training

During model training leveraging the architectures mentioned in Section 3.1, data scarcity is made appar-

ent as the main obstacle to model performance due to the proneness of these architectures to overfit to

small datasets. Consequently, the overfitting problem is approached in two ways: leveraging unlabeled

instances through a self-training procedure and regularization through the use of data augmentation

techniques.

3.2.1 Self-Training

One of the principal pitfalls of the application of deep convolutional neural networks to a certain domain is

the scarcity of available labeled data instances. A commonly taken approach to mitigate this issue is the

use of unlabeled data instances, known as semi-supervised learning, through specialized techniques

since such types of instances are significantly more accessible. Self-training is one of these methods

that can be leveraged to take advantage of unlabeled data instances. The technique itself can be sum-

marized in three steps: (i) an initial model, called the teacher model, is trained over the available labeled

data instances, (ii) the teacher model is then used to classify the unlabeled data instances creating class

predictions called pseudo-labels, and (iii) a new model, denominated student model, is trained over the

totality of the available data, i.e., over both the labeled data instances and the unlabeled data instances

leveraging the pseudo-labels created by the student model. The process can be repeated, with each

iteration being concluded with the student model of the finishing iteration becoming the teacher model

of the new iteration.

Xie et al., from the aforesaid self-training framework, introduced the Noisy Student technique. The

key contribution of this technique is the incorporation of noise into the student model, allowing this

model to be as powerful as the teacher model. The added noise is composed of Stochastic Depth [46],

Dropout [17], and RandAugment [47]. Figure 3.2 presents a diagram of training using the self-training

procedure leveraging a noisy student.

Following the intuition that a student model with an additional amount of noise can further improve

its classification performance, a dropout layer [17], with a drop probability of 40%, was added to the

student model employed in our experiments, more precisely, in the model’s penultimate layer (i.e., the

global average pooling layer). Moreover, data augmentation noise, which in the original noisy student

method is enforced by the RandAugment technique, is performed by the data augmentation techniques

explored in this dissertation.

After obtaining a considerable quantity of unlabeled data instances, 2963 to be more precise, the

above-mentioned procedure was applied to the dataset, slightly modified to include a prediction confi-

dence threshold. This threshold was used to filter the instances labeled by the student model with a
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Figure 3.2: Diagram, adapted from the article by Xie et al., depicting an outline of the noisy student
approach to semi-supervised learning.

prediction probability smaller than 95% (corresponding to the average of each fold’s probabilities), which

summed to 94 data instances for one of the developed DenseNet-201 models. The filtering step miti-

gates the potential problems related to images from exogenous classes since the typologies present in

the unlabeled data may not intersect with the considered class set.

3.2.2 Data Augmentation

This section presents the data augmentation techniques employed in the experimented convolutional

neural network models. Such regularization techniques, which aim to improve the generalization ca-

pability of deep learning models, are an essential tool to mitigate the overfitting inclination of deep

convolutional neural networks.

3.2.2.1 MixUp

One such method, introduced by Zhang et al., is the denominated MixUp [5] regularization technique.

This technique uses a data augmentation method based on linear interpolations of the original training

data to generate new artificial training instances. These new instances are generated from pairs of train-

ing instances that are chosen randomly from the initial dataset, and the linear interpolation is performed

as shown in Equation 3.1:

x̃ = λ · xi + (1− λ) · xj (3.1)

ỹ = λ · yi + (1− λ) · yj

In the previous expression, xi represents the feature vector for instance i, yi the class vector for instance

i, and λ the weight given to each instance in the linear interpolation. The λ parameter is drawn randomly
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from a Beta distribution, which has two shape parameters α and β, with β = α. The authors found that,

for the α hyperparameter, the optimal value for the best performance in the ImageNet classification task

was 0.2.

In the application of the MixUp technique to the pottery classification task, the optimal hyperparam-

eters found by Zhang et al. are maintained, however, a standard set of data augmentation operations

(e.g., rotate, translate) are applied over the newly generated instances in order to further increase regu-

larization potential. It is worthwhile noting that only the MixUp generated examples are used in training.

3.2.2.2 AugMix

Moreover, an additional data augmentation technique called AugMix [6] builds upon the MixUp regular-

ization to combat the performance issues emanating from disparities in the distribution of the data in-

stances used for training and testing. This technique, introduced by Hendrycks et al., generates synthetic

data instances from the original data by combining augmentation operations (e.g., rotate, posterize, etc.)

and weighting the resulting operation chains. Firstly, the weights that will be weighting the k operation

chains are sampled from a Dirichlet distribution with concentration parameters α = (α1, · · · , αk). Then,

the k operation chains are assembled by sampling three different augmentation operations and compos-

ing them into sequences with a length of one to three operations (e.g., a chain of operations of length

two can be comprised of a rotation followed by a translation). The chains of augmentation operations

are then weighted, producing in this way, a new intermediate data instance that combines the operation

chains. Furthermore, using Equation 3.1, i.e., the expression which the MixUp technique uses to gener-

ate new data instances, Hendrycks et al. interpolate the original data instance with the newly generated

image creating, this way, the new synthetic image. As to promote the original data instance and its

augmented variants to be classified in the same manner (i.e., classified as the same category) by the

learned model, the authors minimize the Jensen-Shannon divergence consistency of the probability of

the original data instance, as well as its augmented variants, being classified by the model as a certain

class. Consequently, the loss function can be defined as:

L(p̂(y|x0), y) + γ · Jensen-Shannon(p̂(y|x0), p̂(y|x1), p̂(y|x2)) (3.2)

In the previous equation, L represents the model’s loss, γ (set to 12 for the testing experiments per-

formed by Hendrycks et al.) the weight attributed to the Jensen-Shannon divergence consistency in the

loss function, p̂(y|x0) the posterior distribution of the original image x0, p̂(y|x1) the posterior distribution

of an augmented variation x1, and p̂(y|x2) the posterior distribution of a second augmented variation

x2. The Jensen-Shannon portion of the loss function expressed in Equation 3.2, is computed using the

following expression:

JSD =
1

3
· (DKL(p̂(y|x0)‖M) + DKL(p̂(y|x1)‖M) + DKL(p̂(y|x2)‖M)), (3.3)

M =
1

3
· (p̂(y|x0) + p̂(y|x1) + p̂(y|x2))
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In the previous equation, DKL signifies the Kullback–Leibler divergence measure.

When compared with other data augmentation techniques, for instance, over the CIFAR-10-C [48]

dataset, AugMix achieved an average classification error corresponding to a 16.6% decrease over mod-

els leveraging standard augmentation techniques (e.g., horizontal flipping and cropping) and an 11.7%

decrease over the aforementioned MixUp data augmentation technique.

Regarding the series of available augmentation operations for AugMix, distinct arrays of operations

were considered for each of the two datasets. For the black-and-white diagram dataset, the original

set of operations, albeit with a stronger intensity, mentioned on the AugMix paper was considered,

namely autocontrast, equalize, posterize, solarize, shear, rotate, and translate. On the other hand,

for the color photograph dataset, augmentation operations that modify the color of the original object

were replaced by the brightness, contrast, and sharpness operations. The aforesaid modification was

performed due to the different nature of the second dataset’s classes, i.e., classes are distinguished

mainly by the decorations of the artifacts, and augmentation operations that modify the artifact’s color

can inadvertently cause the object to shift class.

3.3 Few-Shot Learning and Meta-Learning

Automatic classification scenarios where only a diminutive number of instances for each of the existing

categories are available are denominated few-shot learning. The two datasets which are the focus of

this work, as can be assessed in Section 4.1, are composed of only a small number of examples for

each of the analyzed typologies, with the black-and-white diagram dataset as the most glaring example

of this, and, therefore, fit in a few-shot type of scenario. Throughout this dissertation, the concept of

few-shot learning is used in a broad sense signifying the application of machine learning techniques to

contexts where only a small amount of training data instances for each class is available. The definition

of few-shot learning encompassing a setting where the set of classes used for training and testing is

distinct is broached in Section 5.2.

One of the possible approaches to solving few-shot learning tasks is through meta-learning, i.e., the

idea of learning over previously acquired knowledge. In this case, meta-learning consists in the applica-

tion of automatic learning algorithms (e.g., k-nearest neighbors) over the representations of images that

the convolutional neural network model has produced. SimpleShot [10] or the classification methodology

introduced by Tian et al. [9] are examples of this, with both techniques achieving state-of-the-art results

in few-shot learning benchmark tasks.

The SimpleShot technique, proposed by Wang et al., is based on the intuition that nearest-neighbor

classification, when applied over the representations learned by a convolutional neural network model

leveraging the standard cross-entropy loss, is capable of state-of-the-art performances in few-shot sce-

narios. More concretely, the method is a two-step procedure. First, the feature vectors, previously

learned by the convolutional neural network, are subjected to two transformations, namely the center-

ing of the feature vectors by subtraction of the mean of the training data instances’ features and their

subsequent l2 normalization. Secondly, the classification of the data instances, through their feature
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vectors, is performed by a nearest-neighbor classifier leveraging the Euclidean distance as the measure

for instance distance. Tian et al. [9] introduced a procedure for few-shot classification, which is similar

to SimpleShot. However, in this paper, it is proposed to apply a logistic regression classifier over the

feature vectors as an alternative to the nearest-neighbor classifier, with Tian et al. reporting competitive

performances in a number of few-shot learning tasks.

Although more intricate techniques, such as the Prototypical Networks [49], were explored in prepara-

tory tests, the best results were achieved with the simple application of other learning algorithms atop

the convolutional neural network’s learned embeddings. Three different classification algorithms were

thus considered to classify the learned representations, namely k-nearest neighbors, random forest, and

logistic regression. The employed meta-learning process consists of (i) training the convolutional neural

network model (e.g., the EfficientNet-B3) leveraging the softmax cross-entropy loss; (ii) removing the last

layer of the model (i.e., the classification layer with the classes’ dimensionality) thus exposing a global

average pooling layer corresponding to a 1920 and 1536 dimensional feature vector for DenseNet-201

and EfficientNet-B3, respectively; (iii) obtaining the learned representations of the data instances by

predicting both the training and test set, leveraging the learned model; (iv) applying standardization to

the images’ features (i.e., removing the mean and dividing by the samples’ standard deviation) for logis-

tic regression and l2 normalization for k-NN; and (v) training and classifying the representation vectors,

leveraging one of the aforementioned classification algorithms. Moreover, concerning the k-NN classi-

fication, the approach employed by Wang et al. [10], i.e., both the training and test data instances are

mean-centered by subtracting the mean of the training instances before the l2 normalization, is applied in

the aforementioned meta-learning procedure for the black-and-white diagram dataset’s experiments. For

the color photograph dataset, due to its severe class imbalance, only l2 normalization is performed over

the feature vectors, as Wang et al. report decreasing performances when features are mean-centered

in the context of long-tailed datasets.

3.4 Summary

In this chapter, the architecture for the classification system proposed in this dissertation was presented.

Summarily, the automatic classification model is a convolutional neural network structured in two pos-

sible ways: single-input or two-input. During the training of the aforementioned networks, in order to

regularize it, alternative data augmentation techniques are employed. Moreover, leveraging the avail-

able unlabeled data, a self-training procedure is applied in order to expand the training set and poten-

tially improve model performance. The last component of the system consists in the application of a

classifier over the representations learned by the automatic classification models (i.e., the meta-learning

approach).

Section 3.1 detailed the main component of the proposed classification system: the convolutional

neural network architecture. Two different input structures for these architectures were presented,

namely a single-input and two-input architecture.

Section 3.2.1 presented the noisy student procedure, which is responsible for the incorporation of
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unlabeled data instances in the training of the convolutional neural networks in the context of the pottery

classification task.

Taking into consideration the overfitting potential of training convolutional neural networks over the

two pottery image datasets, regularization becomes a crucial part of model training. Consequently, in

Section 3.2.2, the employed data augmentation techniques and their application to the task in question

were discussed.

In conclusion, due to the state-of-the-art results of the meta-learning approach in few-shot learning,

the meta-learning approach is adapted and applied to the pottery classification task. Section 3.3 pre-

sented the details of this approach and the effected modifications for its successful application to the

studied classification task.
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Chapter 4

Experimental Evaluation

In this chapter the experimental evaluation that was followed for the developed classification systems

is presented. A comprehensive analysis of the two datasets that are the focus of this work as well as

the description of the experimental methodology is presented at the beginning of the chapter in Section

4.1. Section 4.2 details and analyzes the results obtained in the black-and-white diagram classification

task, while Section 4.3 focuses on the color photograph setting. Finally, in Section 4.4, a synopsis of the

chapter is presented along with an outline of the results of the performed experiments.

4.1 Datasets and Experimental Methodology

During the course of this work, two datasets were studied. Considering the black-and-white diagram

classification task, a dataset with a mixed composition was assembled: diagrams from a set of pottery

objects retrieved in a specific excavation and from articles of the area. Concerning the pottery color

photograph classification task, a dataset comprising artifacts from a museum was obtained from an

online resource.

4.1.1 The Pottery Black-and-White Diagrams Dataset

The data instances that compose the above-mentioned artifact dataset come mostly from the excavation

of the 23rd Roman block of Numantia (Garray, Spain) between 2004 and 2009. Numantia is a well-

known oppida of Iberia during the Iron Age due to the role it played in the wars against Rome, especially

in the Second Celtiberian War (153-98 B.C.), also known as the Numantine War. After the conquest of

Numantia in 133 B.C., Rome established several Roman cities in this location, the remains of the city

built in the time of Augustus are the best preserved. Dated between the 1st and 2nd centuries A.D.,

this dataset comprises all the terra sigillata pottery diagrams that the Numantia Archaeological Team

manually drew and digitized to document the materials from this excavations under a project that aimed

to review the Iron Age and Roman urban planning of this site [50]. Terra sigillata is a kind of pottery

highly standardized in its forms, characteristic of the Roman Empire. It is defined as pottery tableware

with a distinct glossy reddish surface, sometimes with geometrical, floral or figural decorations [51].
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Figure 4.1: Example of four artifact diagrams from the black-and-white diagram dataset.

In the excavations of the 23rd block of Numantia, around 12,000 artifacts were recorded. Among

them, 4,083 corresponded to terra sigillata sherds. During the post-excavation process, 559 terra sig-

illata fragments were manually drawn creating black-and-white pottery diagrams, showing two different

perspectives on the depicted pottery, namely a profile view of the artifact and its cross-section, as can

be seen in Figure 4.1. Due to the conservation conditions and the high fragmentation of the materi-

als, only 392 pottery diagrams could be assigned a typology, representing around 65% of the dataset.

These pottery diagrams span 48 different typologies (i.e., artifact categories), showing an unbalanced

distribution per pottery type, as can be seen in Figure 4.2. To expand this dataset, other sources of

pottery diagrams were considered, such as specialized publications on Hispanic, Gallic and Italic forms

and collections of terra sigillata from contexts similar to Numantia. Taking into account that a substan-

tial quantity of classes exhibited less than four instances (an exceptionally small number of instances),

classes manifesting such characteristics were filtered, which resulted in a total of 320 data instances

from 19 different classes.

As previously mentioned, in order to expand those classes with a number of instances smaller than

7, additional data instances were included from published sources. In this case, 23 additional diagrams

were extracted from: [52], [53], [54], [55], [56], and [57], reaching a total of 343 terra sigillata fragments

with assigned typology, henceforth this will referred as labeled instances.

The number of labeled instances in the application of convolutional neural networks to specific do-

mains can prove to be scarce, as is the case in this work. Consequently, unlabeled data instances can

be used as a secondary data source to increase the size of this dataset. In the present research, by

searching through various publications depicting artifact pottery diagrams (e.g., the above-mentioned ar-

ticles) and leveraging automatic object detection techniques, 2963 new unlabeled pottery diagrams were

obtained. The unlabeled diagrams were only used in experiments exploring self-training approaches.

Since convolutional neural networks require a constant square image size in most settings, the im-

ages of the dataset were transformed into a square image and then resized to the chosen resolution of

448 × 448, only limited by the available computational resources. On the other hand, for the two-input
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Figure 4.2: Histogram of the 19 available categories from the dissertation’s black-and-white diagram
dataset after filtering for classes with more than four instances, preceding the addition of supplementary
data instances.

architectures, the same process was applied but, since the images are separated in half, the input’s

selected resolution was 224× 224.

4.1.2 The Pottery Color Photographs Dataset

Concerning the dataset that is composed of color photographs depicting archaeological pottery arti-

facts, an already available set of data instances online in the website of the Florida Museum of Natural

History1was obtained, organized, cleaned, and used in the second set of experiments. The aforemen-

tioned collection of data is comprised of two different collections, namely the Historical Archaeology

Type collection and the Lister collection. The first collection, also called the Goggin-Fairbanks type col-

lection, focuses on artifacts extracted from sites in the state of Florida and the Caribbean region, with

the majolica type having a prominent role. The Lister collection, another archaeological ceramic type

collection, is composed of pottery artifacts originating from both mainland Spain and the past Spanish

colonial presence spanning Central and South America, with the collection being comprised of 1483

artifacts. These artifacts, originally retrieved by Florence Lister and Robert Lister, served as basis for a

number of foundational articles (e.g., [58], [59]) in the classification of ceramic artifacts of the Spanish

Colonial era.

The bulk of the aforementioned collection is comprised of pottery of the majolica (or maiolica) type.

More precisely, majolica is defined as earthenware (i.e., nonvitreous pottery such as terracotta) cov-

ered with an opaque lead glaze (i.e., coated with lead) and a shiny white background (by the use of tin

oxide) [60]. In the case of this dataset, the Majolica pottery is mostly originated from the territories of

Central America in which Spain had a colonial presence (e.g., Mexico), with an heterogeneous compo-

sition regarding its origin, i.e., some of these artifacts were produced locally while the rest was imported

from Spain.
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ing the color photographs dataset, after filtering for
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Regarding the structure of the photographs, in all the used examples the artifact is photographed

from the front with a checkered ruler also being captured in the photograph in order to transmit the ob-

ject’s scale, as can be observed in the left part of Figure 4.5. In total there exist 2701 labeled instances

belonging to 196 different typologies. Additionally, the dataset contains three different views for each

of artifact, namely front, side, and back. However, due to unique marks present in the artifacts (i.e., an

identifying number drawn in the back of the artifact), the back view of the object is not used. Following

a similar procedure to the black-and-white diagram dataset, only categories that presented more than

10 labeled examples were considered. Consequently, the final artifact color photograph dataset is com-

posed of 54 types adding up to 1632 images. As in the previous dataset, there exists a significant class

imbalance in the color photograph dataset, as can be observed in the histogram depicted in Figure 4.3,

with most classes having between 10 and 20 examples. The weight of the more numerous classes can

be observed in Figure 4.4, with the seven largest classes corresponding to about 35% of the dataset

and the most populous class puebla blue on white reaching approximately thirteen times the size of the

least numerous classes.

4.1.3 Experimental Methodology

To evaluate different classification systems in a sound and objective way, performance metrics must be

utilized. Three main metrics will be considered in this work, namely precision, recall, and accuracy. In a

1https://floridamuseum.ufl.edu/typeceramics/types
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Figure 4.5: Example of the two available views (front and side) for each pottery artifact of the color
photograph dataset. In this particular case the data instance is part of the caparra blue typology.

binary classification problem, precision represents the portion of correctly classified positive instances, of

all the instances that the system classified as positive. On the other hand, the recall metric captures the

portion of correctly classified positive instances, of all the positive instances. Finally, accuracy conveys

the percentage of correctly classified instances. The formal definitions of precision, recall, and accuracy

are respectively presented in Equations 4.1, 4.2, and 4.3.

Precision =
tp

tp+ fp
(4.1)

Recall =
tp

tp+ fn
(4.2)

Accuracy =
tp+ tn

fp+ fn+ tp+ tn
(4.3)

In the previous equations, tp represents the true positives (i.e., instances correctly classified as part

of the positive class), tn the true negatives (i.e., instances correctly classified in the negative class), fp

the false positives (i.e., instances erroneously classified in the positive class), and fn the false negatives

(i.e., instances wrongly classified in the negative class). The aforementioned precision and recall metrics

are defined only in binary classification tasks, i.e., instances can only belong to one of two classes.

Since this dissertation is focused on a multi-class classification problem (i.e., one diagram instance can

belong to one of 19 classes), the previous metrics cannot be used directly in measuring the system’s

performance. Accuracy can be directly computed as the fraction of the correct classification decisions

but, in order for precision and recall to be correctly computed when applied to multi-class data, an

average for each of the dataset’s classes can for instance be taken (i.e., binary metrics for each of the

existing classes are computed considering the instances of that category as the positive class, and the

remaining instances are labeled as the negative class). A macro-average score can thus be computed

as shown in Equation 4.4.

Multi-Class Macro-Average Metric =
1

N
·
N∑
i=1

Mi,M ∈ {Precision,Recall} (4.4)
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In the previous equation, N represents the number of classes present in the dataset, andM is the binary

version of the metric in question. Equation 4.4 is called a macro-average of the binary metrics (i.e., a

simple average for each of the dataset’s classes is computed), but micro-averaging can also be used as

an alternative path to calculate a multi-class version of the previously introduced binary metrics. This can

be computed by averaging the total amount of instances, unlike in the macro-averaged version where a

per-class average is computed. Micro-averages can nonetheless possibly result in a bias towards the

more numerous classes. In Equations 4.5 and 4.6, micro-averaged precision and recall are respectively

formally defined.

Micro-Precision =

N∑
i=1

tpi

N∑
i=1

(tpi + fpi)

(4.5)

Micro-Recall =

N∑
i=1

tpi

N∑
i=1

(tpi + fni)

(4.6)

In order to combine the information that is given by both the precision and the recall metrics in a single

score, an additional metric named the F1 score can be used. This metric, formalized in Equation 4.7,

computes the harmonic mean between precision and recall. It should be noted that both the micro and

macro versions of precision and recall can be used for computing F1 scores.

F1 =
2 · Precision · Recall

Precision + Recall
(4.7)

To properly evaluate the classification models, one needs to separate the available data into two

parts: a training part which is used to learn the classification model, and a test portion that is used to

evaluate the learned model. This way, the generalization capacity of the model can be tested, i.e., the

prediction quality of the model concerning new unseen instances can be assessed. Nevertheless, a

data split (e.g., 80% for training and 20% for testing, choosing instances randomly) will in general be

associated with a considerable degree of bias because the training and the test sets can end up with a

very different composition. In order to tackle this issue, one possible approach is to guarantee that both

splits have a homogeneous composition. This approach is called stratified sampling. The homogeneity

of the dataset’s splits, employing the stratified sampling technique, is achieved by selecting instances for

each split in a way that maintains the proportionality between the number of instances per class and the

class distribution of the dataset’s population.

4.1.4 Model Optimization Strategies

As mentioned before, the performed experiments leveraged a DenseNet-201 model pre-trained on the

more general ImageNet dataset. In parallel, experiments leveraging the more recent EfficientNet ar-

chitecture, in particular the EfficientNet-B3, were also performed. As to adapt both pre-trained models

to the two pottery classifications tasks, one additional layer was added, namely a fully-connected layer
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Table 4.1: Exploration of different data augmentation strategies for training. Highlighted in bold are the
best results for each of the explored architectures.

Model Strategy Precision Recall F1-score Accuracy

DenseNet-201
Basic Augmentations 52.23 52.52 50.32 63.59

MixUp 52.39 54.94 51.33 62.69
AugMix 55.13 56.10 53.86 67.65

EfficientNet-B3
Basic Augmentations 49.52 51.56 47.21 56.86

MixUp 54.84 52.94 51.01 59.21
AugMix 55.14 55.51 53.37 65.60

with the classes’ dimensionality. The pre-trained models were trained in their entirety (i.e., none of the

original weights were made constant) while employing two different optimizers, namely AdaMod [61] and

Adam [62], with the first being employed in DenseNet training and the second for EfficientNet training. It

should be noted that for both optimizers the default hyperparameters were maintained.

In a first approach to the training of the aforementioned networks, the optimizers were scheduled

using a stepwise annealing policy, which decreases the learning rate throughout training, starting at

10−3 with a learning rate minimum of 10−5. However, due to the poor performance of this approach in

preliminary tests, other schedules were explored. The best performance in the aforementioned tests

was attained by models in which training leveraged the policy introduced by Smith [63], namely Cyclical

Learning Rate (CLR). More concretely the considered triangular policy decreases the learning rate am-

plitude by half at the end of each cycle, with, in this case, the learning rate varying between a constant

base value of 10−5 and a maximum of 10−3. Moreover, taking into account the experiments performed

by Smith, training is stopped at the end of the last cycle, as per the recommendation in the aforemen-

tioned paper, and network training is limited to five training cycles. Concerning the step size (i.e., half

the size of a cycle), the recommendation of varying this hyperparameter between two and ten epochs is

followed, with different regularization techniques using different values.

As to better evaluate the generalization capacity of the learned models, a stratified cross-validation

split was employed, in this case, with five splits, i.e., in each of the mutually exclusive folds, 80% of

the data is used for training and 20% for validation purposes, with each fold’s composition maintaining

relative class representation.

4.2 Experimental Results on the Pottery Black-and-White Diagrams

Dataset

Firstly, with the objective of measuring the regularization capacity of data augmentation in the context

of the classification of standardized pottery diagrams, two types of data augmentation techniques were

compared with the state-of-the-art AugMix regularization technique, namely MixUp (i.e., the method

used in one of the steps of the AugMix algorithm) and a basic fixed set of transformations, namely

brightness shifting by a factor between 0.8 and 1.2, position shifting by a maximum of 12.5%, and ran-

domly rotating in a range of 2.5 degrees. Depicted in Table 4.1 are the results of these experiments.
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Table 4.2: Results of the application of the different algorithms, leveraging meta-learning, against the
standard convolutional neural network prediction (categorized as None). Only the best-performing ver-
sions of the models are here presented (corresponding, in this case, to models leveraging AugMix). In
bold are portrayed the best results of each model.

Model Algorithm Precision Recall F1-score Accuracy

DenseNet-201

None 55.13 56.10 53.86 67.65
1-NN 58.74 60.77 57.88 67.07
3-NN 57.61 58.62 56.00 67.65
5-NN 56.83 59.23 55.81 67.65
7-NN 54.64 56.59 53.57 66.49

Random Forest 52.50 52.41 50.34 66.78
Logistic Regression 53.16 51.92 50.42 66.19

EfficientNet-B3

None 55.14 55.51 53.37 65.60
1-NN 53.61 55.14 52.14 63.28
3-NN 56.26 56.64 54.34 64.15
5-NN 51.31 54.64 51.10 62.11
7-NN 52.65 54.05 51.68 63.27

Random Forest 53.82 51.13 49.37 65.32
Logistic Regression 54.56 54.97 52.50 65.89

2-DenseNet-201

None 57.65 55.12 53.35 67.29
1-NN 59.11 58.15 56.11 65.82
3-NN 60.04 57.35 55.96 67.29
5-NN 56.85 55.21 53.43 65.53
7-NN 57.40 53.85 53.21 64.92

Random Forest 52.29 49.43 48.46 65.79
Logistic Regression 56.09 51.98 50.98 66.98

2-EfficientNet-B3

None 49.99 51.96 48.78 60.55
1-NN 50.11 52.86 48.94 60.53
3-NN 51.51 52.83 49.71 61.11
5-NN 51.64 52.65 49.52 61.11
7-NN 51.09 51.43 48.65 60.81

Random Forest 44.43 42.52 41.28 59.38
Logistic Regression 48.16 48.53 45.97 61.13

Such results show a clear performance increase against basic augmentations in all of the three as-

sessed metrics when techniques that perform mixing between images are applied, in this case, MixUp

and AugMix. On the other hand, the 1-3% performance increase from MixUp to AugMix reflects the

added complexity of the latter, namely the use of multiple chains of operations and the Jensen-Shannon

divergence consistency added to the loss function.

Secondly, the performance of various classification algorithms leveraged in the meta-learning ap-

proach was assessed. Having the results obtained in the previous experiments as a basis, the data

augmentation procedure was fixed to the AugMix algorithm for these experiments. In addition to the

architectures used in the remaining experiments (i.e., DenseNet-201 and EfficientNet-B3), the architec-

tures and training techniques introduced in Sections 3.1.2 and 3.2.1, respectively, were tested. Table 4.2

depicts the results of these experiments, with 2-DenseNet-201 and 2-EfficientNet-B3 corresponding to

the two-input version of these architectures.

Concerning the single input architectures trained exclusively over the labeled data instances, a clear

performance superiority of the DenseNet-201 model over the EfficientNet-B3 across the three tested
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Table 4.3: Comparison of the performance of the tested meta-learning algorithms between the best-
performing model (i.e., DenseNet-201) in the context of the previous experiments leveraging a self-
training approach and the original model with dropout noise.

Model Algorithm Precision Recall F1-score Accuracy

DenseNet-201 w/ dropout

1-NN 57.66 57.99 55.47 65.90
3-NN 56.67 56.92 54.42 66.19
5-NN 58.12 57.95 55.63 67.65
7-NN 56.24 56.29 53.89 66.77

Random Forest 54.07 52.07 51.02 66.49
Logistic Regression 55.74 54.04 52.93 67.37

DenseNet-201 w/ self-training

1-NN 62.88 61.61 60.28 69.11
3-NN 62.47 61.18 59.73 69.41
5-NN 62.61 62.30 60.51 71.45
7-NN 59.87 60.14 58.20 70.58

Random Forest 55.45 54.85 53.58 68.53
Logistic Regression 59.52 58.05 56.74 69.69

metrics can be discerned with, for instance, DenseNet outperforming the Efficient model by 1.66%

in what concerns one of the better f1-score results of both models (i.e., the 3-NN algorithm). One

of the possible causes for this discrepancy in meta-learning performance is the difference in feature

vector dimensionality: the DenseNet’s feature vector is 1920-dimensional while the EfficientNet’s is

1536-dimensional. The same comparison performed between the two-input architectures attains similar

results, with the 2-DenseNet-201 model outperforming the 2-EfficientNet-B3, albeit with a larger perfor-

mance disparity between them. Both models, however, achieved worse results than their single-input

counter-parts concerning meta-learning. Such performance decrease can be attributed to the halving

of the image’s resolution (i.e., the two view diagram were split into two different images) since the data

instances correspond to diagrams where diminutive features can have a notable impact on classification

performance and thus higher resolutions are critical for successful results.

By evaluating the algorithms applied over the four previously mentioned models’ learned represen-

tations, it can be ascertained that the k-NN based algorithms, particularly 1-NN and 3-NN, perform the

best across the precision, recall, and f1 metrics for all models. In terms of accuracy, the EfficientNet-B3

and 2-EfficientNet-B3 architectures achieve the highest performance leveraging a logistic regression,

with the remaining architectures performing the best on k-nearest-neighbor classifiers or the standard

network prediction.

The best results, however, were achieved leveraging the self-training technique. By using the newly

best performing model (i.e., the DenseNet-201 model) to label the unlabeled data instances, the dataset

is extended and the training is repeated with the aforementioned noise leveraging a dropout layer with

a drop probability of 40%. Taking a meta-learning approach, more precisely, by applying the k-NN

algorithm over the model’s learned representations is the best-performing of the tested procedures,

achieving the second-best precision (62.61%), best recall (62.30%), and best f1-score (60.51%) met-

rics with 5-NN, as can be observed in Table 4.3. Comparing the model leveraging self-training with the

best DenseNet model (i.e., DenseNet-201 w/ AugMix), particularly with respect to the meta-learning

approach leveraging the 1-NN classifier, a 4.14%, 0.84%, and 2.40% increase in the precision, recall,
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Figure 4.6: Example of four artifact predictions leveraging the DenseNet-201 model with the 5-NN clas-
sifier. Two dimensions are depicted in the figure above: whether the instance’s class is one of the most
numerous classes and the correctness of the system in the image classification task. From top to bot-
tom, left to right, the considered instances’ categories: Ritterling 8, Dragendorff 29/37, Goudineau 27,
and Dragendorff 29.

and f1 metrics, respectively, can be discerned over the best result harnessing meta-learning. As to as-

sess the contribution to model performance of the aforesaid dropout layer, a DenseNet-201 architecture

leveraging a dropout layer with a drop probability of 40% was tested. The results of these tests, as can

be observed in Table 4.3, show an identical performance concerning the precision, recall, and f1 metrics

to the DenseNet-201 model without dropout and, consequently, exclude the incorporation of the dropout

technique as the sole cause for the performance increase in the self-training model.

Figure 4.6 depicts four different classification scenarios across two distinct axes, namely class vol-

ume and prediction correctness. Concerning the minority classes, examples from the Dragendorff 29

and Goudineau 27 typologies were analyzed, while for the more numerous classes, data instances from

Ritterling 8 and Dragendorff 29/37 were considered. Observing the prediction of the data instances

from the Dragendorff 29 minority class (located at the bottom-right of the figure), predicted as part of

the Dragendorff 29/37 typology, and taking into account the data instances of this class, it is possible

to ascertain a considerable similarity between the mislabeled data instance and the images of the er-

roneously attributed category which, given the diminutive quantity of the Dragendorff 29 class, critically

contributes to that misclassification. On the other hand, analyzing an example from a majority class,

namely the Dragendorff 29/37 (located at the top-right of the figure), which was classified as a Dragen-

dorff 27 instance, such misclassification of a majority class for a minority class can be attributed as a

side-effect of the high number of pseudo-labeled images as the Dragendorff 27 typology, which, since

this model leverages the noisy student approach, can cause a substantial bias towards this class.

An analysis of the quality of the representations learned by the convolutional neural network architec-

tures can be observed in Figure 4.7, where the dataset’s instances are represented as points, with their

color depicting its true typology. Particularly, the way in which the 94 unlabeled data instances, used in

the self-training setting, clustered in accordance with the pseudo-labeling attained by the DenseNet-201

model, which, in this case, was trained using the entirety of the labeled dataset (in order to avoid differ-
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Figure 4.7: Scatter plot of the DenseNet’s learned representations for the available data instances with
randomly selected example diagrams from each of the displayed clusters highlighted. The embedding
to a two-dimensional space was obtained leveraging the t-SNE technique with the perplexity hyperpa-
rameter, regulating focus on more local or global data features, set to 45.

ent representations by each of the five models, one per fold). In order to produce the above-mentioned

graphic, first, the Principal Component Analysis (PCA) dimensionality reduction technique was applied,

in this case, to the output of the DenseNet-201 model developed in the previous experiment. The output

vectors were thus reduced from a 1920-dimension vector to a 94-dimension vector, with this transfor-

mation resulting in no added noise to the final vector. Secondly, the t-distributed Stochastic Neighbor

Embedding (TSNE) [64] is employed to depict this 94-dimension vector in a two-dimensional plot. Ob-

serving the aforementioned scatter plot, small groups of data instances with the same pseudo-labeled

typology (e.g., Dragendorff 27) are made evident. Of the eleven classes present in the pseudo-labeled

set, distinct agglomerations for each one of the classes (i.e., a small intra-cluster distance and a large

inter-cluster distance) can be observed, with no noticeable mixture between the clusters. Such ag-

glomerations of instances of the same type justify the performance of meta-learning leveraging a k-NN

classifier reported in previous experiments.

According to the terra sigillata typologies, Figure 4.7 shows three main groups. First, the upper center

and right parts of the scatter plot display those vessels that are larger, corresponding to types such as
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Table 4.4: Exploration of different data augmentation strategies for training. As in the previous tables the
best performances are highlighted in bold.

Model Strategy Precision Recall F1-score Accuracy

DenseNet-201
Basic Augmentations 78.80 74.48 74.22 79.66

MixUp 76.77 74.70 73.67 78.80
AugMix 79.49 76.19 75.79 81.13

EfficientNet-B3
Basic Augmentations 74.72 72.61 71.54 77.27

MixUp 73.65 72.50 70.88 76.17
AugMix 76.99 74.15 73.34 79.29

Dragendorff 29/37, Dragendorff 37, and Hispánica 10. Despite the lack of decoration of the latter, they

are quite similar typologically; the three are bowls with straight walls and a slightly thick rim. Second,

the bottom and left portion of the graph groups forms that are usually smaller vessels or bowls, which

generally present moldings or carenations (i.e., an abrupt change of direction) on the rim and the neck.

Finally, the upper-left encompasses mainly those artifacts that are lids.

4.3 Experimental Results on the Pottery Color Photographs Dataset

Since the color photograph dataset is composed of two views (front and side of the artifact), experiments

leveraging single input architectures for each of the available views were originally considered. However,

initial experiments reported the poor performance of models trained solely on images of the side of the

artifact. Consequently, for the remaining experiments, except for the two-input architectures, only the

front view was used.

Considering the color photograph dataset, identical experiments to determine the optimal data aug-

mentation for model training were first performed for the two considered convolutional neural network

architectures. Table 4.4 reports the results of the experiments pertaining to data augmentation. As in the

black-and-white pottery diagram dataset, models trained with the AugMix data augmentation technique

achieved the best performance across all the employed evaluation metrics, with improvements of about

1-3%. However, in contradiction with the results found for the black-and-white dataset, the fixed set of

augmentation operations performed better in all four metrics by approximately 1-2%. The reason for

this performance inversion can be attributed to the different nature of the two datasets’ images, namely

regarding the checkered ruler present in all the images from the color photograph dataset. MixUp, in

this case, when two different photographs are combined in order to artificially generate a new data in-

stance, places in the generated image two different rulers, which can cause difficulties in determining for

each pottery fragment the corresponding correct ruler. Regarding the performance of the DenseNet-201

and EfficientNet-B3 architectures, a large performance discrepancy can be observed, with DenseNet-

201 clearly emerging as the most successful architecture, presenting approximately 2% higher scores

across all tested metrics. This discrepancy between architectures is consonant with the difference in

performance reported in the context of the black-and-white diagram dataset.

Table 4.5 reports the performance results of the meta-learning approach applied to the models
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Table 4.5: Results leveraging the meta-learning approach. Only the best-performing versions of the
models are here presented (corresponding, in this case, to models leveraging AugMix). In bold are
portrayed the best results of each model.

Model Algorithm Precision Recall F1-score Accuracy

DenseNet-201

None 79.49 76.19 75.79 81.13
1-NN 81.48 77.27 77.53 82.35
3-NN 81.29 76.21 76.77 82.31
5-NN 79.26 74.42 74.72 80.88
7-NN 78.94 73.99 74.41 80.70

Random Forest 78.53 69.78 71.45 79.35
Logistic Regression 80.68 73.22 74.67 79.90

EfficientNet-B3

None 76.99 74.15 73.34 79.29
1-NN 77.52 73.85 73.14 79.04
3-NN 76.48 72.78 72.01 78.37
5-NN 75.98 72.28 71.55 78.25
7-NN 77.29 72.82 72.40 78.25

Random Forest 74.33 66.79 67.68 75.61
Logistic Regression 75.97 71.34 71.28 78.00

trained with the AugMix technique. As can be assessed, meta-learning using the 1-NN classifier over the

representations learned by the DenseNet-201 model achieves the highest performance when compared

with the remaining tested classification algorithms, scoring 81.48%, 77.27%, and 77.53% for precision,

recall, and f1, respectively. The performance increase over standard network prediction is of 1.74% in

terms of the f1 score, with precision, recall and accuracy also presenting performances improvements

of 1-2%. Another k-nearest neighbors classifier achieves the second best performance, namely 3-NN,

with a 0.98% increase in the f1 score over the DenseNet’s standard network prediction. Of the remain-

ing tested classifiers, only logistic regression is able to surpass the original prediction performance,

exclusively in terms of the precision metric, with an increase of 1.19%. Regarding the EfficientNet-B3

architecture, for only the precision metric in two k-nearest neighbors variants, 1-NN and 7-NN, can per-

formance increases be observed. Concerning the two architectures, the substantial decrease in perfor-

mance gain by the application of meta-learning can possibly be attributed to the acute class-imbalance

present in the color photograph dataset in conjunction with the fact that more than half of the 54 classes

are composed of less than 20 instances (Figure 4.3). This way, the photograph dataset presents even

less amenable conditions for successful model classification performances when contrasted with the

black-and-white diagram dataset.

Moreover, since the color photograph dataset contains two views for each pottery photograph, namely

a front and side view, experiments leveraging the two-input variants of the two studied architectures,

trained with AugMix, were considered. In spite of the added second view, these two-input variants per-

formed substantially worse than their single input counterparts. The 2-DenseNet-201 model, in terms of

standard network prediction, scored 75.22%, 70.41%, and 70.21%, for precision, recall, and f1, respec-

tively. On the other hand, as was the case for the single input version of this network, 2-EfficientNet-B3

performed worse across all measured metrics, having scored 70.44%, 68.20%, 66.94%, for precision,

recall, and f1, respectively. The aforementioned decrease in performance can conceivably hypothesized

to be the result of the diminutive differences between the side views of artifacts belonging to different
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Table 4.6: The three best and worst-performing typologies concerning the f1-score are presented here.
The reported results are those of the DenseNet-201 model w/AugMix leveraging a 1-NN classifier. By
descending order of performance, the analyzed typologies are: oaxaca polychrome (OaP), puebla poly-
chrome (PuP), panama polychrome type a (PaPTA), mexico city copy of puebla blue on white (Mex-
PUBOW ), puebla blue on white variant with black (PuBOWV bl.), and esquitlan polychrome (EsP).

Top 3 Typologies Bottom 3 Typologies

Typology F1-score Support Typology F1-score Support

OaP 100.00 11 EsP 31.43 13
PuP 95.19 82 PuBOWV bl. 37.33 11

PaPTA 94.55 69 MexPUBOW 47.33 12

classes. Concerning meta-learning, in the experiments performed over both architectures, none of the

employed classification algorithms scored higher than standard network prediction. This result is in line

with the performances reported for the experiments concerning the diagram dataset, where in general

two-input architectures performed worse in meta-learning.

Table 4.6 reports, according to the f1 metric, the performance of the top and bottom three majolica

typologies. As expected by the imbalanced nature of the photograph dataset, the three worst-performing

typologies are all classes with a very limited number of examples. Moreover, two of these typologies,

namely mexico city copy of puebla blue on white and puebla blue on white variant with black, are also

very similar to other, more sizable typologies, in particular to the most voluminous class of the dataset,

mexico city copy of puebla blue on white. Consequently, such similarity between typologies impacts

the performance of these minority classes, which are mistaken for the similar majority class. Regarding

the better performing classes, as expected, the more numerous classes, namely the second and the

fifth largest classes (Figure 4.4), appear in the top three concerning performance. However, it is a

minority class, the oaxaca polychrome typology, which best performs, obtaining a perfect score across

all performance metrics. The unexpected classification performance of this typology can possibly be

attributed to the uniqueness of both the motifs and colors of its decorations in the context of the dataset.

4.4 Summary

In this chapter, the experiments performed in the context of the evaluation of both the black-and-white

diagrams and color photographs image classification tasks were expounded. The performance met-

rics employed in the aforementioned evaluation were likewise introduced. A detailed description of the

context, data instances, and class balance of the two explored datasets was provided in Section 4.1.

Section 4.2 described the results of the performed experiments regarding the black-and-white pottery

diagram dataset. Although the obtained results have a clear margin for improvement, the meta-learning

approach provided a performance increase in relation to simple network prediction and the adapted

noisy student approach further improved classification performance. The reported results concluded

that a single-input DenseNet-201 architecture trained with AugMix achieved the highest performance.

Moreover, by employing the t-SNE technique over the representations learned by the aforementioned

convolutional neural networks, clearly defined clusters for each typology substantiate the performance
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superiority of the k-NN algorithm over the remaining examined classifiers.

Section 4.3 reports the performances of the models developed in the the color photograph setting.

As in the black-and-white diagram dataset, DenseNet-201 trained with the AugMix data augmentation

technique achieves the best performances. Applying a k-nearest neighbors algorithm over the represen-

tations learned by the convolutional neural networks (the most successful technique for the first dataset)

likewise increases performance over the standard network prediction. In terms of the preferred object

view, a single image of the front of the pottery artifact shows a clear performance gain over the remaining

tested object views.
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Chapter 5

Conclusions and Future Work

This dissertation proposed an automatic classification system based on convolutional neural networks

with the goal of categorizing black-and-white diagrams or photographs of pottery artifacts into typologies.

In this chapter, the principal contributions of this work, as well as potential new directions for additional

work on the pottery image classification task, are presented.

5.1 Contributions

This work presented an approach based on deep convolutional neural networks for the automatic classi-

fication of images of archaeological pottery artifacts into typologies. Two different modes of representa-

tion for these artifacts were considered, namely black-and-white diagrams and color photographs, with

new datasets being introduced in this dissertation for each of the modes. Furthermore, an unlabeled

pottery dataset was assembled based on images extricated from relevant publications of the archeology

area. The developed automatic classification system was the result of extensive experiments over four

dimensions: convolutional architecture, data augmentation, meta-learning, and self-training.

Alternative architectures were tested and conclusively selected models based on a single DenseNet-

201 as achieving best classification scores. By examining the two datasets, problems emanating from

data instance scarcity were anticipated as the principal obstacle for the pottery classification task, with

three types of techniques hypothesized as possible attenuators, namely data augmentation, meta-

learning, and self-training. Firstly, data augmentation in the form of the AugMix technique provided

a significant performance increase over more elementary data augmentation procedures, with detailed

performance comparisons against additional methods of this nature reported. Secondly, taking inspi-

ration in the few-shot learning setting, meta-learning approaches consisting in leveraging supervised

classifiers over instance representations obtained from convolutional neural network models, were sug-

gested as a possible path for performance increase. The meta-learning approach, namely based on

k-nearest-neighbors classifiers, was assessed as the best suited for the two studied pottery datasets,

thus confirming the effectiveness of the approach regarding small datasets. Thirdly, considering the

success of previous semi-supervised learning techniques in leveraging unlabeled data for the perfor-
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mance improvement of models trained over small datasets, self-training in the form of the Noisy Student

approach was considered as the possible concluding component of the automatic classification sys-

tem. The Noisy Student method, concerning the diagram dataset, achieved considerable performance

increases over models trained exclusively with labeled data, thus corroborating the original intuition.

In conclusion, a number of potential limitations of the developed system need to be taken into ac-

count. First, as discussed in previous chapters, class imbalance paired with sample scarcity constitutes

the principal weak point of the newly assembled pottery datasets, with this characteristic of the datasets

possibly creating obstacles that cannot be solved with the techniques presented in this dissertation.

Second, regarding the color photograph dataset, only the front view of the pottery artifacts was entirely

used in the course of the performed experiments, with the side view of the objects being eliminated as

an alternative depiction due to poor performance in preliminary tests, thus highlighting the bias of the

approach proposed in this work to frontal depictions of the artifacts. Finally, regarding the self-training

approach in the context of the diagram dataset, only a small portion of the unlabeled data instances is

leveraged in this approach, a consequence of the 95% confidence threshold used for pseudo-labeling,

emphasizing the dependence on well-chosen unlabeled data instances for the success of the Noisy

Student procedure in this classification task. The next section addresses various approaches tending to

some of the aforementioned limitations.

5.2 Future Work

An analysis of the results of the experiments performed over the two pottery image datasets suggests

that class imbalance was a significant obstacle for higher classification performances. In the future, in

order to tackle this issue, several additional techniques can be applied to the pottery image datasets. A

possible approach is the modification of the loss functions utilized for model training (e.g., softmax cross-

entropy) to better deal with class imbalance. Focal loss, introduced by Lin et al. [66], is an example of

this, where, by adding a modulating factor to the cross-entropy loss function, the focus on data instances

that are more difficult to classify is increased, with easily classified samples having a reduced loss

value. An alternative, more general method was introduced by Cui et al. [66], which proposed weighting

class samples based on class volume, with the goal of improving classification accuracy in long-tailed

datasets, where the weight for a certain class is simply given by (1 − βn)/(1 − β), with n representing

the number of samples for that particular class and β a hyperparameter. The aforementioned technique

can be applied to both cross-entropy and the previously introduced focal loss.

Regarding the relatively small size of both studied datasets, one of the taken approaches to curb

the effect of this dataset feature was the use of data augmentation. With data augmentation techniques

substantially improving model performance, additional studies into different methods of this type could

hypothetically further ameliorate model classification capabilities. For example, GridMask, introduced

by Chen et al. [67], achieves state-of-the-art results in several image classification tasks while only

using a very small quantity of computational resources. In this method, which is based on informa-

tion dropping, new data instances are generated by removing randomly sampled uniformly distributed
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square regions of the training images in order to bolster regularization. Another possible alternative

is the FMix [68] data augmentation technique. Taking into consideration the success in image clas-

sification tasks of models trained with techniques leveraging Mixed Sample Data Augmentation (e.g.,

MixUp), Harris et al. propose a novel data augmentation method where pairs of data instances are

combined by a randomly sampled binary mask, which aims to maximize the space of edge shapes.

Compared with MixUp, a technique which generates new instances by interpolating pairs of examples,

FMix consistently outperforms it in image classification tasks.

The results from the experiments where self-training was employed seem to suggest that other tech-

niques that leverage unlabeled data can also be successful in bettering the f1 score of models trained

over the pottery image datasets. The FixMatch technique, developed by Sohn et al. [69], incorporates

the unlabeled examples into training by labeling them with consistency regularization [70] and pseudo-

labeling. For each unlabeled example two different new data instances are created: one “weakly” aug-

mented (i.e., augmentations operations such as random horizontal flipping or mild horizontal shifting)

and other “strongly” augmented with a technique such as RandAugment [71]. The “weakly” augmented

example is classified by the model, with its prediction being treated as the true label for the “strongly”

augmented version of image. Concerning the principal benchmarks for semi-supervised learning, Fix-

Match achieves state-of-the-art in their majority using a less complex method, thus becoming a suitable

candidate for future experiments.

Recently, Khosla et al. [72] adapted contrastive learning, normally applied to self-supervised learning,

to a supervised setting. In a self-supervised setting, contrastive learning measures loss by comparing

the representations of a data instance (called the “anchor”) and one augmented variant of the same

example (the “positive” sample) with the remaining of the batch’s data instances (the “negative” sam-

ples). On the other hand, supervised contrastive learning takes as “positive” all the images of the same

class and “negative” the remainder of the batch. This approach, as reported by Khosla et al., results in

an embedding space that closely groups data instances of the same class, thus potentially leading to

improved performances in classification tasks.

Lastly, an additional direction for future research is related to few-shot learning in a class adaptive

setting, i.e., in classification settings where the set of classes for training and testing is disparate. In

this dissertation, the pottery image classification problem was approached from the standard training

and testing procedure, where the model is trained over a dataset composed of a fixed set of classes

and its performance measured over data instances that belong to the same class set. However, due

to the extensive array of possible typologies for recovered archaeological pottery artifacts, techniques

that seamlessly adapt neural network models to new unseen typologies based only on a handful of data

instances could be an interesting target for future work. In this context, few-shot learning has an identical

aim: based on training on a set of voluminous base classes, with only access to a very small number of

examples belonging to novel classes, to successfully classify examples from these novel classes in the

future. More precisely, in few-shot learning tasks, both the training and testing phase of the classification

model is achieved using an episodic scheme (i.e., each epoch is composed of a predetermined number

of episodes). Episodic training consists in, from the chosen training set composed of N data instances
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pertaining to B different classes (referred as the base classes), randomly sampling K training data in-

stances from S previously sampled classes, training scenario which is denominated an S-way K-shot

setting, on each epoch’s training episodes. Such sampling is effected at the beginning of each of the

training episodes purporting to simulate, in this way, an environment where only a diminutive amount of

instances per class is available, however, it should be noted that the base classes used for training all

present a vast number of examples. The same process is then repeated in the evaluation phase for the

test portion of the dataset: from the totality of the test dataset’s classes, C classes, and I test images

from each of the aforementioned classes are sampled. Consequently, the system’s final performance

is given by the average performance on the total amount of test episodes. In the majority of training

done in such a manner, in order to achieve the best performance, the number of classes and number

of examples per class both in training and testing phases is maintained [49]. The two meta-learning

techniques [10, 9] employed in this dissertation are, as previously mentioned, adapted from few-shot

learning and, consequently, can be used for possible scenarios of pottery classification in a few-shot

learning context. Moreover, more recently, Ziko et al. [73] introduced the state-of-the-art Laplacian Reg-

ularized Few-Shot Learning. In this method, as in SimpleShot, a model is trained over the base classes

leveraging a standard cross-entropy loss, with the corresponding learned representations posteriorly be-

ing harnessed by the specific few-shot technique for the refitting of the model to the novel classes. The

technique itself consists in minimizing a quadratic function that performs binary assignment, with the

function being divided into two parts (i) the computation of the nearest class prototype for each query

sample and its attribution to the sample in question, (ii) the application of a Laplacian regularizer en-

forcing consistency in the labeling of neighboring query samples. This approach, when compared with

other state-of-the-art approaches (e.g., SimpleShot), consistently outperforms them in the main few-shot

learning benchmarks and, as a result, can be added to the array of techniques to be applied to pottery

image classification in a few-shot setting.
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2011.

[53] F. T. Bertran. La terra Sigillata de Clunia. Una propuesta metodológica para el estudio de las

producciones altoimperiales. PhD thesis, Universitat de Barcelona, 1991.

[54] L. Berrocal-Rangel, P. Seco, and C. Triviño. El Castiellu de Llagú (Latores, Oviedo). Un castro astur
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