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Instituto Superior Técnico, Lisboa, Portugal

January 2021

Abstract

Quantitative models of greenhouse gases (GHG) emissions can help policy-makers gauge sustainable pathways towards limiting global
warming to stay within 1.5◦C of the Paris Agreement. The agricultural and energy sectors are particularly important, as they jointly
represent more than two thirds of global GHG emissions. This thesis uses an ensemble of recurrent and convolutional neural networks
and hybrid architectures to develop a biophysical model for the evolution of land use and associated GEE in Portugal. The models’
hyperparameters tuning uses a state-of-the-art framework of Bayesian optimisation and a new error estimation algorithm based on an
out-of-sample growing window approach is proposed. Land use shares were modelled as a function of final exergy in the agricultural
sector and Gross Domestic Product (GDP), and emissions as a function of distribution of land use, total final exergy, and GDP. Models
were trained for the period of 1961-2016 and applied from 2017 to 2030 under two plausible economic scenarios with and without
COVID-19 influence. Results show that land use is correlated with GDP, and GHG emissions from agriculture and energy are correlated
with total final exergy. Economic growth leads to a reduction in cropland area, increased intensity of energy consumption, and variations
in sectoral GHG emissions. The novel coronavirus pandemic might decrease the cropland area reduction and mitigate the increase in
emissions of CO2e up to 2030. Despite the complexity of the model, estimation errors exceeded the variation range of the forecasted
variables. Uncertainty is critical for scenario assessment, casting doubt over simpler models.
Keywords: Agriculture, Bayesian Optimisation, Exergy, Portugal, Recurrent Neural Networks, Convolutional Neural Networks

1. Introduction

1.1. The foundations of a Civilisation
The pillars that support the development and maintenance of

a civilisation are access to a stable food supply, social structure,
record keeping, technology and arts [1]. Projected impacts of
climate instabilities and resources misusage particularly affect
one of those pillars: agriculture.

Over the past century, there has been spatial segregation
between food producers and consumers, leading to changes in
terms of energy consumption patterns and land use [2]. Glob-
ally, there is a progression towards a set up of densely popu-
lated cities whose sustenance comes from intensively cultivated
lands/raised livestock decoupled from the cities’ site. Without
agriculture, it is unmanageable to have modern institutions –
it is unquestionably the foundation of our complex civilisation,
which is pronouncedly city-based [3, 4]. Altogether, the fate of
the civilisation follows the fate of agriculture - our survival is
inherently dependent on agriculture’s thriving [1, 5, 6].

1.2. Biophysical Modelling
In order to mitigate dangerous ambiguity of scenarios for the

future, one should focus on the deceleration or even reversion
of the current transition from the stable and naturally driven
conditions of the Holocene to the human driven unstable con-
ditions of the Anthropocene [7]. For this purpose, integrated
biophysical and economic models capable of explicitly depict-
ing the results of possible sustainable pathways are becoming a
common approach. For instance, Automated Land Evaluation
System (ALES) is a computerised framework that allows to
estimate crop and consequent economic production; Decision
Support System for Agrotechnology Transfer (DSSAT) is an
explicit suite of models of crop plant production [8]. More re-
cently, the data generated in agriculture operations, gathered
largely through remote sensing, has been demonstrated to be

suitable for new developed computational techniques. Those
methods brought bold and powerful ways of examining partic-
ular agriculture problems, being applied essentially to image
processing and data analysis [9].

Such models contemplate equilibria between every agent con-
stituting society–nature interactions and processes with well
established frontiers, corresponding to untransgressible plane-
tary boundaries [10]. Furthermore, underlying these models
is usually a time series approach that can be used to address
questions of causality, trends, and the likelihood of future out-
comes. Hence, policy makers will have unveiled solid ground
for the development and implementation of sustainable man-
agement strategies and pathways for a sustainable future.

1.3. Artificial Intelligence
Attempts with modern techniques, such as Artificial Neural

Networks (ANNs), being used as a method for modelling and
forecasting in environmental studies for Portugal have already
been verified. In a study, the useful exergy concept was used to
predict the energy consumption based strictly on the economic
evolution of the country [11].

Classical biophysical models are theory-driven, or, differ-
ently, implemented with a bottom-up approach. This way of
description poses a difficulty of interpreting non-linearities be-
tween interplaying processes. On the other hand, there are
alternative techniques that present themselves as data-driven
or, differently, as top-down approaches. The idea is to scour
data in order to find novel and useful relationships that might
otherwise remain unknown with more traditionalist methods
[12].

There is a strong need to deal with the already predictable
high number of covariates in a way that enables the extraction
of explicit answers on how materials, land and energy have been
used to produce value for an economy over time. As mecha-
nistic relationships between variables are unknown and conven-
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tional statistics is limited by high covariance and indeterminate
causality, the application of Machine Learning (ML) methods,
a subcategory of Artificial Inteligence (AI), will attempt to pro-
duce clarity regarding the interdependencies between drivers of
change and outcomes. Such methods are advantageous in sit-
uations where one does not posit an underlying process or any
rules about that underlying process. The focus is rather on
identifying patterns that describe the processes’ behaviour in
ways useful to predicting the outcome of interest [13].

It is possible to condense all applications (of where ML
has been predominantly applied) to four first level categories.
Those are crop management, livestock management, water
management and soil management. In crop management some
sub-categories are yield prediction, disease detection, weed de-
tection, crop quality, species recognition, fruits counting, and
crop type classification (that could be generalised to land cover
classification). Regarding livestock management, there are the
animal welfare and livestock production sub-categories. In
terms of water management, the main object of study is usually
the evapotranspiration. Finally, soil management consists of
studying agricultural soil properties, such as the estimation of
soil drying, condition, temperature and moisture content [14].
Those problems deal with either classification or prediction,
with more prevalence of classification.

For all of the previous subjects, the following ML methods
have been deployed: support vector machines, Bayesian mod-
els, deep learning, decisions trees, ensemble learning, instance
based models, ANNs and Recurrent Neural Networks (RNNs).
Each one of these algorithms were designed for different pur-
poses and comprehensive reviews with correspondence between
problems under study and suitable models already exist [14, 15].

This work is explicitly dives into the Portuguese agriculture
sector’s sustainability and target an initial analysis of the pe-
riod comprised between 1961-2016, as substantial changes took
place as a consequence of transition from organic fertilisers to
chemical-based fertilisers, increased industrialisation and the
entry into the European single market. The goal of the the-
sis is to contribute towards the development of a biophysical
model framework. The model will be particularly applied to
the evolution of Portuguese land use, with special focus on the
agriculture, in order to explain how land and energy have been
used to produce value for the Portuguese economy. Moreover,
the model will be employed to forecast plausible pathways for
the future of the sector, assessing land use emissions, up to
2030. More concretely, we are first going to try to explain the
relationship between the distribution of land use in terms of
final exergy usage in the agricultural sector [16] and economic
growth explained in terms of Gross Domestic Product (GDP).
As a second step, we are going to try to study how the for-
mer three covariates, land use distribution, economic growth,
and final exergy, relate to Greenhouse Gases (GHG) emissions.
By comprehensively studying individual sectors that constitute
the global economic machine we expect to gain a more precise
perspective on the reciprocal dynamics.

2. Background

2.1. Energy and Economy

Energy can be recognised as the only universal currency:
one of its many forms need to be transformed to get anything
done. Universal demonstrations of these transformations range
from the rotations of galaxies to thermonuclear reactions in
stars. Life on Earth would be impossible without the photo-
synthetic conversion of solar energy into phytomass, it under-
pins all higher life. Humans depend on this transformation for

their survival, and many more energy flows to support their
existence within increasingly complex societies [1].

2.1.1 Exergy: why and what is it?

A better way of tracing the influence of energy is to express it
in terms of its potential usefulness, i.e., the actually delivered
heat, light, and motion. This subdivision of a given amount
of energy is called exergy, and it is not a conserved property
because it can be transformed into anergy by irreversibilities,
as a consequence of the 2nd law of thermodynamics.

The concept of exergy is defined as the maximum work ob-
tainable when the system is brought to a reference state of
thermodynamic equilibrium by means of completely reversible
processes or, differently, by means of ideal energy conversion
processes. Therefore, a reference state must be defined. In
standard uses, it is defined to be a state of thermodynamic
equilibrium characterised by the same temperature, pressure
and chemical composition as the environment. Exergy is also a
thermodynamic measure of energy quality, measuring the avail-
ability to perform work of a certain amount of energy, given
reference environmental conditions.

2.1.2 Useful Exergy and Economic Growth

In an exergy framework, the useful stage of the energy flow
accounts for satisfied energy needs. This means that an useful
energy analysis with an exergy approach leads to a measure
closer to the productive energy uses within an economy, pro-
viding better insights on the relation between economic growth
and energy uses. It has been acknowledged as an appropriate
stage for energy accounting, independent from efficiency im-
provements and technological progress at the different stages
of the exergy flow [17].

Exergy is extensively presented in the literature as a good
variable for economic and sustainability assessments of energy,
as it accounts for the quality in use and conversion of energy
vectors and materials [18]. Particularly, for Portugal, Serrenho
et al. [18] concluded that there is an approximately linear re-
lationship between useful exergy and the GDP throughout the
period of 1960 to 2010. Practically, this means that 60 years
ago we needed 1MJ of useful exergy per unit of GDP (1€ in
2010 prices), and the same relation still holds today.

2.2. Deep Learning
The most fundamental type of neural network is a perceptron

(or a single layer of Threshold Logic Units (TLUs), figure 1).
The reciprocal and most direct comparison is normally the neu-
ron. One can simulate a set of neurons and their connections
in an attempt to achieve the ability for a machine to “learn”
and to “memorise” basic tasks.

Firstly, in the forward phase, a perceptron takes an array or
list of numbers as inputs, computes a weighted sum of all in-
puts, and uses an activation function to compute the response.

The next step consists of the backward phase in which the
output of the network is compared with a given target value
(supervised learning). As this is a parametric model, the er-
ror between both output and target values can be minimised
with an error backpropagation algorithm [20] by adjusting the
weights, which are randomly initialised at the beginning. The
amount by which each weight needs to be changed in order to
minimise the error is unknown a priori. However, the direction
in which each weight needs to be changed to reduce the error
can be discovered via gradient descent method. The direction
of a weight change is computed by using the sign of the gradi-
ent of the cost function with respect to each of the weights and
by using a tunable learning rate parameter that quantifies the
magnitude of the adjustment [21].
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Figure 1: A TLU is an artificial neuron which computes a
weighted sum of its inputs and then applies a function to that
sum and outputs the result. Multiple TLUs compose a percep-
tron [19].

The forward phase and reverse phase are repeated for a num-
ber of iterations (epochs) until the network’s error no longer
decreases. A trained network is said to be a ‘model’ which
‘encodes’ the problem’s domain, and the model can then be
applied to unseen data and the network will produce an output
in accordance with the input pattern [21].

In order to add complexity, it is possible to form layers com-
posed of perceptrons, and when all the neurons in a layer are
connected to every neuron in an immediately adjacent layer
(i.e., its input neurons), the layer is called a dense layer. More-
over, an extra bias feature is generally added and it is typically
represented using a special type of neuron called a bias neuron,
which outputs a constant value of 1, allowing a translation of
the activation function. Without the presence of a bias neuron,
each neuron would take the input and multiply it by a weight,
with nothing else added to the equation. Their weights are
estimated as part of the overall model [21].

The archetypal example of a Deep Learning (DL) model
is the feed-forward deep network or Multi Layer Perceptron
(MLP). Comparatively to a perceptron, a MLP is just a more
complex mathematical function mapping a set of input values
to output values. The function is constructed by composing
simpler functions. Each application of a different mathemati-
cal function can be thought as providing a new representation
of the input [22]. It is composed of one (pass-through) input
layer, one or more layers of TLUs called hidden layers, and one
final layer of TLUs called output layer. If an ANN contains
a deep stack of hidden layers then it is called a Deep Neural
Network (DNN) [21]. MLPs are widely used for classification
and regression problems, and are proven to solve any continu-
ously differentiable function to any precision making it possible
to greatly benefit from them [21, 23].

The success of the model is closely dependent on the choice
of good hyperparameters. The better they are, the smaller
the network’s error. This problem presents itself as an opti-
misation problem: the ultimate goal is finding the minimum
of a ‘black-box’ function f(x) on some bounded set χ, corre-
sponding to diminishing the global network’s error. As we do
not have an analytical expression representative of the network,
the analysis/evaluation is restricted to sampling. If the evalua-
tion is cheap to perform we could sample at many combinations
of hyperparameters randomly and extensively. However, if it
turns out to be a computationally expensive task it is of major
importance trying to minimise the number of samples.

In this work, the problem is considered through the frame-
work of Bayesian optimisation, in which a learning algorithm’s
generalisation performance is modelled as a sample from a

Gaussian Process (GP). This choice has been shown to out-
perform other state-of-the-art global optimisation algorithms
on a number of challenging optimisation benchmark functions
[24]. What makes Bayesian optimisation different from other
procedures is that it constructs a probabilistic model for f(x)
and then exploits this model to make decisions about where in
χ to next evaluate the function, while integrating out uncer-
tainty. The essential philosophy is to use all of the information
available from previous evaluations of f(x). This results in a
procedure that can find the minimum of difficult non-convex
functions with relatively few evaluations, at the cost of per-
forming more computation to determine the next point to try.
When evaluations of f(x) are expensive to perform — as is the
case when it requires training a ML algorithm — then it is easy
to justify some extra computation to make better decisions [25].

2.3. Deep Learning for Time Series
Time series are collections of data points arranged in chrono-

logical order, representing temporal or spacial evolution of the
dynamics of a given variable. Their analysis is intended to ex-
tract meaningful summary and statistical information, hence
enabling the diagnosis of past behaviour as well as the fore-
casting of future behaviour [13].

Despite its predicting features, MLPs model manifests in-
completeness drawn from the introduction of the dimension of
time because it is no longer possible to have fixed-size inputs
and produce fixed-size outputs, the causality of time is not
encoded into the architecture of the model. RNNs are use-
ful because they allow variable-length sequences as both inputs
and outputs, encoding the causality of time. To circumnavigate
the question arisen from the need of input of variable size data
there is a simple and effective approach known as the sliding
window. Basically, a data interval of a fixed size m is taken
and fed into the RNN. From these m elements, one outputs
the ym+1 element, which will be identified as the target. By
continuing sliding the window across, the entire dataset will
eventually be covered and input into the network. Backprop-
agation similarly occurs as in the perceptron, but in this case
through time.

2.3.1 Recurrent Neural Networks

Essentially, a RNN cell does the exact same calculation as
a perceptron, i.e., a weighted sum with an activation function
and it outputs a single number. In another words, it takes in
a set of data over time and outputs a single number or a list
of numbers over time. The major difference is that a RNN
keeps a state that is passed on sequentially. In the following
RNN (see figure 2), the described scheme is illustrated over all
iterations.

Figure 2: Recurrent neuron (left) unrolled through time (right).
The notation is as follows: input vector - xt, output scalar - yt,
“hidden” state - yt−1 [21].

Stacking multiple recurrent layers of cells results in a deep
RNN. Under that condition, a RNN can simultaneously take
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a sequence of inputs and produce a sequence of outputs. This
type of sequence-to-sequence network is useful for predicting/-
forecasting time series: we feed it the data over the last n time-
steps, and it outputs the data shifted by an arbitrary amount
of days into the future. The advantage of this technique over
sequence-to-vector or vector-to-sequence is that the loss will
contain a term for the output of the RNN at every time-step,
not just the output at the last time-step. Consequently, there
will be many more gradients flowing through the model, and
they will not have to flow only through time, they will also flow
from the output of each time-step, resulting in a more stable
and faster training [21].

2.3.2 Training RNNs

In order to train a RNN, we have to unroll it through
time and then use regular backpropagation. This strategy is
named Backpropagation Through Time (BPTT). As with reg-
ular backpropagation, there is a first forward pass through the
unrolled network. In the next step, the output sequence is eval-
uated using a cost function. The gradients of that cost function
are then propagated backward through the unrolled network.
Lastly, the model parameters are updated using the gradients
computed during BPTT. Note that in this case, sequence-to-
sequence, the gradients will flow backward through all the out-
puts used by the cost function [21].

As the output of a recurrent neuron at time-step t is a func-
tion of all the inputs from previous time-steps, it is said to
possess a form of memory. By definition, a part of a neural
network that preserves a given state across time-steps is called
a memory cell. A single recurrent neuron, or a layer of recur-
rent neurons, is a basic cell, or layer, capable of learning only
short patterns. Because of the transformation the data goes
through when passing over a vanilla RNN (see figure 2), some
information is lost at each time-step. After some steps, the
RNN’s state contains practically no trace of the first inputs
[21].

2.3.3 Tackling the Short-Term Memory Problem

However, there are different types of cells specially designed
to learn longer patterns and carry a different source of infor-
mation memory besides the previous output. What happens
inside each type of those RNNs is different depending on the
type used, but the underpinning concept is that they are mathe-
matically designed to accumulate information (such as evidence
for a particular feature or category) over a long duration, and
once that information has been used, it might be useful for
the neural network to dynamically forget the old state at each
time-step, another programmed possibility [22]. This is what
gated RNNs do. These include the Long Short-Term Memory
(LSTM) and Gate Recurrent Unit (GRU) [26], which tend to
be the most common. Further, the vanilla RNN already pre-
sented can too be considered a cell that sustains some memory,
as already discussed.

In a LSTM cell, the state is split into two vectors, repre-
senting a short-term state and a long-term state. Instead, in
a GRU cell both state vectors are merged into a single state
vector. A GRU is one of the most widely used RNN cells. It
is a simplified version of the LSTM cell, with fewer gate con-
trollers and no output gate, meaning that the full state vector
is the output at every time-step [13].

Both GRUs and LSTMs helped solving the exploding and
vanishing gradients problem, that was present in RNNs. This
problem was addressed with GRU and LSTM as a consequence
of their tendency to keep inputs and outputs from the cell in
tractable value ranges. This is due both to the form of the ac-
tivation function they use and to the way that the update gate

can learn to allow information in or not, leading to higher prob-
ability of having reasonable gradient values than in a vanilla
RNN cell, which has no encoded notion of a gate [13].

2.3.4 Convolutional Neural Networks

Most modern time series analysis problems are undertaken
with recurrent network structures, or, less commonly, with con-
volutional network structures. Convolutions are a way to cap-
ture information about the ordering of the entries on a matrix
and it is described by applying a kernel (matrix) to a larger
input matrix by sliding it across, forming a new, convoluted,
matrix [13]. This kernel is applied repeatedly and it incorpo-
rates information about the entries’ neighbours values into its
own value. This is accomplished by pre-specifying a number of
sets of kernels, so that different features can emerge.

Neuron’s set of weights are called filters (or convolutional
kernels), and a layer full of neurons using the same filter out-
puts a feature map, which highlights areas in a matrix that
activates the filter the most. A convolutional layer can have an
arbitrary number of filters, hence outputting a feature map per
filter. This means that a convolutional layer simultaneously ap-
plies multiple trainable filters to its inputs, making it capable
of detecting multiple features anywhere in its inputs. During
training, the convolutional layer will automatically learn the
most useful filters for its task, and the layers above will learn
to combine them into more complex patterns. One advantage of
this type of network is that they have few parameters since the
same convolutional kernels are repeated over and over, meaning
that there are not too many weights to train [21].

Traditional convolution is a poor match to time series be-
cause one of the main features consists on treating all spaces
equally. This makes sense for images, the main area of appli-
cation of Convolutional Neural Network (CNN), but it does
not fit the philosophy of time series, where some points in time
are necessarily closer than others. Convolutional networks are
also structured to be scale invariant, however in time series we
likely want to preserve scale and scaled features [13].

Nonetheless, there is an architectural transformation that
includes modifications to be time aware. In a dilated causal
convolution, 1D convolutional layers are stacked and the di-
lation rate is doubled at every layer, i.e., how spread apart
each neuron’s inputs are. With this configuration, the first
layer gets access to two time-steps at a time, while the next
one sees four time-steps, the next one sees eight time-steps,
and so on [21]. Therefore, the lower layers learn short-term
patterns, while the higher layers learn long-term patterns, be-
ing also capable of processing arbitrarily long sequences. This
also promotes model sparsity and reduces redundant or over-
lapping convolutions, allowing the model to look further back
in time, while keeping overall computations contained [13]. To
conclude, this example of dilated causal convolution introduces
the notion of temporal causality by permitting only data from
prior time points.

2.3.5 Hybrid Networks

Continuing with the rationale of what was explained pre-
viously, we can have a 1D convolutional layer sliding several
convolutional kernels across a sequence, producing a 1D fea-
ture map per convolutional kernel. Each convolutional kernel
would learn to detect a single sequential pattern with a size no
longer than the convolutional kernel’s size. If we use k con-
volutional kernels, then the layer’s output will be composed of
k 1D sequences, all with the same length, or, equivalently, a
single k-dimensional sequence. This means that we can build
a neural network composed of a mix of recurrent layers, such
as LSTM or GRU, and 1D convolutional layers. By using the
zero padding method, the output sequence will have the same
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dimensions as the input sequence. Alternatively, it is possible to
use a stride greater than 1, downsampling the input sequences.
By shortening the sequences, the convolutional layer may help
the recurrent layers detect longer patterns [21].

3. Implementation

3.1. Framing the Problem
The first objective is to explain the relationship between the

distribution of land use in terms of final exergy in the agricul-
tural sector and economic growth explained in terms of GDP.
Concretely, we fed a neural network with 6 features, i.e., all
the land use classes but one (5 were available in total) plus
final exergy data for agricultural sector, and GDP. Then, the
neural network was set to output the 4 classes of land use and
the 5th was then determined, as they summed up to 1. By
excluding one feature from the training, we were promoting
smaller optimisation times. To understand how the energy and
economic factors affect land use distribution, data regarding
energy and economy was lagged backwards one time period (1
year) in relation to the land use data. We assumed that the
direction of influence is past (exergy + GDP) → future land
use distribution with support on the argument that patterns
of energy consumption and economic development in the past
dictate how the farmer is going to utilise the land in the fu-
ture. Money and energy are intuitively beforehand required to
consummate significant modifications in land and infrastruc-
tures. Useful exergy usage was demonstrated to be positively
correlated with GDP [18], therefore, as the GDP already ex-
plained the dynamics of useful exergy, final exergy was chosen
to further help modelling the dynamics in the sector.

Secondly, with aid of the framework already established in
the land use modelling, neural networks were fed 8 features
and retrained. Those features were split into land use (4), to-
tal final exergy usage and GDP for Portugal (2), and data
regarding emissions from the agricultural and energy sectors
(2). As the goal is to explain those emissions, the neural net-
works were set to output 2 values. Here, the lagging of the data
was differently done. The data regarding land use and GHG
emissions was lagged backwards one time period (1 year), in
relation to the energy and economic variables. The intuition
behind lagging the land use distribution data is that decisions
regarding land use management are expected to affect land use
emissions in the following years. If, for instance, agriculture
area is massively converted into forest area, we will observe re-
duced emissions from the forest for years after the conversion,
but not necessarily in the year of the conversion. The effect is
anticipated to happen starting only in the following year. The
inclusion of land use data in this model was due to the fact we
are trying to forecast GHG from agriculture, and land use data
contains information concerning that matter. In terms of data
about total final exergy, its use is justified because we are try-
ing to forecast GHG from energy sectors. All models involved
can be seen as autoregressive, because their outputs depends
on observations from previous time-steps.

3.2. Data
The main data and respective known sources available for

this work were organised into land use and land cover statis-
tics, energy, economy, and policies. The first subject referred
to 1) permanent pasture area, permanent culture and arable
land area, forest area and urban/artificial area, and 2) land
use emissions. The energy data consisted on 3) final exergy
[27]. Economy was represented by 4) GDP growth rate [28].
Lastly, policies data [29, 30] concerned the following: 5) wheat
campaigns and policy reform, 6) private forestation policy, 7)

agrarian reform and 8) agricultural transitory measures and
policy reform. As the goal of the thesis was to include a his-
torical perspective from the 1960’s onwards, but the data avail-
able was insufficient to depict long trends, data reconstruction
techniques were applied when necessary, as explained in each
sub-section below, and supported with historical policies.

3.3. Methods
For reproducibility, the software’s versions of the pro-

gramming language and main libraries used in the project
were Python 3.8.4, Keras 2.3.1, Tensorflow 2.3.0, Sklearn
0.22.2.post1, Scipy 1.4.1, Kerastuner 1.0, Numpy 1.18.5, Pan-
das 1.0.4, and Matplotlib 3.2.1.

As neural network algorithms are stochastic, there is random-
ness associated, such as when initialising the network’s random
weights. Hence, for complete reproducibility, the seed of all
the random generators involved in the dynamics of the multi-
ple algorithms were set constant. By doing this, we guarantee
stable and repeatable results. Neural networks use randomness
by design to ensure they effectively learn the function being
approximated for the problem, as this class of ML algorithm
performs better with it.

To keep track of all the dynamics, the code was built mod-
ularly, having multiple scripts performing different tasks. This
enables the reproduction of precise transformations on any
dataset and it results in the construction of libraries of transfor-
mation functions that could be reused in future projects. The
built modules are a data transformation pipeline that shapes
the data into the appropriately expected format, an ensemble of
neural networks for Bayesian optimisation, a hyperparameter
tuner based on Bayesian optimisation, a score iterator for a rig-
orous exploration of all details within all trials, and utilitarian
tools for data analysis and visualisation.

3.4. Performance Estimation
In a forecasting task it is extremely important to be capa-

ble of estimating an error that a predictive model will incur
on unseen data. The time-agnostic solution for validation in
non-serialised data needed to be adapted for time series, where
dependency among observations was expected, instead of inde-
pendent and identically distributed data.

Initially, a time series was split into two parts: the first part
served as an initial fitting period in which a model is trained.
This part was further split into training and validation sets.
The last part of the time series was used for testing on unseen
observations and then estimating the true loss of the model.

Within this method, it is possible to adopt different strate-
gies regarding training/testing split point and growing or slid-
ing window settings, for example. The best way of getting
robust estimates of predictive performance is to employ these
strategies in multiple test periods, generating more unbiased
measures of the generalisation error. Figure 3 depicts the algo-
rithm behind the expected error estimation.

First, by fold, and excluding the nth fold, a model m was
built on the training set and the loss estimate that a predictive
model m would incur on new observations was computed on
the validation set (green extension on Figure 3). Reiterating
the process, a set of models was generated and sorted by their
loss estimate. Second, in order to unbiasedly evaluate the esti-
mations produced by the best model’s configurations, the top
models were re-tested using the testing set (red extension on
Figure 3). Effectively, we obtained a measure of the error δ,
the ground true loss that a model m incurred on new data.

Across each model’s type, the performance estimation
method was conceived with evaluations in two dimensions: 1)
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Figure 3: Error estimation algorithm based on an out-of-sample growing window approach.

preliminary loss estimate, by converging to the ideal architec-
ture’s set up – this measured the magnitude of the difference
between the estimated and the actual error on all models; and
2) final loss estimate, by repeating the previous measurement
on new data and on the best models. One could think that
the generalisation error (out-of-sample error) from the evalua-
tion of the model on the validation data would suffice to infer
an error for the prediction, however it is extremely important
to note that by selecting the best configuration based on the
results from the validation data we were incurring in an im-
plicit overfitting of the model to that data. Hence, if we want
to avoid being biased it was mandatory to compute a second
error by evaluating the model on the testing data set.

Ultimately, the process was repeated on the nth fold, the
difference is that no final loss was estimated because we were
trying to forecast unregistered data, so the past final loss esti-
mates would be the expected error incurred on this data. It is
arguable that we were not using all the available data for train-
ing and that the predictions were made with a chronological
gap, non-consecutively. Nonetheless, as the main interest was
to forecast future scenarios, the model should be able to pre-
dict several time-steps ahead. Thus, this algorithmic proposal
made it more resilient to fit the aim.

For each model m and fold nfold, three prediction matrices
for the testing data were generated, one per sub-model s. Next,
the Root Mean Squared Error (RMSE) was calculated column-
wise for all prediction matrices. These calculations resulted in
an error vector for all sub-models.

These exploratory results served the purpose of diagnosing
which models or sub-models should proceed in the analysis.
There were two acceptability criteria: 1) the Mean Squared
Error (MSE) from each sub-model on validation data shall not
surpass the MSE obtained from the baseline model; 2) the total
RMSE for each sub-model on testing data shall be inferior to
15%, which represented an average tolerance of 3% of error
per land use category (there are 5 categories), and 7.5% per
emission category. For each of the remaining candidate models,
an average of the prediction matrices from the respective sub-
models was computed.

The aggregate results represent the expected response for
each model to this type of data. Reducing a model to a sample
sub-model would be insufficiently representative of how well
it predicts, hence the ensemble of sub-models for intermediate
predictions with respective errors and posteriorly the ensemble
of models utilised for the final prediction. A richer response is
expected to arise with the contributions of multiple sources of
models.

Now, a vector composed of the expected errors for each cate-
gory was estimated. Lastly, all errors were combined across all

folds and models, resulting in global error vector. These values
would be the uncertainty associated with all models’ averaged
out prediction for each feature. In the end, this committee of
models was expected to produce a robust estimation of the av-
erage prediction matrix optimised in the last existing fold. To
this forecast, the expected error δ would be associated.

3.5. Training Procedure
The data was sub-divided into 5 folds with the growing win-

dow method, and the last fold was constituted only by training
and validation data. Oppositely to what happens in the train-
ing set, both validation and testing set preserved their absolute
size for all folds. For each fold, the flatten data was trans-
formed into batches and normalised taking into account just
the training set for the scaling factor.

All 6 models hyperparameters’ boundaries were specified, the
models were then ready for instantiation. Some worth mention-
ing are the maximum number of intermediate layers and the
maximum number of neurons for each of those layers, which
were set to 3 and 100 (with steps of 5), respectively, for all
models where applicable. The convolutional layers had a maxi-
mum of 15 filters (with steps of 2) and a kernel with maximum
size of 6. The learning rate was universally set to start at 0.2.

For every model and for every fold, Out-Of-Sample (OOS)
Bayesian optimisation was deployed, enabling the search of the
hyperparameters that best generalise for both training and vali-
dation data. A maximum of 1000 epochs was set as well as 1500
trials (maximum) and 300 random generated samples for the
initial training. Within every model and fold’s search, the best
3 configurations achieved were saved, as there could be innu-
merable sets of hyperparameters (local minima) that could con-
duct to good results. Because of this choice of picking the best
models, there was an implicit overfitting, so it was favourable
to have more models to generate more statistics for the ex-
pected error of a forecast. This generated 3 measures of the
error for every combination of model m and fold nfold (exclud-
ing nfold = 5), 72 in total. How these measures of error were
treated is explained in section 3.4;

Lastly, the same optimisation was redone on the last fold,
nfold = 5, which included all data for training and validation.
3 forecasts per model were made and averaged out if previously
all models presented an acceptable generalisation power. Oth-
erwise, only the best architectures for our type of data were
included.

3.6. Forecasting Procedure
As at the time of writing we were approaching the end of

the year of 2020, solid estimations of the GDP for 2020 al-
ready existed [31], hence they were included in the data con-
sidered for forecasting. From this point onwards, new data was
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adopted from two scenarios for Portugal in 2030 developed in
the MEET project report [32], in order to extend the final ex-
ergy data, available up to 2016, and to extend the GDP data
that stopped at 2020. These scenarios are product of a col-
laborative partnership between industry leaders from around
30 Portuguese companies, from 13 different sectors, represent-
ing approximately 20% of the nation’s GDP, and government
agents. Plausible trajectories for the Portuguese economy in
the context of the fourth industrial revolution (stronger linking
between technologies and the physical world) were disputed.

A more pessimistic future marked the first scenario, from
now one denoted by scenario P , which was characterised by
evolutionary stagnation. As a consequence, both exergy and
GDP steadily (but not drastically) decreased until 2030 [32].

Antagonistically, a more optimistic scenario, here denoted by
scenario O, described a brighter future where Portugal excelled
in growth and evolution, resulting in a continuous increase of
both final exergy consumption and GDP [32]. Note that the
GDP time series included a severe economic contraction in
2020, consequence of the 2019/2020 beginning of a worldwide
pandemic, caused by a new coronavirus. Supplementary, two
sets without the new coronavirus influence were created, with
the properties stated for scenarios P and O.

In order to deepen the analysis on the dependency of the
model on the input parameters, 4 additional sets of data were
built. The first set consisted on constant GDP values starting
at 2017, and yearly decreases of 5% in the exergy values. For
the second set, the modifications were performed in the oppo-
site direction, with an annual increase of 5% for the exergy. The
third and forth sets are identical to the previous ones, the dif-
ference relies on the fact that the changes are mode on swapped
time series, i.e., the exergy time series was kept constant and
the GDP was varied accordingly.

4. Results and Discussion

4.1. Model Performance

4.1.1 Land Use Distribution

In all the folds, the causal convolutional model had the worst
training MSE when compared to its peers, and in all folds,
except for one, it was outperformed by the remaining models.
This suggests that either this model does not fit well to our data
or stronger regularisation techniques such dropout, to mention
one, or a more varied layer initialisation, with different number
of filters and/or kernel size within intermediate layers, needs to
be implemented to enhance the training/learning process.

Apart from the first fold, we obtained a maximum error per
category of 1.3%. One critical component of the error vector
was the category Urban/Artificial, because of its low absolute
value (∼ 5%) in the data it was important that the error would
be the lowest of them all. This fact is substantiated across all
folds with an error below 0.4% except, again, on the first fold.
Nonetheless, its value on first fold is quite close to being the
lowest and to the ones obtained in the other folds: 0.5%.

Ultimately, the attained error vector was set at

δLULC = [1.4, 1.7, 0.5, 0.4, 1.2] (%) . (1)

which is expected to prevail up to a 7-year long prediction if
the evolution of statistical dynamics of the input variables do
not drastically change in the future. This corresponds to the
temporal length established during the batching process. In
other words, the model was explicitly trained with a 7 time-step
horizon to generate sequences with that length in which the
last instance (seventh time-step) represents a forecast. Also,
let us remember that the forecasting exercises and respective

errors estimation is performed on data non-consecutive to the
data used for training. Therefore, this value of 7 years would
in principle represent the minimum admissible validity for the
error of equation 1 to be considered. Adding the number of
batches from the testing set, 5, the maximum admissible valid-
ity is arguably 12 years. The achieved magnitude of the errors
is at par with the measurements’ errors reported in [33].

The results from the first fold and from the causal convolu-
tional model were included, so the error is expected to be ma-
jorated. The prediction for earlier steps will usually be more
accurate than the predictions for later time-steps, further than
that errors might accumulate.

4.1.2 Greenhouse Gases

For the application of the previous framework to the data
regarding emissions, the error/predictive performance analysis
was repeated. Here, the acceptance rate of sub-models, within
the criteria set in section 3.4, decreased appreciably.

Earlier, the acceptance rate was set at 93%, with 67 mea-
sures of the error that culminated in the error vector presented
in equation 1. Here, overall the Bayesian search denoted much
more difficulties in finding appropriate sets of hyperparameters
that would result in well fitted models to the data, with just
50% of the sub-models being considered as valid. The most
notorious case is the one respecting the causal convolutional
architecture. For that type of network, only two sub-models
(out of a universe of possible 12) fell under the 15% thresh-
old for all data folds. Low performance issues relating to the
convolutional architecture were found as well in section 4.1.1.
Consequently, that architecture’s results were rejected and no
forecast was attempted with architecture #4. The best per-
formant models with this data across all data folds were the
LSTM, GRU, and hybrid convolutional 1D-LSTM networks.

These results might be an indicator of either insufficient co-
variates to fully explain GHG emissions, inadequate lagging,
or that in more recent periods the statistical properties of data
regarding GHG emissions have greatly changed, with those
new dynamics suggesting a transition to different emitting pat-
terns than those of the past, and consequently complexing the
learning process. The last argument could be also supported
on the fact that the training scores achieved on the valida-
tion data do not differ appreciably from the scores previously
displayed in section 4.1.1. Nonetheless, 34 measures of the er-
ror contributed to the final error estimation from equation 2,
divided into emissions from agriculture and energy sectors, re-
spectively, legitimating the joined forecasting capability of all
models, excluding the left-out convolutional architecture. The
error vector,

δGHG = [0.2, 4.2] (Mt CO2e) , (2)

relatively to the values registered in the year of 2016, represents
a deviation of 3.2% and 8.3%, respectively.

4.2. Model Forecasting

4.2.1 Land Use Distribution

A generalised stagnation of the evolution of land use distri-
bution is evident. In spite of the good fitting, the error from
1 exceeds largely the variation scale of the variables in this
scenario. Hence, error bars were not added to slowly varying
trends, focusing the analysis on the qualitative side.

It is remarkable that even though we have a model very well
fitted to the data, its estimated (already low) uncertainty is
greater than the expected variations in the variables for an
extreme plausible scenario. This fact confirms the inherent
complexity and uncertainty in this forecasting exercises, despite
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the rigorous treatment. This also hints that simpler methods
may be subject to stronger scrutiny.

In our simulated data, the GDP decreases up to lower levels
than those of the MEET project report [32] for the pessimistic
scenario. The effect is due to the fact that in 2020 the pandemic
introduced some severe volatility in the Portuguese economy,
rendering an abrupt divergence from historical values in terms
of GDP. As the utilised GDP value for the year of 2020 got
closer to the worst economic foresaw case for 2030, it may be
understandable that no major dynamics were reflected in the
land use, partially validating the argument used in the problem
framing (see section 3.1) that economic resources were required
to consummate significant modifications in land and infrastruc-
tures.

In turn, the GDP values from the optimistic scenario did not
achieve levels as high as those from the MEET project report
[32], due to the lower state of the starting point. In our results,
towards the year of 2030 some trends are already notorious.
Nonetheless, this economic lower starting point may explain
the slow departure from stability, hindering land use changes.

Firstly, there is a slight increase in the forest area. Secondly,
there are non negligible changes in both permanent pasture
area, and permanent culture and arable land. While the for-
mer yielded a higher area, the later steadily started decreasing.
Thus, there is an evidence pointing towards the reduction of
cropland (permanent culture and arable land) area with eco-
nomic acceleration.

In regards to the effects the pandemic introduced in the final
results, the most striking difference was that in the economic
optimistic scenario the reduction in cropland land area was
much more pronounced (≈ 1% less area than in the original
scenario). That difference was mainly transferred into gains
for grassland (permanent pasture) area.

The data sets that had the GDP varied were the major con-
tributors to new dynamics. It is clear that for our model,
the coupling between the GDP and the output variables is
stronger than with the final exergy. In the case where the GDP
growth was accelerated, cropland area sharply decreased, ap-
proximately 4%, and forest area, grassland area, and urban/ar-
tificial area steadily increased by 3.1%, 1.1%, and 0.4%, re-
spectively, when compared to 2017. The opposite trends were
observed when the GDP growth was inversely accelerated (eco-
nomic contraction).

4.2.2 Greenhouse Gases

In the GHG emissions results, two interesting patterns arose
in both scenarios. For the economic pessimistic scenario, the
emissions from energy tended to stall, whereas the emissions
from agriculture rose, though negligibly. In the optimistic
case, emissions from agriculture decreased slightly, while the
emissions from energy sharply increased - roughly 10% more
GHG emissions than that of scenario P in the forecast of 2030.
One might argue that there is a trade-off where an increasingly
richer country starts to abandon agriculture production, and
it uses activities that consume more energy, oppositely to the
case of an increasingly poorer country that operates less high-
energy activities, and where the agriculture production gains
some momentum.

Here, it was concluded that in the coronavirus-free built sce-
narios, emissions from the energy sector increased, with final
greater values in 2030 than those of the original scenarios. The
biggest fluctuation was observed for the emissions from en-
ergy in the optimistic scenario. Overall, it was evidenced that
COVID-19 might mitigate the increase in emissions of CO2e to
the atmosphere up to 2030, under scenarios P and O.

In terms of coupling, it was observed that total final exergy

data was responsible for introducing major variations, hav-
ing 2017 as reference. On the case where final exergy grew
year-over-year 5%, emissions from agriculture deeply decreased,
close to 4%, and emissions from energy sharply increased, 30%.
For the decreasing final exergy time series, the new exergy
dynamics induced greater emissions from agriculture (≈ 4%)
and a steep decrease in emissions from energy (≈ 12%). The
GDP time series did not contributed to significant modifica-
tions, when compared to the original forecast. The results
suggest that, operating at the business as usual mode, with-
out additional politics, generating more wealth and consuming
more energy comes at the expense of greater GHG emissions
[17, 32].

5. Conclusions

5.1. Findings and Achievements

The major findings were that: 1) there is a strong coupling
between GDP and the dynamics of land use distribution, as
well as between total final exergy and GHG emissions from
both agriculture and energy sectors, 2) when a country gets
richer (higher GDP) it tends to decrease its cropland area while
increasing the intensity of activities that consume more energy,
emitting GHG at higher levels, 3) in ever increasing impover-
ished countries cropland area grows and energy intense activi-
ties are reduced, leading to overall lower levels of GHG emis-
sions, 4) the coronavirus pandemic might decrease the cropland
area reduction in a forecasted positive economic scenario, and
5) the coronavirus pandemic might have induced a slight decel-
eration for emissions related to agriculture and energy sectors
up to 2030.

It was also evident that the pre-COVID-19 scenarios, from
collaboration between companies’ representatives and govern-
ment agents, were not sufficiently aggressive (within a plausible
pathway) when combined with data that took into account the
economic downturn. These new economic conditions hindered
the evolution of land use in both studied scenarios, being re-
quired a sensitivity analysis to further explore the interplay
between all factors.

In the conditions of the contemplated scenarios, the fore-
casted evolution for 2030 of land use distribution and GHG
emissions was tenuous when compared with the estimated un-
certainty. Despite the very well fitted models and rigorous un-
certainty estimation, the compound evolution of the plausible
scenarios stayed always within the uncertainty, complexing the
analysis. This lead to casting doubts over simpler methods.

Methodologically, a new performance estimation method for
time-series was developed within an ensemble of models envi-
ronment. This method involved measures in two dimensions:
1) preliminary loss estimate on validation data, by converging
to the ideal architecture’s set up; and 2) final loss estimate, by
repeating the previous measurement on new data and on the
best models. Hence, we got control over two potential over-
fitting situations, being them the overfitting to the training
data, and the implicit overfitting of the model to the valida-
tion data when selecting the best model’s configurations. As
we are forcing the model to predict several time-steps ahead
and estimating the error on that prediction, 7 years would in
principle represent the minimum admissible validity for the un-
certainty to be considered. Adding the number of batches from
the testing set, 5, the maximum admissible validity is arguably
12 years.

The insufficiency of data implied the creation of a new batch-
ing method. It is usually advisable to use hard frontiers be-
tween the training, validation, and testing data sets. However,
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in time series analysis, when using a sequence-to-sequence con-
figured network for predicting m time-steps ahead, the error
is only accounted for that last prediction. Therefore, overlap-
ping data sets were constructed in a way that no lookahead was
introduced, maximising the batches cardinality.

The originality of our work came from the fact that in the
literature this is the first study where there is a compounded
approach to the problems of forecasting land use change and
associated emissions, by coupling both modelling exercises into
an integrated framework, hence strengthening the predictive
power. Commonly, land use changes and GHG emissions have
been individually forecasted with ML, by directly inputting
either land use distribution data and related data or GHG
emissions data and related data to the models, respectively
[34, 35].

5.2. Limitations and Hypotheses
The foremost limiting aspect came from the scarcity of his-

torical data regarding land use distribution. Even for existing
data, there was considerable uncertainty. The second most in-
fluential limitation resulted from the fact the time scale of this
study contributed to shorter time series. Given the nature of
the models employed, longer series are preferable in order to
increase the likelihood of revealing patterns.

On the technical side, due to training data constraints, we
have only used stateless RNNs, where at each training itera-
tion the model starts with a hidden state full of zeros, then it
updates the state at each time-step, and after the last time-step
it throws it away. It is possible to preserve this final state after
processing one training batch and use it as the initial state for
the next training batch. By doing so, the model could learn
longer long-term patterns even though it only backpropagates
through short sequences. This defines what it is called as state-
ful RNNs and they make sense in a context of abundant data,
because the condition for this model to be used is that each in-
put sequence in a batch starts exactly where the corresponding
sequence in the previous batch left off, therefore it is required
to use sequential and non-overlapping input sequences.

Another major constraint was that the training times were
quite high, with an estimation of 30h per thread per fold of data
per model. With 24 threads available, the running trials had
to be capped, with roughly 1-5% of the search space studied
during the Bayesian optimisation. As a consequence, we had
to compromise in terms of which covariates would be included.

In terms of hypotheses, with support on studies in the area,
the two hypotheses conjectured were that: 1) land use distri-
bution is, besides to its own lagged values, tightly related to
both energy usage and economic development, and 2) GHG
emissions can be defined in terms of its own lagged values, land
use and land cover, energy usage, and economic development.
Also, in autoregressive models there is the assumption that the
observations at previous time-steps are useful to predict the
value at the next time-step are made, i.e., there is a correla-
tion between variables. It was also hypothetised that GDP as
an economic indicator would reliably help reflecting land use
changes as well as GHG emissions for the agriculture and en-
ergy sectors. This indicator has been criticised for ignoring the
depreciation of assets, non-market economy, damages to the
environment, and for being a poor proxy for societal well-being
[36, 37].

5.3. Future Work
Due to the intricate nature of the dynamics of models in

the field of nature-related processes, this work was carried out
based on empirical evidences in regards the relationship be-
tween the input features and the targets, meaning that it was

assumed that the input variables to our model contained useful
information that would allow us to predict the target variables
based on those features. In the future, a thorough study on
statistical relationships, such as correlation, autocorrelation,
spurious correlations, among other statistics, shall be done for
a broader set of covariates. Specific data-analysis techniques on
multivariate time series, such as Principal Component Analysis
(PCA), similarity searches, feature-subset-selection, and clus-
tering might be a good start [38]. Even though correlation does
not imply a causal relationship, and non-linear causal relation-
ships are difficult to demonstrate, such tests might lead to new
directions on which features are the most relevant and how they
are temporally coupled.

Besides, there is a huge performance dependency on how
the splitting and batching processes are done, as well as on
how the time series are lagged. By plotting the model’s errors
on the validation set across time it would be assessable if the
model performs better on the first part of the validation set
than on the last part, if so, then it would be advisable to shorten
the window size, training the model on a shorter time span.
However, to automate the process the ideal would be to apply a
second Bayesian optimisation for the the window size, splitting
point, and lagging period hyperparameters. Additionally, a
new, non-default, set of exploitation/exploration parameters
for both Bayesian optimisations is recommended.

In this work, we evaluated models’ loss according to two
distinct metrics: RMSE and Mean Absolut Error (MAE).
In the future, the inclusion of the Huber loss function
could be considered. Likewise, more sophisticated overfitting-
preventing/regularisation techniques present a great poten-
tial. In the list, one could mention the L1 and L2 regulari-
sation, dropout, recurrent dropout, and Monte Carlo dropout.
Architecture-wise, alterations that could render better results
are the introduction of customised output layers, different acti-
vation functions in different layers, the use of different number
of filters and kernel size within convolutional layers, and try-
ing to use of a vanilla 1D-convolutional model. Additionally,
computational time could be purchased and Graphics Process-
ing Units (GPUs) could be used to increase the number of
trialled models in the case of larger batches. Finally, having
a method to estimate forecast errors for longer periods would
come handy.
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