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Formal Verification of Pointer-Based Splay Trees in Iris

RICARDO GRAÇA, Instituto Superior Técnico, Portugal

When real-world applications crash or start to lack in performance, they can bring tremendous costs to the
involving parties. Therefore, it is important to ensure that these applications do not fail. Testing is useful in
practice as it can be used to show the presence of bugs. However, it cannot be used to prove their absence.
On the other hand, formal verification can be used to prove that a program fully meets a given specification.
However, formal verification of real-world code, which normally manipulates mutable and non-trivial data
structures, is a difficult task. In the last few years, many advances have been made in formal verification,
but there are still many opportunities to verify real-world code. In this project, we explore Coq and the Iris
framework to verify the functional correctness of the pointer-based implementation of Splay Trees which is
used by the GNU Compiler Collection (GCC) in the Offloading andMulti Processing Runtime Library (libgomp).
In the process, we also verify a functional implementation of the splay tree algorithm for a generalized ordered
datatype using the interactive proof assistant Coq. To the best of our knowledge, we provide the most complete
formally verified pointer-based implementation of Splay Trees.
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1 INTRODUCTION
Our world is now largely dependent on software systems running as expected. When software fails,
even if it is just for a mere few seconds, consequences can bring tremendous costs. Therefore, it is
crucial to ensure that software does not fail. Software testing is perhaps the most used technique
to prevent software failures. However, even though testing can be used to show the presence of
bugs, it cannot be used to prove their absence. On the other hand, formal verification can be used
to prove a program fully meets a given specification. However, formal verification of real-world
code, which normally manipulates mutable and non-trivial data structures, is a difficult task. In
the last few years, many advances have been made in formal verification, but there are still many
opportunities to verify real-world code.
In this project, we propose to explore the interactive proof assistant Coq [coq [n. d.]] and

the Iris framework [Jung et al. 2018] to verify the functional correctness of the pointer-based
implementation of Splay Trees which is used by the GNU Compiler Collection (GCC) in the
Offloading and Multi Processing Runtime Library (libgomp).
We chose Splay Trees for two main reasons: i) because they have become a widely-used data

structure for being the fastest type of balanced search tree for many applications; ii) and because,
due to their self-balancing properties, their formal verification presents an interesting challenge.

1.1 Work Objectives
In this project, we will first verify a functional implementation (Nipkow’s) of the splay tree method
and then verify the correctness of a pointer-based implementation of the splay tree algorithm
from a well-known application, GCC, which uses it in its Offloading and Multi Professing Runtime
Library. The four work objectives that we have proposed for this project are well-enumerated:
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1. verify a functional implementation of the splay tree algorithm for a generalized ordered datatype
in, the theorem proof assistant, Coq. 2. translate GCC’s pointer-based implementation written in the C
language to a language that allow us to reason in Iris’ framework, heap-lang. 3. create a predicate for
the splay tree that holds the predicates and invariants for a binary search tree and for the memory
that is modeled with a generalized map. 4. specify and verify the correctness of the lemmas related to
the splay tree methods.

1.2 Contributions
During the execution of the mentioned objectives, we have managed to successfully verify in Coq
the Gallina translation of Nipkow’s implementation [Nipkow 2014]. We have also proved some
other lemmas and theorems that Nipkow has not and also successfully extracted the verified code,
for natural numbers, to the OCaml functional language.

For the verification of the pointer-based implementation, we started by successfully translate the
GCC implementation of splay trees to heap-lang. Then, we have also succeeded in modeling the
splay tree predicate which contains all the needed invariants for a binary search tree, as well as the
modeled memory and the ownership of all the pointers of the binary search tree. Afterwards, we
have proven important lemmas related to each of the predicates that make the splay tree predicate.

At last, we have successfully proven the correctness of the splay tree method, but leaved one of
the lemmas, that makes this proof possible, unproven, which is not desirable, however, we have
informally proven it and are pretty confident that in the future we will be able to prove it.

2 BACKGROUND AND RELATEDWORK
In this section we first present the practical uses of the splay tree algorithm and an application
that uses it. Then we talk briefly on self-adjusting structures and the potential function that is
used to prove the amortized complexity time of algorithms (in this case, the splay tree algorithm).
Afterwards, we present some variants of tree structures that have been proven with ITP, namely
with Isabelle and CFML. We then present the Iris framework which uses separation logic to reason
about programs that deal with pointers.

2.1 Splay Trees
2.1.1 Practical Applications. Splay Trees have many practical applications, particularly in con-

texts where the same data is accessed frequently. Examples include network routing (where IP
addresses are accessed frequently) and memory allocation algorithms.

An application particularly relevant to this project is the use of Splay Trees by the GNU Compiler
Collection (GCC), a widely known sophisticated free collection of compilers for a wide variety of
programming languages: C, C++, Objective-C, Objective-C++, Java, Fortran, Ada, and Go [Stallman
et al. 2003]. GCC was originally written for the GNU operating system and is now available on
UNIX and Linux operating systems with new version releases every year [GCC Team 2019].

2.1.2 Self-Adjusting Tree Structures. Splay trees are binary search trees (BST) that apply re-
structuring rules in each operation in order to improve the efficiency of future operations without
needing extra space to do so. This restructuring is done by the splay heuristic method which has
the responsibility to move more frequently accessed nodes towards the root while adjusting itself
with constant time rotation operations along the way (Example of rotation in Figure 1).

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2020.



Formal verification of splay trees 1:3

y

x C

A B

x

yA

B C

Fig. 1. Using the splay heuristic method on node x, it is performed the zig case preserving the search property.

2.2 Formal Verification of Tree Structures using ITPs
Tobias Nipkow already used an interactive theorem prover (ITP), namely Isabelle/HOL, to prove
the functional correctness of the Splay Tree methods [Nipkow 2014]. However, he reasons on a
functional Isabelle implementation which does not require memory resource reasoning. A pointer-
based imperative implementation of the Splay Tree algorithm ismore error prone than the functional
implementation, once it may lead to malformations of the tree (e.g. occurrence of a cycle by putting
one of the nodes pointing to the root, Figure 2) if not well implemented.
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Fig. 2. A malformed self-adjusting tree. This would lead to a non halting situation if we tried to lookup for a
key that was between 6 and 9.

CFML is a tool that is used to get a high degree of confidence in the correctness of Caml code
with the use of the Coq proof assistant. It comes with a generator that converts Caml code in
Characteristic Formulae (CF) Coq source. The CF of a program is a higher order logic formula that
gives a sound description of the semantics of the program [Charguéraud 2011]. Arthur Charguéraud
and François Pottier extended CFML, which allows reasoning about memory resources, with time
credits and proved the correctness and amortized time complexity of their own Union-Find (UF)
(root/link) pointer-based algorithm implementation [Charguéraud and Pottier 2019].

Theorem f i n d _ s p e c : ∀ D R V x , x ∈ D →
app UnionFind_ml . f i n d [ x ]
PRE ( UF D R V (2*|𝛼 ( c a rd D) + 4 ) )
POST ( fun y => UF D R V ∗ [R x = y ] )

Listing 1. The functional and time specification of the find method [Charguéraud and Pottier 2019].

2.3 The Iris Framework
Iris, is a framework for higher-order concurrent separation logic implemented and verified in the Coq
proof assistant [Jung et al. 2018]. It provides us with Heap-Lang, a deeply embedded higher-order
concurrent imperative programming language 𝜆ref,conc in Coq. This framework uses separation logic
[Reynolds 2002] rules on classical mutable shared data structure manipulation atomic commands
[Jung et al. 2018] such as, the ones present in heap-lang syntax: allocation (ref), lookup (!), mutation
(←) and compare-and-set (CAS). Heap-Lang lets us express concurrent programs by using the fork
instruction and reason on them with the use of: invariants "to allow different threads to access
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the same resources" and ghost states "to keep track of additional information" [Birkedal and Bizjak
2018].

This rich framework provides us with some of the classic separation logic connectives, such as
the separation conjunction (★), separation implication (−∗ ) and the points-to predicate (↩→) [Krebbers
et al. 2017] (not to be mistaken by the Reynolds’ singleton heap (→) predicate). The semantic
definition of such connectives is defined in Reynolds’ paper about separation logic [Reynolds 2002].
A Iris proposition (iProp) has the following type (𝑆𝑡𝑎𝑡𝑒

𝑚𝑜𝑛−−−→ 𝑃𝑟𝑜𝑝), where a state 𝜎 ∈ 𝑆𝑡𝑎𝑡𝑒 is a
finite map N

𝑓 𝑖𝑛
−−−⇀ 𝑉𝑎𝑙 and 𝑃𝑟𝑜𝑝 is a Coq proposition [Krebbers et al. 2017].

3 A FUNCTIONAL IMPLEMENTATION OF SPLAY TREES
In this section we explain how we have proven the correctness of a functional implementation of
splay trees. We start off by showing how we have translated Nipkow’s Isabelle implementation and
predicates [Nipkow 2014] to Gallina. Then we show how we have proven the correctness of the
splay tree methods, mainly the splay, insert, splay_max and delete methods. Finally, we present
a brief discussion about the differences from our proof of correctness and Nipkow’s and how we
have automated our proofs.

3.1 Nipkow’s Implementation
To verify a functional implementation of the splay tree algorithm, we first defined a simple inductive
type for binary trees. This binary tree inductive type has two constructors: L for leaves, which has
no parameters (with notation < | | >), and T for nodes that has as parameters a left binary tree 𝑡1,
an ordered type element 𝑜.𝑡 and a right binary tree 𝑡2 (with notation < | 𝑡1, 𝑜.𝑡 , 𝑡2 | >).
Since some of the proofs and predicate definitions require the use of a set data structure, we

have decided to use a Coq module for sets implemented with a simple list data structure (since it
already comes with some properties proven)1. Specifying that a binary tree is searchable required
the set data structure XSet (an ordered type set) as shown in Listing 2.

F i x p o i n t b s t ( t : t r e e ) : Prop : =
match t with
| < | | > => True
| < | l , a , r | > => ( b s t l ) ∧ ( b s t r ) ∧
XSet . F o r _ a l l ( fun n => n < a ) ( s e t _ t r e e l ) ∧
XSet . F o r _ a l l ( fun n => a < n ) ( s e t _ t r e e r )

end .

Listing 2. Binary search tree predicate

After the definition of the binary tree inductive type and the binary search tree predicate, we
have simply translated the recursive splay tree algorithm from Nipkow’s Isabelle implementation
[Nipkow 2014] to Galina. This translation consisted in defining the splay tree function, the insert
function, the splay_max function and the delete function.

3.2 Functional Correctness
In this section we present the most important lemmas that we have proven (some that already
have been proven by Nipkow) related to the binary search tree. During the proving task, some
difficulties arose, particularly how and where to perform induction. We then successfully proved

1Coq set module https://coq.inria.fr/library/Coq.MSets.MSetWeakList.html
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these lemmas using functional induction, which performs case analysis and induction following
the definition of a function” 2.
One of the main lemmas that we have first proven is the set invariant over splay: After ap-

plying the splay function, the nodes of a binary tree are the same as the ones before the
application. Then, we have proven lemma in Equation 1 which states that: Applying the splay
tree function on a binary search tree preserves the binary search tree predicate. In order
to prove such lemma, we have used functional induction with the set invariant over splay lemma
and applied a set of tactics to automate the proofs, resulting in a 4 line proof of Coq tactics.

bst 𝑡 −→ bst (splay 𝑎 𝑡) (1)

With the use of functional induction we have easily proven the binary search tree invariant over the
insert method as well, since this method calls the splay function and we have already proven this
invariant for the splay method (Equation 1). Nevertheless, the delete method calls the splay_max
method which is equivalent to calling the splay method on the node with maximum value (Equation
3). Then before proving the correctness of the delete method, we have proved that the splay max
function preserves the binary search tree invariant as mention in Equation 3. With the mentioned
proofs above, we have then proved that the all splay tree method preserve the binary search tree
invariant, as expected.

bst 𝑡 −→ bst (splay_max 𝑡) (2)
bst 𝑡 −→ (∀ 𝑥, XSet.In 𝑥 (set_tree 𝑡) −→ 𝑥 < 𝑎 ∨ 𝑥 = 𝑎) −→ splay_max 𝑡 = splay 𝑎 𝑡 (3)
XSet.Equal (set_tree (splay_max 𝑡)) (set_tree 𝑡) (4)

3.3 Discussion
We have proven all the lemmas/theorems that Nipkow’s has proven related to the splay tree
functions. The lemmas that are related to transformations between trees and lists and between
trees and maps that Nipkow has proven, were not proven by us.

Beside the theorems that were proven by Nipkow’s, we have proven, unlike Nipkow, that every
possible tree constructed by the splay (lookup), insert and delete operations is a binary
search tree, assuming that the initial tree is a binary search tree. To prove this theorem, we
assume that there is an arbitrary list 𝑙 with key values that will be used for the input in the calls to
these three operations (e.g., if list is [a;b] then one possible sequence would be (insert 𝑏 (splay 𝑎 𝑡 ))).

F i x p o i n t s p l a y _ i n s e r t _ d e l e t e _ s t a r t l : =
match l with
| [ ] => [ t ]
| hd : : t l =>

l e t i n s e r t _ : = s p l a y _ i n s e r t _ d e l e t e _ s t a r ( i n s e r t hd t ) t l i n
l e t d e l e t e _ : = s p l a y _ i n s e r t _ d e l e t e _ s t a r ( d e l e t e hd t ) t l i n
l e t s p l a y_ : = s p l a y _ i n s e r t _ d e l e t e _ s t a r ( s p l a y hd t ) t l i n
i n s e r t _ ++ d e l e t e _ ++ sp l ay_

end .

Listing 3. Function that creates a list of all possible trees generated by list 𝑙 , where (++) is the append list
operation

After we have proved successfully the functional implementation, we have successfully extracted
an implementation of the splay algorithm, from Gallina to OCaml, for the natural numbers set
since the fact that they are an Ordered Type set is already proven.

2Functional induction: https://coq.inria.fr/refman/using/libraries/funind.html
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4 A POINTER-BASED IMPLEMENTATION OF SPLAY TREES
In this section we describe how we have modeled the GCC splay tree pointer-based implementation
from libgomp [GCC team 2019]. We first show how we have translated the C++ code and then
how we modeled the splay tree data structure algorithm in order to prove its correctness. Later
on, we explain how we have only proven the correctness of the splay method from the splay tree
algorithm.

4.1 GCC’s Splay Tree: Heap-Lang Code Translation
To perform the verification of GCC’s splay tree algorithm using the Iris framework, we manually
translated the C++ code from libgomp [GCC team 2019] to heap-lang, 𝜆ref,conc. In general, the
translation of the C++ code to heap-lang is straightforward. However, a problem that occurred
during this task is that some operations and control structures available in the C++ language are not
present in heap-lang. For this reason, we had to translate these operations and control structures
with what heap-lang had to offer us. There are four aspects that deserve being explicitly mentioned:
access and mutation of node fields, loops, access to addresses and generic types.

4.2 Splay Tree Predicate
In the splay tree predicate, we have first created the binary search tree invariant, Inv 𝑝 𝐷 𝐹 𝑉 𝑊 ,
which states that we have a binary search tree with root 𝑝 , domain 𝐷 (the nodes that belong to the
tree structure), edge set 𝐹 (the edges of the tree, e.g., 𝐹 𝑥 𝑦 𝑅𝐼𝐺𝐻𝑇 meaning that we have an edge
from 𝑥 to 𝑦 with orientation 𝑅𝐼𝐺𝐻𝑇 ), value function 𝑉 (which is the mapping of the nodes to the
value that they hold) and finally𝑊 (the weight function that gives an arbitrary positive value to
each of the node of the binary search tree, setup for the proof of the amortized logarithmic time).
Afterwards, we have defined the memory as a generalized map and created the invariant for

the memory, Mem 𝐷 𝐹 𝑉 𝑀 , which states that every node in domain 𝐷 must have one of the
four content values: NodeB (Node with two children), NodeL (Node with only left children), NodeR
(Node with only right children) or NodeN (Node with no children), and must successfully map
these content values to binary search tree components (edges and node values). We also define the
invariant, mapsto_M𝑀 , that asserts ownership of all the pointers that are in map𝑀 .

The splay tree predicate consists of the three mentioned invariants: the binary search tree invari-
ant Inv, the binary search tree memory invariantMem and the ownership invariantmapsto_M.
The splay tree invariant abstracts from the edge set 𝐹 and memory𝑀 . The predicate ST 𝑝 𝐷 𝑉 𝑊

translates to saying that if we have a root node 𝑝 , domain 𝐷 , value function 𝑉 and weight function
𝑊 then there exists an edge set 𝐹 and memory 𝑀 for which 𝐹 is a binary search tree (Inv), all
pointers of 𝑀 match with the edges of 𝐹 and values of 𝑉 (Mem) and we have ownership of all
pointers in𝑀 (mapsto_M).

ST 𝑝 𝐷 𝑉 𝑊 ≡
∃ 𝐹 𝑀, Inv 𝑝 𝐷 𝐹 𝑉 𝑊 ★ Mem 𝐷 𝐹 𝑉 𝑀 ★ mapsto_M𝑀. (5)

4.3 Component properties
For the binary search tree invariant, we have proven certain properties for each of the predicates
and invariants that it holds, namely for the: domain, edges and path. Three of the main proofs
about the binary search tree invariant are 1) There exists an unique path between two nodes
of a binary search tree (Equation 6) 2) A node from a tree as at most one parent (Equation
7) and 3) A path between two nodes is finite (Equation 8). For these proofs we had to extend
the path inductive type to both path_count and path_memory. The path_count 𝐹 𝑥 𝑦 𝑐 states that
there exists a path from 𝑥 to 𝑦 with size 𝑐 and path_memory 𝐹 𝑥 𝑦 𝑙 states that there exists a path
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from 𝑥 to 𝑦 and 𝑙 is the trajectory witness for such path.

∀ 𝐹 𝑥 𝑦, Inv 𝑝 𝐷 𝐹 𝑉 𝑊 −→ path_memory 𝐹 𝑥 𝑦 𝑙1 −→ path_memory 𝐹 𝑥 𝑦 𝑙2 −→ 𝑙1 = 𝑙2 (6)
∀ 𝐹 𝑥 𝑝1 𝑝2, Inv 𝑝 𝐷 𝐹 𝑉 𝑊 −→ 𝐹 𝑝1 𝑥 −→ 𝐹 𝑝2 𝑥 −→ 𝑝1 = 𝑝2 (7)
∀ 𝐹 𝑥 𝑦 𝑐, Inv 𝑝 𝐷 𝐹 𝑉 𝑊 −→ path_count 𝐹 𝑥 𝑦 𝑐 −→ 𝑐 ≤ |𝐷 | (8)

4.4 Edge set manipulation
To model the rotations done by the splay algorithm, we need to be able to manipulate the edge set
𝐹 . For this reason we define several operations that make this possible, such as: add edge, remove
edge, update edge, union edge and elimination of a set of edges. The add edge operation, seen in
Equation 9, receives an edge set 𝐹 and adds edge from 𝑥 ′ to 𝑦 ′ with orientation 𝑜 ′ (orientation in a
binary search tree can be either 𝐿𝐸𝐹𝑇 , 𝑅𝐼𝐺𝐻𝑇 ) with the use of the or logical connective. In order
to remove an edge from 𝑥 ′ to 𝑦 ′, we use the remove edge operation mentioned in Equation 10.

𝑎𝑑𝑑_𝑒𝑑𝑔𝑒 𝐹 𝑥 ′ 𝑦 ′ 𝑜 ′ ≡ 𝜆 𝑥 𝑦 𝑜, 𝐹 𝑥 𝑦 𝑜 ∨ (𝑥 = 𝑥 ′ ∧ 𝑦 = 𝑦 ′ ∧ 𝑜 = 𝑜 ′) (9)
𝑟𝑒𝑚𝑜𝑣𝑒_𝑒𝑑𝑔𝑒 𝐹 𝑥 ′ 𝑦 ′ ≡ 𝜆 𝑥 𝑦 𝑜, 𝐹 𝑥 𝑦 𝑜 ∧ ¬(𝑥 = 𝑥 ′ ∧ 𝑦 = 𝑦 ′) (10)

Other important manipulation operations that we have defined are the update edge, the union
edge and the removal of a set of edges that belongs to certain domain. The update edge operation
definition in Equation 11 redirects an edge from a node to another by removing the edge for where
he points to where he will point next. Other relevant operation, in definition 12, is the union edge
which does the union of two edge sets 𝐹1 and 𝐹2 with the or logical connective (similar to the add
edge operation). Finally, we have two more operation, remove edge that are not in D (Equation 13)
and remove edge that are in D (Equation 14).

𝑢𝑝𝑑𝑎𝑡𝑒_𝑒𝑑𝑔𝑒 𝐹 𝑥 ′ 𝑦 ′𝑧 ′𝑜 ′ ≡ 𝜆 𝑥 𝑦 𝑜,¬((𝑥 ′ = 𝑥 ∧ 𝑦 ′ = 𝑦) ∨ (𝑥 ′ = 𝑥 ∧ 𝑧 ′ = 𝑦)) ∧ 𝐹 𝑥 𝑦 𝑜

∨ (𝑥 ′ = 𝑥 ∧ 𝑧 ′ = 𝑦 ∧ 𝑜 ′ = 𝑜) (11)
𝑢𝑛𝑖𝑜𝑛_𝑒𝑑𝑔𝑒 𝐹1 𝐹2 ≡ 𝜆 𝑥 𝑦 𝑜, 𝐹1 𝑥 𝑦 𝑜 ∨ 𝐹2 𝑥 𝑦 𝑜 (12)
𝑟𝑒𝑚𝑜𝑣𝑒_𝑒𝑑𝑔𝑒_𝑡ℎ𝑎𝑡_𝑎𝑟𝑒_𝑛𝑜𝑡_𝑖𝑛_𝐷 𝐹 𝐷 ≡ 𝜆 𝑥 𝑦 𝑜, 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝐹 𝑥 𝑦 𝑜 (13)
𝑟𝑒𝑚𝑜𝑣𝑒_𝑒𝑑𝑔𝑒_𝑡ℎ𝑎𝑡_𝑎𝑟𝑒_𝑖𝑛_𝐷 𝐹 𝐷 ≡ 𝜆 𝑥 𝑦 𝑜, ¬(𝑥 ∈ 𝐷) ∧ ¬(𝑦 ∈ 𝐷) ∧ 𝐹 𝑥 𝑦 𝑜 (14)

These last two operations in Equation 13 and 14 are important when we want to extract a sub-tree
of a binary search tree, perform some operation on this sub-tree and then rejoin it with the original
tree. This is possible with the use of the child (Equation 15) and join (Equation 16) lemmas that
we have proven. The child lemma in Equation 15 states that if we have a binary search tree with
root 𝑝 and we have some edge from 𝑝 to 𝑥 (𝐹 𝑝 𝑥 𝑜), then the sub-tree with root 𝑥 is also a binary
search tree. Meanwhile, the join lemma in equation 16 states that if we do some transformation in
the child sub-tree, and this transformation guarantees that the sub-tree is still a binary search tree,
then we can rejoin the root with this new transformed sub-tree and the overall tree is a search tree.

Inv 𝑝 𝐷 𝐹 𝑉 𝑊 −→ 𝐹 𝑝 𝑥 𝑜 −→ let 𝐷 ′ := (descendants 𝐹 𝑥) in
let 𝐹 ′ := (remove_edge_that_are_not_in_D 𝐹 𝐷 ′) in
Inv 𝑥 𝐷 ′ 𝐹 ′ 𝑉 𝑊 (15)

Inv 𝑝 𝐷 𝐹 𝑉 𝑊 −→ 𝐹 𝑝 𝑥 𝑜 −→ let 𝐷 ′ := (descendants 𝐹 𝑥) in
let 𝐹𝐶 ′ := (remove_edge_that_are_in_D 𝐹 𝐷 ′) in
Inv 𝑧 𝐷 ′ 𝐹 ′ 𝑉 𝑊 −→ let 𝐹 ′′ := (add_edge(union_edge 𝐹 ′ 𝐹𝐶 ′) 𝑝 𝑧 𝑜) in
Inv 𝑝 𝐷 𝐹 ′′ 𝑉 𝑊 . (16)
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4.5 Specification and Correctness of Rotations
During the proof of correctness of the splay tree method, we needed to prove the correctness of
every rotation performed on the root and on the children of the root. Although the correctness of
these operations were easy to prove, since we did not managed to find a good way to automate the
proofs, we had to proof all the 48 cases of rotations for the root and the 64 for the children of the
root which turned out to be costly in terms of lines of proving.

4.6 Iterative Rotate Inductive Predicate
We have modeled the splay tree method as an inductive predicate called fw_ir, that we read as
forward iterative rotate. The predicate

fw_ir 𝐹 𝑉 𝑝 𝑥 𝑘 𝑛 𝐹 ′ 𝑠

says that if we have edge set 𝐹 and value function 𝑉 , and we perform the splay tree method on
root 𝑝 with key 𝑘 , then 𝑛 rotations are required to get to edge set 𝐹 ′ with root 𝑥 and state 𝑠 . The
state of the splay tree method can be either GOING, if the algorithm did not end, or ENDED, if it
is over. In total, we needed 15 rules to define this inductive predicate, showing the complexity of
GCC’s splay method implementation. After defining such predicate, we have proven, in Equation
17, that for any state in between the cycle of the iterative splay tree method, the tree preserves the
search property.

Inv 𝑝 𝐷 𝐹 𝑉 𝑊 −→ fw_ir 𝐹 𝑉 𝑝 𝑥 𝑧 𝑛 𝐹 ′ 𝑠 −→ Inv 𝑥 𝐷 𝐹 ′ 𝑉 𝑊 . (17)

Afterwards we have tried to prove that the splay tree algorithm terminates: considering a binary
search tree with root 𝑝 , edge set 𝐹 and value function 𝑉 , there exists a final: root 𝑝 ′, edge set 𝐹 ′
and a finite number of rotations 𝑛 for fw_ir 𝐹 𝑉 𝑝 𝑝 ′ 𝑘 𝑛 𝐹 ′ ENDED, i.e.,

∃ 𝑝 ′ 𝑛 𝐹 ′, fw_ir 𝐹 𝑉 𝑝 𝑝 ′ 𝑘 𝑛 𝐹 ′ ENDED

The splay tree termination proof mentioned was reduced to proving that after a constant number
of rotations 4, if possible, the path to the key node that is being searched for decreases after these 4
rotations (Equation 18). After analysing the double rotation, i.e., the zig-zig and zig-zag operations,
we have informally proven this lemma. Nevertheless, since the fw_ir predicate that models the
splay tree algorithm is quite complex, proving it required us to prove 49 cases which were costly,
and so we did not managed to prove this lemma and had to assume for know to be true.

Inv 𝑝 𝐷 𝐹 𝑉 𝑊 −→
path_find_count 𝐹 𝑉 𝑝 𝑥 𝑧 (4 + 𝑛) 𝐸𝑁𝐷𝐸𝐷 −→
fw_ir 𝐹 𝑉 𝑝 𝑥 ′ 𝑧 4 𝐹 ′ 𝐺𝑂𝐼𝑁𝐺 −→
(∃𝑚 𝑦, (𝑚 < 4 + 𝑛) ∧ path_find_count 𝐹 ′ 𝑉 𝑥 ′ 𝑦 𝑧 𝑚 𝐸𝑁𝐷𝐸𝐷) (18)

4.7 Splay Method Specification and Proof
After all this effort, we successfully proven that the inductive predicate bw_ir implements the splay
tree algorithm from the GCC implementation. And then assuming that there exists an end to the
splay tree algorithm applied to a binary search tree, i.e., assuming lemma 18, we have the prove for
the correctness of the splay tree method in Equation 19, which states, as a Hoare triple, that the
splay tree method ends on a binary search tree and the result is a binary search tree.

{{{𝑝𝑝 ↦→ #𝑝 ★ ST 𝑝 𝐷 𝑉 𝑊 }}}
splay_tree_splay #𝑝𝑝 #𝑘 ; ; !#𝑝𝑝
{{{(𝑝 ′ : 𝑙𝑜𝑐), 𝑅𝐸𝑇 #(𝑝 ′);𝑝𝑝 ↦→ #𝑝 ′ ★ ST 𝑝 ′ 𝐷 𝑉 𝑊 }}}. (19)
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5 EVALUATION
During the evaluation phase, we have counted the lines related to the Code, Tactic definition and
Theorem/Lemmas for the functional implementation in Table 1, and for the pointer-based imple-
mentation in Table 2). From these mentioned tables, we can see that the ratio from number of lines
of code to number of lines of theorems/lemmas is roughly 1:9 in the functional implementation and
1:138 in the pointer-based implementation. This ratio difference between these two implementations
and the difference between the overall total number of lines of the two implementations, shows
the difficulty between proving a functional implementation and a pointer-based implementation,
which, as we explained in Section 2.2, the later is more error prone.

Functional #lines
Code 1 205

Tactic definition 2 176
Theorem/Lemmas 3 1775

TOTAL: 3 2156
Table 1. Functional number of lines

Pointer-based #lines
Code 1 200

Tactic definition 2 223
Theorem/Lemmas 3 27594

TOTAL: 3 28017
Table 2. Pointer based number of lines

6 CONCLUSION
The main challenge addressed by this project is the formal verification of pointer-based splay trees
using the Iris framework. We started by using Coq to successfully prove functional correctness of a
functional implementation of splay trees, in a development inspired by Nipkow’s work [Nipkow
2014]. We then modelled and verified a real pointer-based implementation of splay trees— the one
used by GCC, the GNU’s Compiler Collection. The verification of this pointer-based implementation
proved to be much more challenging than the verification of the functional implementation. For
example, we left the lemma in Equation 18 unproven. Nevertheless, we were able to verify key
properties of splay trees and we have organized our work in such a way that anyone who wants to
prove the correctness of algorithms related with binary search tree structures has a good starting
point with some important properties already proven.
Our work for the proof of GCC’s splay tree pointer-based implementation, was inspired by

the work of Mével, G et al. [Mével et al. 2019] for the union find algorithm. After all, the Iris
framework is still a recent tool and their work was extremely important to understand how they
have approached the verification problem. In particular, we modeled the tree structure as a graph
and the memory as a generalized map in the same way as Mével, G et al. However, since we are
working with a completely different structure and algorithms from those considered by Mével,
G et al., then we had different challenges. For example, in the find operation of the union find
algorithm, they have defined an inductive predicate with only two (2) cases (for the root node and
for a non-root node). We noticed that the heap-lang function for the splay method deals with a lot
more case conditions than just 2, which substantially increases the verification complexity.

CURRENT LIMITATIONS AND FUTUREWORK
At the moment, we have some prepared setup to start proving intensional aspects of the splay
tree algorithm, namely its logarithmic amortized time complexity. Nevertheless, the lemma that
we have referred in Section 4.6 Equation 18 was left unproven. We have informally proven it (on
paper), but did not prove it in the Coq Proof Assistant. Therefore, since it is not desirable to have
lemmas depending on other unproven lemmas (this case the splay method specification), then the
proof of this lemma should be top priority.
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Insert and delete operations. We are confident that we would have proven the correctness of the
insert method for GCC’s splay tree pointer-based implementation. However, we felt that the lemma
in Section 4.6 Equation 18 was more important to invest our time in proving due to the reasons that
we have previously mentioned. Nevertheless, the remove method from the GCC implementation
would require a little more effort to prove, due to the fact that we would have to create an inductive
predicate that would model the splay_max while loop.

Time complexity properties. After the proof of correctness of these splay tree methods we would,
for future work, start proving time complexity properties of the splay tree algorithm. Nevertheless,
to prove the amortized algorithm time, we would have to change the splay tree predicate mentioned
in Section 4.2 to have stored in itself Φ time credits, which we did not did because we would have
to modify every lemma that would use such predicate. And besides this extension of the splay tree
predicate, we would have to prove the difference of potential for each rotation operation (single
and double).

Concurrency. During this project, we also did not use Iris concurrency reasoning which we would
like to further explore on concurrent algorithms related to tree structures. One of the concurrent
tree structures that we would wish to explore in the future is the counting-based tree (CBTree)
[Afek et al. 2014], a concurrent variant of Splay Trees. This would allow us to explore more of what
the Iris framework has to offer us, such as: invariants and ghost states [Birkedal and Bizjak 2018].
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