
Towards Automated Checking of Input Data
Usage with Facebook Infer

Rui Ferreira1

INESC-ID & IST, University of Lisbon, Portugal
rui.s.ferreira@ist.utl.pt

Abstract. In modern, data-intensive applications the use and modifi-
cation of input data is very frequent. During the various transformations
that the data suffers, parts can remain unused due to programming er-
rors. These errors can be hard to detect and locate due to the high
amount of data transformations, and can have real-life consequences.
In this paper we propose the implementation of a recent analysis pro-
posed by Urban and Müller as an analysis for Facebook Infer, a popular
static program analyser for Java, C, C++ and Objective C. We show
that our prototype can effectively identify input data usage errors in the
same benchmark used by related work.

Keywords: Data Usage · Static Analysis · Software Reliability

1 Introduction

Data science applications normally deal with considerable amounts of input data
that go through long pipelines of processes such as data acquisition, data cleans-
ing, and data preparation. As data is processed, programming errors can cause
parts of the input data to remain unused, leading to incorrect or unexpected
outputs. The presence of such errors is difficult to detect because the errors are
usually subtle and do not raise any compilation errors or warnings. Moreover, the
results produced by these applications are usually plausible. The large amount
of data transformations that can occur during program execution also hinders
detection of these errors.

As pointed out by Urban and Müller [8], a real-world example that shows how
input data usage errors can have nefarious societal consequences is that of the
paper “Growth in a Time of Debt”, published by economists Reinhart and Rogoff
in 2010. This paper analyzed the correlation between economic growth, inflation
and external debt, using data from forty four countries across two hundred years.
However, it was later found by economists Herndon, Ash and Pollin that data
from five countries was unintentionally excluded from the analysis due to a
programming error [5]. It is worth noting that critics of this paper believe that
it has led to unnecessary adoption of austerity policies in several countries [6].

To address this, Urban and Müller recently proposed the first static analysis,
based on abstract interpretation, capable of detecting input data usage errors [8].
They implement their analysis in a research prototype, Lyra, that supports a



2 R. Ferreira et al.

subset of Python. In this paper, we propose an implementation of their analysis
for Facebook Infer, an industrial-strength static program analysis tool for Java,
C, C++, and Objective C [2]. Our implementation is on Infer’s intermediate
language SIL so that the analysis can be potentially used with any language
supported by Infer. We have manually converted Lyra’s benchmark to Java and
analyzed them using our implementation. The results obtained coincide with
those obtained for Lyra. The implementation and benchmark are available at:

https://github.com/Rui1995/DataUsageCheck-FBInfer

2 Detecting Input Usage Errors

In this section, we describe the approach that we implemented to detect input
data usage errors. It was originally developed by Urban and Müller [8] and imple-
mented in a tool called Lyra1. The analysis is based on syntactic dependencies
between variables and abstract interpretation. The analysis works backwards,
starting the analysis in the last line of code of a program.

The idea behind using the syntactic dependency between variables is to ex-
amine the possible interactions between variables and give them a classification,
so that in the end of the analysis, the classification of the input variables deter-
mines if those have been used.

The possible classifications in Urban and Müller’s analysis are: “Used” (U),
“Not Used” (N), “Overwritten” (W) and “Below” (B). “Overwritten” signifies
a variable that was previously used but was re-written, and “Below” a variable
that was used at a lower nesting level. Our work introduces two additional clas-
sifications: “Below (Used before Push)” (BU) and “Not Used (Overwritten before
Push)” (NW). We describe below the two new possible classifications.

To simplify presentation, in this section we use as abstract domain a map
that associates the name of each variable in the program with its classification
and its location (for error message purposes). In Section 3, we discuss how we
extended the abstract domain to simplify the implementation of the analysis. In
the beginning of the program analysis the abstract domain consists of every input
variable being classified as “N ”, and the output variables “U ”. The additional
variables used during the program are added to the domain when they are first
encountered by the analysis.

Taking into account the classifications of all variables inside an instruction,
the interaction between variables and the type of instruction being executed, the
analysis will update each variable classification according to the transfer function
ΘQ that transforms an abstract state q as follows:

1 Lyra’s webpage: https://caterinaurban.github.io/project/lyra



Towards Automated Checking of Input Data Usage with Facebook Infer 3

ΘQJskipK(q) def
= q

ΘQJx = eK(q) def
= ASSIGNJx = eK(q)

ΘQJif b : s1 else: s2K(q)
def
= POP ◦ FILTERJbK ◦ ΘQJs1K ◦ PUSH(q)
tQPOP ◦ FILTERJbK ◦ ΘQJs2K ◦ PUSH(q)

ΘQJwhile b : sK(q) def
= lfpvQ

q ΘQJif b : s else : skipK(q)

ΘQJs1 s2K(q)
def
= ΘQJs1K ◦ΘQJs2K(q)

The rule for assignments stipulates that a variable is considered “U ” if it is
utilized inside an assignment to another variable already considered “U ”, “B”
or “BU ”. In that case, the second variable classification changes to “W ” unless
it is also present in the first variable, in which case it remains with the same
classification. More formally, it is defined as:

ASSIGNJx = eK(m)
def
= λy.


W y = x ∧ y 6∈ VARS(e) ∧m(x) ∈ {U,B,BU}
U y ∈ VARS(e) ∧m(x) ∈ {U,B,BU}
m(y) otherwise

Note that if the variable being assigned does not have one of these classifications,
then both variables remain unchanged.

Another way a variable can be classified as “U ” is if it appears in the Boolean
condition of a statement that uses or modifies another variable already classified
as “U ”. This is captured in the definition of the FILTER function:

FILTERJeK(m)
def
= λy.

{
U y ∈ VARS(e) ∧ ∃y ∈ X : m(y) ∈ {U,W}
m(y) otherwise

Informally, the FILTER function searches the domain for variables that are
classified as “U ” or “W ”. If it finds any variables in those conditions, then the
variables present on the conditional statement get classified as “U ”. Otherwise,
the current classifications remain unchanged.

Single map. In order to facilitate our implementation, we deviate slightly from
Urban and Müller and, instead of keeping a stack of maps, we use a single map
that is updated throughout the analysis.

This changes the possible classifications of a variable, introducing the two new
classifications “BU ” and “NW ”, as discussed above. The classification “BU ” is
used when a variable that was classified as “U ” suffers a PUSH. The clas-
sification “NW ” is used when a variable that was classified as “W ” suffers a
PUSH.

We do this because the array introduced by Urban and Müller is only used
for the PUSH and POP functions, so the analysis ends up only using the last



4 R. Ferreira et al.

two classifications of a variable. This change saves the program from having to
go through and modify an array for every variable.

Our version of the PUSH function is defined as:

PUSH(m)
def
= λy.


BU m(y) ∈ {U}
NW m(y) ∈ {W}
m(y) otherwise

In words, the PUSH function changes the classification of all variables “U ”
or “W ” so that the FILTER function can capture any new variables being
classified as “U ” or “W ” inside a conditional set of instructions.

The POP function reverses the changes that PUSH does, but only to the
variables that have not been changed since. It is defined as:

POP (m)
def
= λy.


U m(y) ∈ {BU}
W m(y) ∈ {NW}
m(y) otherwise

Note that the POP function is used to return the variable classifications to a
regular state, after an analysis of a conditional set of instructions finishes.

At the end of the analysis the abstract domain is searched for input variables
whose classification is “N ”. If there are any variables with this classification, it
means that an input data usage error is present.

3 Implementation

We implemented the analysis discussed in the previous Section as a checker for
Facebook’s Infer2, which is a static analysis tool that currently supports Java,
C, C++ and C-Objective [2]. The implementation is written in OCaml.

Infer provides a framework, Infer.AI3, that enables the creation of analyses
based on abstract interpretation. As Infer translates the code analyzed into its
Intermediate Language SIL, which is used in the analysis instead of the origi-
nal code, one only needs to create one checker for all the languages supported
by Infer. Moreover, the checker will be readily available to any new language
supported by Infer.

Infer’s workflow has two main phases: a) Capture Phase: In this phase Infer
translates the files under analysis into Infer’s internal intermediate language,
SIL; b) Analysis Phase: This is the phase where each function and/or method
is analyzed.

During the analysis phase, Infer uses Pure Variables, which only appear in the
SIL representation, and Program Variables, which are the variables that appear
in the source program under analysis. This means our analysis needs to register

2 Facebook Infer: https://fbinfer.com.
3 Building checkers with the Infer.AI framework: https://fbinfer.com/docs/absint-

framework.



Towards Automated Checking of Input Data Usage with Facebook Infer 5

the relations between them in order to understand, for example, which Program
Variable is being used in an assignment that has Pure Variables.

Infer separates instructions in the SIL intermediate language into five dif-
ferent ones: Load (loads a value from the heap), Store (stores a value in the
heap), Prune (prunes the state based on an expression), Call (call to a func-
tion) and Metadata (additional information about the program). For example,
an assignment such as a = b in the original program is translated to SIL as a
Load instruction for b and a Store instruction for a. During the analysis, each
SIL’s instruction is evaluated in order to detect for instructions considered by
the transfer functions.

The abstract domain used in our implementation is different from the one of
Lyra, being composed of three main structures:

– Map is the main structure, as described in Section 2, which holds the informa-
tion about all the variables in the program regarding its current classification
and location.

– MapArray is used when there is an assignment that accesses an array (e.g.,
a=b[c]). This is needed because the variable being assigned (a) is only de-
clared after the assignment, and its classification is needed to determine the
classification of the other variables being used (b,c). This occurs because
the analysis is backwards.

– MapCall is used when there is an assignment that contains a Call instruction.
This is needed because, given the backwards nature of the analysis, the
variable being assigned appears before the assignment and before the Call
instruction. This map registers the variable being assigned, and the Pure
Variables being assigned to that variable through the program. This ensures
that when the assignment arises, the analysis knows what variable is being
used.

Additionally, a structure called cfg node (node) is also present in the abstract
domain, holding information about the node currently being analyzed, that is
used to detect nesting level changes in the following instruction.

The analysis will update each variable classification according to the transfer
function ΘQ that we define in this Section. The function is defined by cases on
SIL instructions and it transforms an abstract state q into another. Each abstract
state is tuple (m, c, a, node), where m is Map that contains the classification of
each variable, c is MapCall that contains the relation between variables in a
Call instruction, a is MapArray that contains the relation between variables in
an assignment with access to an array, and node is cfg node that contains the
information needed to detect changes in nesting levels.

Due to space limitations only the high level Transfer Functions are going to
be showed next.

3.1 Load

The Load instruction (Fig 1) loads a value (carried inside the expression “e”)
into an Identifier (“id”).



6 R. Ferreira et al.

Fig. 1. Load Transfer Function

In every Load instruction the analysis starts by executing the function CK
(CHECK) that verifies if both variables are present in Map (m), and if they
are not it adds them to Map (m) with the classification “N”. This also happens
with Store and Call instructions. The Load instruction has different approaches
depending on the type of the variables “id” and “e”:

Case 1. If the expression “e” is an Array Index Offset (LINDEX) the analysis
performs an assignment between the key matching the “id” value in MapCall (c),
and the variable “e”; this assignment is achieved using the function ASSIGN .
These instructions capture an instruction a=b[c] that accesses an array during
a Load instruction.

Case 2. If the variable inside expression “e” is a program variable and “id”
is in MapArray (a), then, depending if the variable “id” is one of the keys of
MapArray (a), either executes the ASSIGN function or updates the value from
“id” into “e” in MapArray (a).

Case 3. If none of the previous conditions are verified then, if the length of
expression “e” is not 1, the program updates the classification of “e” with the
same classification of “id” (transferring the classification that the pure variable
“id” carried into the program variable that it represents “e”). If the length of
expression “e” is 1 then it also updates the value that matched “id” to “e”.

3.2 Store

Fig. 2. Store Transfer Function

The Store instruction (Fig 2) stores the value on an expression “e2” into
another expression “e1”. Just like Load, the analysis starts by executing a CK



Towards Automated Checking of Input Data Usage with Facebook Infer 7

(CHECK) that verifies if both variables are present in Map (m), and if they are
not it adds them to Map (m) with the classification “N”. The Store instruction
has four cases that are described below.

Case 1. If expression “e1 ” is an Array Index Offset (LINDEX), then this is the
first instruction of an assign with an array on the left side and a Pure Variable
“e2 ” on the right. When this is detected the analysis adds to MapArray (a) the
first variable in expression “e1 ” as key and the remaining variables of “e1 ” and
“e2 ” as values.

Case 2. If during the Store instruction the expression “e1 ” is a return expression
(“return” is considered a Program Variables (Lvar)) then the analysis changes
the classification of all variables contained in the expression “e2 ” to “U ”. If the
node (that represents a single Java instruction) has two predecessors (“PREDS”)
then it represents that the instruction before is the beginning of a conditional
method body. If this is the case, then the analysis will also apply the function
PUSH.

Case 3. When a value is stored from a Pure Variable into a Program Variable,
first it changes the value in MapCall (c) associated with “e1 ” and replaces it
with “e2 ”. Next, the analysis checks if “e2 ” is associated with a key in MapCall
(c) and if it is not, then it adds “e1 ” as a key and “e2 ” as a value. Finally the
program changes the classification of “e2 ” into the same classification of “e1 ”.
Just like in the previous case, if the previous instruction has two predecessors
(“PREDS”) the analysis executes a PUSH instruction.

Case 4. If none of the previous conditions are true, then the analysis updates
the value in MapCall (c) associated with “e1 ” and replaces it with “e2 ”. After
that, the analysis executes an assignment between “e1 ” and “e2 ”. Once again
the analysis performs a PUSH instruction if the previous instruction has two
predecessors (“PREDS”).

3.3 Call

The Call instruction (Fig 3) represents a [ret id = e fun(arg ts)]instruction,
that calls a function in “e fun”, whose arguments are “arg ts”, and stores its
value in “ret id”.

As before, the analysis checks a series of conditions, starting with the in-
struction CK (CHECK). There are four cases, which we describe below.

Case 1. If “e fun” is an object then the analysis verifies if a key associated
with the value ret id in MapCall (c) exists, and if that key is classified as “U”
changes the classification of all variables inside the function called into “U”. If
the key is not classified as “U” then associates the first variable in arg ts (as
key) with the other variables in arg ts (as values) in MapCall (c). If none of the
above conditions verify, then the analysis executes an ASSIGN between the key
associated with ret id and the variables of arg ts.



8 R. Ferreira et al.

Fig. 3. Call Transfer Function

Case 2. If the analysis verifies that e fun is an Arraylist then the analysis verifies
if a key associated with the value ret id in MapCall (c) exists and if that key has
a classification of “U”, and if confirmed changes the classification of all variables
inside the function called into “U”. If not then it associates the first variable in
arg ts (as key) with the other variables in arg ts (as values) in MapCall (c).

Case 3. If the analysis verifies that e fun is an Printstream then the analysis
turns the classification of the variables in arg ts to “U” and, if the analysis detects
that the next instruction has 2 predecessors then the analysis also performs a
PUSH.

Case 4. If none of the previous clauses are verified for CALL then the analysis
changes the value in MapCall (c) associated with “ret id” and replaces it with
“arg ts[0]” and performs an ASSIGN between “ret id” and “arg ts”.

3.4 Prune

The Prune instruction (Fig 4) represents the beginning of a conditional method
body with an expression exp as the condition and the boolean bol indicating
which branch is being analyzed.

Fig. 4. Prune Transfer Function

If bol is TRUE then the analysis executes the FILTER instruction. After
that the analysis executes the POP instruction and if the next instruction has 2
predecessors then the analysis also performs a PUSH. If bol is FALSE then the
analysis executes the POP and if the next instruction has 2 predecessors then
the analysis also performs a PUSH.



Towards Automated Checking of Input Data Usage with Facebook Infer 9

4 Evaluation

In order to evaluate the effectiveness and accuracy of our implementation, we as-
sessed it with the same input data usage benchmark used to evaluate Lyra.4 The
benchmark contains 10 programs written in Python; since Infer does not support
Python, we manually converted it to Java. The benchmark suite, averaging 25
lines of code, is specifically designed to test the detection of unused input data,
ranging from simple examples with only variables containing booleans as input
and a single conditional set of instructions, to tests containing dictionaries as
input.

Our implementation behaved similarly to Lyra on the 10 programs: both our
analysis as well as Lyra’s presented no false-positives or false-negatives. In terms
of performance, Lyra takes on average 0.0802s±0.0820s and our implementation
takes 0, 1886s± 0, 1336s The performance penalty was expected, since Infer has
to build the intermediate representation before starting the analysis. Neverthe-
less, integration of the analysis in an industrial-strength tool that can support
multiple languages justifies this penalty.

Additionally we tested the analysis in two data science and data analysis
open-source projects in order to test the tool’s capabilities in real world appli-
cations.

The first program analyzed was Neo4j Graph Data Science Library 5 , a
plugin for Neo4j graph database that consists of a library with graph algorithms.

The analysis took on average 15, 67s±0, 23s to package the library with gradle
and convert the instructions into intermediate language SIL, plus an additional
21, 29s± 0, 13s on average to analyze the intermediate language. In comparison
packaging the library alone, without the intervention of Infer took on average
6, 33s±0, 47s. The analysis evaluated 40 Java files with an average of 120 lines of
code. The analysis caught 371 false-positives and 0 true-positives. The analysis
raised a substantial amount of false-positives due to external packages being
imported and utilized in the code and by methods that altered objects but did
not return variables.

The second program analyzed was Ananas Desktop6, a open source data
integration and analysis tool that allows non technical users to edit data pro-
cessing jobs and visualize data. Unfortunately the analysis does not compile, but
three files were able to be individually analyzed. The analysis took on average
1, 94s± 1, 38s to compile each Java file with javac, convert the instructions into
intermediate language SIL and to analyze the intermediate language. In compar-
ison compiling the files alone, without the intervention of Infer took on average
0, 39s ± 0, 15s. The analysis evaluated 40 Java files with an average of 83 lines
of code. The analysis caught 25 false-positives and 0 true-positives. The causes
of these false-positives are the same as the previous program: external packages
being used and methods that altered objects without returning variables.

4 Lyra benchmark: https://github.com/caterinaurban/Lyra/tree/master/src/lyra/tests
5 Neo4j Graph Data Science Library: https://github.com/neo4j/graph-data-science
6 Ananas Desktop: https://github.com/ananas-analytics/ananas-desktop



10 R. Ferreira et al.

5 Related Work

To the best of our knowledge, Urban and Müller’s work on Lyra [8] is the first
that aims at detecting programming errors in data science code using static
analysis. Engel [4] extends Lyra with usage analyses that can analyse map data
structures. More recently, Urban et al. propose a parallel static analysis for
certifying causal fairness of feed-forward neural networks used for classification
of tabular data [7].

Also related are the works of Cheng and Rival [3] and Barowy et al. [1], but
these focus on spreadsheet applications and on errors in the data, rather than
the code that analyzes the data.

6 Conclusion

In conclusion we were able to adapt Lyra’s approach to work in Infer. Our Imple-
mentation can effectively identify input data usage errors in the same benchmark
used to assess Lyra.

Unfortunately our analysis only works for java, but we plan to add support
for other languages supported by Infer in the future. Additionally the analysis
does not run in every program, which is something we are focusing on in the
future.

References

1. Barowy, D.W., Gochev, D., Berger, E.D.: Checkcell: Data debugging for spread-
sheets. ACM SIGPLAN Notices 49(10), 507–523 (2014)

2. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with
software verification. In: NASA Formal Methods Symposium. Springer (2015)

3. Cheng, T., Rival, X.: Static analysis of spreadsheet applications for type-unsafe
operations detection. In: European Symposium on Programming Languages and
Systems. pp. 26–52. Springer (2015)

4. Engel, L.: Usage of Data Stored in Map Data Structures. Ph.D. thesis, Master’s
thesis, ETH Zurich, Zurich, Switzerland (2018)

5. Herndon, T., Ash, M., Pollin, R.: Does high public debt consistently stifle economic
growth? a critique of reinhart and rogoff. Cambridge journal of economics 38(2),
257–279 (2014)

6. Mencinger, J., Aristovnik, A., Verbic, M.: The impact of growing public debt on
economic growth in the european union. Amfiteatru Economic Journal 16(35), 403–
414 (2014)

7. Urban, C., Christakis, M., Wüstholz, V., Zhang, F.: Perfectly parallel fairness cer-
tification of neural networks. arXiv preprint arXiv:1912.02499 (2019)

8. Urban, C., Müller, P.: An abstract interpretation framework for input data usage.
In: European Symposium on Programming. pp. 683–710. Springer (2018)


