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Resumo

A transformação e uso de energia ainda é a maior fonte de emissões de gases com efeito estufa. Do

lado da procura, há um esforço global para investir em melhorias de eficiência energética, que tem

abrandado. Melhorias de eficiência trazem benefı́cios para os paı́ses como aumento de segurança

energética, menor gasto em combustı́veis fosseis e redução de emissões. As empresas de serviços

energéticos (ESCOs) implementam medidas de eficiência energética (ECMs) através de contratos de

performance energética (EPCs), que garantem um certo nı́vel de poupança energética/económica. A

medição e verificação (M&V) é central para auditar os termos contratuais e eficiência das ECMs, em

EPCs. Estruturas de M&V deficitárias podem gerar desconfiança entre partes e cálculos de poupança

ambı́guos. Esta tese visa aumentar a transparência na implementação de EPCs calculando, guardando

e protegendo informações de poupança devidamente. Desenvolveu-se um modelo de consumo base

para dois edifı́cios do IST onde foram instaladas ECMs, usando o algoritmo XGBoost. Estimam-se as

poupanças pela diferença com o consumo medido, no perı́odo homólogo. Os modelos usados apresen-

taram CV(RMSE) inferior a 7.8% e retornaram poupanças de 16.9±7.3% e 20.6±6.3%. Os cálculos são

publicados numa blockchain, composta por nós-edifı́cio. O critério de validação de publicações verifica

se o modelo usado para determinar poupanças é suficientemente preciso. Uma plataforma mais clara

e fiável para a execução de EPCs foi desenvolvida. Conclusões, limitações e futuras melhorias são

discutidas.

Palavras-chave: Eficiência energética, Contratos de performance energética, XGBoost,

Blockchain, Serviços de energia
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Abstract

Energy transformation and usage is still the major source of greenhouse gas emissions. On demand

side, there is a global push to invest on energy efficiency improvements, which has been slowing down.

Efficiency improvements have benefits for countries such as increased energy security, less spending on

fossil fuels and emissions reduction. Energy Service Companies (ESCOs) deploy energy conservation

measures (ECMs) through Energy Performance Contracts (EPCs), which guarantee a level energy/cost

savings. Measurement and Verification (M&V) procedures are essential to EPCs, as to audit contract

terms and ECM efficiency. Poor M&V frameworks can generate adversarial distrust between parties

involved and unclear savings calculations. This integration thesis aims to increase transparency in EPC-

mediated ECM implementations by properly assessing, storing and securing savings calculations. We

develop a baseline model using XGBoost for two IST campus buildings which underwent retrofits and

estimate savings from the difference to actual consumption data, for the same period. The used models

presented a CV(RMSE) of under 7.8% and yielded savings percentages of 16.9±7.3% and 20.6±6.3%.

Savings information are then posted in a blockchain ledger composed of building nodes. The transaction

validation mecanism verifies if an accurate baseline model was used as basis for the calculations. A

more clear and thrustworthy M&V platform for EPC execution was developed. Conclusions, limitations

and future improvements are discussed.

Keywords: Energy efficiency, Energy Performance Contracting, XGBoost, Blockchain, Energy

services.
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Chapter 1

Introduction

The world is currently out of track to meet the 17 Sustainable Development Goals (SDGs), proposed by

the United Nations [1] and, in particular, the 3 goals that are directly related to the energy sector, which

consist on: tackling climate change, assuring universal access to energy and reducing health impacts of

air-pollution [2].

At the same time, energy transformation and usage still remains the major source of greenhouse

gas emissions, which need to quickly reduce and establish a net-zero balance between anthropogenic

emissions by sources and removals by sinks [2, 3].

But not all hope is lost: some scenarios still propose optimistic achievements in the energy sector

on the mid-run, such as the Sustainable Development Scenario (SDS), proposed by the International

Energy Agency (IEA). If properly followed, their drawn recomendations guarantee that the global tem-

perature rise can stay below 1.8◦ C with a 66% probability, without relying on global net-negative CO2

emissions [4]. It also states that if global emissions fall from 33 billion tonnes in 2018 to less than

10 billion tonnes by 2050, we will be in route to net-zero emissions by 2070. But still, acting now to

harness the power of net-negative emission technologies could still help achieve: net-zero emissions

globally, universal access to modern energy and less 3.1 million premature deaths by 2050, related to

air pollution by around 2050 [4].

In terms of economic push, capital is already moving from fossil to renewable to a significant extent.

These improvements shall represent an increase in overall investment, which will be counterbalanced

by reduced fuel costs on the consumer end, afterwards. On the supply side, the largest increase in

investment comes from renewable-based power installments, which are expected to double until 2050,

as well as additional spending on electricity grids and storage. On the demand side, there’s a global

push for further investment, in particular, on energy efficiency improvements (on buildings, industrial

processes, transport and infrastructures). Still, this latter push is currently not in pace with supply side

developments: we are focusing more on supply than on the demand side [4].

In fact, these efficiency improvements have been slowing down in recent years. In 2018, worldwide

primary energy intensity improved by just 1.2%, the slowest rate since 2010, while optimistic scenarios

like the SDS suggested a yearly improvement of 3%. A 1.2% improvement represents around 1,6 trillion

1



USD more in worldwide GDP and had it improved at the suggested rate, this value would have circled

the 4 trillion USD milestone - around the size of the German economy. Major factors responsible for this

slow pace include increased energy usage in industry, changing climate patterns, which are responsible

for increased energy usage and flat policy progress/investment. Although they are lacking attention,

efficiency improvements have significant benefits for countries, such as increased energy security - in

which oil importers reduce their exposure to oil market instability -, finantial benefits from importing less

oil - in 2018 both Japan and China spent around less 20 billion USD on oil due to technical efficiency

improvements - and cutting CO2 emissions. It’s known that from 2015 to 2018, energy-related emissions

dropped by 3.5Gt - the equivalent of the energy-related CO2 emissions of Japan [5].

In conclusion, this transition to a low carbon economy requires a more efficient and synergistic energy

system, that relies less on fuel combustion and more on renewable based power, but we still have to

focus about energy efficiency improvements on the demand side, while not trading off energy security

nor affordability. As such, boosting energy efficiency improvements in a reliable way, on the demand

side shall be the main focus of this dissertation.

1.1 Motivation

The proposed solution takes an holistic approach towards improving energy efficiency and reducing

carbon emissions by starting in a reverse way: dealing with it from the client demand side upwards.

It helps securing better performance when trying to audit energy efficiency improvements, in a certain

environment. Instead of relying on immediate carbon capturing capacity, we need to start optimizing

energy systems from the bottom up, since that will also allow us to have greater ambitions on cutting

greenhouse gas emissions and further improving supply.

Thus, I shall provide a tool for assessing efficiency improvements while helping to boost business

models based on energy trading, energy certificates and/or energy performance contracting, well known

to Energy Service Companies (ESCOs) [6–9]. It will guarantee safe energy transactions and a trusted

auditing method that follows agreed terms by all parts involved.

In an ever more stressed energy environment, with rising electricity costs, additional environmental

regulations and less marginal profit, buildings owners benefit from reducing their energy consumption

and costs. Energy Services ESCOs provide clients with Energy Performance Contracts (EPCs), which

are binding agreements under which energy savings are provided, verified and monitored during a cer-

tain period of time [10]. The ESCO designs and implements Energy Conservation Measures (ECMs),

like changes in the lighting system or insulation envelope, and guarantees a given level of energy sav-

ings, over the period of the contract.

The level of energy savings secures the financial revenue that is used to fund the cost of improve-

ments and services incurred at the ESCO side and financial savings are in general shared between the

two parties from the start. Once the costs have been repaid, the client keeps the full savings gener-

ated from the ECMs [10, 11]. In case of failure in provisioning the contractually-agreed energy savings,

financial penalties are applied to the service provider which reduces the contract revenue. A measure-

2



ment and verification (M&V) procedure is then essential to EPCs, as to audit the contract terms and the

proposed measures’ efficiency. The energy saving is generally computed as the difference between a

predictive baseline model and the real measured post-EPC, energy consumption, over the considered

period [6, 10–12].

A poor framework for M&V can generate problems such as an unbalanced performance risk and

unclear or inappropriate savings calculations [12, 13]. The International Performance Measurement and

Verification Protocol (IPMVP) has been developed to provide guidance and standards for M&V proce-

dures [14]. It tells us how external variables should impact the baseline model and how adjustments

should be undertaken. This protocol is frequently used as guideline for M&V procedures on EPCs, but

the lack of understanding impacts the client when it comes to grasping the way that the model works,

leading them to opt on simple predictive models rather than more complex ones, which use a wider set

of parameters (like meteorological ones), increasing its quality and lowering the commitment risk, for

both parts [6, 15].

When considering the amount of data, there’s also the risk of data tampering from both parts or

from external providers, leading to inaccurate savings calculations, especially since depending on the

modality of the EPC, the ESCO might be entitled to any excess savings. An adversarial relationship can

be generated between parts, for example when the ESCO tries to reduce the expected savings level

in order to receive more from that excess or when the client changes the building’s consumption load

without notifying the ESCO [10].

In essence, there is a problem of trust and understandibility when dealing with EPCs, which is limiting

the widespread of this useful tool. Authors also claim lack of standardization or policy concerning EPC

execution [7, 8, 16–18].

For its incorruptible and inmmutable character together with the lack of need for verification of a

trusted third party, Blockchain’s ability to track down transactions is getting increased attention on energy

sector applications [9]. As such, this present work tries to evaluate its application on EPCs to overcome

some of the limitations faced and to increase client trust in M&V procedures. By having it designed in

a way that all model predictions and calculations happen inside it, I will develop a more trustworthy and

standardized framework for executing and auditing EPCs.
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1.2 Concept

Figure 1.1: Proposed solution conceptual diagram.

The scope of this thesis is to bring transparency and security to EPC-mediated ECM implementations,

by properly assessing, storing and securing savings calculations, following M&V 2.0 tendencies [43]. We

shall develop an energy consumption forecasting model based on relevant data from selected features,

called a baseline model. Then, actual data will be compared to the model predictions and the savings are

calculated from the difference between them, under a given uncertainty. As to guarantee transparency,

these results are stored in a prototype blockchain composed of building nodes posting under a closed

network, which verifies that an accurate baseline model was used as basis for the calculations (Fig. 1.1).

It is expected to be a relatively new contribution towards the main cited challenges faced by ESCOs

in EPCs and M&V when tackling energy efficiency, global primary energy intensity improvement and, ul-

timately, CO2 emissions reduction. Khatoon et al. (2019) [19] and Gurcan et al. (2018) [20] is one of the

few literature references that developed a solution like the one proposed by this dissertation, which usu-

ally rely on common blockchain platforms like Ethereum/Hyperledger or industrial-sector studies when

facing this topic. The key values of this proposed prototype are simplicity, adaptability and effective-

ness in the scope of the purpose of use, making it easier to adapt further details in this platform when

faced with different real world applications and security requirements. As such, the main development

objectives are laid in the section below.
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1.3 Methodical Approach

Whether a client is feeding the grid by producing renewable energy, improving its own energy system

efficiency or just trading green certificates based on saved emissions compensations, there is a need

for predicting the baseline consumption, measuring the actual data and compare the difference, which

can be translated in several relevant parameters and, ultimately, savings. Then, savings informations

are stored in a secure, credible (and rather hyped) way: a Blockchain ledger. The milestones for this

thesis are:

1. Properly understanding each one of the relevant topics to this dissertation.

2. Studying the pattern of energy consumption and ECMs of IST’s Alameda Campus major buildings

and draw relevant feature recommendations for building a regression model.

3. Building an accurate, effective and tested energy consumption forecasting model to serve as a

baseline estimate.

4. Comparing the actual data with the prediction model and estimating savings for the reporting pe-

riod.

5. Developing a secure, simple and adaptable blockchain algorithm to store the M&V information

regarding savings.

6. Integrating all parts into a proper blockchain-based automatic performance contract auditor, testing

and adjusting to the necessary extent.

7. Describing the prototype’s limitations, possible future developments and results.

This thesis is expected to positively contribute to improve the state-of-the-art of M&V 2.0 and EPC

applications, thereby improving primary energy intensity worldwide, cutting emissions and increasing

the energy system’s efficiency levels

1.4 Thesis Outline

Seven different chapters will be laid out in order to build the premise of this dissertation. The theoretical

background is thoroughly exposed on chapter 3, concerning all relevant topics to the proposed solution.

Chapters 3 and 4 focus on the adopted energy modeling and blockchain solutions, respectively. Chapter

5 describes the integration of all parts into a proper automatic EPC M&V blockchain. Finally, the last

chapter lays out the retrieved results, limitations and conclusions of this endeavor.

1. Introduction: the beginning of this dissertation which includes the motivation, methodical ap-

proach and concept, as well as the thesis outline

2. Background and Literature Review: a section dedicated to giving background literature con-

text about the main topics of concern. It provides information about the problems faced and the

research hypothesis.
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3. Energy Modeling: this chapter focuses on how to develop an energy consumption forecasting

model from historical data, relevant features and energy consumption data analysis.

4. Blockchain, explaining the functioning of the proposed blockchain solution adapted to this appli-

cation and relevant adjustments undertaken.

5. Implementation and Usage: a description of the proposed integrated prototype which encap-

sulates the energy forecasting model and blockchain algorithm frameworks. It shall technically

explain the solution’s behavior, feasibility and easiness to adapt to a changing environment.

6. Conclusions: summing up the achievements and limitations of this prototype and draw future

work recommendations.
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Chapter 2

Background and Literature Review

2.1 Energy Consumption & Efficiency

2.1.1 Global energy consumption

Global electricity production has grown each year continuously since 1974, except for between 2008 and

2009, when the global financial crisis caused a decline in production. In 2018, world gross electricity

production was 3.9% higher than 2017 and consumption reached a new record of 23738.9 TWh [21]

[22]. The production is dominated at 58% by non-OECD countries, which grew 4.8% a year on average

from 2010-2018, compared to just 0.3% on the OECD. As of 2018, in terms of sources, OECD countries

chose natural gas as the main gross electricity production fuel (Fig. 2.1) [23] but, globally, coal continues

to be the main source (Fig. 2.2) [24].

Figure 2.1: Electricity generation by source, OECD total 1990-2019 [23].
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Figure 2.2: Electricity generation by source, world total 1990-2018 [24].

It is also clear from the graphs that currently, the dominant low-carbon emission sources are hydro

and nuclear power, followed by wind and photovoltaic power.

On the demand side, the world total electricity final consumption in 2018 was 4% higher than in

2017, surpassing the increase in production, with a consistent higher increase in non-OECD countries

of around 5.7% compared to just 1.8% increase in OECD countries [22]. In terms of electricity, most

energy has been directed mainly to industry and residential, commercial or public buildings (Fig. 2.3),

sectors where much of the growth in OECD electricity consumption has taken place since 1974 [25].

Industry has always been a key driver for electricity consumption (Fig. 2.4), but as of 2018, it is only

marginally superior to that of residential/commercial/public buildings and even inferior in the US [26].

Road transport has recently experienced strong growth in electricity consumption as electric vehicles

spread across OECD countries, in particular in Europe [22].

Figure 2.3: Electricity final consumption by sector, World 1990-2018 [25]. 1 ktoe (kilo-tonne of oil
equivalent) is equal to 11.63 gigawatt-hours (GWh) [27].
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Figure 2.4: OECD average annual growth rate in electricity final consumption by sector, 1974-2018 [22].

The largest non-OECD consumers of electricity in 2018 were the People’s Republic of China, India,

the Russian Federation and Brazil, which represent 38.0% of global consumption (Fig. 2.5). Among

these countries, China has the largest share, at 47.8% of total non-OECD consumption. Electricity

use outside the OECD is dominated by industrial demand, which accounts for half of final electricity

consumption.

Figure 2.5: Top ten electricity consuming countries, 2018 [22].

In the EU, the main end use of energy by households is for heating (63.6 % of final energy con-

sumption in the residential sector, Fig. 2.6). Electricity used for lighting and most electrical appliances
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represents 14.1% (this excludes the use of electricity for powering the main heating, cooling or cooking

systems), while the proportion used for water heating is slightly higher, representing 14.8% [28]. Heating

of space and water consequently represents 78.4 % of the final energy consumed by households (Fig.

X). Throughout the 27 countries, the lowest proportions of energy used for space heating in 2018 were

observed in Malta (20.4 %) and Portugal (28.2 %) and the highest in Luxembourg (78.7 %) and Belgium

(73.5 %), which makes it a rather heterogenous matter [28].

Figure 2.6: Final energy consumption in the residential sector by use, EU-27, 2018 [28].

Concerning energy source, electricity covers 100% of the energy needs for lighting and space cooling

in the EU but also 83.4% of the other end-uses and 49.2% for cooking purposes. Renewables cover

27.0% of the energy needs for space heating, 12.6% for water heating and 5.6% for cooking purposes.

Derived heat plays an important role in water heating (13.9%) and in space heating (10.6%), while oil

products still cover 14.1 % of space heating energy use, 13.5% of cooking and 11.3% of water heating

[28]. Fourteen out of 27 EU Member States use mainly renewable energies for space heating, with

Portugal (80.9%), Croatia (65.0%), Bulgaria (59.3%) having the largest proportion. While the number of

countries using mainly gas for this purpose is smaller (ten Member States), some of them are among

the largest energy consumers of the EU – the Netherlands (86.2%), Slovakia (65.4%) and Italy (58.4%),

where the proportion is the highest. Three Member states use mainly petroleum products for space

heating: Cyprus (63.0%), Ireland (50.1%) and Greece (43.0%). Finally, one Member State (Sweden)

mostly relies on derived heat (48.7%) and one Member State (Poland) uses mainly solid fuels for space

heating (44.9%) [28]. Cooking is generally based on the use of electricity (in seventeen Member States)

and gas (ten Member States) [28].
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2.1.2 CO2 Emissions

Global CO2 emissions went up 1.7% in 2018 (560 Mt, equivalent to total international aviation emis-

sions), the highest rate since 2013, reaching an astonishing 33.1 Gt (Fig. 2.7). That year, emissions

from all fossile fuels increased but the power sector accounted for around two thirds of emissions’ growth

[29]. This increase was driven mainly by a global robust economy and weather conditions which boosted

heating and cooling. From 2014-2016, we’ve seen a stagnation in emissions, mostly due to strong en-

ergy efficiency improvements and low-carbon technology deployment, but in 2017-2018 that just wasn’t

enough to compensate global demand increase. The result was a 0.5% growth in emissions per 1%

gain in global economic output, in 2018, compared to 0.3% the average since 2010. Nonetheless, re-

newables and nuclear power made an impact, with emissions growing 25% slower than energy demand

[29].

In fact, coal use in power generation surpassed 10 Gt worldwide, mostly coming from Asia. China,

India and the US account for 85% of the net increase in 2018 (with relatively young coal plants), while

emissions declined in Germany, Japan, Mexico, France and the UK [29]. Assessing the fossil fuel

use, the IEA [29] found that coal combustion is responsible for 0.3◦C of the 1◦C increase in global

temperature since pre-industrial levels. Finally, the global average anual concentration of carbon dioxide

in the atmosphere scored 407.4 ppm, almost double the 180-280 ppm range in pre-industrial times [29].

Figure 2.7: CO2 emissions by sector, World 1990-2018 [30].

As of the year of 2018, coal fired electricity generation was responsible for 30% of global emissions

even though fuel switching between coal and natural gas accelerated in 2018. That change avoided

60Mt of coal demand and 95Mt of CO2 emissions, mostly in China and the US [29]. In addition, as

of 2016, energy usage in buildings accounted for 17.5% of the global greenhouse gas emissions, with

commercial buildings representing 6.6% of global emissions [? ].

But not all is bad news: carbon capture and usage facilities are expected to reduce the carbon dioxide

present in the atmosphere up to 15%. Electricity generation from renewable sources also increased by
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over 7% in 2018, injecting an additional 450 TWh into global electricity networks. Output from nuclear

contributed another 90 TWh of low-carbon generation [29].

Despite continued growth in emissions, the power sector has also seen transformation in recent

years. The average carbon intensity of electricity generated is around 475 gCO2/kWh, a 10% improve-

ment on the intensity from 2010. Without this, global CO2 emissions would have been 1.5 Gt (10%)

higher [29]. When considering Portugal (our case study location), carbon intensity is significantly lower

than the global average at around 265 gCO2/kWh (2019-2020) [31] [32], benefiting from a dominantly

renewable energy mix. This value is expected to lower after the shutdown of the two major coal plants

in the country, scheduled to close until 2022 [33].

2.1.3 Energy Conservation Measures (ECMs)

Technical efficiency gains have been the key driver for improving the primary energy intensity. Global

improvements between 2015 and 2018 avoided around 4% more energy consumption in 2018, nearly

equivalent to the total primary energy demand of France and Italy combined. These gains more than

doubled the global primary energy intensity improvement rate in 2018 (Fig. 2.8) [5].

Figure 2.8: Impact of technical efficiency on primary energy intensity improvement (2011-18) [5].

Apart from reducing emissions and energy consumption, improvements in efficiency have a signifi-

cant financial impact on GDP, while shielding countries from oil/fuel market instability and saving billions

of USD (Figs. 2.9 and 2.10) [5]. Oil represents the largest proportion of import savings globally, saving

of over 165 million tonnes of oil-equivalent from 2000-2018, similar to the energy used in the transport

sectors of Japan, Canada and Italy combined.
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Figure 2.9: Avoided oil and gas imports in 2018 due to technical efficiency gains since 2000 [5].

Figure 2.10: Avoided expenditure on energy due to efficiency improvements since 2000, by sector [5].

There are highly quoted studies which show us the impact this measures can have in reducing the

energy consumption and carbon footprint of buildings worldwide. Kneifel et al. [34] showed that, in gen-

eral, ECMs deliver consumption savings ranging from 20 to 30% without significant alterations to building

design in a cost-effective way. They found that these improvements can also be responsible for up to

32% less carbon emissions over a 10-year period, when concerning energy consumption. They also

exorted the comunity to adopt smarter and integrated HVAC (Heating, Ventilation & Air Conditioning)

solutions in buildings. Popescu et al. [35], even shows that thermal retrofits can increase the prop-

erty value of old residential buildings in between 2-3%, with up to 60% of the retrofit investment costs

recovered on property transactions.

Government policies play a significant role in accelerating the development and adoption of energy-

efficient strategies in all end-use sectors [5]. Several important developments in policy have been taking

place in air conditioning and cooling, building certification/rating, carbon taxes and comunitary energy

efficiency policy frameworks [5]. As of 2018, grants and subsidies continued to be the policy tool of

13



choice (Fig. 2.11).

Figure 2.11: Government incentives for energy efficiency by type of incentive [5].

Confirming this data, Portugal launched a EUR 4.5 million program to improve building energy effi-

ciency (Edificios + Sustentaveis, [36]), where consumers can get up to 7500C per house (to a maximum

of 2 houses) to undertake energy conservation measures, representing 70% of the investment cost, in

2020. The program focuses on window improvement, eco/recycled material thermal insulation , renew-

able heating/cooling systems, renewable deployment, water management and bioclimatic architecture.

Figure 2.12: Energy efficiency investment by region, 2014-18 (left) and by sector in 2018 (right) [5].

At USD 240 billion, efficiency investments across the buildings, transport and industry sectors were

1.6% higher in 2018. Within this global picture, trends vary from sector to sector and between advanced

and emerging economies (Fig. 2.12). Investments in the buildings sector, for example, dropped 2%,

however, at USD 139 billion, buildings still attracted the highest share of global investments. Industrial

efficiency investments increased in China by 12% and in India by 5%, but have continued to decline in
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the US since 2015. Transport efficiency investments have increased slightly and mainly in freight [5].

2.1.4 The impact of the digital transition in the energy transition

Nowadays, digital technologies combine at a network level to improve energy efficiency in all sectors

of energy consumption. Gathering huge amounts of real time data through sensors and smart meters

and then storing them on distributed ledgers, like blockchain (the main focus of this tesis), can help

in simplifying the process of establishing EPCs, for example. Through interfaces, simulations, data

analysis/AI algorithms and actuators, consumers can more easily meet and assess efficiency standards.

That is, the more interconected a building energy system is, the easier it gets to improve efficiency, since

this allows for consumers to value efficiency accurately and in a fast way. The IEA listed the possible

benefits of digitalisation on the energy sector and emissions below (Figs. 2.13, 2.14, 2.15 and 2.16) [5]:

Figure 2.13: Possible global benefits of digital technology [5].
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Figure 2.14: Residential buildings: Possible benefits of digital technology [5].

Figure 2.15: Industry: Possible benefits of digital technology [5].
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Figure 2.16: Transport: Possible benefits of digital technology [5].

2.1.5 Measurement & Validation (M&V)

The Efficiency Valuation Organization (EVO) defines Measurement & Verification as ”the process of

planning, measuring, collecting and analyzing data for the purpose of verifying and reporting energy

savings within an individual facility resulting from the implementation of energy conservation measures

(ECMs)” [37]. As savings can’t be actively and/or directly measured, they are determined by comparing

measured consumption before and after implementing ECMs, while making necessary adjustments for
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changes in conditions. These activities range from installing/calibrating smart meters to data analysis,

automation and finally to reporting savings and quality assessing [37]. Although little to no doubt may

exist about what the outcome of a savings project might be, it is wise to verify (more than once) that

the solution is, in fact, able to produce the expected savings. Operational verification, which involves

inspection, commissioning of equipment, functional performance testing and/or data trending allows the

validation of the expected savings [37].

As such, M&V is not, in general, a simple list of tasks needed to meet requirements but instead

part of the improvement of the facility operation and savings, being possible to find synergies with other

project steps. EVO defined 8 possible purposes of M&V, listed below [38]:

1. Increase energy savings by properly evalutaing savings in order to change, improve or maintain

ECM design or operations

2. Document financial transactions that serve as basis for financial payments and/or guarantee in

EPCs in a transparent manner and subjected to independent verification.

3. Enhance financing for efficiency projects while increasing transparency and credibility of out-

come reports which can increase the confidence that stakeholders have in energy efficiency

projects, raising the chances of being financed.

4. Improve engineering design and facility operations and maintenance by encouraging com-

prehensive project design which considers all operational/cosy details. It also helps managers

discover and reduce maintenance and operating issues.

5. Manage energy budgets, helping managers to assess and contain energy usage to account for

variances from budgets.

6. Enhance the value of emission-reduction credits, improving emissions-reduction reports.

7. Support evaluation of regional efficiency programs, by better auditing utilty or government

efficiency programs.

8. Increase public understanding of energy management as a public policy tool: enhancing

savings increases credibility and public acceptance. Public credibility is expected to boost invest-

ment in energy-efficiency projects or emission credits. Good M&V practices highlight that the public

benefits from good energy management by improving community health, reducing environmental

degradation and increasing employment.

The same organization highlights that best practice M&V plans should be accurate in measurements,

conservative when faced with uncertain data predictions, complete with all the relevant information,

consistent between different situations or details, relevant in terms of content and transparent [39].

The International Performance Measurement and Verification (EVO, US Dpt. of Energy) Protocol’s

mission ever since 1995 has been to standardize and develop a framework for good M&V practice, and

it is now the most widely recognized protocol in the world [40] [41]. It comprises the fact that savings
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cannot be acurately and directly measured since they represent an absence of consumption on demand

[40]. Instead, it compares measured consumption before and after the implementation of ECMs, with

needed adjustments, on a consistent basis (Fig. 2.17). This way, the general M&V equation [40] is used:

Savings = (BaselinePeriodEnergy −ReportingPeriodEnergy)±Adjustments (2.1)

Figure 2.17: IPVMP savings calculation [40]

Therefore, as necessary terms of the previous equation, there’s a deep focus on studying and devel-

oping a baseline consumption model from existing data and making relevant and regular adjustments

which mirror current conditions.

When it comes to baseline, its important to properly define boundaries as to what energy perimeter

we are studying and at what period [42]. The baseline period should be representative of a normal

operating cycle, ranging from maximum to minimum operation, support ECM planning and coincide with

the period immediately before the retrofit [42].

The adjustments should be driven by physical parameters and facts about the energy system and

equipment and serve to adapt the model to more accurate real conditions. There are two types of ad-

justments [42]: Routine - in which energy-governing elements which usually change during the reporting

period, like the weather conditions or production volume, and are modeled using either a constant value

or a multiple parameter non-linear equation which correlates those elements with the energy consump-

tion - and Non-Routine - like changes in operation cycles or facility size, which are not expected to

change over a studied period and therefore need to be accounted for by those static factors. IPMVP

offers four options to quantify savings (A, B, C and D) which allows clients to study ECMs from just key

parameters to calibrated facility simulations, depending on the amount of data and automated computa-

tion available [42].
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The recent massive deployment of energy automated systems and real time data handling is the

foundation of what authors call M&V 2.0 or advanced M&V [43]. Benefits include a more modern audit

system towards savings, which allows for greater data granularity and frequency, with stakeholders

easily getting the pulse of the data and accurately taking decisions regarding ECMs, contributing for

more credible M&V tecniques and EPCs. However, lack of standardization and regulatory policy is

keeping this new age in M&V to reach its full potential and keeping a higher credibility level [43].

Granderson et al. [44] (2016) assessed these recent advanced technologies for predicting adjust-

ments/baseline by testing ten existing models and comparing them to the actual measured data from

537 buildings. They confirmed that the available advanced interval data models hold great promise for

the further scalability of M&V 2.0 practices applied with Advanced Metering Infrastructures. All models

reached a coefficient of variation of the root mean squared error (CV(RMSE)) under 25% for 1-year and

6-month studies, which reveals that currently there is reason to be confident in the models’ robustness

[44].

Gallagher et al. [45] (2018) laid the fundamentals of a Machine Learning (ML) supported method-

ology for M&V 2.0, where data is collected, important features are selected through data analysis al-

gorithms and, then, the baseline model is built from the existing data. In the considered biomedical

manufacturing facility, they reached a CV(RMSE) of 11,23% with an optimal k-NN model.

Away from being a mere engineering requirement, M&V has a relevant mathematical background

brought together by, for example, Xia et al. [46] (2013) where types of IPMVP options and baseline

model/adjustment external parameters’ dependance can be derived from the description theory behind

M&V procedures and stochastic processes in a straightforward way.

Important metrics are relevant for model behaviour evaluation and model selection. IPMVP relies on

the root mean squared error (RMSE) as the standard error (SE) but one other common used parameter

in the literature are the coefficient of variation of root mean square error (CV(RMSE)) (Eqs. 2.2, in which

yi is the actual value, ỹi the predicted value, ỹ is the average of the actual values, and n is the total

number of predictions in the studied period) [45].

CV (RMSE) =

√
(1/n)

∑n
i=1 (yi − ỹi)2

ỹ
× 100 (2.2)

The CV(RMSE) represents the level of variability between actual and predicted values and it shows

the magintude of the error relative to the quantity (baseline energy consumption) [45].

2.2 Energy Service Companies (ESCOs)

2.2.1 Definition

Frequently, most facilities and operations face a significant waste of energy which can be avoided,

whether it surges from the supply side, poor design or low energy prices. At the same time, energy

providers focus almost solely on managing supply and demand, often in detriment of the best energy

service value. This is the main goal of an Energy Service Company (ESCO): connecting energy with
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service in order to deliver the best overall value through waste avoidance by means of energy service

upgrades, implementation of energy efficiency programs and savings deliverance to the end consumer

[47]. The E3P defines an ESCO as a company that offers energy services which may include imple-

menting energy efficiency projects (and/or renewable energy projects) mostly on a turnkey basis [48].

ESCOs therefore provide technical solutions without the consumer needing to own or pay direct opera-

tional costs for those systems, nor understanding the skills required to engage in such projects, making

it acessible to the common consumer. This business model, backed by environmental, political and eco-

nomic push, allows for savings of between 10-30% [47] [11] by deploying strategies such as: changes in

lighting, behaviour change, systems control, process optimization and motor/drive upgrades, with most

programs delivering payback periods of around 4 years or less [47]. These companies work on a so-

lution based approach, providing the consumer with the best value decision which optimizes all of his

objectives, considering both the capital cost of the equipments and their operational costs, while shifting

risk away from the consumer side and incentivising energy reduction.

2.2.2 Digitalisation

Most of these energy efficiency projects became feasible due to general digitalisation and Internet of

Things (IoT), for instance. These technologies brought greater control and optimization power as well

as a highly significant amount of data and analytic power into picture, when concerning the energy sec-

tor. These features highly impacted the current connectivity between humans, machines and devices,

through sensors and ICT (Information and Communication Technology) and even though more devices

can translate into a larger energy consumption, it is possible to minimize the negative impacts associated

with it and bring higher efficiency to sectors such as transportation, buildings and industry [15].

Energy efficiency projects are the result of a combination of technologies: sensors and acting devices

gather and analyze data to implement changes in energy usage while maintaining dependence between

them; then, data analysis algorithms flag or act upon changes needed to secure higher efficiency. A lot

of smart appliances and transportation grids are already in use but energy system’s efficiency improve-

ments are slowing down and not up to speed with recent developments [15] [5].

2.2.3 Market, Policy and Challenges

Given the need to rapidly and significantly increase financing for energy efficiency, there’s a growing

interest in this business model: the global ESCO market grew 8% to USD 28.6 billion in 2017 [11].

However, this market remains somewhat underdeveloped in Europe compared to other major regions,

accounting for just 10% of the global value, mostly in the non-residential buildings sector and industry

[11].

Government policy and access to financial instruments are key drivers of ESCO activity, having an

influence on whether projects are carried out in the private or public sector, with higher or lower credit

rating. Subsidiary ESCOs usually consist of a small branch of a larger engineering firm or technology

provider, such as Honeywell, Siemens or Schneider Electric, operating on a mature market which allows
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project aggregation and easier access to equity when needing to finance a project. Standalone ESCOs

generally focus solely on delivering energy saving measures and have lower grade finacing capability

[11].

Even though these companies propose an interesting business model, there are differences in their

business development throughout the globe, mostly due to different government policy, contract defini-

tion and accessible technology [11] [49]. As such, they are seemingly stalling on a niche application

plateau, comprising industries or other non-residential buildings.

In 2006, Bertoldi et al. [49] explored the inhomogeneity of the ESCO market throughout Europe de-

spite the efforts of the European Union to foster this industry and laid out a strategy to further push this

business models, insisting on increasing ESCO services/projects dissemination, standardizing contracts

and M&V methods, developing financing sources for this type of company (such as Third Party Financ-

ing), creating an accreditation system for ESCOs and boosting governmental lead in public buildings.

Seven years later, Hannon et al. [50] found that the dominance of EUCs (Energy Utility Companies)

over the energy market and the energy system was still keeping ESCOs from reaching a broader market

stance, but that ESCO’s influence on the energy system was expected to grow in the coming years due

to a change in the selection environment they operate in, with EUCs creating their own ESCO divisions,

signaling a change on the energy sector’s status quo. More recently, Kangas et al. [51] studied the

barriers to energy efficiency as viewed by ESCOs and highlighted some of the same issues: lack of

technological skills, disinterest in energy efficiency improvements and non-functional regulation. They

also stated that public actors have a key role in overcoming these barriers by creating new possibilities

for entrants to take part in decision-making.

2.2.4 ESCOs in Portugal

Bertoldi et al. [49], identified 7 major ESCOs operating in Portugal, as of 2006. However, Portugal is

quoted as an ESCO emergent market in Soares et al. [52]. Growing steadily but at a slow rate, these

companies have been thriving since 2008, mostly due to the PNAEE (National Action Plan for Energy

Efficiency) - a plan to cut energy consumption in around 9.8%. In 2009 there were 10-12 companies

which identified themselves as ESCOs, but that number grew to 89 in 2011 [52], thanks to plans like

ECO.AP, which aimed at a consumption reduction of 20% in public administration facilities, partnering

with ESCOs. Most companies reported to act mostly on the industrial sector and also in hotels, offices

and swimming pools, preferably using non-performance contracts. After the financial crisis, some incen-

tives were discontinued (raising VAT from 13% to 23 % on renewable energy gear and cutting renewable

incentives of up to 30%) , which is expected to have had a stalling impact on the national ESCO market.

Findley et al. (2018) [53] and Capelo et al. [54] showed that portuguese barriers to ESCOs thrival do

not operate independently and must be addressed system wide, listing Portugal as one of the lowest

maturity markets studied (22% maturity score, 65% being the maximum (Mexico)). It is also shown that

this market is valued in USD 35 million in the country and that the number of ESCOs peaked in 2013 with

100 companies and dropped abruptly to 5 in 2017, according to the IEA [53]. In conclusion, the ESCO
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market is shown to be at a low maturity stage in Portugal and it is not expected to have a significant

market share on the residential sector, since energy costs are highly taxed, which limits a significant

cost reduction. Most (envelope) retrofits also aim to deliver a greater degree of thermal comfort, rather

than energy savings.

2.3 Energy Performance Contracts (EPCs)

An Energy Performance Contract (EPC) is a commonly used ESCO mechanism for financing energy im-

provements, which allows for upgrades to be funded by the potential cost reduction they generate. Under

the jurisdiction of this contract, the company implements an energy efficiency project and allocates cost

savings/renewable energy produced to repay the capital costs of the project and its investment, which

shifts the responsability of delieverance (of expected savings) to the ESCO side [10].

This type of contract is advantageous for consumers since it shifts the technical risks to the ESCO

side, based on expected performance, that is, ESCOs’ repayment is dependent on the attained level

of energy savings. It is, then, a way of delivering infraestructural developments in enviroments where

there is lack of manpower, engineering skills, management time or capital funding making it a creative

business model for underdeveloped countries with some degree of creditworthy organizations wishing

to improve energy efficiency [10].

There are two main types of EPCs [10]:

1. Shared savings in which cost savings are shared (for repayment purposes), for a determined

length and in a pre-determined percentage, between the lender, consumer and ESCO, depending

on the capital cost of the project, contract length and associated risk.

2. Guaranteed savings in which the ESCO guarantees a certain level of energy savings from the

EPC in exchange for an upfront payment and/or regular service fee, shielding the client from per-

formance risks.

2.3.1 Shared savings

Under this contract, the client assumes some degree of performance risk and, as such, credit risk is

at least partially guaranteed by the ESCO, which can ultimately put these companies in default risk,

since they become too indebted to keep lending money from financial institutions, hence this being a

type of contract in which short payback times are preferred. Thus, the shared savings contract helps

boosting the market, since consumers assume little to no financial risk, but it can create barriers for

smaller companies which will not be able to compete with highly leveraged ESCOs when needing to

contract further debt for new projects [10].

Some variations of these contracts include the ”first out”, in which ESCOs are paid 100% of savings

until the project costs and profit are fully covered, the duration being variable according to the level

of savings attained; and also the ”single energy price”, in which both parts agree on the value of the

service upfront and neither side gains from energy price differences that come about during the duration
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of the contract. In this latter case, if the actual prices are lower than the floor value, the consumer has

a windfall profit that compensates the lower return. If the prices rise higher than the ceiling level, the

return of the project is higher than expected but the consumer doesn’t pay more for it, which resembles

the guaranteed savings contract to a certain extent [10].

Often, when savings exceed expectations, an adversarial relationship between consumer and ESCO

can be created (and that is, to a certain extent, the focus of this thesis), in which ESCOs try to un-

derestimate savings and receive more from excess savings, which usally are contractly due to them

[10].

2.3.2 Guaranteed savings

This type of contract places the performance and design risks under ESCO’s responsibility, that needs

to guarantee a certain level of energy savings to the consumer. The credit risk is usually undertaken by

the client, through access to bank credit or financial institutions. Because of that, it is usually prefered

in countries with a strong banking structure and high degree of familiarity with project management and

technical expertise financing in the energy sector, which are usually seen as barriers for new markets,

where the costumer tends to take investment risk.

In this case, if the savings come short to cover the debt service, ESCOs have to step in to cover the

difference. On the other hand, if the savings exceed the estipulated level, the costumer pays an agreed

percentage of the savings to the ESCO [10].

2.3.3 Implementation

On average, EPC projects have a capital outlay of EUR 1-5 million and a contract length of 5-10 years

[47]. A typical EPC process goes through five implementation stages [47] [55] [56]:

1. Identifying Requirements, Resources and Funding Approach: the first stage focuses on iden-

tifying the potential project by defining what is the end goal of the project, the requirements, the

resources needed and how will it all be funded. It also comprises contractor procurement ap-

proaches.

2. Tender Phase In order to deliver a proper tender package, gathering information on the properties

within the scope of the project will be important to convey the basis of the opportunity. Bidders

will be keen to understand areas such as energy use, current building condition, recent and future

planned improvements and operational use. It is then a crucial phase to decide on feasibility,

procurement routes, financing sources and, ultimately, to engage suppliers and select preferred

partners. Can take 6-12+ months, depending on requirements and procurement.

3. Investment Grade Proposal (IGP) at this stage, ESCOs should have a detailed proposal con-

sisting on the technical solution, contract structure, costs and benefits. It should also establish a

contractly binding M&V protocol as well as detail the funding (internal or third party) confirmation.

This stage involves a thorough survey of buildings so it is important that clients engage with the
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appointed ESCO so it can develop a better understanding of building use. It might be useful to

discuss ECMs being considered so that the final proposal is more likely to fit with requirements.

Takes around 8-10 weeks.

4. Energy Conservation Measures Installation when the IGP is completed and agreed, the ESCO

procedes with the instalation of the ECMs, starting to work on site. Depending on the complexity,

this can take from some weeks to over a year.

5. Service Delivery Energy savings are a key benefit that should be achieved and operational and

maintenance services may be provided by the ESCO. It is important that these savings are mon-

itored through an appropriate measurement and verification plan. This should enable changes

in operational and external factors to be accounted for in demonstrating overall performance. If

underperformance does occur, aditional measures may be applied in line with the agreed contract.

2.3.4 Risks and Best Practice

In 2015, Lee et al ([57]) surveyed ESCOs and clients to understand EPC risks as perceived by each part

and further elaborate measures to enhance the adoption of EPCs in the future, as well as to mitigate

risk, agreed on by the respondents. His findings together with information from [47], are listed below

(Table 2.1):

To ESCOs To both parties To Clients

Payment default after installation Energy price changes Long payback periods

Uncertainty in baseline measurement Weather impacts Project complexity

Instalation costs increase Major changes in building use Repayment ability

Poor M&V protocol

Poorly documented assumptions

Poor energy audit

Poor contract

Economical environment

and public policies

Table 2.1: Main risks associated with EPCs [47] [57]

Back in 2004, Yik et al. [58] have listed the most relevant obstacles to energy performance con-

tracting which still remain relevant today, which were: disputes over M&V protocols, changes in energy

prices, occurences of extreme weather, changes in the building operation pattern, client perception that

targets won’t be met and hesitation/high interest rates from financial institutions, due to uncertainty in

energy cost savings or payback ability. They’ve also exposed guidelines to access the viability of an EPC

and the consequences of mismatches between expected and actual energy cost saving, culminating on

the idea of a partnership firm between parties in order to solve conflicts.

25



In order to tackle risk perception and mitigation, several guidelines or success factors in EPCs have

been studied over the years, so as to gather both parties’ consensus. Lee et al. [57] drew some key

measures to incentivise EPC adoption such as: promotion of successful projects, changing the gov-

ernment procurement practices to facilitate the use of EPCs and government partial backup of loans.

They also highlighted the need to promote the true value for money of EPCs amongst building owners.

Xu et al. [55] also established 5 critical success factors (CSFs) for EPCs in China, consisting on: ac-

curate M&V, trust between parties, a control mechanism of sustainable development strategy, available

technology and effective coordination.

On a bibliometric analysis about EPC research between 2008-2018, Zhang et al. [59] found 5 main-

stream research topics, amongst 127 papers mostly from China and the United States: implementation,

mechanisms for effective EPCs, risk management and ESCO/stakeholder behaviour in EPCs and deci-

sions. When considering research challenges or further work, the paper found 6 research challenges:

lack of an effective M&V, limited studies in the residential/buildings/tertiary sector, lack of risk prevention,

limited research on dual stakeholder relations, poor consumer attitude towards ESCOs (especially in the

EU) and ineffective mechanisms to ensure post-EPC savings.

As expected, much of the recommendations of researchers lie within the field of regulatory and trans-

parency issues. Nuñez et al. [60] say that one of the key issues regarding funding for EPC projects in

South East Europe is the need for a simpler contract model that assures transparency and the urging

public institutions and general public to further regulate and boost this practice through creation of asso-

ciations that gravitate towards EPCs. When Frangou et al. [7] studied the impact of these contracts on

the tertiary sector in Southern European countries, that usually have a hard time securing credit-rating,

researchers found that these financial barriers have a negative impact on the implementation of these

contracts and appoint reasons for it: scarcity of examples, lack of knowledge and skills, lack of financial

expertise or products designed for ESCOs, high guarantees, poor legislation and interest rates. Applying

their studies to the Greek scenario [8], authors exhorted the community to support legislation changes

and standardization, since that is expected to have a significant impact on credit, which is key for EPCs.

2.3.5 Successful Examples

Ever since they first appeared to the public in the 1980s, EPCs have been increasingly thriving as

mechanism to secure energy savings in most sectors. European Union’s programmes like SUNsHINE

(Latvian Baltic Energy Efficiency Facility) aim to boost EPC adoption by easing the financial process

inherent to these contracts and presenting a formal investment guide [61]. The programe lasted for 1

year and a few months after the beggining, a total EUR 12.8 million investments were foreseen and 1300

MWh energy savings per year or 26 000 MWh in 20 years [62].

The Ener-In-Town wished to establish greater control over energy consumption in municipally-owned

buildings, by providing a solution which eliminate two existing barriers: lack of detailed knowledge on

consumption figures and lack of qualified local personnel with the capacity to propose improvement

actions [63]. The execution results yielded savings of around 16% on sports buildings, 6% on swim-
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ming pools and public facilities, 9% on office blocks and 8% on residential/school buildings, across 32

european municipalities.

Particularly, in Portugal, there’s a continuing investment to cut energy consumption on buildings,

expressed by the PNAEE [64] (Plano Nacional de Ação para a Eficiência Energética - National Plan

of Action For Energy Efficiency). The plan proposed cuts of 10 and 20% in building consumption over

the years, and it’s considered to be a change engine in the country, with programs like ECO.AP [65]

deploying ESCO activities throughout several public buildings.

Austria and Germany also report a distinct acceptation of EPCs in Europe [66].

Overseas, in some of the world’s most industrialized countries like the US and China, there are also

success case studies of EPC implementation. The Empire State Building retrofit project started in 2008

and hoped to reduce the building’s energy consumption pattern. It focused on improving the efficiency

of the building’s exterior side, changing the ventilation system to a smarter one and promoting efficient

lighting and behaviour changes [52]. In 2012, it surpassed the energy savings expectations by saving

38% of the building’s energy consumption, which translates to USD 4.4 million savings per year, all while

creating 252 jobs [67]. The impact on lighting and ventilation matched to around 50% of the savings [67].

A report by the Clinton Foundation highlights four reasons why the Empire State Building Retrofit Model

works, them being: ownership with credibility, replicability to other buildings, increased transparency and

the attention drawed towards the famous building [68]. Federal US Department of Energy programs like

the Federal Energy Management Program, also helped foster EPC adoption, by implementing them to

enhance public buildings [69].

On the other side of the world, China also reports a similar degree of success in the application of

EPCs in hotel/building retrofits [55], with [17] highlighting contractual bond as a main barrier to a better

framework.

2.4 Energy Consumption Forecasting Models

Predicting energy consumption as a variable is just as any data forecasting routine (Fig. 2.18): first, the

data is gathered from meters and treated, getting split and ”cleaned” through data analysis algorithms.

Then, other parameters (features) dependence is studied through feature selection/data clustering rou-

tines, which quantify and qualify the degree of relevance of the parameters to the evolution pattern of the

consumption load. Finally, data predicting models are trained with historical data (of both x - features

- and y - energy consumption), so as to create a mathematical description for the evolution of the fea-

tures with the energy consumption. After the model is trained, it is able to predict energy consumption

values from new feature data sets, with a measured uncertainty. The two main parts of this process are

described in the sub sections below.
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Figure 2.18: Data discovery process [70]

2.4.1 Feature Selection

This stage represents the process of identifying relevant features to the evaluation of a certain variable

of study in order to reach a model with better accuracy, being indispensable for Machine Learning (ML)

data processing [71]. This way, data used to train forecasting models is better fit by removing redundant,

irrelevant or loosely relevant variables from the data set, reducing noise predictions, model complexity

and computing time. Mainly, feature selection is about determining the best subset of candidate features,

by spotting the irrelevant or weakly relevant ones, following one of the three approaches: optimizing an

evaluation measure (Filter approach), satisfying restrictions on those measures (Wrapper approach) or

reaching the best commitment between subset size and evaluation measure (Embedded approach) [71].

Figure 2.19: Filter approach [72]

Filter methods (Fig. 2.19) are widely used as preprocessing steps and they select candidates (ig-

noring the prediction model) by evaluating general parameters like correlation or statistical test scores

(Pearson’s Correlation, LDA, ANOVA or chi-squared) in regard to the modeled variable and suppressing

the least relevant features after a certain stopping criterion is met [72] [71] [73]. The method doesn’t

consider relations between features and, as such, becomes highly efficient in reducing computation

time and avoiding overfitting. Selecting redundant variables is frequent and, therefore, improved ver-

sions of this method try to eliminate features highly correlated to each other [73]. Some examples of
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these algorithms include FOCUS, ABB and relief [71].

Figure 2.20: Wrapper approach [72]

The Wrapper approach (Fig. 2.20) is quite similar to Filter apart from the evaluation criteria and that

it can identify interactions between variables. It works by using a subset of variables to train a model

and, based on the results, deciding to add or remove features from the previous subset [72]. The main

setbacks of this method is that it increases computational time and the risk of overfitting. It chooses

the optimal subset of variables that are better suited for the learning algorithm and usually presents a

better behavior too [71] [73]. Common examples of wrapper methods are Forward Selection, Backward

Selection - the first starting with no features and adding them until an addition stops improving the

model and the last doing the same thing backwards - and Recursive Feature Elimination- which works

by repeatedly creating new models and labeling the best and worst performing features until they all are

exhausted, presenting a ranking of features by elimination order [72].

Figure 2.21: Embedded approach [72]

Finally, the Embedded approach (Fig. 2.21) combines the advantages of the latter two: lower com-

putational time cost and feature dependency capture. In fact, not only it studies dependencies between

input and output variables but it also searches locally for features that are important to improve local dis-

crimination. A prediction-independent criteria decides the optimal subsets for a certain cardinality and

then, the learning algorithm selects the final optimal subset among the optimal subsets across different

cardinalities [71] [73]. Some popular examples of these methods are LASSO and RIDGE regression
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which consider penalization functions to reduce overfitting [72].

Some real world practical examples of feature selection include remote sensing and browsing of

images, text classification, genomic data analysis and intruder (spam) detection [71].

2.4.2 Regression

Predictive modeling is the process of creating a model that follows the evolution of a certain variable,

based on historical data, in order to predict the future behavior of that variable [74]. It is then a mathe-

matical problem of approximating (training) a function from input variables (X) to output variables (y). In

the scope of predictive modeling, there are classification and regression problems [75]. Classification fo-

cuses on labeling parts of the data, splitting it in groups by probability of belonging to it, depending on the

application goal. It consists of a discrete variable study in which results are evaluated by the accuracy of

the model [75]. In this dissertation, the focus are turned towards the problem of modeling a continuous

quantity (energy consumption of a certain building) from multiple input parameters, which known as a

multivariate regression predictive modeling. The skill of these models is usually assessed by knowing

the root mean squared error (RMSE) or the mean absolute error (MAE), which constitute error parame-

ters in the same units as the predicted value [75]. Some of the most common regression algorithms are

Linear Regression (LR), Random Forests (RF) and Extreme Grandient Boosting (XGBoost).

Linear Regression attempts to describe the relationship between variables by fitting a linear equation

to the observed explanatory variable (X) [76]. It is usually preceded by some form of data correlation

study in order to avoid overfitting (that is, the model becoming to adjusted to the data and, therefore, un-

stable). Least squares is the most common method for fitting a first degree linear equation to observed

data by minimizing the sum of the squares of the vertical (y) deviations from each point to the model-

ing function [76]. LR avoids cancellation between positive and negative interference by first squaring

deviations and then summing them.

Random Decision Forests Regression [77] works by constructing several decision trees at training

phase and outputting the average prediction of the individual trees. Studying a random selection of

features, it uses a technique called bagging or Bootstrap Aggregating [78], in which n subsets of the data

fit n models, in order to reach a prediction, which is then averaged from those n model results, reducing

variance and avoiding overfitting. Decision trees (Fig. 2.22) [79] work by splitting data into trees that

classify the behavior of the output variables (Y) based on the range of values of exploratory variables

(X), until a variance minimization algorithm reaches its optimal point. This method is widely used for its

little configuration requirements and reasonable predictions, especially in multivariate problems, which

come just about short of gradient boosted trees.
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Figure 2.22: RF decision trees [80]

Figure 2.23: Extreme Gradient Boosting prediction routine [81].

Extreme Gradient Boosting (XGBoost, Fig. 2.23) [82] was first proposed by Chen and Guestrin and

its central idea of ”boosting” combines gathering all ”weak” learners in order to feed a ”strong” learner,

simplifying objective functions that join predictive and regularization terms [83]. Put in a simple way,

XGBoost fits one model to the whole input data subset and another to this one’s residuals (deviation

from data to model). It then averages variations and data predictions to induce corrections on fitting

predictions [83]. XGBoost is known for efficiently preventing overfitting while optimizing computational

effort and using automatic parallel calculation, making it one of the new most promising regression

algorithms for data prediction [83].
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2.5 Blockchain

Figure 2.24: Blockchain flow process [84].

First proposed in 2008, Blockchain is a technology which can be briefly explained as a public book-

of-records (ledger) in which all committed transactions are stored in blocks. The chain is then formed

and expanded as new blocks are appended to it. The security advantages of this technology come

from asymmetric cryptography and distributed consensus algorithms in each node (the ”poster”), which

maintains a consistent chain. It’s a topic of research for several sectors where efficiency can be improved

and costs reduced since it is characteristically decentralized, anonymous, persistent and easily auditable

[85].

A Blockchain is a shared list of recorded transactions between parties in a network, in which actors

with permission can act upon without the control of a central authority. It’s made up of nodes which

store the list of transactions, called ledger. In this structure, a block is a group of transactions from the

same time period. Each block has the data it contains, the timestamp and certain hashes that identifiy

each block and the previous one, in order to keep an theoretically immutable chain. To add a block it

may need first to be mined (created) by the node and then approved by a number of nodes, through a

consensus mechanism [86] (Fig 2.24).

Allowing payments to be handled without a third party (bank or intermediary), Blockchain has at-

tracted financial services’ attention for managing digital assets, remittance and online payments, the

most famous application being the Bitcoin cryptocurrency [85].

The Blockchain ledger is virtually immutable and tampering with transactions becomes quite difficult

for intruders, that’s why its applications reach Internet of Things (IoT), security systems, smart contracts

and public services. Businesses which need to keep reliability and honesty levels are also keen to

attract new customers using these technologies, since it is distributed and immune to single point of

failure situations [85].
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Although it presents great potential for network systems, it also faces technical issues of scalabil-

ity (Bitcoin can only handle 7 transactions per second, which is unfit for high frequency trading, and

raising block size to more than 1MB would induce slower network propagation, for example), selfish

mining strategy (where miners hide their mined blocks and achieve larger revenues than their fair share)

and even shown privacy leakage. In addition, the most famous consensus algorithms, Proof of Work

(PoW) and Proof of Stake (PoS), are either highly energy consuming or generate the ”rich get richer”

phenomenon [85].

2.5.1 Nomenclature

Blockchain systems are split into three types of applications: public, private and consortium blockchain.

The main difference between them is the visibility of the records and consensus process role, as seen

in Table 2.2.

Characteristic Public Consortium Private

Consensus determination All miners Selected set of nodes One organization

Read permission Public Public or Restricted Public or Restricted

Immutability Alm. impossible to tamper Could be tampered Could be tambered

Efficiency Low High High

Centralized No Partially Yes

Consensus process Allowed to all nodes Permissioned Permissioned

Table 2.2: Comparison chart between public, consortium and private blockchain [85]

Let us now clearly define these characteristics and distinguish between each type of blockchain [85].

1. Consensus determination: tells us who has the power to take part in the consensus process,

ranging from all nodes (in the public blockchain), some nodes (consortium) or just one organization

(private) which the determines the final consensus.

2. Read permission answers the question: ”to whom are the transactions visible?”.

3. Immutability: when working with a large network, such as in a public blockchain, it becomes nearly

impossible to tamper with transactions since records are stored on a large number of nodes. The

inverse happens in more reduced configurations.

4. Efficiency: propagation latency becomes higher in a network with a large number of nodes, gen-

erally making private and consortium blockchain systems more efficient than public networks.

5. Centralized: more restrict networks with fewer users become more centralized by defintion, mak-

ing public blockchains the most honest example of a decentralized ledger.

6. Consensus process answers ”who can join the consensus process of this network”.
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Public and private blockchain are attracting many users and communities in all kinds of applications.

Consortium systems have significant potential in many business applications, with Hyperledger and

Ethereum providing tools and frameworks to establish these networks [85].

2.5.2 Consensus Algorithms

Establishing consensus between nodes on a blockchain is a variation of the Byzantine Generals prob-

lem. It states that a group of army generals circle a certain city: some prefer to attack and the others

prefer to retreat. However, the attack would only be successful if all generals attack the city together.

Thus, they have to reach an agreement in a distributed environment, just like a blockchain, in which

there is no central authority that ensures that the distributed ledgers are all the same [85]. Therefore,

some protocols are required to ensure ledgers stay consistent between nodes. Here are some common

approaches to guarantee consensus in a blockchain [85]:

1. Proof of Work (PoW): as the name suggests, when a node wants to post a block of transactions,

it has to undergo a proof of work done to ensure that the node is not likely to attack the network.

This is the consensus mechanism used by Bitcoin. Each node calculates a hash (coded) value

that identifies the block, containing a nonce, which is frequently changed to get different hash

values. The process requires that this calculated value be equal or smaller than a certain given

value. Whenever the node reaches the right value, it transmits it to the other nodes, which then

verify the righteousness of the hash value. When validated, miners would append this new block

to their registered blockchains. Nodes that perform calculations are called miners. Due to its

decentralized nature, valid blocks might be created at the same time when multiple nodes find the

right value nearly at the same time. As a result, branches can be created, where the chain has two

valid options to establish consensus, while it is unlikely that two competing branches will generate

the next block simultaneously. When this happens under PoW, the longer chain is judged as the

authentic one. This method is highly resource wasting.

2. Proof of Stake (PoS) is a less energy-consuming alternative to PoW. Mostly used in financial sys-

tems, the miners following PoS have to prove ownership or right to post transactions. It becomes

quite unfair since the richest/most credible person on the network is bound to be dominant, even

though it is believed that people with more digital currency are less likely to attack the network.

As a result, several approaches to PoS use stakes proof combined with other metrics such as

currency age, lowest hash. It is more effective than PoW, but as the mining cost becomes near

zero, attacks might become a constant reality. Many blockchains start using PoW to then gradually

change to PoS, like Ethereum and Peercoin did.

3. Practical Byzantine Fault Tolerance (PBFT) is a famous replication algorithm that tolerates

byzantine faults, by tolerating up to 1/3 malicious byzantine replicas. This stragtegy determines

new blocks by rounds, composed of three stages: pre-prepared, prepared and commit. In each

phase, a node needs 2/3 of other nodes’ approval to enter the next one, requiring every node to

be known by the network. It is used by Hyperledger Fabric.
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4. Delegated Proof of Stake (DPoS) improves transaction confirmation time by having stakeholders

elect delegates that generate and validate blocks. Dishonest delegates are easily voted out. Used

by Bitshares.

5. Ripple (currency) determines collectively-trusted subnetoworks within the larger one. The nodes

are divided into servers - which participate in the consensus process - and clients - for transferring

funds. Each server contains a Unique Node List, that it queries upon logging a transaction into the

ledger. The transaction is valid if agreement reaches 80%, keeping the ledger safe for under 20%

of faulty nodes in the UNL.

6. Tendermint (currency) which is quite similar to PBFT but nodes have to lock their balance (coins,

interest) to become validators. Faulty validators are punished.

In short, different consensus strategies vary on node identity requirement, energy consumption and

tolerated faulty nodes [85]. Recent advances focus mainly on splitting block creation and transaction

confirmation roles, block generation speed stability and valid branch election [85].

2.5.3 Challenges and Future Directions

Currently, blockchain faces issues of scalability, privacy and selfish mining. All these topics and possible

solutions are studied in [85].

Possible future directions in blockchain research suggest an increased focus on blockchain testing

and standardiztion, stopping centralization tendency, big data management/analytics and new blockchain

applications, cited in [85].

2.5.4 Energy Sector Applications

It is only natural that the recent hype surrounding blockchain technologies has reached the energy sec-

tor. In terms of concept, the energy blockchain network is briefly defined as every energy subsystem

constituing a node, with energy transaction records collected in each block. Smart contracts are re-

sponsible for automatic transmission, validation and execution of relevant information [87]. The main

characteristics of this type of network are that they are [87]:

1. Descentralized, based on peer-to-peer (P2P) energy networks, with data being stored in each

node;

2. Transparent in terms of rules and data/transaction visibility;

3. Automatic, ensuring that the systems run with little to no human intervention;

4. Traceable, since data posts are signed and timestamped. Modifications require node consensus

and confirmation.
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Zhao et al. (2019) [87] has found the United States to be a good example of a favorable environment

for the development of energy blockchain technologies. They presented examples of application that

range from microgrid energy trading, downed poles (acting as nodes) control and shared electric vehicle

(EV) charging pile systems. It was suggested that in order to foster deployment, these practices should

have good policy support, favorable financing environment, advanced technical equipment access and

an active tech-geek atmosphere [87].

Several other articles study the application of blockchain to P2P energy trading and its business

model, such as [88], [89], [90] and [9].

Blockchain’s usage in the energy efficiency industry was well studied by Khatoon et al. (2019) [19].

Just like this dissertation, they claim a vast territory for blockchain to explore when concerning EPC

application by ESCOs. The highlighted benefits of an EPC application blockchain were: savings ex-

change and encryption, increased transparency, reliability and security, improved client trust and market

success, transaction cost reduction (from no intermediaries being involved) and properly valued sav-

ings [19]. They study two examples of application: the italian White Certificates and the UK’s Energy

Company obligations scheme [19].
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Chapter 3

Energy Modeling

3.1 Exploratory Data Analysis

First, we analyze collected energy consumption data from 2017-2018 by smart meters deployed through-

out four Instituto Superior Técnico - Alameda campus’ buildings: Civil, Central, North Tower and South

Tower. Most considerations will take the Civil building as basis since it is the most representative one

of the whole campus, in terms of data homogeneity and consumption pattern. We need to visualize the

data and, for that purpose, a bar histogram of the recorded hourly values of consumed power for Civil

was plotted (Fig. 3.1).

Figure 3.1: Hourly power consumption (KW) histogram for the Civil building, from 2017 to 2018. Two
highly populated regimes of consumption with a transient one in the middle are distinguishable - a
bimodal type distribution.

It is clear from this analysis that there are two immediate regimes of consumption - a peak higher one

and a flat lower one. The two consumption regimes constitute a bimodal-type distribution with a lower

transient regime in between them. Most counts lie on the 50-150 kW range, with half of the values laying

under the 110 kW mark, which goes accordingly with the average hourly values of consumed power in
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kW, listed below (Table 3.1):

2017 2018

Power (kW) 164,3 163,7

Table 3.1: Average hourly power drain (kW) for Civil building. There was a 0.4% reduction from 2017 to
2018.

Let us now take a look at a 10-day consumption pattern by hour, in Civil building, so as to explore

the type of consumption cycle present at this university. For that, let us plot the hourly values of power

with the respective timestamp, on Figure 3.2.

Figure 3.2: Scatter plot of the hourly power consumption (KW) pattern for the Civil building from 13 to 23
of May 2017. Two patterns of consumption arise: normal operations days where the power consumption
peaks at around midday and weekends/holidays when there is significant power consumption reduction.

It is possible to see that there is low consumption values on weekends and one could retrieve that

this behavior would also occur on school holidays (mainly in the month of August, when there is little to

no activity in the campus). There are then two types of consumption patterns: business days (where the

school goes about its activities as usual) and weekends/holidays (where the values drop to around 25%

of the peak power consumed on business days). All this inferences were verified to be valid for the year

of 2018 too.

In order to confirm this second lower pattern of consumption, let us resample the data to a weekly

basis, for both years, and see if the values actually drop in key months like January and August (school

holidays).
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(a) 2017 (b) 2018

Figure 3.3: Weekly sampling plot for the power consumption at Civil in 2017 and 2018. Power con-
sumption clearly drops during school exams (January and June) and holidays (August).

From observing the graphs, one can clearly identify the school holidays drop pattern (in January and

August) and even a middle, less pronounced plateau regime on exam season (January/February and

June/July), coming from idle operations in class buildings, like this one. It is then safe to say that August

records the lowest values of consumption throughout the year.

This way, one already knows how the consumption varies throughout the year, its months and weeks.

But from Figure 3.2, it is clear that the daily pattern of consumption starts climbing towards the maximum

peak consumption value, which occurs around lunch time, and then goes down again, towards idle power

levels (≈ 100 kW). Let us now explore that idea, by analyzing scatter and plateau plots for hourly and

daily consumption, respectively (Fig. 3.4).

(a) 2017 (b) 2018

Figure 3.4: Density plots for hourly power consumption at Civil building in 2017-2018. Here it is possible
see again two highlighted consumption regimes.

There are clearly two densely populated regions of data, just as witnessed on Fig. 3.1 - the heavily

dense ≈ 100 kW idle regime and the ≈ 300 kW power peak, happening every day. Let us now see how

that behavior is expressed in terms of mean hourly power consumption, in the graphs below:
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(a) 2017 (b) 2018

Figure 3.5: Mean hourly power consumption at Civil building, in both years. A typical power consumption
curve goes up in the morning, peaks at lunch time and starts going down again until the evening.

As expected, the power consumption begins to rise until around 11 AM, where it reaches a plateau

of peak consumption. Around 5 PM, power begins to drop until it reaches idle levels. There is an idle

regime drive throughout all days in which there’s little to no activity in the campus. In particular, the mean

hourly energy consumption has gone up by around 20% from 2017 to 2018 (≈ +30kW average offset).

3.2 Clustering & Feature Selection

Considering one can distinguish two consumption regimes by performing exploratory data analysis, it

becomes interesting to study data clusters - that is, separating data into groups and labeling them, using

Machine Learning Classification algorithms. In fact, building an Hierarchical Clustering Dendrogram and

retrieving kMeans [91] silhouette scores using Python’s scikit-learn [92] library confirms this hypothesis,

as seen on the graphs below (Figure 3.6).

(a) Hierarchical Clustering Dendogram (b) Average Silhouette Scores by cluster number

Figure 3.6: Hierarchical Clustering Dendrogram and Average Silhouette Scores (kMeans) for hourly
power consumption at Civil building, for both years. This confirms that there are, most certainly, two
types of data points in this study.

From the kMeans study, one can now establish a proper plateau plot of both consumption regimes,
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differentiating them by cluster labels. The result plot is presented below, on Figure 3.7.

Figure 3.7: Plateau plot for hourly power consumption at Civil building in both years, during 24 hours,
with the two highlighted consumption trends. Typical operation day (in blue) and lower operation day (in
red).

When it comes to feature selection, one already knows that a parameter WeekDay (= 1 on week days

and =0 on weekends) can be useful as it can distinguish between idle and business day consumption,

so I shall add it to the feature dataset. In addition, two feature columns are loaded to this dataset to

convert timestamps into discrete values of hour and month. Most of the input features, such as in other

studies of the kind [93], are meteorological parameters, which are known to have an impact on energy

consumption and positively influence models. The received data for the period 2016-2019 was retrieved

from IST Meteorological Services [94]. Their data files include the following features:

1. Temperature (in degrees Celsius)

2. Relative Humidity (in percentage, %)

3. Wind Direction (in magnetic orientation, degrees)

4. Wind Gust (in m/s)

5. Wind Speed (in m/s)

6. Solar Radiation (in W/m2)

7. Atmospheric Pressure (in mbar)

8. Precipitation (in mm/h)

9. RainDay (=1 in a day with reported precipitation, =0 otherwise)
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To conclude, feature columns Power - 1 and Power - 2 are added, correspondent to the power

consumption of the previous two entries, that is, of the previous two hours. I shall further explain the use

of these features but basically, they describe the autoregressive behavior of an energy time series (i.e.

the consumption at a certain period depends also on the previous level of consumption).

One can now head on to find the most relevant features to this study, so as to find the perfect balance

between model complexity, computational time and accuracy. I shall try all three approaches to feature

selection in order to boost the ultimate decision to extract certain features. Starting by the filter methods,

I used the kBest routine, which uses an ANOVA classifier function, available in Python’s scikit-learn

library [92]. The highest scores are laid on this following table:

Feature kBest Score

Power-1 44,2

Precipitation 6,6

Solar Radiation 1,68

Temperature 1,39

Table 3.2: kBest algorithm highest scores and features for k=4.

Then, moving towards the wrapper approach, RFE (recursive feature elimination) supported by a

linear regression model [92] was used. Choosing to find the two main important features, the following

affinity ranking was attained:

Feature RFE Affinity

Wind Gust 1

Wind Speed 1

Hour 2

Power - 1 3

Table 3.3: RFE algorithm 2-fold highest ranking features.

Finally, the ensemble approach is attained using an Extra Trees Regressor [92] to scan for feature

importance. Those results are listed on the next table.

Feature Feature Importance

Power - 1 8,34E-01

Solar Radiation 1,02E-01

Hour 4,64E-02

WeekDay 6,74E-03

Table 3.4: Extra Trees Regressor feature importances.

In conclusion, all three approaches highlight the need for just some of the features and I chose

to use the ones who gathered wide consensus. As such, let us include the following features, which
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scored as important to all three methods: Solar Radiation, Power - 1, Hour and WeekDay. These

parameters are, therefore, expected to have an impact on IST’s energy consumption. While nearly all of

the correlations found were self-explanatory, the Solar Radiation feature was found to be a good proxy

value of the power consumption, going up in the morning and, afterwards, down until the end of the day.

3.3 XGBoost Regression Model

In order to build a prediction regressor model, several tests were conducted as to assess which one

performed best using these data sets and features. The elimination criteria was based on the com-

mon metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error

(RMSE). The models verified under a test size of 15% for the concatenated data of both 2017 and 2018

were: Linear Regressor (LR), Random Forest Regressor (RF), uniformized Random Forest Regressor

(uRF), Multi-layer Perceptron Regressor (MLP - Neural Network) [92] and XGBoost [82]. In all four

buildings, XGBoost outperformed the other models, except for the North and South Tower, where the

absence of some data points is expected to might have impacted the results.

Upon using the previously trained model, the Power - 1 feature was replaced in its essence. Instead

of representing the previous hour power consumption, and since the model should be used a posteriori,

it was actively loaded as the previous year consumption at the same hour, day and month. One expects

this difference to help us build the model in a quicker and non-recursive way. The error results for the

XGB model which was used to determine the 2019 baseline consumption are listed on Table 3.5. The

results were averaged from 10 runs of the model, for each building, at a test size of 12,5%, which was

found to minimize errors.

Building 17 (kW) 18 (kW) MAE (kW) MSE (kW2) RMSE (kW) MAE (rel.) CV(RMSE)

Civil 164,3 183,3 8,23 194 13,5 0,047 0,078

Central 189,2 182,4 7,27 140 11,8 0,039 0,064

N. Tow. 102,5 114,4 8,88 294 17,1 0,082 0,158

S. Tow. 177,6 173,9 17,5 1393 37,2 0,100 0,212

Table 3.5: IST’s buildings average hourly power consumption for both years, XGB basline model error
parameters (MAE, MSE and RMSE), and error parameters relative to the 2-year average (MAE and
CV(RMSE)). The behaviour at the Towers shows that additional features should be considered, to lower
the CV(RMSE). The model was trained with a concatenated 2-year-long data set, which helps reducing
meteorological induced variability.

Regarding the relative errors, it’s possible to confirm that the industry adopted metric - CV(RMSE) -

is well below the accepted standard of 25% for energy baseline models, which indicates a high degree of

model precision. Both Tower metrics, due to their own glass envelope and high demand HVAC scheme,

suggest that there is the need more features to study its energy baseline, such as non-linear temperature

dependencies.

Here, some data plots of the first 50 test data points and the model’s own prediction, for the four

buildings, are exposed (Fig. 3.8):
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(a) Civil (b) Central

(c) North Tower (d) South Tower

Figure 3.8: Data plots of the first 50 test data points vs. XGB regressor model prediction, for a given
run, in all four buildings.

The model feature importance percentages are displayed on the table below, to show us how deeply

did input variables influenced these predictions, as retrieved by the XGBoost library. Ten rounds of

modeling were conducted as to better retrieve the final averaged feature importance for each building

and a globally averaged feature importance (Table 3.6).

Building Solar Rad. Power - 1 Hour WeekDay

Civil 0,018 0,884 0,092 0,006

Central 0,022 0,869 0,102 0,006

North Tower 0,017 0,88 0,094 0,009

South Tower 0,027 0,846 0,111 0,016

Average 2,1% 87% 10% 0,9%

Table 3.6: Feature importances for each building and global averaged feature importance, in percent-
age. Power - 1 and Hour are, hence, the most relevant features in this study.

Let us now take a look at the buildings feature correlation heat map (Figs. 3.9 and 3.10), built from

all initial features, to explain and validate this feature group, as well as to confirm or undertake further

adjustments to the model. Here, I used Python’s corr() function together with Seaborn to build this map.
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Figure 3.9: Civil building input feature correlation heat map. Here, ”WeekDay” stands for the number of
the day relative to Sunday while ”var” stands for the used WeekDay

Figure 3.10: South Tower input feature correlation heat map. Here, ”WeekDay” stands for the number
of the day relative to Sunday while ”var” stands for the used WeekDay
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In fact, the model is using the top four correlated features to the ”Power kW” output parameter (apart

from Power - 2, which would turn out redundant), which boosts model reliability. But when considering

the Towers, these are getting higher error parameters. Actually, when looking at the South Tower heat

map (Fig. 3.10), one can see that there’s a higher correlation with temperature, which was confirmed by

the North Tower’s heat map. This can be explained by the building’s architecture (glass window coated

tower) and HVAC systems, which is a big contributor to the total load, on a logarithmic dependence with

temperature. To improve the model, several training rounds were conducted admitting the temperature

as a feature, to see if it would reduce the error. The result came out to be negative, with error factors

increasing upon the consideration of temperature. It is then assumed that the lower accuracy of the

tower models can be due to the lack of data points, because of faulty smart meters on both towers, a

non-linear dependence with temperature and lack of completion of ECM implementation. Concerning

Civil and Central, the ECM impacted buildings, it’s safe to assume that the error parameters are good

enough to effectively establish a baseline model, with CV(RMSE)s under 8%, below the standard 25%

accepted in this sector. In addition, the 5-fold cross-validation r2 scores yielded a mean value of 98%

for both buildings. As such, let us drop the savings study on both towers and focus on the two buildings

which underwent ECMs on time for the considered reporting period - Civil and Central.

3.4 Savings M&V

To assess the measured savings, let us now integrate all parts of the data model. Loading the model with

the IST’s meteorological features from the year of implementation (2019) and plugging previous year’s

consumption data, at the same time and day, as Power - 1, the previously trained model retrieves its

value predictions for the hourly consumption at each building. Then, let us compare it to the actual smart

meter retrieved consumption data for the year of implementation, on a hourly basis. From converting

the energy data from output current (A) to output power (kW), I was able to determine IST’s buildings

load factor (Table 3.7). Additionally, to calculate the CO2 emissions reduction, let us refer to the value

obtained from [31] [32] of 0,265 Kg/kWh, referent to Portugal.

Building Load Factor

Civil 0,83

Central 0,91

North Tower 0,95

South Tower 0,95

Table 3.7: IST’s buildings load factor.

It is known that ECMs began being implemented across Civil and Central buildings during the month

of April, by Campus Sustentável - IST [95]. It focused on changing the lighting scheme to more efficient

LEDs on the highest consuming buildings. The reporting period for the retrieved savings in this section

was considered to be from 01/06/2019 to 31/12/2019. This way, the period leaves one month for ECM
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impact stabilization and then analyze a period consisting of three months of normal scholar activity,

three months of holidays and one month of exam season, so one can better estimate an overall savings

percentage, for an university campus. Below are the used formulas for percentage savings, actual

savings and the error parameter, followed by a table in which these calculated values are displayed. The

sums are performed on a hourly basis and the used average RMSE was the value present in Table 3.5,

for each building. Representative plots of the model behaviour versus predicted data, hourly savings

and CO2 kilograms saved for a week in October 2019 at the Civil building are also displayed in Figure

3.11.

Savings =

31/12/2019∑
1/6/19

(Model −Actual) (3.1)

Savings(%) =

∑31/12/2019
1/6/19 (Model −Actual)

ModelAverage
× 100 (3.2)

Error =
RMSE

ModelAverage
× 100 (3.3)

After ten averaged runs, the retrieved savings results were:

Building Savings (%) Savings (MWh) CO2 saved (ton)

Civil 16,9 ± 7,3 147,8 39,2

Central 20,6 ± 6,3 179,6 47,6

Table 3.8: Civil and Central buildings reported savings from 01/06/2019 to 31/12/2019, according to the
XGB model.

(a) Baseline model (b) Energy and CO2 savings

Figure 3.11: Model hourly behaviour (a), hourly energy savings and hourly CO2 savings (b) for a week
in October 2019 at the Civil building. Here it is clear that calendar differences between years of study
compensate each other sequentially.
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Chapter 4

Blockchain

In order to deploy a ledger algorithm, an IBM Developer public blockchain prototype was used. The

code and its significant updates are hosted on git-hub [96] and a thorough tutorial on how to program

and use it is present in [97]. This application shall allow users to share information by posting on the

network using a simple web interface (Fig. 4.1). Each building constitutes a node, which will run the

savings script. Those calculations are validated by the baseline model’s CV(RMSE) by the remaning

nodes upon posting. A transaction comprises then a savings string and the model’s RMSE and mean

consumption value, these latter two used to calculate CV(RMSE). The used web framework was Flask

[98]. In this chapter, I shall explain the code and adjustments that have been made, in order to deploy

this M&V solution and properly assess EPC execution.

Figure 4.1: Application Posting Scheme

4.1 Blockchain and Block classes

The node server.py application contains the blockchain implementation code for each node (Fig. 4.2).

It begins by defining the Blockchain and Block classes, central to the development, where the routines

needed to act upon the ledger are established.

The savings data shall be stored using JSON posts, saving the author, content and time stamp of the

transaction. These transactions are then packed in blocks, which can contain one or many transactions

at a time. These are the blocks that will further be added to the chain.
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Figure 4.2: Blockchain network scheme.

The Block object is initialized by the function init (Listing 4.1), where it takes an index (which

serves as an unique identifier), the transactions array, a time stamp, the previous hash string and a

default zero nonce as arguments.

In a network like this one, it’s desirable to prevent transaction data tampering. To encode transaction

information, a cryptographic hash function is used. A hash function is a function that takes input data of

any size and retrieves fixed size data from it (the hash), which is used to identify the input [97]. These

functions have to be easy to compute, deterministic (in the sense that the same data must retrieve the

same hash) and uniformly random regarding changes in input. This way, it is virtually impossible to

figure out the input data from the hash (the only way being to compute all possible input combinations)

but, having the input and the hash, one can simply pass the input through the hash function to verify a

provided hash. This is known as effort asymmetry (Fig. X).

Figure 4.3: Effort Asymmetry.

In the context of the application, the function called compute hash() is responsible for encrypting the

data referent to the transaction string and, in this case, encoding the savings information text to be put on

the block. The cryptographic hash function used to encode the strings was the Secure Hash Algorithm 2

(SHA-256, [99]) (256 bits), designed by the US National Security Agency (NSA), considered to be safe.
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In order to avoid chain tampering, the blocks are chained together by having each of them store the

previous block hash. This way, one makes sure that any changes in the previous blocks invalidates the

whole ledger.

1 c lass Block :

def i n i t ( s e l f , index , t ransac t ions , timestamp , previous hash , nonce=0) :

3 s e l f . index = index

s e l f . t r ansac t i ons = t ransac t i ons

5 s e l f . t imestamp = timestamp

s e l f . prev ious hash = previous hash

7 s e l f . nonce = nonce

9 def compute hash ( s e l f ) :

b l o c k s t r i n g = json . dumps ( s e l f . d i c t , so r t keys =True )

11 r e t u r n sha256 ( b l o c k s t r i n g . encode ( ) ) . hexdigest ( )

Listing 4.1: Block class [96][97].

In the Blockchain class, let us start by the initializer function, the genesis (first) block creator and

the last block retriever property (Listing 4.2). The initializer creates two empty arrays: chain and uncon-

firmed transactions. The function that retrieves the last block returns the element -1 of the chain array.

To initialize posting on the chain, the first block is created using function create genesis block that joins

an empty block object to the current chain with index ”0”, so as to ensure coherence between blocks.

1 c lass Blockchain :

# d i f f i c u l t y o f the PoW algo r i t hm

3 d i f f i c u l t y = 4

def i n i t ( s e l f ) :

5 s e l f . uncon f i rmed t ransac t ions = [ ]

s e l f . chain = [ ]

7

def c rea te genes is b lock ( s e l f ) :

9 genes is b lock = Block (0 , [ ] , 0 , ” 0 ” )

genes is b lock . hash = genes is b lock . compute hash ( )

11 s e l f . chain . append ( genes is b lock )

13 @property

def l a s t b l o c k ( s e l f ) :

15 r e t u r n s e l f . chain [ −1]

Listing 4.2: Blockchain class [96][97].

At this point, it is still possible to tamper with data by just changing the previous block and easily

recomputing all the blocks that follow. One avoids this by exploiting effort asymmetry upon calculating

the hash, making it difficult and random. In this case, let us add the constraint that the hash should start

with n leading zeros. To prove that this computation was performed, a nonce (dummy) variable is stored

on the blocks, that is incremented until the calculated hash satisfies this constraint (Listing 4.3).
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Figure 4.4: Proof-of-Work.

The proof of work function makes sure that the hash is retrieved following this constraint and its

difficulty, saving proof of computation afterwards (Fig. 4.4). Correspondingly, there is a boolean function

called is valid proof that checks if the computed hash for the block matches its input content. After that,

add block routine receives a block and its hash which then appends to the main chain, after it confirms

previous hash coherence (perserved order of transactions) and computation proof (data tampering). In

addition, the add new transaction function appends new transactions to the unconfirmed transactions

array.

1 def add block ( s e l f , block , proo f ) :

prev ious hash = s e l f . l a s t b l o c k . hash

3 i f prev ious hash != block . prev ious hash :

r e t u r n False

5 i f not Blockchain . i s v a l i d p r o o f ( block , proo f ) :

r e t u r n False

7 block . hash = proof

s e l f . chain . append ( b lock )

9 r e t u r n True

11 @staticmethod

def p roo f o f work ( b lock ) :

13 block . nonce = 0

computed hash = block . compute hash ( )

15 whi le not computed hash . s t a r t s w i t h ( ’ 0 ’ * Blockchain . d i f f i c u l t y ) :

b lock . nonce += 1

17 computed hash = block . compute hash ( )

r e t u r n computed hash

19

def add new transact ion ( s e l f , t r a n s a c t i o n ) :

21 s e l f . uncon f i rmed t ransac t ions . append ( t r a n s a c t i o n )
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23 @classmethod

def i s v a l i d p r o o f ( c ls , block , block hash ) :

25 r e t u r n ( block hash . s t a r t s w i t h ( ’ 0 ’ * Blockchain . d i f f i c u l t y ) and block hash == block .

compute hash ( ) )

Listing 4.3: Blockchain class [96][97].

The process of appending the unconfirmed transactions to a block and computing proof-of-work is

called mining. Once the hash constraints are met, a block is said to be mined and can be added to

the ledger. In most cryptocurrencies, this mining computational activity is compensated by a share of

cryptocurrencies [97].

The mine function appends all unconfirmed transactions to a block and adds it to the chain, after

undergoing PoW and previous block hash coherence, resetting the unconfirmed transactions’ array.

The check chain validity routine is used on the consensus mechanism for different chains (Listing

4.4). It checks if the computed hashes for the blocks in the chain match what they were supposed to,

according to this particular cryptographic scheme.

On a longest-chain (more produced work) consensus approach like this one, one thereby validates

each conflicting chain while checking what is the longest one (Fig. 4.5). This method is used on the

further explained web-interface function consensus for that exact purpose.

Figure 4.5: Conflicting chains consensus mechanism. The longest chain, which shows more evidence
of work done via nonce, is the valid one.

1

1 @classmethod

def c h e c k c h a i n v a l i d i t y ( c ls , chain ) :

3 r e s u l t = True

previous hash = ” 0 ”

5 f o r b lock i n chain :

b lock hash = block . hash

7 d e l a t t r ( block , ” hash ” )

i f not c l s . i s v a l i d p r o o f ( block , b lock . hash ) or \

9 previous hash != block . prev ious hash :

r e s u l t = False

11 break

block . hash , previous hash = block hash , block hash

1It is important to understand the difference between block coherence, referent to previous hash matching, and conflicting chain
consensus, in which a decision mechanism to chose between two different chains is designed, hosted by different nodes.
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13 r e t u r n r e s u l t

15 def mine ( s e l f ) :

i f not s e l f . uncon f i rmed t ransac t ions :

17 r e t u r n False

l a s t b l o c k = s e l f . l a s t b l o c k

19 new block = Block ( index= l a s t b l o c k . index + 1 , t r ans ac t i ons = s e l f . unconf i rmed t ransac t ions ,

timestamp=t ime . t ime ( ) , prev ious hash= l a s t b l o c k . hash )

proo f = s e l f . p roo f o f work ( new block )

21 s e l f . add block ( new block , proo f )

s e l f . uncon f i rmed t ransac t ions = [ ]

23 r e t u r n True

Listing 4.4: Blockchain class [96][97].

4.2 Flask framework

Concerning the web interface, I shall explain how this solution handles the blockchain instructions on the

client side, by using submitting HTML requests through app routes, using Flask [98] to create a REST

API that invokes operations in the blockchain node [97].

To add new transactions to a block, the new transaction routine saves the author and the content of

the transaction (hence, the savings information), recording the current time stamp (Listing 4.5).

Aditionally, this adapted version of this blockchain requests the RMSE for a given used baseline

model and the mean energy consumption value during the baseline period (in kW), in order to confirm

that the model CV(RMSE) is satisfactory. This way, only transactions that guarantee a certain level of

model accuracy can be added to a block. In this solution, I chose to demand a CV(RMSE) of under

15%. The submission of these parameters by the nodes is further discussed on Chapter 5.

1 @app. rou te ( ’ / new t ransac t ion ’ , methods =[ ’POST ’ ] )

def new t ransac t ion ( ) :

3 t x d a t a = request . ge t j son ( )

r e q u i r e d f i e l d s = [ ” author ” , ” content ” , ”RMSE” , ”Mean” ]

5 f o r f i e l d i n r e q u i r e d f i e l d s :

i f not t x d a t a . get ( f i e l d ) :

7 r e t u r n ” I n v a l i d t r a n s a c t i o n data ” , 404

t x d a t a [ ” timestamp ” ] = t ime . t ime ( )

9 i f ( f l o a t ( t x d a t a . get ( ”RMSE” ) / t x da ta . get ( ”Mean” ) ) ) < 0 .15 :

r e t u r n b lockcha in . add new transact ion ( t x da ta )

11 r e t u r n ” Success ” , 201

Listing 4.5: Flask web framework [96][97].

If intentional manipulation or network latency occurs, the copy of the chain in some nodes can be

compromised and differ from the other nodes. In that case, the network needs to agree upon some

version of the chain to maintain integrity [97].
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The consensus function clarifies just this latter point, by checking chain length when chains of differ-

ent nodes appear to diverge. This way, it’s agreed that the longest chain corresponds to largest amount

of work (PoW) done and, hence, valid.

In order to submit the mining command, the mine unconfirmed transactions app route uses the mine

function of the Blockchain class, making sure it features the longest chain before anouncing it to the

network, which enforces the consensus criteria (Listing 4.6).

1 @app. rou te ( ’ / mine ’ , methods =[ ’GET ’ ] )

def mine unconf i rmed t ransac t ions ( ) :

3 r e s u l t = b lockcha in . mine ( )

i f not r e s u l t :

5 r e t u r n ”No t ra nsac t i o ns to mine ”

e lse :

7 cha in leng th = len ( b lockcha in . chain )

consensus ( )

9 i f cha in leng th == len ( b lockcha in . chain ) :

announce new block ( b lockcha in . l a s t b l o c k )

11 r e t u r n ” Block #{} i s mined . ” . format ( b lockcha in . l a s t b l o c k . index )

13 def consensus ( ) :

g loba l b lockcha in

15 l onges t cha in = None

c u r r e n t l e n = len ( b lockcha in . chain )

17 f o r node i n peers :

response = requests . get ( ’ {}chain ’ . format ( node ) )

19 l eng th = response . json ( ) [ ’ l eng th ’ ]

chain = response . json ( ) [ ’ chain ’ ]

21 i f l eng th > c u r r e n t l e n and blockcha in . c h e c k c h a i n v a l i d i t y ( chain ) :

c u r r e n t l e n = leng th

23 l onges t cha in = chain

i f l onges t cha in :

25 blockcha in = longes t cha in

r e t u r n True

27 r e t u r n False

Listing 4.6: Flask web framework [96][97].

After a certain block is mined by some node, it is added to other nodes’ chains. That is done by

defining the verify and add block function, which loads the PoW to the Blockchain add block function

(Listing 4.7).

Finally, there is the need for any node to announce to the network that it has mined a block, so

everyone can update their blockchain [97]. This way, the other nodes can simply verify proof-of-work

and add the mined block to their respective chains. The announce new block method is then called after

every block is mined by a certain node so that peers can update their chains.

1 @app. rou te ( ’ / add block ’ , methods =[ ’POST ’ ] )

def ve r i f y and add b lock ( ) :

3 b lock da ta = request . ge t j son ( )
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block = Block ( b lock da ta [ ” index ” ] , b lock da ta [ ” t r ans ac t i on s ” ] , b lock da ta [ ” timestamp ” ] ,

b lock da ta [ ” prev ious hash ” ] , b lock da ta [ ” nonce ” ] )

5 proof = b lock da ta [ ’ hash ’ ]

added = blockcha in . add block ( block , proo f )

7 i f not added :

r e t u r n ” The block was discarded by the node ” , 400

9 r e t u r n ” Block added to the chain ” , 201

11 def announce new block ( b lock ) :

f o r peer i n peers :

13 u r l = ” {}add block ” . format ( peer )

headers = { ’ Content −Type ’ : ” a p p l i c a t i o n / json ” }

15 requests . post ( u r l , data= json . dumps ( b lock . d i c t , so r t keys =True ) , headers=headers )

Listing 4.7: Flask web framework [96][97].

Finally, to establish a network, one needs to be able to securely register new nodes and put them

up to date regarding the valid chain. The register new peers and register with existing node functions

guarantee those exact methods, enabling a node to register new other trusted nodes (Listing 4.8). This

last method will allow the remote node to add a new peer to its list of known peers and initializing the

blockchain of the new node with that of the network node.

1 @app. rou te ( ’ / r eg i s te r node ’ , methods =[ ’POST ’ ] )

def reg is te r new peers ( ) :

3 node address = request . ge t j son ( ) [ ” node address ” ]

i f not node address :

5 r e t u r n ” I n v a l i d data ” , 400

peers . add ( node address )

7 r e t u r n ge t cha in ( )

@app. rou te ( ’ / r e g i s t e r w i t h ’ , methods =[ ’POST ’ ] )

9 def r e g i s t e r w i t h e x i s t i n g n o d e ( ) :

node address = request . ge t j son ( ) [ ” node address ” ]

11 i f not node address :

r e t u r n ” I n v a l i d data ” , 400

13 data = { ” node address ” : request . h o s t u r l }

headers = { ’ Content −Type ’ : ” a p p l i c a t i o n / json ” }

15 response = requests . post ( node address + ” / reg i s te r node ” , data= json . dumps( data ) , headers=

headers )

i f response . s ta tus code == 200:

17 g loba l b lockcha in

g loba l peers

19 chain dump = response . json ( ) [ ’ chain ’ ]

b lockcha in = create chain f rom dump ( chain dump )

21 peers . update ( response . json ( ) [ ’ peers ’ ] )

r e t u r n ” R e g i s t r a t i o n success fu l ” , 200

23 else :

# i f something goes wrong , pass i t on to the API response

25 r e t u r n response . content , response . s ta tus code

Listing 4.8: Flask web framework [96][97].
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Chapter 5

Implementation and Usage

In the last part of the development, let us integrate the model and blockchain components of this solution,

producing automated savings posts that can be seen in an HTML page. Here, it is explained how to run

the localhost ports that host these two blockchain nodes and how each buildings’ savings are posted in

each node, after calculation. The average script execution time, in seconds, is listed below on Table 5.1.

central node.py civil node.py

Execution time (s) 5,576 5,416

Table 5.1: Average execution time (s) for each script.

5.1 Blockchain Node Server and Application

To deploy this application, let us assign a flask application to the node server.py script. After that, I run

the server ports in which savings informations are posted, using the run command. Let us initialize two

localhost ports, one for each building to post on (Listing 5.1).

1 $ expor t FLASK APP=node server . py

$ f l a s k run −− po r t 8000 & f l a s k run −− po r t 8001

Listing 5.1: Initializing the server application and ports [97].

After this, an instance of a blockchain node is running at localhost ports 8000 and 8001. On a

different terminal session, let us now run the curl commands to register a new node (port 8001) with a

proxy node (port 8000) . Symmetrically, because of application constraints, there is the need to do the

same thing to register the first node (port 8000) with the latter one (port 8001) (Listing 5.2). This will

make the node at port 8000 aware of the nodes at port 8001 and vice-versa [97]. New nodes will also

sync their chain with the existing node so that they are able to participate in the mining process.

$ c u r l −X POST

2 h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 0 0 1 / r e g i s t e r w i t h

−H ’ Content −Type : a p p l i c a t i o n / json ’

4 −d ’ { ” node address ” : ” h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 0 0 0 ”} ’
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6 $ c u r l −X POST

h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 0 0 0 / r e g i s t e r w i t h

8 −H ’ Content −Type : a p p l i c a t i o n / json ’

−d ’ { ” node address ” : ” h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 0 0 1 ”} ’

Listing 5.2: Registering nodes with a proxy node (ports 8000 and 8001) [97].

Now, one just needs to run the run app.py front-end application on a different terminal session. This

will start the HTML interface at http://localhost:5000, in which one can visualize chain transactions.

By default, this application syncs with localhost port 8000, but that parameter can be changed by updat-

ing the CONNECTED NODE ADDRESS field in the views.py file [97].

5.2 Savings Script

The central node.py and civil node.py scripts which retrieve the energy consumption savings informa-

tion were built to: 1) treat the existing datasets and train a XGB model 2) load the reporting period

features to the same model 3) retrieve the savings information post (string) and model CV(RMSE) and

4) automatically post weekly savings information on the blockchain, corresponding to the same week in

2019.

To make automatic posts, python’s schedule library is used, forcing code execution every Sunday.

To do this, I define a function which calculates and posts savings and scheduling it to post in a given

weekday (Listing 5.3). Due to its functioning, the user needs to set up the blockchain application on a

week before begining to store and check savings information on the chain.

1 schedule . every ( ) . sunday . do ( c i v i l s a v i n g s )

wh i le True :

3 schedule . run pending ( )

t ime . sleep ( 1 )

Listing 5.3: Schedule function.

To post the information on the nodes, HTML requests are used and the httplib2 library, running the

code present on Listing 5.4, which retrieves information about the current week’s consumption in the

reporting year (2019) and previous years (2017 and 2018). Notice the ”RMSE” and ”Mean” fields, which

are submitted to the application to check if the CV(RMSE) is under 15%.

s a v i n g s s t r i n g = f ” [Week { s t r ( then5 ) } to { s t r ( then6 ) } ] Mean Hourly Savings : {meansavingsh} kWh,

Model Pred ic ted Consumption : {modelpred} kWh, Actua l Consumption : { ac tua l } kWh, Savings :

{savedenergy} kWh ({ perc}%) , CO2 Saved : {co2} Kg , Actua l Consumption (2018 , same week ) : {

actua l18} kWh, Actua l Consumption (2017 , same week ) : {actua l17} kWh”

2

#code i n cen t ra l node . py

4 h = h t t p l i b 2 . Ht tp ( ” . cache ” )

res = requests . post ( ’ h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 0 0 0 / new t ransac t ion ’ , json ={ ” author ” : ” Cent ra l ” , ” content ”

: sav ingss t r i ng , ”RMSE” :RMSE XGB, ”Mean” : actualmean } )
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6 res2 = requests . get ( ’ h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 0 0 0 / mine ’ )

8 #code i n c i v i l n o d e . py

h2 = h t t p l i b 2 . Ht tp ( ” . cache ” )

10 res3 = requests . post ( ’ h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 0 0 1 / new t ransac t ion ’ , json ={ ” author ” : ” C i v i l ” , ” content ” :

sav ingss t r i ng , ”RMSE” :RMSE XGB, ”Mean” : actualmean } )

res4 = requests . get ( ’ h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 0 0 1 / mine ’ )

Listing 5.4: HTML requests that post and mine new transactions to the nodes (ports 8000 (Central

building node) and 8001 (Civil building node)) [97].

In addition, it was possible to verify that the value variation between trained model results in different

script executions was under 1%.

At all times, one can retrieve a certain node chain by running the command ”curl -X GET http:

//localhost:*portnumber*/chain”

5.3 HTML Page

The visual interface runs by default at http://localhost:5000. There, one can visualize the savings in-

formation content, the ”author” building and the timestamp of the node post. There are buttons to request

mining, returning to homepage and refreshing the current page. Additionally, there are two disabled fea-

tures, which can be used to further improve this solution’s UI/UX: a Reply button, on each post, that can

be used to insert observations/comments to each week’s savings information and input boxes, which

may allow us to submit a post directly on the HTML page through the CONNECTED NODE ADDRESS

(default port 8000). Notice that the input box posts are (currently) disabled since we lack the ”RMSE” and

”Mean” model accuracy fields which validate these transactions (Listing 4.5). Below, there’s a screenshot

of the blockchain HTML page during usage (Fig. 5.1).
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Chapter 6

Conclusions

6.1 Achievements

During the execution of this thesis, I able to deploy a blockchain solution that accurately estimates and

stores savings in a transparent manner. By having the validation mechanism associated to the accuracy

of the forecasting model, I developed a new framework for EPCs to be audited in a clear, safe and

trustworthy fashion.

M&V 2.0 technology integrations like this one allow stakeholders to better examine and estimate

energy efficiency improvements locally and globally. These represent the most significant reduction in

energy-sector CO2 emissions globally and help us get on track with the three energy-related SDGs,

saving energy and balancing demand with supply side improvements.

This solution was applied to a real world scenario of lighting ECM deployment at the two main build-

ings of the IST Alameda campus - Civil and Central - to estimate savings on a weekly basis, throughout

the reporting period. Resorting to a trained XGB [82] baseline model, it is shown that the ECMs have

reached a savings level of 16.9 ± 7.3% and 20.6 ± 6.3%, in the Civil and Central buildings, respectively,

and a cumulative 86.8 metric tons reduction in energy related CO2 emissions, over a reporting period of

7 months (Jun-Dec 2019). The models yielded an average CV(RMSE) of 7.8% and 6.4%, for the Civil

and Central buildings, respectively.

To store savings information in safe blockchain nodes, an adapted version of the IBM Developer

was used [97] blockchain algorithm which only validates savings posts after verifying that the baseline

model’s CV(RMSE) is under 15%. The information is displayed to the user via a Flask web interface,

which interacts with each node server on the established network.

Future applications, adjustments and limitations are discussed in the sections below, so as to drive

future developments. These results allow us to state that the endeavor objectives were met and that this

was a promissing innovation in the field of EPC auditing technologies.
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6.2 Limitations and Future Work

During the development of this first prototype, I’ve came across some limitations which prevent us from

presenting an universally accepted solution. These barriers shall become the key issues to address

when gradually improving this solution.

Regarding the baseline model, it is known that the deployment of XGBoost regressor models can

be more computationally costlier than similar performing algorithms, like Random Forests, which can

raise concerns of scalability. In this initial study, the focus was on delivering the most accurate model

in detriment of the most efficient one, which should be taken in consideration when engaging in wider

applications.

In what concerns the integration of savings calculations with the blockchain node servers, there’s a

need to establish an actual network and securing a public-private key cryptography scheme [97], instead

of running the scripts on localhosts and having virtually every possible user posting/changing data on

the building nodes’ ledger. This way, the posts are yet added another level of security, after which some

data protection work is recommended on the model side too, when handling key parameters, like the

model CV(RMSE).

Focusing on energy data and information, stakeholders didn’t find any documentation available re-

garding the deployment of this particular ECM that I could compare this results against. This model was

proven to have behave satisfactorily but I exhort the community to further boost smart-meter deployment

in public buildings and thoroughly documenting ECM implementations in the future, helping to maintain

data consistency and effectiveness.

For the prosperity of technologies like the one here presented, I further recommend the standard-

ization and de-bureaucratization of energy savings and EPC procedures, making savings knowledge

easily tangible to the end-user. Further adjustments can be employed in smart cities applications of this

solution which additionally comprise water savings and renewable energy production/storage. To foster

this type of application, miners could also be rewarded an unit amount of energy savings, just like it is

done in most cryptocurrencies.
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[6] Ö. Gürcan, M. Agenis-Nevers, Y.-M. Batany, M. Elmtiri, F. Le Fevre, and S. Tucci-Piergiovanni. An

industrial prototype of trusted energy performance contracts using blockchain technologies. In 2018

IEEE 20th International Conference on High Performance Computing and Communications; IEEE

16th International Conference on Smart City; IEEE 4th International Conference on Data Science

and Systems (HPCC/SmartCity/DSS), pages 1336–1343. IEEE, 2018.

[7] M. Frangou, M. Aryblia, S. Tournaki, and T. Tsoutsos. Potential of energy performance contracting

for tertiary sector energy efficiency and sustainable energy projects in southern european countries.

In The Role of Exergy in Energy and the Environment, pages 733–747. Springer, 2018.

[8] M. Frangou, M. Aryblia, S. Tournaki, and T. Tsoutsos. Renewable energy performance contracting

in the tertiary sector standardization to overcome barriers in greece. Renewable Energy, 125:

829–839, 2018.

[9] J. Hwang, M.-i. Choi, T. Lee, S. Jeon, S. Kim, S. Park, and S. Park. Energy prosumer business

model using blockchain system to ensure transparency and safety. Energy Procedia, 141:194–198,

2017.

[10] E3P. Energy performance contracting. . URL https://e3p.jrc.ec.europa.eu/node/246.

[11] IEA. Energy Service Companies (ESCOs). 2018. URL https://www.iea.org/reports/

energy-service-companies-escos-2.

63

https://sdgs.un.org/goals
https://undocs.org/E/2019/68
https://www.iea.org/reports/global-energy-co2-status-report-2019
https://www.iea.org/reports/global-energy-co2-status-report-2019
https://www.iea.org/reports/global-energy-co2-status-report-2019
https://www.iea.org/reports/global-energy-co2-status-report-2019
https://www.iea.org/reports/energy-efficiency-2019
https://www.iea.org/reports/energy-efficiency-2019
https://e3p.jrc.ec.europa.eu/node/246
https://www.iea.org/reports/energy-service-companies-escos-2
https://www.iea.org/reports/energy-service-companies-escos-2


[12] J. A. Shonder and E. Morofsky. Best practice guidelines for using energy performance contracts to

improve government buildings. 2010.

[13] P. Fennell, P. Ruyssevelt, and A. Smith. The impact of measurement and verification option choice

on financial returns for clients in energy performance contracts. International Symposium to Pro-

mote Innovation & Research in Energy . . . , 2017.

[14] NREL. International Performance Measurement and Verification Protocol. NREL, 2002. URL

https://www.nrel.gov/docs/fy02osti/31505.pdf.

[15] IEA. Energy efficiency and digitalisation. 2019. URL https://www.iea.org/articles/

energy-efficiency-and-digitalisation.

[16] J. N. Ferrer. Leveraging funding for energy efficiency in buildings in south east europe. ceps policy

insights no 2019-05?28 march 2019, March 2019. URL http://aei.pitt.edu/97078/.

[17] M. Zhang, M. Wang, W. Jin, and C. Xia-Bauer. Managing energy efficiency of buildings in china: A

survey of energy performance contracting (epc) in building sector. Energy Policy, 114:13–21, 2018.

[18] B. Richter, E. Mengelkamp, and C. Weinhardt. Maturity of blockchain technology in local electricity

markets. In 2018 15th International Conference on the European Energy Market (EEM), pages

1–6. IEEE, 2018.

[19] A. Khatoon, P. Verma, J. Southernwood, B. Massey, and P. Corcoran. Blockchain in energy effi-

ciency: Potential applications and benefits. Energies, 12(17):3317, 2019.

[20] O. Gurcan, M. Agenis-Nevers, Y. Batany, M. Elmtiri, F. Le Fevre, and S. Tucci-Piergiovanni. An

industrial prototype of trusted energy performance contracts using blockchain technologies. In 2018

IEEE 20th International Conference on High Performance Computing and Communications; IEEE

16th International Conference on Smart City; IEEE 4th International Conference on Data Science

and Systems (HPCC/SmartCity/DSS), pages 1336–1343, 2018.

[21] IEA, 2020. URL https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%

20consumption&indicator=Electricity%20consumption.

[22] IEA. Electricity Information: Overview. 2020. URL https://www.iea.org/reports/

electricity-information-overview.

[23] IEA, 2020. URL https://www.iea.org/data-and-statistics?country=OECDTOT&fuel=Energy%

20supply&indicator=Electricity%20generation%20by%20source.

[24] IEA, 2020. URL https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%

20supply&indicator=Electricity%20generation%20by%20source.

[25] IEA, 2020. URL https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%

20consumption&indicator=Electricity%20final%20consumption%20by%20sector.

64

https://www.nrel.gov/docs/fy02osti/31505.pdf
https://www.iea.org/articles/energy-efficiency-and-digitalisation
https://www.iea.org/articles/energy-efficiency-and-digitalisation
http://aei.pitt.edu/97078/
https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20consumption&indicator=Electricity%20consumption
https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20consumption&indicator=Electricity%20consumption
https://www.iea.org/reports/electricity-information-overview
https://www.iea.org/reports/electricity-information-overview
https://www.iea.org/data-and-statistics?country=OECDTOT&fuel=Energy%20supply&indicator=Electricity%20generation%20by%20source
https://www.iea.org/data-and-statistics?country=OECDTOT&fuel=Energy%20supply&indicator=Electricity%20generation%20by%20source
https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20supply&indicator=Electricity%20generation%20by%20source
https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20supply&indicator=Electricity%20generation%20by%20source
https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20consumption&indicator=Electricity%20final%20consumption%20by%20sector
https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20consumption&indicator=Electricity%20final%20consumption%20by%20sector


[26] U. E. I. Administration. Monthly Energy Review. 2020. URL https://www.eia.gov/consumption/.

[27] IEA, 2020. URL https://www.iea.org/reports/unit-converter-and-glossary.

[28] E. Commission, 2020. URL https://ec.europa.eu/eurostat/statistics-explained/index.

php/Energy_consumption_in_households#Energy_consumption_in_households_by_type_of_

end-use.

[29] IEA. Global Energy & CO2 Status Report 2019. 2019. URL https://www.iea.org/reports/

global-energy-co2-status-report-2019.

[30] IEA. CO2 Emissions from Fuel Combustion. 2020. URL https://www.iea.org/

subscribe-to-data-services/co2-emissions-statistics.

[31] Boletim Electricidade Renovável. URL https://www.google.com/url?sa=t&rct=j&q=&esrc=s&

source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjOxeG3-oHsAhWmxIUKHRMwD3QQFjAAegQIAxAB&

url=https%3A%2F%2Fwww.apren.pt%2Fcontents%2Fpublicationsreportcarditems%

2F02-boletim-energias-renovaveis-vf.pdf&usg=AOvVaw0ESx01NjvreF6Osgf3dAIy.

[32] E. Comercial. Origem da energia, 2020. URL https://www.edp.pt/origem-energia/.

[33] S. Noticias. Edp antecipa o encerramento de centrais a carvão. 2020. URL https://sicnoticias.

pt/economia/2020-07-14-EDP-antecipa-o-encerramento-de-centrais-a-carvao.

[34] J. Kneifel. Life-cycle carbon and cost analysis of energy efficiency measures in new commercial

buildings. Energy and Buildings, 42(3):333–340, 2010.

[35] D. Popescu, S. Bienert, C. Schützenhofer, and R. Boazu. Impact of energy efficiency measures on

the economic value of buildings. Applied Energy, 89(1):454–463, 2012.

[36] G. de Portugal. Edificios + sustentaveis, 2020. URL https://www.

fundoambiental.pt/avisos-2020/mitigacao-das-alteracoes-climaticas/

programa-de-apoio-a-edificios-mais-sustentaveis.aspx.

[37] EVO. What is m&v - efficiency valuation organization (evo), 2020. URL https://evo-world.org/

en/m-v/what-is-m-v.

[38] EVO. Purpose of m&v - efficiency valuation organization (evo), 2020. URL https://evo-world.

org/en/m-v/purpose-of-m-v.

[39] EVO. Principles of m&v - efficiency valuation organization (evo), 2020. URL https://evo-world.

org/en/m-v/principles-of-m-v.

[40] D. Tanguay. Ipmvp - efficiency valuation organization (evo), 2020. URL https://evo-world.org/

en/products-services-mainmenu-en/protocols/ipmvp.

[41] EnergyWatch, 2020. URL https://energywatch-inc.com/ipmvp-options/.

65

https://www.eia.gov/consumption/
https://www.iea.org/reports/unit-converter-and-glossary
https://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households#Energy_consumption_in_households_by_type_of_end-use
https://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households#Energy_consumption_in_households_by_type_of_end-use
https://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households#Energy_consumption_in_households_by_type_of_end-use
https://www.iea.org/reports/global-energy-co2-status-report-2019
https://www.iea.org/reports/global-energy-co2-status-report-2019
https://www.iea.org/subscribe-to-data-services/co2-emissions-statistics
https://www.iea.org/subscribe-to-data-services/co2-emissions-statistics
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjOxeG3-oHsAhWmxIUKHRMwD3QQFjAAegQIAxAB&url=https%3A%2F%2Fwww.apren.pt%2Fcontents%2Fpublicationsreportcarditems%2F02-boletim-energias-renovaveis-vf.pdf&usg=AOvVaw0ESx01NjvreF6Osgf3dAIy
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjOxeG3-oHsAhWmxIUKHRMwD3QQFjAAegQIAxAB&url=https%3A%2F%2Fwww.apren.pt%2Fcontents%2Fpublicationsreportcarditems%2F02-boletim-energias-renovaveis-vf.pdf&usg=AOvVaw0ESx01NjvreF6Osgf3dAIy
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjOxeG3-oHsAhWmxIUKHRMwD3QQFjAAegQIAxAB&url=https%3A%2F%2Fwww.apren.pt%2Fcontents%2Fpublicationsreportcarditems%2F02-boletim-energias-renovaveis-vf.pdf&usg=AOvVaw0ESx01NjvreF6Osgf3dAIy
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjOxeG3-oHsAhWmxIUKHRMwD3QQFjAAegQIAxAB&url=https%3A%2F%2Fwww.apren.pt%2Fcontents%2Fpublicationsreportcarditems%2F02-boletim-energias-renovaveis-vf.pdf&usg=AOvVaw0ESx01NjvreF6Osgf3dAIy
https://www.edp.pt/origem-energia/
https://sicnoticias.pt/economia/2020-07-14-EDP-antecipa-o-encerramento-de-centrais-a-carvao
https://sicnoticias.pt/economia/2020-07-14-EDP-antecipa-o-encerramento-de-centrais-a-carvao
https://www.fundoambiental.pt/avisos-2020/mitigacao-das-alteracoes-climaticas/programa-de-apoio-a-edificios-mais-sustentaveis.aspx
https://www.fundoambiental.pt/avisos-2020/mitigacao-das-alteracoes-climaticas/programa-de-apoio-a-edificios-mais-sustentaveis.aspx
https://www.fundoambiental.pt/avisos-2020/mitigacao-das-alteracoes-climaticas/programa-de-apoio-a-edificios-mais-sustentaveis.aspx
https://evo-world.org/en/m-v/what-is-m-v
https://evo-world.org/en/m-v/what-is-m-v
https://evo-world.org/en/m-v/purpose-of-m-v
https://evo-world.org/en/m-v/purpose-of-m-v
https://evo-world.org/en/m-v/principles-of-m-v
https://evo-world.org/en/m-v/principles-of-m-v
https://evo-world.org/en/products-services-mainmenu-en/protocols/ipmvp
https://evo-world.org/en/products-services-mainmenu-en/protocols/ipmvp
https://energywatch-inc.com/ipmvp-options/


[42] EVO. IPMVP GENERALLY ACCEPTED M&V PRINCIPLES. 2020. URL https:

//evo-world.org/images/corporate_documents/IPMVP-Generally-Accepted-Principles_

Final_26OCT2018.pdf.

[43] E. Franconi, M. Gee, M. Goldberg, J. Granderson, T. Guiterman, M. Li, and B. A. Smith. The status

and promise of advanced m&v: An overview of “m&v 2.0” methods, tools, and applications. 4 2017.

doi: 10.2172/1350974.

[44] J. Granderson, S. Touzani, C. Custodio, M. D. Sohn, D. Jump, and S. Fernandes. Accuracy of auto-

mated measurement and verification (m&v) techniques for energy savings in commercial buildings.

Applied Energy, 173:296–308, 2016.

[45] C. V. Gallagher, K. Leahy, P. O’Donovan, K. Bruton, and D. T. O’Sullivan. Development and appli-

cation of a machine learning supported methodology for measurement and verification (m&v) 2.0.

Energy and Buildings, 167:8–22, 2018.

[46] X. Xia and J. Zhang. Mathematical description for the measurement and verification of energy

efficiency improvement. Applied Energy, 111:247–256, 2013.

[47] J. Brittain. Think of energy as a service.

[48] E3P. Energy service companies, . URL https://e3p.jrc.ec.europa.eu/communities/

energy-service-companies.

[49] P. Bertoldi, S. Rezessy, and E. Vine. Energy service companies in european countries: Current

status and a strategy to foster their development. Energy Policy, 34(14):1818–1832, 2006.

[50] M. J. Hannon, T. J. Foxon, and W. F. Gale. The co-evolutionary relationship between energy service

companies and the uk energy system: Implications for a low-carbon transition. Energy Policy, 61:

1031–1045, 2013.

[51] H.-L. Kangas, D. Lazarevic, and P. Kivimaa. Technical skills, disinterest and non-functional regula-

tion: Barriers to building energy efficiency in finland viewed by energy service companies. Energy

Policy, 114:63–76, 2018.

[52] I. M. F. F. C. Soares and F. P. M. Barbosa. Energy service companies in portugal and throughout

the world. In 2012 ELEKTRO, pages 251–255. IEEE, 2012.

[53] J. Findley. Growing energy efficiency investment: Global analysis of energy service companies.

Master’s thesis, 2019.

[54] C. Capelo, J. F. Dias, and R. Pereira. A system dynamics approach to analyse the impact of energy

efficiency policy on esco ventures in european union countries: a case study of portugal. Energy

Efficiency, 11(4):893–925, 2018.

66

https://evo-world.org/images/corporate_documents/IPMVP-Generally-Accepted-Principles_Final_26OCT2018.pdf
https://evo-world.org/images/corporate_documents/IPMVP-Generally-Accepted-Principles_Final_26OCT2018.pdf
https://evo-world.org/images/corporate_documents/IPMVP-Generally-Accepted-Principles_Final_26OCT2018.pdf
https://e3p.jrc.ec.europa.eu/communities/energy-service-companies
https://e3p.jrc.ec.europa.eu/communities/energy-service-companies


[55] P. Xu, E. H.-W. Chan, and Q. K. Qian. Success factors of energy performance contracting (epc) for

sustainable building energy efficiency retrofit (beer) of hotel buildings in china. Energy policy, 39

(11):7389–7398, 2011.

[56] U. D. of Energy and C. Change. Guide to Energy Performance Contracting Best Practices. 2015.

[57] P. Lee, P. Lam, and W. Lee. Risks in energy performance contracting (epc) projects. Energy and

Buildings, 92:116–127, 2015.

[58] F. W.-H. Yik and W.-L. Lee. Partnership in building energy performance contracting. Building

Research & Information, 32(3):235–243, 2004.

[59] W. Zhang and H. Yuan. A bibliometric analysis of energy performance contracting research from

2008 to 2018. Sustainability, 11(13):3548, 2019.
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