
Cloud-based web application for
multivariate time series analysis

A language-agnostic integrative architecture for short- and long-running machine learning algorithms

Vasco Candeias
Instituto Superior Técnico

vascocandeias@tecnico.ulisboa.pt

Abstract—The surge of multivariate time series records in
biomedicine has driven researchers to develop algorithms to-
wards their clear interpretation. Dynamic Bayesian networks are
among the most popular methods, allowing to transparently im-
pute, classify, and make predictions on medical records while en-
abling users to understand the underlying assumptions. Although
significant theoretical progress has been made on these method-
ologies, the development of related programs and their adoption
is still far from fully accomplished. Indeed, these packages remain
as resource-intensive command-line applications that analysts
are reluctant to use. The lack of a public web application that
integrates these methods is crucial in an era where every service is
quickly moving to the Internet. In this thesis, this missing website
is conceptualised and implemented as a cloud-based application
that comfortably scales with the number of requests and can be
easily extended with any scriptable software for data analysis.
MAESTRO (dynaMic bAyESian neTwoRks Online), available at
https://vascocandeias.github.io/maestro, relies on a microservice
architecture deployed on Amazon Web Services and can handle
the most demanding tasks, with the flexibility to readily increase
processing power and reduce execution times. This application’s
scalability is proven by making thousands of simultaneous calls,
which does not cause any performance degradation. Its versatility
is further conveyed through a case study with real data. Addition-
ally, a local server to be used in an intranet, preventing data from
leaving a managed network, is proposed and distributed at https:
//github.com/vascocandeias/maestro-backend. These tools should
allow clinicians and investigators to effortlessly use state-of-the-
art tools for longitudinal data analysis.

Index Terms—cloud architecture, dynamic Bayesian networks,
MAESTRO, multivariate time series, web application

I. INTRODUCTION

Despite the increased development of machine learning
(ML) techniques for automatically diagnosing human diseases
from electronic medical records (EMRs) [1], [2], there is still
a lack of accessibility for the end-user. In a world where
every service is moving towards the web and people are less
willing to download and execute software on their devices,
it is imperial to provide a web-based platform that integrates
the state-of-the-art methods for issues such as classification
and clustering of multivariate time series (MTS). This system
would allow such analyses to be readily available for any
practitioner and let them take full advantage of the increased
availability of EMRs, which hold the patients’ clinical eval-
uations, and hence originate MTS when collected over time.

Since doctors cannot just put their patients’ health in the
hands of black-box solutions [3], they need models that not

only can handle problems with a vast number of attributes
and extensive data sets but are also transparent and meet the
required level of accountability of the medical field [4]. By re-
sorting to probabilistic graphical models (PGMs), these experts
may get interpretable tools that produce reliable predictions
and facilitate efficient interpretation, allowing them to improve
each inference over their patients’ EMRs.

As follows, it is no surprise that dynamic Bayesian networks
(DBNs), a subset of PGMs, are emerging in this field, being
used for tasks such as detecting outliers in MTS [5], making
predictions using these time series (TS) or grouping them into
clusters [6]. It would thus be highly beneficial for the medical
community to have a platform at their disposal that imple-
ments these already available packages in a way that allows
understanding the underlying algorithms and assumptions.

To fill in this gap, we studied state-of-the-art implementa-
tions of web applications and developed MAESTRO (dynaMic
bAyESian neTwoRks Online) [7]. This publicly available web
tool aggregates imputation, outlier detection, clustering and
inference tools based on DBNs as well as discretisation and
visualisation capabilities that allow users to upload and analyse
their MTS. The resulting architecture was constrained to the
following requirements:

• Using free or low-cost solutions;
• Tolerating both short- and long-running tasks;
• Being extensible to new packages;
• Scaling horizontally and vertically;
• Assuring concurrency;
• Securing users’ data;
• Notification the users upon completion;
• Handling errors gracefully;
• Ensuring transparency;
• Using orchestration tools.

Concurrency is particularly challenging when trying to serve
exponentially complex algorithms to learn DBNs online. In
fact, the one web application that makes use of these models
for outlier detection – METEOR [8] – exhibits severe con-
currency issues. When a user is training a network, the entire
website becomes unavailable to others, even the landing page.
As such, a crucial objective is ensuring that not only does the
website continue to operate but that simultaneous requests will
not influence one another.

mailto:vascocandeias@tecnico.ulisboa.pt
https://vascocandeias.github.io/maestro
https://github.com/vascocandeias/maestro-backend
https://github.com/vascocandeias/maestro-backend


Besides, while it is clear that other data-analysis software
like SPSS [9] already exist, they often require licenses that
might not be affordable and do not allow research or medical
teams to add custom packages. Furthermore, even though some
tools such as Weka [10] may seem to satisfy the requirements
mentioned above for being open source and extensible, they
still require users to download software and have limited ex-
tensibility by only accepting Java packages. Moreover, having
to run the program locally is not just an inconvenience, as
practitioners might not even have access to computers with
the necessary hardware to rapidly make these computations
and without sacrificing their performance on other vital tasks.

In contrast, MAESTRO is more than a freely available
service. By downloading its source code, any medical or
academic institution can have this modular microservice in-
frastructure running in their intranet by solely setting some
environment variables and executing a single command. More-
over, adding custom packages has never been easier, as the
developers only need to create two straightforward interface
files and copy them, along with the executables, to the server.

To face the challenges mentioned above, MAESTRO relies
on a microservice architecture with a gateway that receives
the users’ requests, a message queue where workers get tasks
from and a data service to store input files and results. On
top of these, an email service notifies analysts upon each
task’s completion, a log service tracks potential errors, and
an authenticator ensures authorised access.

While an on-premises version of the web tool is also made
available, the publicly available one – which is the focus of
this thesis – is deployed in the cloud using Amazon Web
Services (AWS) and tested for its concurrency and scalabil-
ity. We will verify whether, by resorting to both serverless
functions and dynamically allocating virtual machines (VMs),
the system withstands bursts of thousands of simultaneous
requests without any performance degradation. Likewise, we
intend to prove that this implementation can vertically scale for
improved computational power and reduced execution times.

In the following pages, we start by presenting MAESTRO’s
functionalities and implementation in Section II. In Section III
we demonstrate the use of the web application by analysing
real data and in Section IV we test the scalability of the cloud
implementation. Finally, in Section V, we discuss the devel-
oped application, and draw some conclusions in Section VI,
suggesting some future work that can be done to improve this
tool in Section VII.

II. MAESTRO
(DYNAMIC BAYESIAN NETWORKS ONLINE)

In this section, we start by walking through every tool pro-
vided by this web application and later dive into MAESTRO’s
architecture.

A. Functionalities

As already explained, this web tool encompasses many
packages useful for data analysis. These follow the general
pipeline depicted in Fig. 1 and will be presented in this section.

Visualisation

LOCF/LR/DBN
Imputation

EQW/EQF
Discretisation

Outlier
Detection

ClusteringInference

Data Set

Modelling Inference
Data

Preprocessing

Fig. 1. Web tool pipeline for analysing data sets.

To better understand these tools, DBNs should be first ex-
plained, as most packages use them. We focus this discussion
on temporal discrete-time models with discrete variables.

DBNs extend standard Bayesian networks (BNs) [11] to
deal with time, allowing them to model MTS. They are
composed of an initial network, representing the initial state
of the temporal process, and a set of transition networks that
say how the system evolves from time t to t + 1. When
this system’s dynamics do not change over time, the model
is called stationary, and only one transition network is used.
Moreover, the number of time slices used in this network is
called the Markov lag.

A simple DBN is depicted in Fig. 2a, making it clear that
both the initial and transition networks are straight BNs, where
time-dependencies must flow forward in time. The transition
networks’ dependencies account for the interaction among
multivariate trajectories in time, and conditional probability
tables reveal their strength.

X3[0]

X2[0]

X1[0] X1[t]

X2[t]

X3[t]

X1[t+1]

X2[t+1]

X3[t+1]

Initial
network

Transition
network

(a) Stationary DBN.

X3[0]

X2[0]

X1[0] X1[1]

X2[1]

X3[1]

X1[2]

X2[2]

X3[2]

(b) Corresponding unrolled network.

Fig. 2. Illustration of a DBN with a Markov lag of one.

A useful way to understand a DBN is to unroll it, as
illustrated in Fig. 2b. Unrolling means converting a DBN into
its equivalent BN. Starting at the baseline t = 0, the values
of the variables at t = 0 are used in the transition network
to predict the most probable configuration at time t = 1. And
then, from these, the ones at time t = 2, and so on.



To learn these models, it is common to employ score-based
algorithms, such as the tDBN [12], cDBN [13], bcDBN [14]
and sdtDBN [15]. These are used by the functionalities de-
tailed below, which apply either minimum description length
(MDL) or log-likelihood (LL) scoring criteria.

1) Imputation: Since most method implementations assume
the MTS are complete, the given data either has to have no
missing values, or these should be imputed using one of the
following methods:

• Linear regression (LR) – generates a linear interpolation
using the available values in the TS and assigns the
missing values accordingly;

• Last observation carried forward (LOCF) – copies the
most recent state prior to the missing one. If there is none,
the next value is used;

• learnDBN [16] – tries to learn a tDBN, cDBN or bcDBN
despite the missing values and then uses it for imputation.

When the input is continuous, the first two methods are
available, with the last two being provided otherwise.

2) Discretisation: After correcting for missing data, it is
paramount to discretise it as the proposed models are only
suited for this sort of input, which can be done by either one
of the following:

• Equal frequency (EQF) – creates bins containing ap-
proximately the same number of data points;

• Equal width (EQW) – splits the range of values into a
fixed number of bins and distributes the data respectively.

3) Outlier detection: The final step of preprocessing the
input is to detect its outliers, that is, both the transitions (from
time-slice t to t+ 1) and the subjects (i.e., entire time series)
that considerably deviate from the rest. This step replicates
METEOR [5], which learns a tDBN and then scores each
transition and TS. By setting a score threshold, it is then
possible to classify them as being legitimate or outliers.

To continue to the next step, it is only possible to automati-
cally filter out entire subjects, as transitions cannot be removed
from the input. Regardless, the classifications and scores may
be downloaded as comma-separated values (CSV) files.

4) Visualisation: Since a data set of multiple MTS has
four dimensions (time, subject, value and attribute), we chose
only to display a single feature per diagram, allowing users
to compare subjects over the same metric. Moreover, since
this heatmap is coloured according to limited bins of values,
continuous TS have to be discretised solely for representation.
This is done using EQW using nine bins, and the original
values are still presented by hovering over the heatmap.

5) Modelling: Having preprocessed the file, it is possi-
ble to model an sdtDBN using the sdtDBN package [15],
which accepts static features (besides temporal ones) and prior
knowledge, i.e., constraints on which attribute relations are
mandatory or forbidden.

6) Inference: Using the already learnt model, new obser-
vation files and another functionality of the sdtDBN package,
it is possible to either predict how the new time series will
progress until a certain time point or infer a given attribute in
specific time slices.

7) Clustering: Using the program developed by Arcadinho
[17], it is possible to group subjects by clusters. To determine
them, the author proposes finding the k DBNs which best
describe k clusters of subjects in the data, and then classify
them accordingly. Besides downloading the clustering results,
the user may analyse the learnt networks – which can be
tDBNs, cDBNs or bcDBNs – to understand the model that
could generate each cluster.

B. System architecture

MAESTRO was developed as a client-server model, where
the website is dynamically rendered in the client using Angular
and only makes representational state transfer (REST) [18]
calls to the back-end, with the server never having to render
the web pages. This separation of concerns minimises network
congestion, as the size of the requests is significantly reduced.

This application was developed for deployment both in the
cloud, where it is publicly available, and in a local server, for
organisations that must keep data on-premises or extend the
website’s packages. Although these architectures may differ
in some aspects, they both rely on two major architectural
patterns: microservices and competing consumers.

A microservice architecture contrasts with a monolithic one
and consists in separating the services according to their con-
cerns. For instance, instead of having one service containing
the primary process, file storage and email service, these are
split into three services. As for the communication pattern,
the competing consumers (or task queue) satisfy the need for
asynchronous execution. Since some of the proposed packages
have an exponential time complexity, the user cannot wait
for the result to be sent as a reply to the original REST
request. Instead, the gateway places the task in a message
queue, and a background process – the worker – retrieves it
and runs the analysis, updating the results’ table afterwards.
In both implementations, the workers execute the command-
line programs, recording their output and resulting files. The
user may then monitor the task’s completion by using the
id returned by the gateway and, if this takes longer than 30
seconds, he will be notified by email upon completion or error.

1) Cloud implementation: MAESTRO’s front-end was de-
ployed on GitHub Pages [19] and its back-end on Amazon
Web Services (AWS), since this cloud provider has proven
to have the lowest and most consistent average cold start
latency for both VMs [20], [21] and serverless functions [22]
while continually providing excellent performance [23]. The
resulting implementation is schematised in Fig. 3.

To ensure the user can analyse data sets of any size, the
files should be directly uploaded to the S3 [24] bucket, as
API Gateway [25] requests have a maximum payload size
of 10 MB. By using the AWS Amplify [26] framework for
Angular, the front-end can log in to Cognito [27] and then
access S3, which will automatically validate his permissions
with AWS Identity and Access Management [28]. Using
Cognito’s JSON Web Token (JWT), the user can also make
authenticated requests to API Gateway.



Invoke
Lambda

Return
Response

Invoke
API

Invoke
Lambda

Cognito

SQS	Queue

API
Gateway

DynamoDB
Tables

S3	Bucket

Launch
EC2

Create
Result

Lambda
Function

Queue
Request

Validate
Token

Request
Token

Send
Email

EC2	Instance
Return
ResultID

Get	Request

CRUD	Methods

Download	and	Upload	Files
Download	and	Upload	Files

CRUD
Methods

Lambda
Function

IAM	Policy

Validate	Permissions

Simple	Email
Service

Fig. 3. Cloud back-end architecture.

As for handling the analysis requests, the gateway must
launch a Lambda [29] function which will queue the message
and then start a new Elastic Compute Cloud (EC2) [30]
instance to consume it. This guarantees horizontal scalability,
as a new instance is created for each request. However, this
solution has a downside: cold start. While EC2 instances can
run indefinitely, being perfect for long-running requests, they
may take up to a minute to be ready to start processing [20],
[21], which is not acceptable for tasks that would run in a few
seconds locally. To solve this issue, another Lambda function
is invoked in parallel, running the packages similarly to the
EC2. Yet, even though these take considerably less time to
start [31], they have a timeout and do not provide the same
performance as EC2 VMs, meaning that they should merely
handle the short-running requests.

2) On-premises implementation: For the intranet version of
the application, the back-end was developed using Docker [32]
containers orchestrated using Docker Compose [33], with the
resulting network being presented in Fig. 4.

To implement the services, the traditional NGINX, uWSGI
and Flask architecture [34], [35] was chosen, with all of them
running on an Alpine Linux container, where NGINX is the
web server and reverse proxy, uWSGI is the application server,
and Flask is the application itself, where the logic written
in Python lies. As for the gateway, NGINX also serves the
Angular static files, to be fetched when the user first accesses
the website, and its Flask program uses an SQLite [36] table
to save the authentication information.

In this architecture, the number of workers no longer
corresponds to the number of requests, but to the number of
servers running these containers, which can be easily added
to the network. This is not to say they can only handle
one request at a time, as they launch a new thread for each

Return
Response

Invoke
API

Email
Service

Get
Request

Queue
Request

Send
Email Worker

Packages

CRUD
Methods

Send
Email

Download and
Upload Data

Gateway
Service

Users

Data
Service

Data

Message Queue

Fig. 4. Local back-end architecture.

package execution. And while, by default, the workers come
with Java and Python installed, as the former is needed to
run most of the packages and the latter to fetch messages
from a RabbitMQ [37] work queue and execute the analyses,
any other language can be included by adjusting this service’s
Dockerfile [38]. In addition, if there are no extra servers to add
more workers when they exhibit signs of resource starvation,
it is always possible to limit the number of messages each
worker can process simultaneously, allowing them to process
pending tasks before retrieving any more from the queue.

Moreover, for the database tables, the predominant NoSQL
MongoDB [39] management system was adopted, due to its
ease of use and remarkable performance [40]. As for the logs,
similarly to the cloud implementation, a logging service was
not designed, since Docker handles this centralised role itself.
When running containers as part of Docker Compose, every
service’s logs are displayed on the screen and saved to a file.

Finally, although Docker Compose will run all the contain-
ers in the same server by default, they were developed to be
distributed over a network. This means that it is possible to
spin up as many containers as necessary in different hosts and
have each service deployed in an adequate server (for instance,
the data service needs a lot of free disk space and fast I/O
operations while the email only needs minimal resources).
Furthermore, this orchestration tool guarantees that services
are restarted if they halt for any reason.

III. CASE STUDY

This section illustrates the web tool’s usage with real
data extracted from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database [41]. The ADNIMERGE data set
consists of 13,413 time series with 113 attributes (including
identification, dates and other codes) measured from 1,973



patients from multiple case report forms – such as Alzheimer’s
Disease Assessment Scale (ADAS) or Rey’s Auditory Ver-
bal Learning Test (RAVLT) – and biomarker lab summaries
across the ADNI protocols. Before uploading, we selected the
patients that had examinations after 24 months, as suggested
in previous studies [42]. Afterwards, we merged duplicates
and inserted empty rows for the missing observations, which
allowed to compute the percentage of missing values for each
feature. By removing every attribute where these exceeded
20%, we picked the 13 dynamic features presented in Table I,
consequently reducing the number of patients to 1,286.

TABLE I
SELECTED CONTINUOUS FEATURES AND THEIR RANGES, AVERAGES (A),

MEDIANS (MDN) AND PERCENTAGES OF MISSING VALUES (%M).

Feature Range A Mdn %m
CDRSBa [0, 17] 1.8 1 16.8

ADAS11b [0, 70] 10.6 9 16.5

ADAS13c [0, 71.3] 16.5 14.3 17.3

ADASQ4d [0, 10] 5.1 5 16.5

MMSEe [1, 30] 27.0 28 16.4

RAVLT immediatef [0, 75] 35.0 34 16.8

RAVLT learningg [−5, 14] 4.1 4 16.8

RAVLT forgettingh [−9, 15] 4.3 4 17.0

RAVLT perc forgettingi [−450, 100] 58.9 60 17.5

TRABSCORj [0, 996] 119.5 89 18.7

FAQk [0, 30] 4.7 1 16.6

mPACCtrailsBl [−39.7, 12.9] −5.5 −3.7 16.4

mPACCdigitm [−39.7, 7.1] −5.7 −4.1 16.4
aClinical Dementia Rating Scale sum of boxes.
bADAS (11 items).
cADAS (13 items).
dADAS with delayed word recall.
eMini-Mental State Examination.
fSum of five RAVLT trials.
gRAVLT trial 5 minus trial 1.
hRAVLT trial 5 minus delayed recall.
iRAVLT forgetting divided by trial 5.
jTrail Making Test part B.
kFunctional Activities Questionnaire.
lModified Preclinical Alzheimer’s Cognitive Composite (mPACC) with
TRABSCOR.
mmPACC with Digit Symbol Substitution.

The visualisation of the MMSE is shown in Fig. 5 and
allows us to see some patterns. In this case, it is clear that
most patients do not have examinations for the fourth time
point and usually tend towards high (blue) values.

Fig. 5. Visualising the patients’ original MMSE results.

Since this data is continuous and has missing values, we
are given the option of either imputing or discretising the
time series, with the first one being restricted to LOCF and
LR. Using the latter results in the data presented in Fig. 6.
As expected, the missing values were filled using linear
interpolation.

Fig. 6. Result of using linear regression to impute the data.

Subsequently, we discretise the data using EQF and three
bins (representing low, medium and high values). For MMSE,
the following bins are generated:

• a – [1, 27];
• b – [28, 29];
• c – 30.

Doing so produces the data represented in Fig. 7.

Fig. 7. Result of discretising the data using EQF and three bins.

Following that, we proceed to clean the data by removing
outliers. Through learning a tDBN using log-likelihood as the
scoring criterion, a Markov lag of one and two parents –
represented in Fig. 8 –, it is possible to plot the outlierness of
each transition and subject in a histogram – Fig. 9.

Fig. 8. Network learnt for outlier detection using log-likelihood as the scoring
criterion, a Markov lag of one and two parents.



Fig. 9. Result of outlier detection using log-likelihood as the scoring criterion,
a Markov lag of one and two parents. The threshold is set to Tukey’s.

Having removed the three outlier subjects using Tukey’s
threshold, we now analyse the remaining patients, starting
with training an sdtDBN model for inference. Since this
method accepts static attributes, we selected the three variables
described in Table II.

TABLE II
SELECTED STATIC FEATURES, THEIR CLASSES AND PERCENTAGES OF

MISSING VALUES (%M).

Feature Classes %m
PTGENDER {Male, Female} 0.0
PTETHCATa {Not Hisp/Latino, Hisp/Latino} 0.5

PTMARRYb {Married, Divorced, Widowed, Never
married} 0.3

aRace.
bInitial marital status.

Adding these observations, we may train the sdtDBN using
a log-likelihood scoring criterion, a unitary Markov lag, one
dynamic parent, two static ones, and no restrictions. However,
knowing this package cannot process static files with subjects
that do not exist in the dynamic input, we added a new one to
induce an error. As seen in Fig. 10, this is gracefully caught
and presented to the user.

Fig. 10. Error handling in the application.

When using the original observations, the result is success-
ful. Again, this network may be viewed through an expandable
card, where it is also possible to download it – Fig. 11.

Knowing the MMSE value for subject 6 at the seventh time
point is 22 (falling into bin a according to this discretisation),
we may test the model’s prediction by feeding it this subject’s
observations and requesting the most probable inference. The
model makes an accurate prediction, as can be seen in Fig. 12.

Fig. 11. DBN learnt using log-likelihood as the scoring criterion, a unitary
Markov lag, one dynamic parent and two static ones.



Fig. 12. Most probable MMSE for subject 6 at the seventh time point.

To further understand this result, we computed this at-
tribute’s distribution of probabilities for the requested subject
and time point – Fig. 13. It is clear that the likelihood
heavily inclines towards the prediction. However, there is some
fluctuation on these probabilities across multiple requests,
since the intermediate attributes are predicted using random
sampling according to each node’s probability distribution.

Fig. 13. MMSE’s predicted probability distribution for subject 6 at the seventh
time point.

Finally, we may group the TS into clusters. Since there are
three possible diagnoses – clinically normal, mild cognitive
impairment and dementia –, we try to fit three tDBNs using
an intra-slice in-degree of one, two parents and a unitary
Markov lag. After handling the request, MAESTRO presents
the results as in Fig. 14. It is also possible to download both
the network as text and the scores or clustering results as
CSV files. Furthermore, every network representation of each
cluster is presented in an individual tab.

As in every other network displayed by the application, hov-
ering over a node will show its conditional probabilities table.
Moreover, as in most of the other DBN-related functionalities,
it is possible to view the application’s logs, which correspond
to the information that the command-line executable usually
prints to the standard output.

This might lead to the assumption that errors are only
caught when the packages quit successfully since the workers
are retrieving the standard output. As such, it should be
clarified that, even though the error shown in this section is
a controlled one, any exception that causes the packages to
quit unexpectedly is also caught. However, these may be too
verbose if not appropriately handled by the program.

Fig. 14. Result of finding three clusters using tDBNs with a Markov lag of
one, two parents and an intra-slice in-degree of one.

IV. STRESS TESTING

A. Vertical scalability

One of the fundamental requirements for this website was
ensuring it was capable of handling every long-running analy-
sis within an acceptable time frame, which is tightly related to
the system’s vertical scalability: if we are able to augment the
processing nodes’ computational resources, the execution time
will decrease. To assess this metric in the cloud architecture,
we chose the learnDBM package for its higher resource
demand and used the combinedDataset.csv, available
in the package’s webpage [17] and consisting of 2,000 time
series with five attributes and 10 time steps each, produced by
two distinct DBNs.

The two networks were trained with a Markov lag of two, a
unitary intra-slice in-degree, two parents, and multithreading.
The test was conducted by launching three distinct EC2
instances – m5.large, m5.xlarge and m5.2xlarge –, establishing
a connection to each of them, and executing a Python script
which sequentially started and timed ten child processes that
performed the aforementioned task. Since the purpose was to
evaluate the hardware impact on execution time, we opted not
to include any network-bound operations in the measurements
and solely timed the package execution. The results are plotted
in Fig. 15.

As expected, the most powerful VM – the m5.2xlarge
with 8 virtual processors and 32 gibibytes of memory – was
substantially faster than the one with the least resources – the
m5.large with 2 virtual processors and 8 gibibytes of memory.
The vertical scalability is thus warranted, since the developer
may easily choose to specify a more robust instance to be used
for subsequent requests whenever these are taking too long.



m5.large m5.xlarge m5.2xlarge
0

10

20

30

24.95

16.79

8.77

E
xe

cu
tio

n
tim

e
(m

in
)

Fig. 15. Execution time when clustering the combinedDataset.csv for
ten times in three instances with a Markov lag of two, a unitary intra-slice
in-degree, two parents, two clusters and multithreading, using three distinct
EC2 instance types.

Furthermore, it is worth mentioning that using extra comput-
ing resources may not be significantly more expensive, since
the instances are terminated after the requests complete, thus
having no idle cost. For example, even if the m5.xlarge –
with 4 virtual processors and 16 gibibytes of memory – costs
$ 0.222 per hour and the m5.2xlarge costs $ 0.444 when hosted
in London [43], their average price in this test would not be
significantly different: while the former would take $ 0.062
to execute the process in over 16 minutes, the latter would
cost $ 0.065 to accomplish it in almost half the time. As such,
it might even be economically beneficial to invoke VMs that
execute the tasks in a more timely manner: a win-win situation
for the user and the organisation.

B. Horizontal scalability and concurrency

Another major objective was scaling horizontally, which
would allow the users to concurrently access the application
and make analysis requests without performance degrada-
tion. Even though, for the cloud implementation, invoking
a Lambda function and launching a new EC2 instance per
request should suffice this constraint, we decided to conduct
a test to assure this characteristic. This was accomplished by
sending bursts of 10, 100 and 1,000 requests and measuring
their execution times. The requests consisted in finding two
clusters in the combinedDataset.csv, using a Markov
lag of one, a unitary intra-slice in-degree and one parent.
Fig. 16 graphically represents the results.

From this experiment, it is clear that the application main-
tains its performance despite the load and that the users will
not notice whenever the servers are under pressure. As for
the slightly lower duration of the smaller burst, it can be
explained by the lower number of requests which is not enough
to represent the amplitude of values: in fact, it falls inside the
confidence interval of the remaining sizes.

10 100 1,000
0

2

4

6

8

10

4.21

5.28

5.04

Burst size

E
la

ps
ed

tim
e

(s
)

Fig. 16. Average elapsed time as a function of the burst size when clustering
the combinedDataset.csv with a Markov lag of one, a unitary intra-slice
in-degree, one parent and two clusters.

V. DISCUSSION

After demonstrating and appropriately stress testing the
application, we should go through the pre-established require-
ments and confirm their assurance. Since the development
comprised both a cloud and a local version, let us first address
the prerequisites that the two address equally, and later focus
on those that differ between implementations.

First off, as Section III demonstrates, QoS is assured as
the website is user friendly and extends the capabilities of
the original packages with its visualisation tools, while still
being transparent as the user has no perception of the multiple
components involved and their interactions. What it does not
depict is the notification and authentication services, both of
which have been implemented, with the former sending an
email upon either correct or unexpected completion of long
tasks, and the latter resorting to the commonly used JWTs.

Additionally, the architecture was designed to effortlessly
accommodate new packages through the inclusion of their
source codes and two simple interface files per functionality,
as long as they can be executed in a Linux system with Python
and Java installed. If that is not the case, augmenting the
environment is just as simple, as it solely requires updating
a Dockerfile and rebuilding the worker’s container. Besides,
the users may rest assured that erroneous executions will
not disturb the tool’s correct execution, but will be caught
by the workers and properly displayed to the practitioner, as
exemplified in Section III through a deliberate error.

Diving into implementation-specific characteristics, we can
state that two of the most critical predefined objectives –
accepting data sets of any size and handling both short-
and long-running tasks – are accomplished by executing the
analyses asynchronously and, for the cloud architecture, by
uploading directly to S3 and launching a Lambda and an EC2
instance in parallel.



Furthermore, since MAESTRO is focused on clinical data
interpretation, security was also a fundamental concern. By
distributing a local implementation where data never has to
leave the premises, we give practitioners the option to improve
confidentiality if they opt not to trust AWS security guarantees,
which rely on AES-256 encryption [44]. Notwithstanding,
it is up to each organisation to then implement HTTPS
connections and secure the servers themselves from unwanted
agents. However, this should not be a concern, given that the
communication with the cloud back-end uses HTTPS and that
the S3 storage, the DynamoDB tables and the EC2 instances
are all encrypted, with every processing instance being isolated
from the others. This last assertion is quite essential, as it
means that in the eventuality of a hacker finding and accessing
the physical server handling his request, he is still unable to
access anyone else’s data.

As for scalability, both of its dimensions are satisfied:
the two solutions support not only adding more nodes by
using a message queue and a microservices architecture but
also effortlessly enhancing the existing ones by changing the
instance type in the cloud architecture (as shown in Sec-
tion IV-A) or merely upgrading the servers in the local version.
Moreover, concurrency is achieved in the cloud, much like the
horizontal scalability, by launching one Lambda function and
one EC2 instance per processing request (without performance
deterioration, as proven in Section IV-B). On-premises, it is
up to the organisation to provide enough computing power,
but since Docker Compose – an orchestration tool – was
used, increasing the number of workers could not be easier, so
assuring local concurrency is only a matter of having the right
hardware. Besides processing, using NoSQL databases in both
implementations further guarantees horizontal scalability, but
now in the realm of data storage.

Finally, longevity may be evaluated by consulting web
applications such as WIMP [45] or RISP [46]. When trying
to access these tools’ websites, the user will realise they are
no longer available, demonstrating they have not withstood
the test of time. While the local platform’s longevity can
only be assured by the organisations that adopt it, by using
low-priced AWS services and free GitHub Pages instead of
hosting our own cluster of servers, we are confident the
publicly available version will remain online without much
maintenance or restructuring.

VI. CONCLUSION

In this dissertation, a language-agnostic microservice ar-
chitecture for both short- and long-running web applications
was devised so that practitioners no longer have to download
and locally execute data analysis software. The proposed ap-
proach satisfies all of the prerequisites, including being secure,
scalable and transparent while still managing to efficiently
complete tasks of any duration.

This design can be adapted to incorporate any demanding
data analysis command-line program and was adopted in this
thesis to implement MAESTRO [7], an MTS interpretation
tool that makes use of DBNs to impute data, detect outliers,

cluster TS and predict their progression. By deploying this
application using AWS and merging the use of serverless func-
tions with auto-scaling VMs, the application showed positive
results regarding both concurrency and scalability.

Besides the publicly available web tool, an on-premises
implementation of the introduced architecture was also de-
veloped, and its source code was made available in a GitHub
repository [47]. This version can be extended with any script-
able package and is aimed at any analyst or organisation that
needs this flexibility or the added layer of security that only
on-premises solutions can guarantee.

With this project, the lack of user-friendly applications that
merge machine learning and biomedicine should be closer to
fulfilment, as every practitioner and organisation can now both
use state-of-the-art DBN-based data analysis software online,
and effortlessly host their own tools.

VII. FUTURE WORK

Bearing in mind the ease of vertically scaling the workers
underlined in Section IV-A, it is possible to further improve
the cloud implementation by choosing the EC2 instance type
to launch according to the expected execution time of each
incoming request. To accomplish this, the Lambda function
that launches the container may consult a table that maps the
input parameters and data size to an instance and the elapsed
time. This table may be dynamically built by the workers
when they conclude each task. Doing so will improve the
application’s QoS and optimise its costs.

With the advancements in homomorphic encryption, the
packages could also be re-written to allow operating on top
of encrypted data, which would require the front-end code
to encrypt the data before uploading. However, this is only
advised whenever this technology matures to the point where
the added time complexity becomes negligible.

As for the on-premises implementation, the task queue may
be replaced by another that allows distributing each request
to the worker that is processing fewer messages. In fact,
the fair dispatch used by RabbitMQ is only equitable to
a certain degree: since some tasks are exponentially more
demanding than the others, some workers might get all of
the most expensive ones. Delivering each message to the
worker with the smallest number of unacknowledged messages
will mitigate this issue. However, in case some workers are
considerably less resourceful than the rest, this load balancer
would not be fair as well, as these would be starved out while
the others are still capable of higher loads. Solving this is a
matter of limiting the number of unacknowledged messages
in the more limited servers.

The monitoring and logging service of the on-premises
version also has room for improvement. Even if the Docker
logs are parsable, they still lack the usage and performance
metrics that tools such as Amazon CloudWatch combine in a
user-friendly manner. There are multiple services – the ELK
stack [48] or Prometheus [49] and Grafana [50] for instance –
that can be easily integrated using Docker Compose, providing
a dashboard that centralises the entire system’s information.



Lastly, this private dashboard could also allow to more
easily upload the files regarding new packages. In this way, the
tool administrators would not have to access each worker nor
use command-line instructions to update the Docker Compose
file and update them. Creating a fan-out queue that carries the
new packages (or instructions to remove old ones) to every
worker or programmatically updating the Docker images and
reloading the services are just two of the methods that can
help to combine this feature.

REFERENCES

[1] L. V. Ho, D. Ledbetter, M. Aczon, and R. Wetzel, “The dependence of
machine learning on electronic medical record quality,” in AMIA Annual
Symposium Proceedings, vol. 2017. American Medical Informatics
Association, 2017, p. 883.

[2] J. T. Schwartz, M. Gao, E. A. Geng, K. S. Mody, C. M. Mikhail, and
S. K. Cho, “Applications of machine learning using electronic medical
records in spine surgery,” Neurospine, vol. 16, no. 4, p. 643, 2019.

[3] M. Ghassemi, L. A. Celi, and D. J. Stone, “State of the art review: the
data revolution in critical care,” Critical Care, vol. 19, no. 1, pp. 1–9,
2015.

[4] D. S. Watson, J. Krutzinna, I. N. Bruce, C. E. Griffiths, I. B. McInnes,
M. R. Barnes, and L. Floridi, “Clinical applications of machine learning
algorithms: beyond the black box,” Bmj, vol. 364, 2019.

[5] J. L. Serras, “Outlier detection for multivariate time series,” Master’s
thesis, Instituto Superior Técnico, 11 2018.

[6] S. Arcadinho, “Model-based Learning in Multivariate Time Series,”
Master’s thesis, Instituto Superior Técnico, 11 2018.

[7] V. Candeias. MAESTRO. Accessed: 5 December 2020. [Online].
Available: https://vascocandeias.github.io/maestro/

[8] J. Serras. METEOR. Accessed: 6 December 2020. [Online]. Available:
https://jorgeserras.shinyapps.io/outlierdetection/

[9] SPSS Software — IBM. Accessed: 6 December 2020. [Online].
Available: https://www.ibm.com/analytics/spss-statistics-software

[10] Weka 3 - Data Mining with Open Source Machine Learning
Software in Java. Accessed: 6 December 2020. [Online]. Available:
https://www.cs.waikato.ac.nz/ml/weka/

[11] N. Friedman, K. Murphy, and S. Russell, “Learning the structure
of dynamic probabilistic networks,” in Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1998, p. 139–147.

[12] J. L. Monteiro, S. Vinga, and A. M. Carvalho, “Polynomial-time algo-
rithm for learning optimal tree-augmented dynamic Bayesian networks,”
in UAI, 2015, pp. 622–631.

[13] M. Sousa and A. M. Carvalho, “Learning Consistent Tree-Augmented
Dynamic Bayesian Networks,” in International Conference on Machine
Learning, Optimization, and Data Science. Springer, 2018, pp. 179–
190.

[14] ——, “Polynomial-Time Algorithm for Learning Optimal BFS-
Consistent Dynamic Bayesian Networks,” Entropy, vol. 20, no. 4, p.
274, 2018.

[15] T. Leão. sdtDBN — tDBN inference and learning with static
parents. Accessed: 6 December 2020. [Online]. Available: https:
//ttlion.github.io/sdtDBN/

[16] S. Arcadinho. learnDBN — Dynamic Bayesian Network learning.
Accessed: 8 December 2020. [Online]. Available: https://ssamdav.
github.io/learnDBN/

[17] ——. learnDBM — Dynamic Bayesian Multinet learning. Accessed:
8 December 2020. [Online]. Available: https://ssamdav.github.io/
learnDBM/

[18] R. T. Fielding and R. N. Taylor, “Architectural Styles and the Design of
Network-based Software Architectures,” Ph.D. dissertation, University
of California, Irvine, 2000.

[19] GitHub Pages — Websites for you and your projects, hosted
directly from your GitHub repository. Just edit, push, and your
changes are live. Accessed: 21 November 2020. [Online]. Available:
https://pages.github.com/

[20] M. Mao and M. Humphrey, “A performance study on the VM startup
time in the cloud,” in Proceedings - 2012 IEEE 5th International
Conference on Cloud Computing, CLOUD 2012, 2012, pp. 423–430.

[21] S. I. Abrita, M. Sarker, F. Abrar, and M. A. Adnan, “Benchmarking VM
Startup Time in the Cloud,” in International Symposium on Benchmark-
ing, Measuring and Optimization. Springer, 2018, pp. 53–64.

[22] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking
behind the curtains of serverless platforms,” in Proceedings of the 2018
USENIX Annual Technical Conference, USENIX ATC 2018, 2018, pp.
133–145. [Online]. Available: https://www.usenix.org/conference/atc18/
presentation/wang-liang

[23] H. Martins, F. Araujo, and P. R. da Cunha, “Benchmarking Serverless
Computing Platforms,” Journal of Grid Computing, 2020.

[24] Cloud Object Storage — Store & Retrieve Data Anywhere — Amazon
Simple Storage Service (S3). Accessed: 25 November 2020. [Online].
Available: https://aws.amazon.com/s3/

[25] Amazon API Gateway — API Management — Amazon Web
Services. Accessed: 12 November 2020. [Online]. Available: https:
//aws.amazon.com/api-gateway/

[26] Build Mobile & Web Apps Fast — AWS Amplify — Amazon
Web Services. Accessed: 12 November 2020. [Online]. Available:
https://aws.amazon.com/amplify/

[27] Amazon Cognito - Simple and Secure User Sign Up & Sign In —
Amazon Web Services (AWS). Accessed: 12 November 2020. [Online].
Available: https://aws.amazon.com/cognito/

[28] AWS Identity & Access Management - Amazon Web Services.
Accessed: 20 November 2020. [Online]. Available: https://aws.amazon.
com/iam/

[29] AWS Lambda – Serverless Compute - Amazon Web Services.
Accessed: 12 November 2020. [Online]. Available: https://aws.amazon.
com/lambda/

[30] Amazon EC2. Accessed: 12 November 2020. [Online]. Available:
https://aws.amazon.com/ec2/

[31] I. Müller, R. F. Bruno, A. Klimovic, G. Alonso, J. Wilkes, and
E. Sedlar, “Serverless Clusters: The Missing Piece for Interactive
Batch Applications?” in 10th Workshop on Systems for Post-
Moore Architectures (SPMA 2020), 2020. [Online]. Available: https:
//doi.org/10.3929/ethz-b-000405616

[32] T. James, The Docker Book: Containerization Is the New Virtualization.
James Turnbull, 2019.

[33] R. Smith, Docker Orchestration. Packt Publishing Ltd, 2017.
[34] K. Relan, “Deploying Flask Applications,” in Building REST APIs with

Flask. Apress, 2019, pp. 159–182.
[35] T. Butler, NGINX Cookbook. Packt Publishing Ltd, 2017.
[36] J. Kreibich, Using SQLite. O’Reilly Media, Inc., 2010.
[37] S. Boschi and G. Santomaggio, RabbitMQ Cookbook. Packt Publishing

Ltd, 2013.
[38] J. Cook, “The Dockerfile,” in Docker for Data Science. Apress, 2017,

pp. 81–101.
[39] K. Banker, MongoDB in Action. Manning Publications Co., 2011.
[40] S. Bradshaw, E. Brazil, and K. Chodorow, MongoDB: The Definitive

Guide. O’Reilly Media, Inc., 2019.
[41] ADNI — Alzheimer’s Disease Neuroimaging Initiative. Accessed:

10 December 2020. [Online]. Available: http://adni.loni.usc.edu/
[42] J. Mota, “Discovery of temporal patterns from multivariate time series

data to support the classification of dementia profiles,” Master’s thesis,
Instituto Superior Técnico, 2019.

[43] EC2 On-Demand Instance Pricing – Amazon Web Services. Accessed:
2 December 2020. [Online]. Available: https://aws.amazon.com/ec2/
pricing/on-demand/

[44] K. Beer and R. Holland, “Encrypting Data at Rest,” White Paper of
amazon web services, 2014.

[45] D. Urda, J. L. Subirats, P. J. Garcı́a-Laencina, L. Franco, J. L. Sancho-
Gómez, and J. M. Jerez, “WIMP: Web server tool for missing data
imputation,” Computer Methods and Programs in Biomedicine, vol. 108,
no. 3, pp. 1247–1254, 12 2012.

[46] J. Tong, P. Jiang, and Z. h. Lu, “RISP: A web-based server for prediction
of RNA-binding sites in proteins,” Computer Methods and Programs in
Biomedicine, vol. 90, no. 2, pp. 148–153, 5 2008.

[47] V. Candeias. On-prem MAESTRO back-end. Accessed: 17 De-
cember 2020. [Online]. Available: https://github.com/vascocandeias/
maestro-backend

[48] S. Chhajed, Learning ELK stack. Packt Publishing Ltd, 2015.
[49] B. Brazil, Prometheus: Up & Running. O’Reilly Media, Inc., 2018.
[50] Grafana: The open observability platform — Grafana Labs. Accessed:

4 December 2020. [Online]. Available: https://grafana.com/

https://vascocandeias.github.io/maestro/
https://jorgeserras.shinyapps.io/outlierdetection/
https://www.ibm.com/analytics/spss-statistics-software
https://www.cs.waikato.ac.nz/ml/weka/
https://ttlion.github.io/sdtDBN/
https://ttlion.github.io/sdtDBN/
https://ssamdav.github.io/learnDBN/
https://ssamdav.github.io/learnDBN/
https://ssamdav.github.io/learnDBM/
https://ssamdav.github.io/learnDBM/
https://pages.github.com/
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://aws.amazon.com/s3/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/amplify/
https://aws.amazon.com/cognito/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/ec2/
https://doi.org/10.3929/ethz-b-000405616
https://doi.org/10.3929/ethz-b-000405616
http://adni.loni.usc.edu/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://github.com/vascocandeias/maestro-backend
https://github.com/vascocandeias/maestro-backend
https://grafana.com/

	Introduction
	MAESTRO (dynaMic bAyESian neTwoRks Online)
	Functionalities
	Imputation
	Discretisation
	Outlier detection
	Visualisation
	Modelling
	Inference
	Clustering

	System architecture
	Cloud implementation
	On-premises implementation


	Case Study
	Stress Testing
	Vertical scalability
	Horizontal scalability and concurrency

	Discussion
	Conclusion
	Future Work
	References

