
Rapid Development and Prototyping Environment for Testing of

Unmanned Aerial Vehicles

Tiago Alexandre da Silva Oliveira
tiago.alexandre.oliveira@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Portugal

January 2021

Abstract

In this dissertation, an indoor multi-vehicle rapid prototyping platform is designed and implemented
at the ISR Flying Arena, to support the development and testing of control and navigation solutions
for unmanned aerial vehicles. The hardware architecture devised for the prototyping environment
comprises: i) an optical motion capture system providing vehicle position and attitude ground-truth;
ii) a set of offboard computers managing communication between systems and running user programs;
and iii) multiple quadrotors. In order to provide abstraction of the vehicles and to automate the
communication between systems through reliable protocols, a set of software modules were programmed
using an object-oriented approach. These modules relieve the user from implementing low-level flight
routines and communication tasks. An additional group of software tools was also created to allow
offboard flight logging and monitoring. With the purpose of enabling testing of the deployed algorithms
before experiments with physical vehicles, a fully configurable and easy-to-use simulation environment,
including a solution to emulate a motion capture system, was also developed. The devised setup allows
for a mixed environment of physical and simulated quadcopters, extending testing to conditions that
are physically unfeasible at the ISR Flying Arena. In the end, several control solutions, including
a formation-control algorithm, were deployed and tested, validating the adopted architecture and
showcasing its robustness and scalability. The created prototyping platform is a key enabler of future
research and education in aerial robotics, having already been used in the experimental validation
process performed within the scope of the MSc Theses of other students.
Keywords: ISR Flying Arena, Multirotors, UAV Testing Environment, Aerial Robotics, GNC

1. Introduction

The use and demand of Unmanned Aerial Vehicles
(UAVs) have been rapidly increasing across differ-
ent industries due to their autonomous flying capa-
bilities, onboard decision making power, ability to
communicate primary and mission-related informa-
tion in real-time, possibility to carry different types
of payloads, and their aptness to perform hazardous
tasks in a vast range of scenarios [1]. Consequently,
the research and development of mission-oriented
UAVs has grown at an accelerated rate, fueled by
consistent advances in air-frame materials, propul-
sion systems, avionics, sensors, and power sources.

To support the development of mission-oriented
UAVs and to ease academic research of cutting-edge
guidance, navigation, and control solutions, uni-
versities are designing indoor multi-vehicle testbeds
that surpass weather and daylight constraints. It-
erative motion learning [2] and cooperative ball
throwing and catching [3] are just a few examples
of scientific breakthroughs that were conducted in
and benefited from these dedicated spaces.

The first impactful indoor UAV-oriented testbed
documented in the literature was the MIT RAVEN
(Real-time indoor Autonomous Vehicle ENviron-
ment) that enables the rapid prototyping of nav-
igation and control algorithms of different types of
vehicles, such as autonomous multicopters, fixed-
wing drones, and ground-based rovers [4]. An ex-
periment involving the three types of vehicles can
be managed by only a single operator, presenting
a substantially reduced logistical cost compared to
an outdoor test. However, the system has a limit
of 10 simultaneous vehicles. This testbed also al-
lows control of the environmental conditions of the
indoor space, that can range between ideal to wind
induced.

Another well documented aerial robotics plat-
form is the ETH Zurich’s Flying Machine Arena [5].
The Flying Machine Arena architecture is presented
in Fig. 1. The position and attitude measurements
of the vehicles are provided by the indoor optical
motion capture system, typically working at 200Hz,
to a station of ground computers. Here, the user

1



code module runs estimation and control algorithms
that generate flight commands. Finally, a copilot
mode runs a failure detection function that super-
vises those commands, only allowing the appropri-
ate ones to be sent to the vehicles. All communica-
tion is done in a high-frequency, asynchronous way
that guarantees nonexistence of delays due to re-
transmission attempts. To overcome some inconve-
niences of the absence of synchronization, all sensor
data is time-stamped against local hardware clocks.

Figure 1: Flying Machine Arena architecture.

Despite being very versatile and crucial for sci-
entific and technological progress in aerial robotics,
UAV-devoted testbeds comprise a vast amount of
dedicated software and hardware whose use requires
good fundamentals of computer science, substan-
tial knowledge on the communication protocols, and
continued reconfiguration. These aspects pose a
barrier to their usage that can slow or inhibit re-
search and stagnate innovation. Therefore, the
driving force behind this thesis is to encourage more
research in aerial robotics and the development of
more courses and laboratory classes involving UAVs
by not only settling a dedicated testbed at the In-
stitute for Systems and Robotics (ISR), equipping
its researchers and students with a powerful tool
for extensive testing and validation of new UAV-
related algorithms, but by also eliminating its in-
herent working barriers, by not requiring the users
to have deep Linux and programming knowledge,
background in hardware, and by automating all
communication between systems.

2. System Overview
The architecture devised for the developed rapid
prototyping platform results from combining:

1. The fundamental design and operational mech-
anism of the indoor testbeds documented in
the literature, that have three common com-
ponents: i) aerial vehicles; ii) an optical mo-
tion capture system; and iii) ground comput-
ers. The pose of the vehicles is provided by the
motion capture system to the ground comput-
ers that run navigation and control algorithms.
The computed actuator commands are sent to

the vehicles via wireless communications. This
type of architecture has proved to be efficient
by enabling the testing of innumerous scientific
works. Therefore, it is used as the basis of the
developed system.

2. The PX4 autopilot, an UAV autopilot system
that provides abstraction from the vehicles, on-
board estimators, onboard controllers, proce-
dures for autonomous maneuvers, processes for
decoding data from the sensors, algorithms for
encoding data to the actuators, and an external
connectivity module that eases all the commu-
nication between the vehicle and the ground
computers. The PX4 autopilot is well suited
for the ISR Flying Arena because: i) it is open
source, and as a consequence, its firmware is
publicly available, can be modified to perfectly
fit the architecture of the tests platform, and
can be adapted to specific tests and scenar-
ios; ii) it is configurable, tunable, and compati-
ble with multicopters, fixed wing aircrafts, and
VTOL drones; iii) it has simulation-in-the-loop
and hardware-in-the-loop capabilities that en-
able the simulation and thorough testing of the
PX4 autopilot, all of its systems, and their in-
terfaces with outside command software before
the field tests; iv) it comes with failsafe modes
that protect users and equipment whenever the
position estimate is unreliable or whenever the
vehicle loses connection with an offboard sys-
tem; v) it communicates with exterior modules
through a validated messaging protocol called
MAVLink, that is available in widely used pro-
gramming languages such as C++ and Python
and that is compatible with a set of robotics li-
braries and tools called ROS (Robot Operating
System); and vi) it runs a Real Time Operat-
ing System (RTOS) that guarantees that criti-
cal flight tasks are completed within a specific
range of time, which ensures, for instance, that
the motors are actuated in the right moments
and that an up-to-date state of the vehicle is
always available to the user.

3. A dual operation mode of simulation and ac-
tual physical flights. This means that user pro-
grams running in a ground computer can simul-
taneous communicate with a PX4 mounted on
a physical vehicle and communicate with a PX4
SITL instance “mounted” on a vehicle running
on a realistic simulator.

The resulting architecture is represented in Fig-
ures 2 and 3. In Fig. 2, a detailed view of the phys-
ical tests environment is displayed, whereas in Fig.
3 a detailed view of the simulation environment is
depicted.

2



2.1. Physical tests environment

In the physical/real tests environment, the vehicles
are confined to the limits of the ISR Flying Arena,
an indoor facility of dimensions 7m × 4m × 3m.
The arena is equipped with an Optitrack motion
capture system composed by eight cameras that
provide high-frequency measurements of the posi-
tion and attitude of the vehicles. These measure-
ments are transmitted to the ground computers via
Ethernet. The blue dashed arrow in Fig. 2 rep-
resents the special cases when there is an onboard
companion computer capable of receiving and de-
coding the Optitrack pose and sending it to the PX4
through a serial port.

Optitrack motion
capture system

Position & attitude (Optitrack pose)

Ground computer

Input/telemetry
module

User code

Output/offboard
module

PX4 Autopilot

Raw sensors data &

estimator data

Offboard commands

& Optitrack pose

visually
detected

Actuator signals

Raw sensors data

QQGroundControl

Physical link

Wireless link

Radio link

Figure 2: Developed architecture for the physical
tests environment of the ISR Flying Arena.

The ground computers run offboard guidance,
navigation, and control algorithms. These algo-
rithms are implemented in the user code block. To
enable the quick and effortless use of the arena
and to fully automate communication between the
ground computers and the remaining systems of the
prototyping platform, there are two modules assist-
ing the user code block:

� An input or telemetry module that receives
and makes available to the user the position
and attitude measurements from the motion
capture system, along with the data provided
by the PX4 Autopilot. The PX4 provides the
raw measurements of the sensors installed on-
board the vehicle and the output of its ex-
tended Kalman filter. With all this informa-
tion, and for navigation purposes, the user can
decide between implementing their own esti-
mation algorithm or directly use the received
estimates. The input or telemetry module runs
in a background thread and starts to execute as
soon as the ground computer establishes con-
nection with the PX4. This module completely
automates data reception and data processing.

� An output or offboard module comprising a set
of methods that send instructions to the PX4,
such as arming commands, takeoff requests,
and attitude and thrust references. This mod-
ule abstracts data sending. The user just needs
to call the appropriate methods and the mod-
ule will send the data to the PX4, according to
the MAVLink communication protocol. Note
that this module also sends to the PX4, in a
background thread, the pose of the vehicle pro-
vided by the Optitrack motion capture system
and processed by the input module. The PX4
uses this information as an input for its on-
board estimator.

The PX4 autopilot can also receive commands
from the QGroundControl, an open-source ground
control station that communicates with the PX4
through the MAVLink protocol and that can also
be used to monitor and modify vehicle parameters.
Finally, the RC Controller functions as a safety link,
enabling the user to land, disarm, and shutdown
the vehicle at any moment. The implementation
of the physical tests environment and the software
developed to decode, process, and send information
between systems is described in Section 3.

2.2. Simulation environment

The architecture of the simulation environment is
presented in Fig. 3. The global system is developed
with a modular design, where each component has
rigorous and well-defined functions and interfaces.
Consequently, the simulation environment has the
same architecture and interconnections as the real
environment. The only difference is that the hard-
ware parts (the PX4 autopilot, the vehicles, and
the Optitrack motion capture system) are replaced
by equivalent software blocks. These blocks that
change when experiments are conducted in the sim-
ulation environment, instead of the physical tests
platform, are highlighted in red in Fig. 3.

Gazebo
simulator

Vehicle
pose

Emulated motion
capture system

Position & attitude (MOCAP pose)

Ground computer

Input/telemetry
module

User code

Output/offboard
module

PX4 Autopilot
in SITL mode

Raw sensors data &

estimator data

Offboard commands

& Optitrack pose

Actuator
signals

Raw sensors
data

QQGroundControl

Figure 3: Developed architecture for the simulation
environment.

3



In simulation mode, the behavior of the vehicles
is computed by a simulator software, based upon
their physical models. Through the actuator signals
received from the PX4 SITL instance, the physics
engine of the simulator computes the motion of the
vehicles and the new sensor measurements. These
raw measurements are transmitted back to the PX4.
The position and attitude of the vehicles are re-
trieved from the simulator by a software script that,
by adding white Gaussian noise to the retrieved
quantities, emulates the measurements generated
by a real motion capture system. These noisy mea-
surements are sent to the ground computers and to
the PX4. The PX4 autopilot runs in simulation due
to its SITL capabilities. The ground computer runs
exactly the same modules as in the real tests envi-
ronment and, due to the modular design adopted,
does not need to know whether it is communicating
with real or simulated hardware. The implementa-
tion of the simulation environment and the emula-
tion of the motion capture system is described in
Section 4.

3. Flying Arena
The ISR Flying Arena consists in an indoor test
space of dimensions 7m × 4m × 2.5m and a set
of eight Optitrack motion capture cameras. Fig. 4
describes in detail the low-level architecture of the
devised physical tests environment implemented at
the ISR Flying Arena, that was designed according
to the NED (North-East-Down) coordinate system,
which is standard in aeronautical applications.

First, the Optitrack cameras detect special pas-
sive markers placed on the body of the vehicles,
that reflect infrared light. Then, this tracking data
is sent, via Ethernet, to a computer running the
Motive software. By feeding the tracking data to
its advanced solvers and to its high-level filters, the
Motive computes the position and attitude of the
vehicles with a positional error less than 0.3mm and
a rotational error less than 0.05◦. Finally, the Mo-
tive sends the position and attitude data to a router
that broadcasts it to the local network. Note that
the Optitrack system computes the pose data ac-
cording to a ENU (East-North-Up) inertial frame.

After being broadcasted to the local network, the
pose data provided by the Optitrack system needs
to be decoded and processed in the ground com-
puters and in the onboard companion computers,
so user programs and the extended Kalman filter
of the PX4 can fuse it with the measurements pro-
vided by the inertial sensors to produce estimates
for the position and attitude of the UAV. The de-
coding and processing stages are implemented us-
ing the Robot Operating System (ROS) middleware
and the MAVLink-Router, a library that transforms
ROS topics into MAVLink streams and routes them
to other endpoints, such as the PX4.

Optitrack cameras

Motive

Optitrack computer

Tracking data

Router

ENU position

& attitude

Onboard companion computer

DecoderDownsampler
MAVLink-

Router

ENU pose
sent over

Wi-Fi

PX4 Autopilot

Extended
Kalman filter

Sensors Hub

Mixer

Estimator
complementary filter

Controllers block

Optitrack NED
pose sent via
serial port

State

estimates

Sensors
data

visually
detected

Sensor
data

Actuator
signals

Ground Computer

Input/telemetry
module

Output/offboard
module

Decoder

User Code

W
i-

F
i

Offboard control
references sent

over Wi-Fi

ENU pose
sent by

Ethernet

Figure 4: Flow of information between the modules
of the physical tests environment, for vehicles with
an onboard companion computer.

The ground computers receive the position and
attitude of the vehicles, in ENU coordinates,
through an Ethernet link. Then, a decoder block
reads this information and publishes it into a ROS
topic. The decoder block was built using the VRPN
(Virtual Reality Peripheral Network) client, a ROS
node that connects to the VRPN server used by the
Optitrack system to stream data to the local net-
work and exposes the information over a ROS topic.
After being decoded, the position and attitude data
is converted to the NED coordinate frame, the one
adopted for the testing setup, and is finally made
available to the user.

The companion computer receives the position
and attitude data generated by the Optitrack sys-
tem via Wi-Fi. The decoder block is equivalent to
the one implemented in the ground computer. It
was also programmed using the VPRN client that
publishes the received pose information into a ROS
topic. After the decoding block, the position and at-
titude data is submitted to a downsampling process.
The Optitrack system provides positioning data to

4



the local network at a frequency of 180 Hz. In order
to avoid exhausting the bandwidth of the commu-
nication channel, which could cause delays in the
communication with the PX4 and loss of packets,
the downsampling block republishes the pose data
into a new ROS topic, dropping two of every three
messages received. Therefore, the new ROS topic
receives new position and attitude updates at a fre-
quency of 60 Hz. Finally, by using the MAVLink-
Router library, the new ROS topic is transformed
into a MAVLink stream and is sent, through a se-
rial port, to the PX4 autopilot. During this step,
the position and attitude are converted from ENU
coordinates, used by the Optitrack system and the
ROS middleware, to NED coordinates, used by the
MAVLink protocol and the PX4 autopilot. Note
that the sensor measurements and the output of
the extended Kalman filter of the PX4 are sent,
via Wi-Fi, to the ground computer. This gives the
users freedom to implement its own estimation al-
gorithms, by fusing the position and attitude data
retrieved from the Optitrack system with the sensor
measurements received from the PX4, or to simply
use the state estimates provided by the PX4. In
the absence of an onboard companion computer,
the decoder, downsampler, and MAVLink-Router
modules have to run in the ground computers.

It should be noted that the subsystems of the
PX4 autopilot were tuned according to the prop-
erties of the testing setup, the Optitrack motion
capture system, and the vehicles. For instance, the
extended Kalman filter of the PX4 was configured
to use the position and yaw measurements given by
the Optitrack motion capture system and to rely
on the accelerometers and gyroscopes to produce
low-latency and low-drift estimates of the roll and
pitch angles. This is due to the fact that the iner-
tial sensors measurements are sufficient to produce
satisfying low-latency and low-drift roll and pitch
estimates, but the readings of the magnetometers
are disturbed by the electric motors and affected
by magnetic anomalies of the indoor environment.
To enable the fusion of low-latency measurements
of the accelerometers and gyroscopes with the posi-
tion and yaw measurements received from the Op-
titrack system, that reach the PX4 with some delay
due to communication overhead, it was necessary
to tune the extended Kalman filter with the correct
time difference between the arrival of the Optitrack
and the IMU measurements. A rough estimate of
this delay was obtained from the logs by checking
the time offset between the IMU and the Optitrack
data. Then, this value was further refined by per-
forming a set of experiments with distinct delay val-
ues, and by checking the resulting estimator innova-
tions. The time delay obtained, 20ms, corresponds
to the one that yielded the smallest innovations.

4. Simulation

Simulators allow testing of navigation and control
solutions in a quick and safe way. Users can in-
teract with a simulated vehicle just as they might
with a physical one, by using the QGroundControl
software or by running offboard programs on the
ground computers to send commands and control
references to the PX4 autopilot. Before attempting
to fly actual vehicles, it is recommended to use the
simulator to ensure that the estimation and control
algorithms work properly and the vehicles behave
as expected.

The selected simulator for the devised prototyp-
ing setup is Gazebo, a powerful 3D robotics engine
suitable for testing autonomous vehicles. Gazebo
was the chosen simulator because: i) it is compati-
ble with the software-in-the-loop capabilities of the
PX4 autopilot; ii) it supports all kinds of aerial vehi-
cles, such as multicopters, fixed wing aircrafts, and
VTOL drones; iii) it accepts custom models of those
vehicles, so that the user can simulate UAVs with
dynamic and kinematic properties close to those of
the physical drones used in the ISR Flying Arena;
iv) it offers plugins to simulate the behavior of sen-
sors and actuators; v) it supports multi-vehicle sim-
ulation; and finally vi) it is compatible with the
ROS middleware, a set of robotics libraries and
tools used in this thesis.

Fig. 5 presents a detailed description of the
software programs created to launch the simula-
tion environment. One of the goals of this work is
the development of an user interface enabling the
quick and effortless use of the simulation frame-
work. The user interface developed consists in the
gazebo.launch file represented in Fig. 5. To launch
simulations with this interface, the user just has
to fill the file arguments with the desired configura-
tions for Gazebo, for the simulated vehicles, and for
the PX4 SITL instances. Then, a sequence of soft-
ware programs operating in the background will au-
tomatically launch the simulation, according to the
arguments requested. The empty world.launch pro-
gram launches Gazebo in the selected world. The
gui argument determines whether Gazebo will run
with or without the graphical user interface. The
drone.launch program is responsible for spawning
a vehicle and starting a PX4 SITL instance. For
multi-vehicle simulations, multiple instances of the
drone.launch program are executed.

The compact interface created enables users to
benefit from the full capabilities of the simulation
environment without prior experience with Gazebo,
the ROS tools, or the PX4 firmware. Without the
software programs presented in Fig. 5, users would
have to extensively edit multiple different files of the
PX4 firmware, which is a time consuming process,
to fully configure simulations.

5



gazebo.launch

User gives values to:
<arg gui>

<arg world name>
<arg N>
<arg E>
<arg D>
<arg r>
<arg p>
<arg y>
<arg ID>
<arg port>

<arg vehicle model>
<arg px4 config>
<arg gcs 1 ip>
<arg gcs 2 ip>

empty world.launch

calls

Starts a
gzserver

in the world
selected in the
world name

argument.

If the gui
argument is

equal to true:
Starts a

gzclient.

gzserver is
Gazebo’s

physics engine.

gzclient runs
Gazebo’s GUI.

drone.launch

calls

Generates a URDF
model of the simu-
lated vehicle from

the XACRO model
selected in the
vehicle model

argument.

Launches a ROS node
that, using the generated
URDF model, spawns a
simulated vehicle in the
position [N,E,D] and
with attitude [r,p,y].

Launches a ROS node
that starts a PX4

SITL instance for the
new drone with the

ID setted by the user
and with the internal
definitions present in
the px4 config file.

User programs communicate with this PX4 SITL instance
through the port of the simulation computer or the external
computers defined in the gcs 1 ip and gcs 2 ip arguments.

1 2 3

Figure 5: Description of the software programs de-
veloped to launch simulations.

In order to have a simulation environment with
the same architecture as the physical tests environ-
ment of the ISR Flying Arena, it was necessary to
emulate a motion capture system capable of pro-
viding, to the user programs and to the running
PX4 SITL instances, high-frequency measurements
of the position and attitude of the simulated UAVs.
The created software program uses the capabili-
ties of the ROS middleware to continuously retrieve
the current position and attitude of the simulated
drones from Gazebo. Then, after adding Gaussian
white noise to the retrieved true position and at-
titude values (to represent the uncertainty of the
measurements provided by a real motion capture
system), sends the resulting measurements in the
appropriate format to the correct PX4 SITL in-
stances, while also making the data available to the
user programs. Before starting experiments in the
simulation environment, the user should wait for
the messages indicating that the software program
that emulates the motion capture system is working
and that the EKF of each PX4 autopilot is success-
fully using the external pose measurements.

5. User Programs

As depicted in Figures 2 and 3, two modules were
developed in this thesis to support user programs.
The first is the input or telemetry module, that fea-
tures the methods that perform the low-level tasks
of subscribing to the information published by the
PX4 and by the motion capture system, and of mak-
ing that information available to the user in a stan-
dardized way. The other one is the output or off-
board module, that stores the methods that can
be called by the user programs to send offboard
commands and control references to the vehicles.
Since drones are physical entities represented by
both data and behavior, and in order to provide
abstraction and encapsulation of the vehicles, the
input and output modules were programmed using
an object-oriented approach. The description of the
classes developed to support user programs is pre-
sented in Fig. 6.

UAV class

Main class. Inherits all
the required methods
to interact with the

vehicle. Stores all the
variables related to the

drone across an instance
of the SENSORS, EKF,

ACTUATORS, and
DRONE INFO classes.

TELEMETRY class

Stores the methods
that: i) subscribe to
the data provided

by the PX4 and the
MOCAP system;
and ii) keep the

variables of the UAV
class up to date.

OFFBOARD class

Stores the methods
that send offboard

commands and con-
trol references to
the PX4 autopi-
lot of the vehicle.

Input module Output module

methods
inherited by

methods
inherited by

SENSORS class

Stores the raw
sensors measure-

ments and the
MOCAP pose
of the drone.

EKF class

Stores the state
of the vehicle
provided by
the extended
Kalman filter
of the PX4
autopilot.

ACTUATORS
class

Stores the
current values

applied to
the actuators
(motors and

control devices)
of the drone.

DRONE INFO
class

Stores physical
properties and
the flight status

of the drone.

Figure 6: Description of the classes developed to
support user programs.

The UAV class is the core class of the developed
framework and its function is to represent a vehi-
cle. It inherits all the methods required to receive
information and send commands to the drone and it
contains the variables that store the current state
of the vehicle. The user only needs to create an

6



object of the UAV class (instead of an object of
each of the other six represented classes) to have
access to all the variables and methods that inter-
act with a vehicle. This eases the use of the capa-
bilities of the ISR Flying Arena. The input mod-
ule, in the object-oriented approach adopted, corre-
sponds to the Telemetry class. The methods of the
Telemetry class, inherited and automatically called
by the objects of the UAV class as soon as they are
initialized, subscribe to the information published
by all systems of the ISR Flying Arena and make
this data accessible to the user as variables of the
Sensors, EKF, Actuators, and Drone Info classes.
These four classes store, in an intuitive and struc-
tured way, the set of variables that contain the data
related to a vehicle. Note that there is a clear sep-
aration between the different types of data. For
instance, the variables that store the raw measure-
ments of the sensors are stored in a completely dif-
ferent data structure from the one that stores the
state of the drone provided by the EKF of the PX4,
which ensures that users always know the source
of the information they are accessing. The output
module, in the object-oriented approach created to
support the development of user programs, corre-
sponds to the Offboard class. This class comprises
a set of methods, inherited by the UAV objects,
that automate the procedure of sending data and
instructions (such as arming commands, takeoff re-
quests, and attitude and thrust references) to the
PX4 autopilot of the drones. The classes presented
in Fig. 6 hide the complexity of the rapid prototyp-
ing environment from the user.

It should be noted that four pairs of input and
output modules were developed, one for each of the
four communication libraries adopted (MAVROS
C++, MAVROS Python, MAVSDK C++, and
MAVSDK Python). The multiple communication
solutions grant flexibility to the tests platform be-
cause some modules employ the ROS middleware,
which offers valuable tools for robotics applications,
while others are lightweight, which enables them to
run in small onboard computers with limited re-
sources. Researchers must employ the pair of mod-
ules created from the most advantageous communi-
cation library for their experiment.

Finally, in order to help users launch their off-
board programs, which can be challenging espe-
cially when adopting the MAVROS communication
libraries, a Bash program was created. This Bash
program automatically starts all the required pro-
cesses to perform an experiment, further reducing
the difficulty involved in using the real and the sim-
ulation environments of the ISR Flying Arena. The
users only have to define, in a configuration file,
the physical properties of each vehicle and the user
programs and tools they want to run.

5.1. Additional Tools
An additional group of software tools was also cre-
ated to enable: i) emulation of sensors; ii) flight
logging; iii) flight monitoring; iv) flight visualiza-
tion; and v) later reproduction of the performed
experiments. These tools enhance the capabilities
of the prototyping platform and support the users in
the validation of the GNC algorithms. These group
of tools was extensively used in the tests stage de-
scribed in Section 6.

6. Tests and Results
In order to validate the architecture and the soft-
ware programs designed for the ISR Flying Arena,
that are publicly available in [6], an extensive test-
ing process was performed, in which several control
solutions were successfully deployed.

6.1. PX4 position controller
The first experiment consisted of a multi-vehicle
situation in which two drones tracked a set of de-
sired setpoints using the internal position controller
of the PX4 autopilot. This test allowed to establish
a high level of confidence in the developed setup be-
fore advancing to more complex and demanding tra-
jectories and before introducing custom controllers
in the loop. It also enabled to ensure that the po-
sition controller of the PX4 is stable and that it
can be used by researchers to rapidly validate navi-
gation/estimation algorithms without having to in-
vest time implementing a control solution. This ex-
periment was repeated multiple times in order to
test both the real and the simulation environments,
and in order to test all software modules developed.
Fig. 7 exhibits two drones performing the setpoints
tracking test in the ISR Flying Arena.

Figure 7: Two drones performing the setpoints
tracking test in the ISR Flying Arena.

Fig. 8 presents the evolution of the desired, sim-
ulated, and real altitude of the drones with time,
during these setpoints tracking tests. The responses
obtained in the physical and simulated environ-
ments are almost coincident, which demonstrates
the importance of the simulator for a first validation
of the GNC algorithms before advancing to tests
with physical vehicles. The plot of Fig. 8 was au-
tomatically generated by the offboard logger tool

7



introduced in Section 5.1.

Figure 8: Evolution of the altitude of the drones
with time in the setpoints tracking test.

The fact that these tests have been carried out
with success, proves that the systems of the ISR
Flying Arena work as designed. The position and
attitude of the vehicles generated from both the Op-
titrack and the emulated motion capture system are
indeed reaching the PX4 autopilots, that success-
fully merge this data with the IMU measurements.
Similarly, these tests attest that user programs and
the PX4 are, in fact, exchanging commands and
telemetry information. These experiments help val-
idate the architecture, the configuration process,
and the programs created for both the simulation
and the physical tests environments.

6.2. PID trajectory tracking controller

This section aims to demonstrate that the created
setup enables the implementation of custom control
solutions. For this purpose, a classic PID trajectory
tracking controller was deployed, tuned, and tested
in a set of fast and demanding trajectories. The im-
plemented position controller acts as an outer loop
controller, since it provides attitude and thrust ref-
erences to the attitude controller of the PX4.

The trajectories employed consist of sinusoidal
parametric equations known as Lissajous curves,
that are frequently employed in strategies of aerial
surveillance. These trajectories are also aggressive
(requiring from vehicles roll and pitch angles of
±20º for successful trajectory tracking) and visu-
ally appealing so that they can be used in public
demonstrations of the ISR Flying Arena. Fig. 9
exhibits a quadrotor performing a Lissajous trajec-
tory in the ISR Flying Arena, whist Fig. 10, shows
the top view of one of the performed Lissajous tra-
jectories.

Since the experiments with the Lissajous trajec-
tories were completed with success, it is possible to
conclude that the created setup allowed to rapidly
deploy and test the PID position tracking controller

Figure 9: Quadcopter performing a Lissajous tra-
jectory in the ISR Flying Arena.

Figure 10: Top view (or North-East view) of one of
the Lissajous trajectories performed.

in both the real and the simulation environments.
The implementation of the controller was a fast pro-
cess because, for each individual test performed, it
was only necessary to create a user program with
the control algorithm and the trajectory. The low-
level communications tasks and the remaining sys-
tems of the ISR Flying Arena were already pro-
grammed and configured, and were easily reused.

The developed position controller was also em-
ployed and tested in slower trajectories with letter
shapes, mostly intended to be reproduced in public
demonstrations. Through these tests it was pos-
sible to validate the scalability of the adopted ar-
chitecture. Fig. 11 showcases almost 50 vehicles
performing a trajectory that spells the word FLY,
in the simulation environment.

6.3. Formation-control algorithm

In order to demonstrate that the ISR Flying Arena
is also suitable for testing complex multi-vehicle
control solutions, a formation-control algorithm [7]
was deployed and tested. The formation topology
adopted is exhibited in Fig. 12. The vehicle 1 is
the formation leader whereas the remaining vehi-
cles are followers. In the devised experiment, the
leader tracks a time-varying trajectory and the fol-
lowers orbit around him.

8



Figure 11: Set of quadcopters spelling the word
FLY in the simulation environment.

Figure 12: Adopted formation topology.

Due to equipment limitations, the formation-
control algorithm was tested in a mixed environ-
ment of physical and simulated vehicles. Figures 13
and 14 show, respectively, two real and two simu-
lated drones simultaneously performing the experi-
ment.

Figure 13: Quadcopters 1 and 2 of the formation.

Figure 14: Quadcopters 3 and 4 of the formation.

This test demonstrates that the created setup en-
ables the validation of GNC algorithms with part of
the drones flying in the ISR Flying Arena and the
other part being simulated in the Gazebo software.
This mixed environment extends testing to condi-
tions that are physically unfeasible in the arena.

During the experiments, users can monitor the four
vehicles of the formation in the same graphical win-
dow using the developed Gazebo-based or Matlab
visualization tools, as shown in Figures 15 and 16.

Figure 15: Gazebo-based visualization tool display-
ing all the complete formation in the same window.

Figure 16: Matlab-based visualization tool showing
all the complete formation in a single window.

Figures 17 and 18 exhibit the position results ob-
tained in the formation-control test. The real quad-
copters are represented in orange and blue. The or-
ange vehicle is the leader and the remaining drones
are the followers. Fig. 17 presents the convergence
of the vehicles from their initial position to their
formation position, whilst Fig. 18 proves that, af-
ter the initial convergence, the followers successfully
kept the formation while orbiting around the leader.

Figure 17: Formation
movement at t = 10s.

Figure 18: Formation
movement at t = 20s.

These results match the ones obtained in the orig-
inal research and prove that it is possible to success-
fully implement and validate formation control al-
gorithms using the framework designed in the scope

9



of this thesis. Furthermore, the tests performed
with the time-varying formation reinforced that the
architecture adopted for the ISR Flying Arena is
robust, scalable, and flexible, allowing experiments
with real and simulated quadcopter interaction.

6.4. Supporting other researchers
Once the testing stage was completed and the rapid
prototyping framework was deemed robust enough,
it was successfully applied in the validation process
of GNC solutions by other students, in the course of
their theses works. This is solid evidence that the
main goal of this thesis was successfully achieved.

The first research work whose testing and vali-
dation process was facilitated by the created setup
consisted of a navigation system based on distance
measurements [8]. By using the framework de-
veloped in this thesis, and within just two hours,
the researcher was able to: i) attach an acoustic
transponder to the drone; ii) create a landing site to
smooth the landing of the vehicle and thus not dam-
aging the transponder; iii) calibrate the Optitrack
system; iv) create a user program for tracking the
desired trajectory; v) simulate the trajectory track-
ing; and vi) conduct several experiments at the ISR
Flying Arena with a physical vehicle. The flight
logs were automatically generated by the created
offboard logger. Without the support of the rapid
prototyping setup developed in this thesis, the vali-
dation of the navigation algorithm in an experimen-
tal environment would be a time consuming effort.

The second thesis research assisted by the proto-
typing framework was related to predictive control
strategies for aggressive parcel relay maneuvers us-
ing drones [9]. By using the created prototyping
setup the researcher was able to immediately con-
duct simulations and tests with physical drones in
the ISR Flying Arena using his own computer.

7. Conclusions
The goal of this dissertation was to design and
implement an indoor multi-vehicle rapid prototyp-
ing platform for development and testing of guid-
ance, navigation, and control solutions for un-
manned aerial vehicles. With that in mind, an
aerial robotics testbed with modular architecture
was devised, tailored and implemented at the ISR
Flying Arena. In order to enable the testing of the
deployed algorithms before experiments with phys-
ical vehicles, a fully configurable simulation envi-
ronment, featuring a solution to emulate a motion
capture system, was also developed.

With the intention of providing abstraction of the
vehicles and to automate all the low-level communi-
cation tasks and flight routines required to perform
experiments in the ISR Flying Arena, a set of soft-
ware modules were programmed, using an object-
oriented approach and four different communication

libraries. An offboard logger program, emulated
sensors, and a set of visualization and monitoring
tools were also created to further enhance the ca-
pabilities of the prototyping platform.

Finally, both the physical and the simulation pro-
totyping environments were validated by an exten-
sive testing process, where several control solutions,
including a formation-control algorithm, were suc-
cessfully deployed. These tests demonstrated that
the architecture of the designed setup is robust, suc-
cessfully addresses scalability, and enables experi-
ments simultaneously involving physical and sim-
ulated vehicles, overcoming space and equipment
limitations. The developed prototyping framework
was also used in the experimental tests and vali-
dation process performed within the scope of the
MSc Theses of two other students. Ultimately, it
was proved that the rapid prototyping environment
designed is a key enabler of future research and ed-
ucation in aerial robotics.

References
[1] R. Austin. Unmanned Aircraft Systems: UAVS

Design, Development and Deployment. Wiley,
2010.

[2] D. Mellinger, N. Michael, and V. Kumar. It-
erative learning of feed-forward corrections for
high-performance tracking. International Con-
ference on Intelligent Robots and Systems, 2012.

[3] R. Ritz, M. W. Müller, M. Hehn, and
R. D’Andrea. Cooperative quadrocopter ball
throwing and catching. International Confer-
ence on Intelligent Robots and Systems, 2012.

[4] J. P. How and J. Teo. Adaptive Flight Control
Experiments using RAVEN. Yale Workshop on
Adaptive and Learning Systems, 2008.

[5] S. Lupashin, M. Hehn, M. W. Mueller, A. P.
Schoellig, M. Sherback, and R. D’Andrea. A
platform for aerial robotics research and demon-
stration: The Flying Machine Arena. Mecha-
tronics Journal, Volume 24, Issue 1, Feb 2014.

[6] ISR Flying Arena - Digital Repository. URL
https://tiagoalexnd@bitbucket.org/dsor

global/tiagooliveira.git.

[7] P. Trindade, R. Cunha, and P. Batista.
Distributed Formation Control of Double-
Integrator Vehicles with Disturbance Rejection.
Proceedings of the 21st IFAC World Congress,
July 2020.

[8] J. Franco. Sistema de navegação baseado em
medidas de distância. Master’s thesis, Instituto
Superior Técnico, Jan 2021.

[9] J. Pinto. Model predictive control strate-
gies for aggressive parcel relay maneuvers us-
ing drones. Master’s thesis, Instituto Superior
Técnico, 2021.

10


