
Implementing Bioinformatics Pipelines and User Interfaces
for Selection of Immunotherapeutic Targets in Colorectal

Cancer

António Paulo
antonio.do.paulo@ist.utl.pt
Instituto Superior Técnico

Lisbon, Portugal
December 2020

ABSTRACT
Next-generation sequencing (NGS) allows the extraction of
genomic information in a timely and efficient manner. Can-
cer treatment benefits from this, as tumor-specific mutations
(neoantigens) leading to destruction of tumor cells by the
immune system can be more easily identified resorting to
bioinformatics pipelines. Pipelines that are able to process
NGS data efficiently potentiate the timely development of
treatments. In this work, we present a neoantigen identifi-
cation bioinformatics pipeline capable of leveraging High-
Performance Computing clusters. The pipeline covers all the
steps required to turn NGS raw data from sequenced sam-
ples into ranked neoantigen predictions, while utilizing RNA
data to verify whether the tumor-specific mutations are be-
ing expressed. The pipeline was developed as an overhaul to
a previously used pipeline by an Immunogenomics research
group, managing to reduce the execution time from days to
hours, while keeping neoantigen prediction in line with pre-
vious results. The presented pipeline is open-source, freely
available in GitHub [36, 50] and was designed with repro-
ducibility, modularity and collaboration in mind. Addition-
ally, this work includes a data visualization module through
which users can visualize the pipelines’ results (also available
in GitHub [18]).

Keywords
Bioinformatics pipeline; neoantigen identification;
personalized cancer vaccine; next-generation sequencing;
high-performance computing.

INTRODUCTION

Biological Fundamentals
Computational methods aid researchers in finding new ther-
apeutics for cancer treatment. Next-Generation Sequenc-
ing (NGS) allows the sequencing of Deoxyribonucleic Acid
(DNA) and Ribonucleic Acid (RNA) much faster and cheaper
than was previously possible [5]. Sequencing is the process of
determining the nucleotide order of DNA or RNA extracted
from cells, which in our context are human cells. The en-
tire set of an individual’s DNA constitutes their genome. In-
side our cells, DNA is transcribed into RNA, which in turn is
translated into a protein. A portion of the genome that codes

for a protein is known as a gene, and alleles are variations of
a given gene.

Sequencing a human tissue sample using NGS technology
can result in billions of reads [30, 37] – sequences of nu-
cleotides each corresponding to some portion of the genome.
Based on the sequencing data of several individuals, a hu-
man reference genome was created by the Genome Research
Consortium (GRC) [19]. This reference genome is used by
the scientific community as a point of comparison in NGS
analyses. Any change in the DNA sequence relative to a ref-
erence genome is a variant. Variants in the coding part of
a genome, i.e. genes, are known as coding variants. Muta-
tions are variants that have deleterious or advantageous ef-
fects in cells and are rare events. In cancers, mutations on
genes that control cellular growth often accumulate, leading
to an uncontrolled proliferation of cancer cells. Variants in tu-
mor cells that change protein-coding sequences may generate
neoantigens. Antigens are substances that induce an immune
response on our body, and neoantigens are antigens encoded
by tumor-specific variants, i.e, variants not present in normal
tissue. Neoantigens have been shown to play a significant
role in mediating the destruction of tumor cells by the im-
mune system [16, 17, 52]. Moreover, tumors with a higher
number of tumor specific-mutations, and consequently more
neoantigens have a better prognostic [32].

T cells are a type of white blood cells fundamental to the
body’s immune response. Tumor cells are killed through the
action of Cytotoxic T Cells (CTLs) that recognize neoanti-
gens that bind to the T Cell Receptor (TCR) and are presented
by cell surface Major Histocompatibility Complex (MHC)
molecules in tumor cells (see Figure 1). As such, numer-
ous studies have targeted patient-specific neoantigens to clear
tumors, with treatments using personalized neoantigen vac-
cines showing promising results [34, 44]. Note that the hu-
man leukocyte antigen (HLA) is equivalent to the MHC but
is specific to humans.

Bioinformatics Pipeline
To identify neoantigens, NGS data must go through several
steps of analysis and transformation which can be accom-
plished using a bioinformatics pipeline: a series of software
steps, usually chained together using a framework that con-

1

MHC I
TCR

mutation

cell death

Tumor Cell Cytotoxic T Cell

binding leads to
neoantigen

Figure 1. Elimination of a tumor cell with a non-synonymous coding
mutation by a CTL. This mutation originated a neoantigen that is then
presented by a cell surface MHC molecule. The CTL then specifically
recognizes the presented neoantigen and causes the tumor’s cell death.

trols the process flow. In complex pipelines the framework
should ideally be a Workflow Management System (WFMS).
A proper WFMS enables the pipeline to continue where it
left off if interrupted, is able to utilize multiple computing
nodes for added efficiency and handles job scheduling with-
out requiring modifications to the existing code. Addition-
ally, having native container support allows the reproducibil-
ity and portability of the pipeline. Cromwell, the WFMS used
in our neoantigen identification pipeline, provides the afore-
mentioned features. Figure 2 represents an example flow of a
pipeline executing in a High-Performance Computing (HPC)
cluster environment using a WFMS framework and software
containerization

Cluster Job Queue

Computing Resources

HPC Cluster

Submit Job

Pipeline Script

Job Scheduler

Workflow Management System

Execute

Container Repository

Figure 2. Example process flow of a pipeline executing in an HPC clus-
ter. A WFMS is used to create and submit the jobs to the cluster’s queue
without having had to explicitly write code in the pipeline script to do
so. Moreover, containerization of the software, which provides repro-
ducibility and portability to the pipeline by pulling container images
from cloud repositories, is depicted in the upper right corner.

Due to the complex nature of these pipelines in terms of
the numerous inputs and transformations that the data goes
through, it is valuable to present the processed data visually
as it helps detecting errors such as malformed or mismatch-
ing inputs, or incorrect bioinformatics software configuration,
thus avoiding drawing wrong conclusions about the processed
data. With this in mind, our pipeline generates Quality Con-
trol (QC) plots and we implemented a separate R Shiny visu-
alization module that provides a summary of the number and
type of non-synonymous variants.

Problem Formulation
In this work, we present a bioinformatics pipeline capable of
processing a large amount of NGS data from patients and with
it identify neoantigens that can be used by researchers to de-
velop targeted cancer vaccines. The pipeline is destined (but
not restricted) to analyze sequencing data from Colorectal
Cancer (CRC) with low mutation numbers, with the key as-
pect being the identification of all tumor-specific variants that
are coding non-synonymous, i.e., variants that cause changes
to the proteins’ sequence. This analysis was already being
done, with an older pipeline, by the Immunogenomics group
of the Department of Pathology of Leiden University Medical
Center (LUMC) [28], environment where and for which the
new pipeline was developed. The main issue with the previ-
ous (makefile [21]) pipeline was that its execution time was
in the order of days, something that was vastly improved with
the new pipeline. Contrary to the previous pipeline, the new
pipeline is capable of leveraging the computational power of
High-Performance Computing (HPC) clusters, including the
one available at LUMC.

TYPICAL NEOANTIGEN IDENTIFICATION WORKFLOW
Figure 3 summarizes the typical neoantigen identification
workflow [24]. Firstly, tumor and normal (healthy) tissue
have their DNA extracted (also RNA for the tumor) which is
sequenced using NGS technology. Afterwards, QC, adapter
trimming and read mapping are performed. In read map-
ping, millions of independent nucleotide sequences (reads)
are mapped to the corresponding position in the reference
genome. After the reads are aligned, variant calling is per-
formed, i.e., nucleotide differences between the tumor and
normal reads are identified. Using the RNA mapping infor-
mation, it is possible to verify whether a variant is being ex-
pressed. Separately, the patient’s HLA type is identified. Fi-
nally, binding prediction to the patient’s HLA type is done
for all tumor-specific variants that are present in the RNA se-
quences.

DEVELOPED NEOANTIGEN IDENTIFICATION PIPELINE
We aimed to build an integrated pipeline, i.e., a pipeline com-
prised of several modules that runs seamlessly after issuing
a simple command from a Command-line Interface (CLI).
A module represents a part of the typical neoantigen detec-
tion workflow. The pipeline consists of six modules: the first
three pipeline modules are integrated, whilst the remaining
three are not. As such, the latter have to be run separately
as standalone CLI tools, not benefiting from the Cromwell
WFMS (detailed later). Furthermore, at LUMC there is an
HPC Cluster where users can submit computational jobs that
get queued. The pipeline was developed in this HPC cluster,
but the implementation is not bound to it.

Overview
The pipeline’s main goal is to identify neoantigens starting
from tumor-normal matched tissue samples, i.e., tumor and
normal tissue samples from a given cancer patient. Multiple
matched samples from different patients can be processed by
the integrated pipeline in a single run. Figure 4 summarizes
the developed pipeline, including the steps that precede run-
ning it in an HPC cluster.

2

neoantigen

Tumor Tissue

Extract

Normal Tissue

Extract

Gly

A	C	G	T	C	A	A	G	T	A	G	T

T	G	C	A	G	T	T	C	A	T	C	A
Reference sequence

T	G	C	A	G	T	T	C	A	T	C	A

A	C	G	T	C	A	A	G	T	A	G	T
Normal Tissue

T	G	C	A	G	T	C	C	A	T	C	A

A	C	G	T	C	A	G	G	T	A	G	T
Tumor Tissue

Expressed PeptideThr Ser Ser

RNAA	C	G	U	C	A	G	G	U	A	G	UIdentify Expressed
Somatic Mutations

Neoantigen Binding Prediction

HLA Typing

Variant Calling

Quality Control and Adapter Trimming

Sequencing

Read Mapping (Alignment)

CAAGCAGACTACGTCAAGTAGTACGAGTAGTACGTCAATCTGTGTACGAGAGTACACATTGAATCGCATCCAGGATACGGC
CAAGCAGACTACGTCAAGTAGTACGAGTAGTACGTCAATCTGTGTACGAGAGTACACATTGAATCGCATCCAGGATACGGC
CAAGCAGACTACGTCAAGTAGTACGAGTAGTACGTCAATCTGTGTACGAGAGTACACATTGAATCGCATCCAGGATACGGC
CAAGCAGACTACGTCAAGTAGTACGAGTAGTACGTCAATCTGTGTACGAGAGTACACATTGAATCGCATCCAGGATACGGC
CAAGCAGACTACGTCAAGTAGTACGAGTAGTACGTCAATCTGTGTACGAGAGTACACATTGAATCGCATCCAGGATACGGC
CAAGCAGACTACGTCAAGTAGTACGAGTAGTACGTCAATCTGTGTACGAGAGTACACATTGAATCGCATCCAGGATACGGC

Adapter

Trim

Adapter

Trim

DNA/RNA fragment

TCR
MHC I

Figure 3. Typical neoantigen identification workflow.

Before running the pipeline, tumor-normal matched tissue
samples are collected and sent to a sequencing facility that
sends back the files with the reads pertaining to the samples.
These reads are some of the pipeline’s inputs. Afterwards,
while the user is connected to the HPC cluster (where the
Cromwell WFMS is installed), the pipeline is executed by
running its main script, written in the Workflow Description
Language (WDL) (detailed later). This triggers Cromwell
which is responsible for job scheduling. Cromwell decides
– based on the computing resources required and the depen-
dencies between tasks – and submits jobs to the cluster that
correspond to modules’ tasks. The first three modules of the
pipeline – QC and Adapter Trimming, Read Mapping, and
Somatic Variant Calling – pull container images from the
Docker Hub [13] or Quay [39] container repositories, and
then build Singularity container images. Pulling and building
are handled by the Singularity container tool [45]. Singularity
is used due to the safety concerns of HPC clusters. The re-
maining three pipeline modules – Mutant Protein Prediction,
HLA Typing and HLA Binding Prediction – are run sepa-
rately as they are not yet implemented using WDL. Below,

Start Cromwell
WFMS

User Connected to HPC Cluster

Cromwell
Job Scheduler

Inputs

Tumor RNA Reads

Normal DNA Reads

Sequencing Facility

Tissue Samples

Tumor DNA Reads

Sequencing

Run Pipeline (CLI)
WDL Script

Quality Control and
Adapter Trimming

HLA Binding
Prediction

Read Mapping
(Alignment) HLA Typing

Mutant Protein
Prediction

Somatic
Variant Calling

Pull and Build
Containers

Quay / Docker Hub

Analyze Results

Figure 4. Neoantigen identification pipeline in the context of LUMC’s
Cancer Immunogenomics research group which has access to an HPC
cluster. The pipeline’s steps are highlighted in green, and inside the
blue dotted line is what concerns the HPC cluster environment where
the pipeline is run.

we detail each pipeline module and the surrounding develop-
ment aspects.

Workflow Description Language
The pipeline was implemented using WDL [51], a workflow
building language designed to be accessible and easily un-
derstandable. WDL allows to specify workflows and tasks.
Workflows call tasks (or other workflows), allowing to chain
together software execution. Moreover, WDL has a simple to
use mechanism called scattering. By wrapping a certain por-
tion of code into a scatter block, the workload is parallelized,
allowing for more efficient computation. Additionally, WDL
provides a practical File primitive that abstracts file paths into
objects, removing the extra complexity of working with file
paths when compared to the standard string primitive. WDL
can be used to write workflows that transparently use con-
tainer technologies such as Docker, and is suited for describ-
ing large-scale workflows in HPC clusters and cloud environ-

3

ments where tasks are scheduled in parallel across numerous
nodes.

Cromwell WFMS
WDL workflows can be run using Cromwell, a WFMS geared
towards scientific workflows whose development is linked
to WDL. Cromwell manages job submission into comput-
ing clusters and scheduling without pipeline developers hav-
ing to write code for that. Furthermore, Cromwell has a
caching system that avoids re-running previously executed
tasks, avoiding the entire pipeline to run when only part of it
(e.g., user-defined inputs) changed. Before running pipelines
using Cromwell, it needs to be configured. The configuration
depends on the execution environment, which in our case was
an HPC with a Sun-Grid Engine backend.

Singularity Containers
Containers address the important aspect of building a repro-
ducible and portable pipeline, allowing different users to have
the same software configuration simply by linking to the same
container image. By default, all tasks point to a tested con-
tainer image. Singularity was the chosen container tool be-
cause, due to its stricter security model, it is usually adopted
in HPC environments. Although the WDL scripts link to
Docker images, Cromwell can be configured to use Singu-
larity to pull and convert Docker images prior to running a
given task.

INTEGRATED PIPELINE
Quality Control and Adapter Trimming
The first step is scattering the files resulting from sequencing
the tumor and normal tissue samples. These files can be mul-
tiple gigabytes in size. By splitting them into smaller files,
the “QC” WDL workflow jobs can be called in parallel. Fol-
lowing the guidelines, quality control is run twice (FastQC
tool [3]), before and after trimming adapter sequences (not
part of the patient DNA) with Cutadapt [33]. Finally, by run-
ning the MultiQC [15] tool, FastQC reports and other metrics
are aggregated and plotted into a single HTML file. This file
addresses part of the result visualization concerns mentioned
previously by giving the user insights into the quality of the
reads (which impact the quality of the downstream results).

Read Mapping (Alignment)
Reads are mapped using BWA-MEM [29], the Burrows-
Wheeler Alignment (BWA) tool used to align reads rang-
ing from 70 base pairs (bps) to a few megabases (ours be-
ing over 150 bps). Succinctly, after the scattered sequencing
files are processed by the QC and Adapter Trimming module,
they are aligned against a (user-defined) reference genome,
resulting in Binary Alignment Map (BAM) files. Then, using
Picard [11], duplicate reads (originating from a single DNA
fragment) in the BAM files are located and tagged. With the
Genome Analysis Toolkit (GATK) [9], the (scattered) BAM
files go through base quality score recalibration. This step de-
tects systematic errors made by the sequencing machine when
it estimates the accuracy of each base call [8]. Additionally,
BAM metrics are collected and later gathered by MultiQC,
and the scattered BAM files gathered into one (for each sam-
ple).

Somatic Variant Calling
Depending on user choice, up to three different variant callers
can be run simultaneously and their results combined: Mu-
tect2 [6], Strelka2 [25] and VarDict [27]. The advantage of
having three variant callers is maximizing the number of true
protein changing variants called. Generally speaking, there
are three types of variants: Single Nucleotide Variants (SNV),
insertion or deletion (indel) and Structural Variants (SV). Not
all variant callers call all three variants types because fun-
damentally different algorithms are required [53]. Table 1
summarizes the types of variants called by each of the variant
callers used. This table also contains a column for Multi-
Nucleotide Variants (MNV), i.e., SNVs that are located to-
gether. Providing this combination of variant callers is a ben-
efit of using our pipeline when compared to other neoantigen
identification pipelines that restrict their results to a certain
type of variant (e.g, the Epi-Seq pipeline [14] only handles
SNVs).

SNV MNV Indel SV
Mutect2 Yes Yes Yes No
Strelka2 Yes No Yes Yes
VarDict Yes Yes Yes Yes

Table 1. Variant types called by Mutect2, Strelka2 and VarDict

In an independent benchmark [55], the sensitivity (true
positive rate) and specificity (true negative rate) of well-
established somatic variant callers such as Mutect and Strelka
were compared. Strelka and Mutect were found to have
achieved significantly higher sensitivity at the lowest Vari-
ant Allele Frequency (VAF), i.e., the minimum frequency to
consider a variant true, with similar or lower false positive
rates than the other variant callers. Furthermore, the previous
pipeline at LUMC used Mutect and Strelka as well. Although
the versions were older, we verified that the results between
the new and the previous pipelines were identical. VarDict is
capable of calling every type of variant. Additionally, in an-
other benchmark [54], it was shown to achieve good accuracy,
provided the VAF threshold is carefully chosen.

As a notable addition to the Mutect2 workflow when com-
pared to the previous pipeline we highlight the panel of nor-
mals workflow [10]. The latter improves variant filtering us-
ing a database with variants found in the normal tissue of
other patients. The logic is that, if a candidate somatic vari-
ant was detected in a given patient but it was also present in
the panel of normals database, then it is likely to be a normal
variant and can thus be filtered out.

Modularity
The pipeline’s source code [50], comprises several Git sub-
modules [20]. Essentially, Git submodules are Git reposito-
ries that are kept as subdirectories of another Git repository.
The pipeline is comprised by the following Git submodules:

• “QC”: responsible for adapter trimming and gathering QC
metrics

• “BamMetrics”: gathers metrics from read alignment files.

4

• “gatk-preprocess”: produces a report on the observed base
quality scores and recalibrates the read alignment files
based on the report.

• “somatic-variantcalling”: responsible for running the so-
matic variant callers

• “tasks”: collection of reusable tasks called by the other
workflows. It includes, for example, read mapping tasks.

The division into Git submodules enables integrating them
easily into other WDL pipelines. All submodules are depen-
dent on the “tasks” submodule. Otherwise, they are mostly
independent and code changes should not involve rewriting
multiple parts of the pipeline. Located at the root of the repos-
itory we find the main script, “pipeline.wdl” which runs the
entire pipeline.

Continuous Integration and Testing
For Continuous Integration (CI) purposes - the practice of
merging in small code changes frequently, rather than merg-
ing in a large change at the end of a development cycle - the
Travis CI [48] platform is used. Although normally requiring
a paid license, it is free for open source projects such as our
integrated pipeline. Travis CI automatically builds and tests
code changes, providing immediate feedback on whether the
changes were successful. The pytest framework [26] was
used to write the integration tests that are run by Travis CI.
The tests use small and well-described input data to verify
that the pipeline runs successfully and whether the outputs
change after new code is pushed to the repository. For ex-
ample, to test the Somatic Variant Calling module, inputs
smaller than 1 Megabyte containing NGS reads are used to
confirm that the variants called remain the same after new
code is pushed to the repository.

STANDALONE PIPELINE MODULES

Mutant Protein Prediction
Isovar [42] is used to predict the mutant protein sequences
from the identified variants. It uses RNA sequencing reads to
assemble the most abundant coding sequence for each muta-
tion. One of the advantages of using RNA to determine the
coding sequence for mutations is the phasing of somatic and
germline (present both in tumor and normal cells) variants.
If phasing is not taken into account, the resulting protein se-
quences may not match the ones produced by tumor cells,
thus being an incorrect choice to include in a tumor vaccine.
Figure 5 presents an overview of Isovar, showing the phasing
of somatic and germline mutations.

HLA Typing
HLA typing is crucial in neoantigen binding prediction to be
able to assess how strongly variant peptides bind to the pa-
tient’s HLA molecule. Strong binders are more likely to be
recognized by the immune system (see Figure 1). The Op-
tiType [46] tool is regarded as the most accurate for HLA
class I typing [4]. OptiType takes the sequencing reads from
a given patient and maps them against all HLA class I alleles,
allowing it to predict the optimal HLA alleles.

CCTGCTGATACATCA
GCTGATACATCA

CCTGCTGATACCTCA
GCCTGCTGATACCTCA

ATACCTCA

TCGCTACCT
TCGCTACCTCCG
TCGCTACCTCC
TCGTTACC
TCGTTACCTCCGACTTA

Somatic mutation Germline mutation

RNA-Seq
tumor reads

Select coding sequence

GRLCSSDGP

CCTGCTGATACATCATCGCTACCTCCG

Translate into protein sequence

Intron

Figure 5. Isovar tool overview including somatic and germline mutations
phasing.

HLA Binding Prediction
For the HLA binding prediction module we developed a
Python tool [36]. It depends on a modified version of
mhctools [41], a Python Application Programming Inter-
face (API) to commonly used MHC binding predictors. We
use mhctools to run NetMHC [2] and NetMHCpan [40] as
they are well-established, showing great performance in HLA
class I binding prediction [22]. We extended mhctools [43]
to expose a type of peptide ranking provided by NetMHC-
pan that is not made available by mhctools. Succinctly, the
added functionality differs in the data that was used to train
the NetMHCpan predictor, consequently affecting how pep-
tides are ranked.

Our python tool, first takes the mutant protein sequences
from Isovar alongside the respective non-mutant sequences
(normal sample) and aligns them against one another (global
pairwise alignment, exemplified in Listing 1). This allows
to locate the mutations in the sequences. Then, small pep-
tides with (user-defined) sizes are extracted around the muta-
tions. Using BLAST+ [12], these small peptides are queried
against a user-defined human protein database, such as Swiss-
Prot [1] filtered to only contain human sequences. As a novel
approach, we filter out peptides that matched completely to
those on the database. The rationale is that peptides that
are naturally found on humans are not good candidates to be
included in a cancer fighting treatment. Finally, using our
modified version of the mhctools API, we run netMHC and
netMHCpan to predict the binding of the short peptides that
remained after filtering (with our novel approach), to the pa-
tient’s HLA alleles. The main output is comprised of these
binding predictions, where the indication of binding strength
(weak, strong or no-binding) appear.

Listing 1. Global pairwise alignment of two protein sequences. On the
top is the non-mutant and on the bottom the mutant sequence. A 6 nu-
cleotide deletion occurred (indel variant), leading to a 2 amino-acid gap
in the middle of the mutant sequence.
KIHVTPLIPGKSQSVSVSGPGPGPGPGLCPGPNVLLNQQNPPAPQPQHL--
||||||||||||||||||||||||| ||||||||||||||||||||||
KIHVTPLIPGKSQSVSVSGPGPGPG--LCPGPNVLLNQQNPPAPQPQHLRP

Additionally, our tool provides two other types of outputs: 1)
a log containing information such as the resulting global pair-
wise alignments and the tool’s execution progress. 2) Two

5

files useful for laboratory work: one for mass spectrometry
and another for peptide reactivity testing. Mass spectrometry
can be used to identify peptides presented by MHC molecules
(refer back to Figure 1). The mass spectrometry file consists
of variant identifiers that are generated based on the muta-
tion position with the respective mutant sequence alongside it.
Succinctly, peptide reactivity testing checks for a neoantigen-
specific response of T cells. The peptide reactivity testing file
contains variant identifiers followed by the mutant sequences
of size 25 that are built around the respective mutation po-
sition. These two files are not part of the typical neoanti-
gen identification workflow. However, since they are helpful
in facilitating the LUMC Immunogenomics research group
workflow, they can also be valuable for other research groups
doing a similar type of laboratory work.

RESULT VISUALIZATION
Besides the aforementioned QC plots generated by the
pipeline, we developed a separate R Shiny application.
Shiny [38] is an R package to build interactive web applica-
tions with a focus on simplicity of development and redistri-
bution, responsiveness in the interaction with the application
for the end user and appealing default User Interfaces (UI)
based on Bootstrap [7], a widely used front-end component
library. The UI can be written in R but also directly using
the common web development languages – HTML, CSS and
JavaScript. Our Shiny application’s source code is available
in GitHub [18] and hosted online in the Shinyapps cloud [35]
(experimental). In this application, we generate two bar plots
using an R data scraping script that gathers and processes the
data needed. The plots show the number of protein chang-
ing variants per sample and whether they are expressed (Fig-
ure 6), and the type of variants (Figure 7).

Figure 6. R Shiny module plot showing the number of protein changing
variants per sample, while indicating whether the variants are expressed
(black) or not expressed (grey).

VALIDATION

Synthetic Data
To validate variant calling performance, we ran the Somatic
Variant Calling module of our pipeline on a paired tumor-
normal synthetic sample from the ICGC-TCGA DREAM
Mutation Calling Challenge that took place in 2013 [23], a

Figure 7. R Shiny module plot showing the number of occurrences for a
set of variant types. The samples’ identifiers are shown on the right.

commonly used dataset for the assessment of somatic variant
callers. The whole genome sequencing reads were aligned to
the GRC Human Build 37 (GRCh37) reference. Moreover,
for each simulated tumor, a file containing the ground truth
(computationally added) variants was provided. We focused
solely on SNVs because these were consistently represented
across all variant callers and the ground truth file.

Sensitivity =
TP

Positives
=

TP

TP + FN
(1)

Specificity =
TN

Negatives
=

TN

TN + FP
(2)

Mutect2 Strelka2 VarDict
Sensitivity 0.973 0.957 0.987
Specificity 0.981 0.995 0.791

Table 2. Mutect2, Strelka2 and VarDict sensitivity and specificity with
synthetic data.

M2 ∪ S2 ∪ VD M2 ∪ S2
Sensitivity 0.991 0.980
Specificity 0.839 0.992

Table 3. Mutect2 (M2), Strelka2 (S2) and VarDict (VD) unions’ sensitiv-
ity and specificity with synthetic data.

Recognizing that we are before a binary classification test, a
variant called by our pipeline is considered either true or false,
depending on whether it is in the ground truth file. Thus, each
variant called can be classified as a True Positive (TP), False
Positive (FP), False Negative (FN), or True Negative (TN).

In our case, a TP is a variant call that is also found in the
ground truth file; a FP is a variant call that was not in the
ground truth file; a FN is a variant that is in the ground truth
file but that was either not called at all (missed) or that was
called but was filtered by the variant caller; a TN is a variant
call that was filtered by the caller and that is not in the ground
truth file. Consequently, the number of TP plus FN totals the
number of variants in the ground truth file, which is 3537.

6

Sample Target
Variants

Mutect2 Strelka2 VarDict Intersection Require
Inspection

Filtered
by All

NIC3 19 19 19 18 18 1* 0
NIC4 30 29 30 30 29 1 0
NIC5 50 46 49 50 45 5 0
NIC6 23 22 23 23 22 1 0
NIC7 33 27 29 29 27 3* 3**

Total 155
(100%)

143
(94%)

150
(96.8%)

150
(96.8%)

141
(91%)

11
(7.1%)

3
(1.9%)

Table 4. New pipeline’s validation results relative to the expressed protein changing variants identified by the previous pipeline. The target variants
column shows the number of expressed protein changing variants previously identified. The next columns contain the number of target variants called
by each variant caller in the new pipeline. The intersection presents the number of target variants that were called by all variant callers. The values in
the column of (variants) requiring inspection were obtained by subtracting the number of target variants with that of the intersection added to the value
in the last column. The last column shows the number of target variants that, although called, were filtered by all variant callers. Values marked with an
asterisk (*) include one correctly reported MNV (in the respective sample) that corresponds to an SNV in the previous pipeline. The two asterisks (**)
concern three variants that, after a second visual inspection were considered false positives and removed from the target variants list in future analysis.

Using these four metrics – TP, FP, TN, FN – we can calculate
sensitivity (true positive rate) and specificity (true negative
rate), given by Equations 1 and 2, respectively. Table 2 shows
the sensitivity and specificity of each variant caller running
on the synthetic dataset. Table 3 shows the sensitivity and
specificity of the union of all variant callers and of only Mu-
tect2 and Strelka2 running on the synthetic dataset. This table
highlights VarDict’s negative impact on specificity caused by
an high FP count. Nonetheless, having achieved a sensitivity
of 0.991, we considered that the variants called by the union
of all variant callers was good. As we are especially interested
in maximizing the number of detected variants and consider-
ing some aspects of this dataset were not ideal (not covered
here), we regard the validation as successful even if VarDict
has a lower specificity than desired.

Previous Results
A major focus in developing the new pipeline was maintain-
ing coherency with the results from the previous pipeline.
This would allow continuity in the analysis of the same sam-
ples and give the research group confidence in the predicting
performance of the new pipeline. In practice, this meant the
new pipeline was required to call the same variants as the pre-
vious one did.

To confirm whether the requisite above was met, we ran the
new pipeline on real, low-mutation CRC patient’s tumor-
normal paired whole exome sequencing samples that had
already been processed by the previous version of the
pipeline. Moreover, the predicted variants from the previ-
ous pipeline had already undergone visual inspection by the
Immunogenomics research group. The visual inspection was
done using the Integrative Genomics Viewer (IGV) [47], a
genome visualization tool that allows to manually review
aligned NGS reads. Briefly, this inspection verifies whether
each variant is non-synonymous (codes for different proteins
than originally) and that it is being expressed by checking the
corresponding RNA sequencing reads. These variants repre-
sent the closest possible to a ground truth, and we refer to
them as target variants.

Table 4 summarizes the validation results obtained. The vari-
ants called by all variant callers (intersection) are considered
true and can skip individual inspection. This is identical to
the workflow followed by the Immunogenomics group when
using the previous pipeline. In the table we see that, across
all samples, 91% of the target variants were in the intersection
results. The remaining 9% are divided in two categories: re-
quiring inspection and filtered by all. The former are variants
that, in a real patient analysis done by the Immunogenomics
research group, would have to be individually inspected to
assess whether they would be considered true. In these low
mutation samples, all the variants are considered even if they
are only called by one variant caller. The variants that are
not called by the three variant callers (intersection), are visu-
ally inspected to discard sequencing artifacts. Furthermore,
two of the variants that required inspection (the one in the
NIC3 sample and one from NIC7) were correctly reported as
MNVs, whereas in the previous pipeline they had been de-
tected as SNVs. Three variants were identified but filtered
unanimously by the variant callers (NIC7 sample). The filters
were related to either weak evidence, low quality or read bias,
or a combination of them. These filters, combined with visual
inspection, lead the research group to consider the variants as
false in future analysis.

CONCLUSIONS
By using WDL and Cromwell, we were able to leverage the
HPC cluster at LUMC, which was impossible with the pre-
vious makefile-based pipeline. This resulted in a steep de-
crease in execution time, from days to hours (10-14 hours
for the samples in Table 4). It would be interesting to col-
lect detailed metrics on execution time, while checking for
workflow improvements. However, considering the pipeline
is running on an HPC cluster this analysis poses some chal-
lenges. Among other aspects, the compute jobs that are sub-
mitted to the cluster can end up scheduled in a multitude of
heterogeneous nodes and the load on each node will vary de-
pending on the jobs that other users have submitted (compute
resources are shared).

7

Concerning the synthetic validation values for sensitivity in
Table 2, we consider the variant callers to have performed
well in finding the true variants. However, even though Var-
Dict had the best sensitivity, it called thousands of FP vari-
ants, resulting in a subpar value for specificity. For the Im-
munogenomics research group, this is not problematic be-
cause the priority is finding all possible protein changing vari-
ants in CRC with low mutation numbers.

Regarding the validation with previous results, we consider
that the new pipeline results are in line with the list of vari-
ants generated by the previous pipeline (see Table 4). Addi-
tionally, if we were to adjust our results to consider the two
MNVs as belonging to the intersection, and the three “filtered
by all” variants to be excluded from the target variants, the re-
sulting percentage for the intersection would go up to 94.1%.
Ideally, more samples should be analyzed.

The integrated pipeline is hosted in the BioWDL GitHub
repository, currently in version 4.0.0 [49], where it is main-
tained and updated with newer tool versions and workflows
to keep up with the needs of the Immunogenomics group and
other users of the pipeline (our contributions ended in ver-
sion 1.0.0 [50]). Instructions on the pipeline usage are also
available online [31]. Since the GitHub repository is public,
anyone can contribute by making pull requests with improve-
ments. The latter also applies to the standalone HLA Binding
Prediction module [36] and R Shiny application [18]. All the
software developed in this work is open-source, freely avail-
able and welcomes contributions.

ACKNOWLEDGMENTS
We would like to thank Davy Cats, Ruben Vorderman and
Dr. Hailiang Mei from the Sequencing Analysis Support
Core team at LUMC for sharing their expertise in building
pipelines using WDL and Cromwell.

REFERENCES
1. Uniprot Homepage. https://www.uniprot.org/. Last

accessed 25 Aug 2019.

2. Andreatta, M., and Nielsen, M. Gapped sequence
alignment using artificial neural networks: application to
the MHC class I system. Bioinformatics 32, 4 (2016),
511–517.

3. Babraham Bioinformatics. FastQC Tool. https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/.
Last accessed 19 Dec 2018.

4. Bauer, D. C., Zadoorian, A., Wilson, L. O. W., Alliance,
M. G. H., and Thorne, N. P. Evaluation of computational
programs to predict hla genotypes from genomic
sequencing data. Briefings in Bioinformatics 19, 2
(2018), 179–187.

5. Behjati, S., and Tarpey, P. S. What is next generation
sequencing? Archives of Disease in Childhood -
Education and Practice 98, 6 (2013), 236–238.

6. Benjamin, D., and Sato, T. Notes on Mutect2.
https://github.com/broadinstitute/gatk/blob/

master/docs/mutect/mutect.pdf. Last accessed 26
Aug 2020.

7. Bootstrap Team. Boostrap - The most popular HTML,
CSS, and JS library in the world.
https://getbootstrap.com/. Last accessed 21 Oct
2019.

8. Broad Institute. Base Quality Score Recalibration.
https:
//gatk.broadinstitute.org/hc/en-us/articles/
360035890531-Base-Quality-Score-Recalibration-BQSR.
Last accessed 26 Aug 2020.

9. Broad Institute. Genome Analysis Toolkit.
https://gatk.broadinstitute.org. Last accessed 26
Aug 2020.

10. Broad Institute. (How to) Call somatic mutations using
GATK4 Mutect2. https://bit.ly/2WcNpwY. Last
accessed 23 Aug 2019.

11. Broad Institute. Picard Tool.
https://broadinstitute.github.io/picard/. Last
accessed 26 Aug 2020.

12. Camacho, C., Coulouris, G., Avagyan, V., Ma, N.,
Papadopoulos, J., Bealer, K., and Madden, T. L.
BLAST+: architecture and applications. BMC
Bioinformatics 10, 1 (Dec 2009), 421.

13. Docker Hub. https://hub.docker.com/. Last accessed
5 Jan 2019.

14. Duan, F., Duitama, J., Seesi, S. A., Ayres, C., Corcelli,
S., Pawashe, A., Blanchard, T., McMahon, D., Sidney,
J., Sette, A., Baker, B., Mandoiu, I., and Srivastava, P.
Genomic and bioinformatic profiling of mutational
neo-epitopes reveals new rules to predict anti-cancer
immunogenicity. Journal of Experimental Medicine 211,
11 (2014), 2231–2248.

15. Ewels, P., Magnusson, M., Lundin, S., and Käller, M.
MultiQC: summarize analysis results for multiple tools
and samples in a single report. Bioinformatics 32, 19 (06
2016), 3047–3048.

16. Finnigan, J., Rubinsteyn, A., Hammerbacher, J., and
Bhardwaj, N. Mutation-derived tumor antigens: Novel
targets in cancer immunotherapy. Oncology (Williston
Park, N.Y.) 29 (2015).

17. Fritsch, E. F., Rajasagi, M., Ott, P. A., Brusic, V.,
Hacohen, N., and Wu, C. J. HLA-binding properties of
tumor neoepitopes in humans. Cancer Immunology
Research 2, 6 (2014), 522–529.

18. Frölich, S., Paulo, A., and Ruano, D. R Shiny Module
GitHub Repository.
https://github.com/Amfgcp/neoseq_shiny. Last
accessed 12 Sep 2020.

19. Genome Research Consortium.
https://www.ncbi.nlm.nih.gov/grc. Last accessed 30
Sep 2019.

8

https://www.uniprot.org/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/broadinstitute/gatk/blob/master/docs/mutect/mutect.pdf
https://github.com/broadinstitute/gatk/blob/master/docs/mutect/mutect.pdf
https://getbootstrap.com/
https://gatk.broadinstitute.org/hc/en-us/articles/360035890531-Base-Quality-Score-Recalibration-BQSR
https://gatk.broadinstitute.org/hc/en-us/articles/360035890531-Base-Quality-Score-Recalibration-BQSR
https://gatk.broadinstitute.org/hc/en-us/articles/360035890531-Base-Quality-Score-Recalibration-BQSR
https://gatk.broadinstitute.org
https://bit.ly/2WcNpwY
https://broadinstitute.github.io/picard/
https://hub.docker.com/
https://github.com/Amfgcp/neoseq_shiny
https://www.ncbi.nlm.nih.gov/grc

20. Git Submodules. https:
//git-scm.com/book/en/v2/Git-Tools-Submodules.
Last accessed 18 Oct 2019.

21. GNU make. https:
//www.gnu.org/software/make/manual/make.html.
Last accessed 24 Oct 2019.

22. Immune Epitope Database and Analysis Resource.
MHC I Automated Server Benchmarks.
http://tools.iedb.org/auto_bench/mhci/weekly/.
Last accessed 1 Jan 2019.

23. International Cancer Genome Consortium (ICGC) and
The Cancer Genome Atlas (TCGA). ICGC-TCGA
DREAM Mutation Calling challenge.
https://www.synapse.org/#!Synapse:
syn312572/wiki/58893. Last accessed 01 Apr 2019.

24. Jurtz, V. I., and Olsen, L. R. Cancer Bioinformatics,
vol. 1878 of Methods in Molecular Biology. Humana
Press, New York, NY, 2019, ch. 9, 157–172.

25. Kim, S., Scheffler, K., Halpern, A. L., Bekritsky, M. A.,
Noh, E., Källberg, M., Chen, X., Kim, Y., Beyter, D.,
Krusche, P., and Saunders, C. T. Strelka2: fast and
accurate calling of germline and somatic variants. Nat
Methods 15, 8 (08 2018), 591–594.

26. Krekel, H. Pytest Framework.
https://docs.pytest.org/en/latest/. Last accessed
16 Oct 2019.

27. Lai, Z., Markovets, A., Ahdesmaki, M., Chapman, B.,
Hofmann, O., McEwen, R., Johnson, J., Dougherty, B.,
Barrett, C., and Dry, J. Vardict: A novel and versatile
variant caller for next-generation sequencing in cancer
research. Nucleic Acids Research 44 (2016), e108.

28. Immunogenomics Group, Pathology Department,
LUMC. https://www.lumc.nl/org/pathologie/
research/90708043159185/1709335/. Last accessed 23
Nov 2020.

29. Li, H. Aligning sequence reads, clone sequences and
assembly contigs with bwa-mem. arXiv: Genomics
(2013).

30. Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D.,
Lu, L., and Law, M. Comparison of next-generation
sequencing systems. Journal of biomedicine &
biotechnology 2012 (2012), 251364–251364.

31. LUMC Sequencing Analysis Support Core. BioWDL
Pipeline Usage (Release 1.0.0). https://biowdl.
github.io/germline-DNA/v1.0.0/index.html. Last
accessed 09 Sep 2020.

32. Maleki Vareki, S. High and low mutational burden
tumors versus immunologically hot and cold tumors and
response to immune checkpoint inhibitors. Journal for
immunotherapy of cancer 6, 1 (Dec 2018), 157–157.

33. Martin, M. Cutadapt removes adapter sequences from
high-throughput sequencing reads. EMBnet.journal 17,
1 (2011), 10–12.

34. Ott, P. A., Hu, Z., Keskin, D. B., Shukla, S. A., Sun, J.,
Bozym, D. J., Zhang, W., Luoma, A., Giobbie-Hurder,
A., Peter, L., Chen, C., Olive, O., Carter, T. A., Li, S.,
Lieb, D. J., Eisenhaure, T., Gjini, E., Stevens, J., Lane,
W. J., Javeri, I., Nellaiappan, K., Salazar, A. M., Daley,
H., Seaman, M., Buchbinder, E. I., Yoon, C. H., Harden,
M., Lennon, N., Gabriel, S., Rodig, S. J., Barouch,
D. H., Aster, J. C., Getz, G., Wucherpfennig, K.,
Neuberg, D., Ritz, J., Lander, E. S., Fritsch, E. F.,
Hacohen, N., and Wu, C. J. An immunogenic personal
neoantigen vaccine for patients with melanoma. Nature
547 (2017), 217–221.

35. Paulo, A., Frölich, S., and Ruano, D. R Shiny Module
Web Deployment.
https://neoseq.shinyapps.io/shiny/. Last accessed
12 Sep 2020.

36. Paulo, A., and Ruano, D. Binding Prediction Module
GitHub Repository.
https://github.com/Amfgcp/NeoSeq_WDL/. Last
accessed 09 Sep 2020.

37. Quail, M. A., Smith, M., Coupland, P., Otto, T. D.,
Harris, S. R., Connor, T. R., Bertoni, A., Swerdlow,
H. P., and Gu, Y. A tale of three next generation
sequencing platforms: comparison of ion torrent, pacific
biosciences and illumina miseq sequencers. BMC
genomics 13 (Jul 2012), 341–341.

38. R Studio. R Shiny. https://shiny.rstudio.com/. Last
accessed 21 Oct 2019.

39. Red Hat. Quay Container Images. https://quay.io.
Last accessed 21 Oct 2019.

40. Reynisson, B., Alvarez, B., Paul, S., Peters, B., and
Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0:
improved predictions of MHC antigen presentation by
concurrent motif deconvolution and integration of MS
MHC eluted ligand data. Nucleic Acids Research 48, W1
(05 2020), W449–W454.

41. Rubinsteyn, A. Mhctools python package.
https://pypi.org/project/mhctools/. Last accessed
02 Sep 2019.

42. Rubinsteyn, A., Kodysh, J., and Aksoy, B. A.
hammerlab/isovar: Version 0.7.0.
https://doi.org/10.5281/zenodo.821224, 2017.

43. Rubynstein, A., Paulo, A., and Ruano, D. Modified
mhctools (GitHub Fork webpage).
https://github.com/Amfgcp/mhctools. Last accessed
09 Sep 2020.

44. Sahin, U., Derhovanessian, E., Miller, M., Kloke, B.-P.,
Simon, P., Löwer, M., Bukur, V., Tadmor, A. D.,
Luxemburger, U., Schrörs, B., Omokoko, T., Vormehr,
M., Albrecht, C., Paruzynski, A., Kuhn, A. N., Buck, J.,
Heesch, S., Schreeb, K. H., Müller, F., Ortseifer, I.,
Vogler, I., Godehardt, E., Attig, S., Rae, R., Breitkreuz,
A., Tolliver, C., Suchan, M., Martic, G., Hohberger, A.,
Sorn, P., Diekmann, J., Ciesla, J., Waksmann, O., Brück,

9

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html
http://tools.iedb.org/auto_bench/mhci/weekly/
https://www.synapse.org/#!Synapse:syn312572/wiki/58893
https://www.synapse.org/#!Synapse:syn312572/wiki/58893
https://docs.pytest.org/en/latest/
https://www.lumc.nl/org/pathologie/research/90708043159185/1709335/
https://www.lumc.nl/org/pathologie/research/90708043159185/1709335/
https://biowdl.github.io/germline-DNA/v1.0.0/index.html
https://biowdl.github.io/germline-DNA/v1.0.0/index.html
https://neoseq.shinyapps.io/shiny/
https://github.com/Amfgcp/NeoSeq_WDL/
https://shiny.rstudio.com/
https://quay.io
https://pypi.org/project/mhctools/
https://doi.org/10.5281/zenodo.821224
https://github.com/Amfgcp/mhctools

A.-K., Witt, M., Zillgen, M., Rothermel, A., Kasemann,
B., Langer, D., Bolte, S., Diken, M., Kreiter, S.,
Nemecek, R., Gebhardt, C., Grabbe, S., Höller, C.,
Utikal, J., Huber, C., Loquai, C., and Türeci, Ö.
Personalized RNA mutanome vaccines mobilize
poly-specific therapeutic immunity against cancer.
Nature 547 (2017), 222–226.

45. Sylabs. Singularity Container Platform.
https://www.sylabs.io. Last accessed 5 Jan 2019.

46. Szolek, A., Schubert, B., Mohr, C., Sturm, M.,
Feldhahn, M., and Kohlbacher, O. Optitype: precision
hla typing from next-generation sequencing data.
Bioinformatics 30, 23 (2014), 3310–3316.

47. Thorvaldsdóttir, H., Robinson, J. T., and Mesirov, J. P.
Integrative Genomics Viewer (IGV): high-performance
genomics data visualization and exploration. Briefings in
Bioinformatics 14, 2 (04 2012), 178–192.

48. Travis Continuous Integration Platform.
https://travis-ci.com/. Last accessed 5 Jan 2019.

49. Vorderman, R., Cats, D., van ’t Hof, P., Agaser, C.,
Paulo, A., and Mei, L. Biowdl pipeline github repository
release 4.0.0. https:
//github.com/biowdl/germline-DNA/tree/v4.0.0,
Aug 2020.

50. Vorderman, R., van ’t Hof, P., Cats, D., Paulo, A., and
Mei, L. Biowdl pipeline github repository release 1.0.0.

https:
//github.com/biowdl/germline-DNA/tree/v1.0.0,
Sep 2019.

51. Voss, K., Gentry, J., and Van der Auwera, G. Full-stack
genomics pipelining with GATK4 + WDL + Cromwell.
F1000Research 6(ISCB Comm J):1379 (poster) (2017).

52. Wilm, A., Aw, P. P. K., Bertrand, D., Yeo, G. H. T., Ong,
S. H., Wong, C. H., Khor, C. C., Petric, R., Hibberd,
M. L., and Nagarajan, N. Lofreq: a sequence-quality
aware, ultra-sensitive variant caller for uncovering
cell-population heterogeneity from high-throughput
sequencing datasets. Nucleic Acids Res 40, 22 (2012),
11189–11201.

53. Xu, C. A review of somatic single nucleotide variant
calling algorithms for next-generation sequencing data.
Comput Struct Biotechnol J 16 (2018), 15–24.

54. Xu, C., Nezami Ranjbar, M. R., Wu, Z., DiCarlo, J., and
Wang, Y. Detecting very low allele fraction variants
using targeted dna sequencing and a novel molecular
barcode-aware variant caller. BMC Genomics 18, 1 (Jan
2017), 5.

55. Xu, H., DiCarlo, J., Satya, R. V., Peng, Q., and Wang, Y.
Comparison of somatic mutation calling methods in
amplicon and whole exome sequence data. BMC
Genomics 15, 1 (2014), 244–253.

10

https://www.sylabs.io
https://travis-ci.com/
https://github.com/biowdl/germline-DNA/tree/v4.0.0
https://github.com/biowdl/germline-DNA/tree/v4.0.0
https://github.com/biowdl/germline-DNA/tree/v1.0.0
https://github.com/biowdl/germline-DNA/tree/v1.0.0

SUPPLEMENTARY MATERIAL

Pipeline WDL Workflows Diagrams
Using Unified Modeling Language (UML) sequence diagrams, we show the process flow and interactions between the WDL
workflows of the integrated pipeline. We made two adaptations to the diagrams that are outside of the current UML specification
(version 2.5.1, 2017):

1. We make use of composition arrows (distinguished by the filled in diamond on one end). They convey a multiple simulta-
neous call to the same workflow or task, serving as an abstraction to the occurrence of input division into smaller pieces.
Usually, this means scattering the genome into smaller regions so that each job (run in parallel) takes less time to complete.

2. The parallel combined fragment in Figure S3 is divided vertically instead of horizontally to save vertical space.

In the following diagrams (Figures S1-S3), lifelines (horizontal rectangles on the top with text and a dashed line descending
from them) correspond to WDL workflows that call tasks throughout their execution specifications (vertical grey rectangles).
Some data transformation and optional tasks were omitted to achieve a clearer diagram. With the same goal, arrows returning
from workflows show only the most relevant returned outputs, and some workflow and task names were slightly changed when
compared to the source code.

Pipeline

Biopet
FastqSplitter
R1/R2

Sample Library Readgroup QC

QC reads and reports

1..n 1

Call

FastQC
R1/R2

Cutadapt

FastQC
R1/R2

1..n 1

Call

User

1..n 1

Call
Run main script

1..n 1

Call

ref
Read Alignment

QC reads and reports
QC reads and reports

QC reads and reports

ref
Somatic Variant Calling

MultiQC

MultiQC
HTML report

Figure S1. QC and Adapter Trimming WDL workflow.

11

Library

Run main script

Pipeline Sample Readgroup

BwaMem
(alignment)

Picard
MarkDuplicates

GATK
Preprocess

Picard
GatherBamFiles

Call

BaseRecalibrator
(creates reports)

Apply
BaseRecalibration

GatherBqsrReports

Recalibrated BAM and report files

BamMetrics

Samtools
Flagstat

Picard
CollectMultipleMetrics

Call

BAM metrics files

1..n 1

Call

BAM and metrics files

Samtools
Merge (BAMs)

ref
Somatic Variant Calling

User

1..n 1

Call

BAM and metrics files

1..n 1

Call

ref
QC and Adapter Trimming

Aligned BAM files

Biopet
ScatterRegions

Figure S2. Read Mapping WDL workflow.

Data Visualization
There are two ways that data visualization is addressed: 1) quality control plots generated from pipeline collected metrics
regarding the sequencing reads. 2) Somatic variants amount and type plots, generated by the R Shiny module. The data is
obtained from processing the Somatic Variant Calling module output files.

Pipeline Generated Plots

12

parallel

VarDict

ChunkedScatter

VarDict

Picard
SortVCF

Variants, indels, manta and combined VCF files

Filtered VCF file

Run main script

Pipeline

1..n

Call

User

Somatic
VariantCalling Mutect2

Biopet
ScatterRegions

Mutect2

MergeStats

GetPileUpSummaries
(normal/tumor)

CalculateContamination

Picard
MergeVCFs

FilterMutectCalls

Call

Strelka2

Biopet
ScatterRegions

MantaSomatic

Picard
MergeVCFs

SomaticSeq
ModifyStrelka

CombineVariants

StrelkaSomatic

The Mutect2
workflow mostly
calls GATK tasks

VCF file

CombineVariants

ref
QC and Adapter Trimming

ref
Read Mapping (Alignment)

Return
Return

The relative run time of each
variant calling workflow should
not be inferred by the length of
the respective vertical execution
rectangle. In practice, in terms
of execution time, we saw:
Strelka2 < VarDict < Mutect2

LearnReadOrientationModel

Figure S3. Somatic Variant Calling WDL workflow.

Figure S4 shows the “Mean Quality Scores” plot in MultiQC, generated from FastQC data. This figure showcases MultiQC’s
sample highlighting (lines in blue). MultiQC also allows filtering out samples from the plots, zooming in on any given part of
the plots, exporting the plots to different formats and saving the applied viewing options. In Figure S4, we see that there is a left
side bar with links to not only other FastQC plots (bottom), but also to plots presenting data from other tools used in the pipeline
– Picard, SAMtools and GATK – as MultiQC automatically gathers all reports found in the specified folder (and its subfolders).

13

Figure S4. MultiQC’s “FastQC: Mean Quality Scores” plot with samples highlighted in blue.

R Shiny Module
An overview is shown in Figure S5: on the top left, the user can browse directories and is expected to select one with a specific
structure. Then, the data scraping script locates and processes the files containing the variants and the resulting peptides. One
plot shows the number of protein changing variants per sample and whether they are expressed (top right). The other plot shows
the type of variants (bottom right).

14

Figure S5. R Shiny module overview. On the left, the user can browse folders. On the right, the plots generated with the data from the chosen folder
are shown.

15

	Introduction
	Biological Fundamentals
	Bioinformatics Pipeline
	Problem Formulation

	Typical Neoantigen Identification Workflow
	Developed Neoantigen Identification Pipeline
	Overview
	Workflow Description Language
	Cromwell WFMS
	Singularity Containers

	Integrated Pipeline
	Quality Control and Adapter Trimming
	Read Mapping (Alignment)
	Somatic Variant Calling
	Modularity
	Continuous Integration and Testing

	Standalone Pipeline Modules
	Mutant Protein Prediction
	HLA Typing
	HLA Binding Prediction

	Result Visualization
	Validation
	Synthetic Data
	Previous Results

	Conclusions
	Acknowledgments
	REFERENCES
	Supplementary Material
	Pipeline WDL Workflows Diagrams
	Data Visualization
	Pipeline Generated Plots
	R Shiny Module

