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Abstract

Energy transformation and usage is still the major source of greenhouse gas emissions. On demand
side, there is a global push to invest on energy efficiency improvements, which has been slowing down.
Efficiency improvements have benefits for countries such as increased energy security, less spending on
fossil fuels and emissions reduction. Energy Service Companies (ESCOs) deploy energy conservation
measures (ECMs) through Energy Performance Contracts (EPCs), which guarantee a level energy/cost
savings. Measurement and Verification (M&V) procedures are essential to EPCs, as to audit contract
terms and ECM efficiency. Poor M&V frameworks can generate adversarial distrust between parties
involved and unclear savings calculations. This integration thesis aims to increase transparency in EPC-
mediated ECM implementations by properly assessing, storing and securing savings calculations. We
develop a baseline model using XGBoost for two IST campus buildings which underwent retrofits and
estimate savings from the difference to actual consumption data, for the same period. The used models
presented a CV(RMSE) of under 7.8% and yielded savings percentages of 16.9±7.3% and 20.6±6.3%.
Savings information are then posted in a blockchain ledger composed of building nodes. The transaction
validation mecanism verifies if an accurate baseline model was used as basis for the calculations. A
more clear and thrustworthy M&V platform for EPC execution was developed. Conclusions, limitations
and future improvements are discussed.
Keywords: Energy efficiency, Energy Performance Contracting, XGBoost, Blockchain, Energy services.

1. Introduction
We are afield from meeting the 3 energy-related
Sustainable Development Goals (SDGs), pro-
posed by the UN, which consist on: tackling cli-
mate change, assuring universal access to energy
and reducing health impacts of air-pollution [12].

At the same time, energy generation and us-
age remains the major source of greenhouse gas
emissions, which need to quickly reduce and es-
tablish a plateau of net-zero balance between an-
thropogenic emissions by sources and removals by
sinks [21, 12].

In terms of economic push, capital is already
moving from fossil to renewable to a significant ex-
tent. Improvements shall represent an increase in
overall investment, which will be counterbalanced
by reduced fuel costs on the consumer end, after-
wards. On the supply side, the largest increase
in investment comes from renewable-based power
installments, which are expected to double until
2050, as well as additional spending on electric-
ity grids and storage. On the demand side, there’s
a global push for further investment on energy ef-

ficiency improvements. Still, it is currently not in
pace with supply side developments [22].

Transitioning to a low carbon economy requires
a more synergistic energy system, that relies less
on fuel combustion and more on renewable based
power, but we still have to focus about energy ef-
ficiency improvements on the demand side, while
not trading off energy security nor affordability. As
such, boosting energy efficiency improvements in
a reliable way shall be the main focus of this dis-
sertation.

1.1. Motivation
The proposed solution takes an holistic approach
towards improving energy efficiency, dealing with
it from the client demand side upwards, helping to
secure better performance when trying to audit ef-
ficiency improvements.

We provide a tool for securely assessing effi-
ciency improvements while helping to boost busi-
ness models based on energy trading, energy cer-
tificates and/or energy performance contracting,
well known to Energy Service Companies (ES-
COs) [18, 16, 17, 19].
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In an ever more stressed energy environment,
with rising electricity costs, additional environmen-
tal regulations and less marginal profit, buildings
owners benefit from reducing their energy con-
sumption and costs. ESCOs provide clients with
Energy Performance Contracts (EPCs), which are
binding agreements under which Energy Conser-
vation Measures (ECMs) are provided, verified and
monitored, during a certain period of time [11].

The level of energy savings secures the finan-
cial revenue that is used to fund the capital costs
incurred at the ESCO side. The financial savings
are, in general, shared between the two parties
since the beginning. Once costs have been re-
paid, the client keeps the whole savings gener-
ated [11, 20]. In case of failure in provisioning the
contractually-agreed energy savings level, finan-
cial penalties are applied to the service provider,
which reduces the contract revenue.

Measurement and Verification (M&V) proce-
dures are, then, essential to EPCs, to audit the
contract terms and ECM efficiency. The energy
savings are generally computed as the difference
between a predictive baseline model and the actual
post-EPC measured energy consumption, over the
considered period [11, 20, 18, 27]. A poor frame-
work for M&V can generate problems such as an
unbalanced performance risk and unclear or inap-

propriate savings calculations [13, 27]. The Inter-
national Performance Measurement and Verifica-
tion Protocol (IPMVP) has been developed to pro-
vide guidance and standards for M&V procedures
[25].

There’s also the risk of data tampering from both
parts or from external providers, leading to inaccu-
rate savings calculations, especially since depend-
ing on the modality of the EPC, the ESCO might be
entitled to any excess savings. This way, an adver-
sarial relationship can be generated between parts
[11].

In essence, we face a problem of trust and un-
derstandibility when dealing with EPCs, which is
limiting the widespread of this useful tool. Authors
also claim lack of standardization or lack of policy
concerning EPC execution [16, 17, 14, 28, 26].

For its incorruptible and immutable character to-
gether with the lack of need for a trusted third party,
Blockchain’s ability to track down transactions is
becoming of increasing attention on energy sec-
tor applications [19]. As such, this present work
studies its application on EPCs, to increase parties
trust in M&V procedures. By having it designed in
a way that all model predictions and calculations
happen inside it, we will develop a more trustwor-
thy and standardized framework for executing and
auditing EPCs.
1.2. Concept

Figure 1: Proposed solution conceptual diagram.

This thesis integration shall bring transparency and
security to EPC-mediated ECM implementations,
by properly assessing, storing and securing sav-
ings calculations, following M&V 2.0 tendencies.
We shall develop an energy consumption forecast-
ing model based on relevant data from selected
features, called a baseline model. Then, actual
data will be compared to the model predictions

and the savings are calculated from the difference
between them, under a given uncertainty. As to
guarantee transparency, these results are stored
in a blockchain composed of building nodes post-
ing on a network, which verifies basline model
CV(RMSE) (Fig. 1). This is expected to be a rela-
tively new contribution towards the main cited chal-
lenges faced by ESCOs in EPCs when tackling en-
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ergy efficiency, global primary energy intensity im-
provement and, ultimately, CO2 emissions reduc-
tion. Khatoon et al. (2019) [23] and Gurcan et al.
(2018) [18] are two of the few literature references
to a solution like the one proposed by this disser-
tation, usually relying on common blockchain plat-
forms like Ethereum/Hyperledger. The core val-
ues of our prototype are simplicity, adaptability and
effectiveness in the scope of the purpose of use,
making it easier to adapt further details in this plat-
form when faced with different real world applica-
tions/security requirements.

2. Methodology
2.1. Energy Modeling
2.1.1 Exploratory Data Analysis

We shall first analyze collected energy consump-
tion data from 2017-2018 by smart meters de-
ployed throughout four Instituto Superior Técnico
- Alameda campus’ buildings: Civil, Central, North
Tower and South Tower. Most considerations will
take the Civil building as basis since it is the
most representative one of the whole campus, in
terms of data homogeneity and consumption pat-
tern. First, let we need to visualize the data and, for
that purpose, we have built a bar histogram of the
recorded hourly values of drained power for Civil
(Fig. 2).

Figure 2: Hourly power consumption (KW) histogram for the
Civil building, from 2017 to 2018. Two highly populated regimes
of consumption with a transient one in the middle are distin-
guishable - a bimodal type distribution.

It is clear from a quick analysis that there are two
immediate regimes of consumption - a peak higher
one and a flat lower one. The two consumption
regimes constitute a bimodal-type distribution with
a lower transient regime in between. Most counts
lie on the 50-150 kW range, with half of the values
laying under the 110 kW mark. Then, we study the
10-day consumption pattern by hour, in Civil build-
ing, so as to understand the type of consumption
cycle (Figure 3).

Figure 3: Scatter plot of the hourly power consumption (KW)
pattern for the Civil building from 13 to 23 of May 2017. Two
patterns of consumption arise: normal operations days where
the power consumption peaks at around midday and week-
ends/holidays when there is significant power consumption re-
duction.

We can see that there are significant consump-
tion drops on weekends and we could retrieve that
this behavior would also occur on school holidays
(mainly in the month of August, when there is little
to no activity in the campus). We then experience
two types of consumption patterns: business days
and holidays (where the values drop to around 25%
of the peak power drain of business days). All this
inferences were verified to be valid for the year of
2018 too.

Re-sampling the data on a weekly basis, for both
years, we could clearly identify the school holidays
drop pattern (in January and August) and even a
middle, less pronounced plateau regime on exam
season (January/February and June/July), coming
from idle operations in class buildings.

Finally, we study daily behavior in terms of mean
hourly power consumption, as seen in Figure 4:

Figure 4: Mean hourly power consumption at Civil building, in
2018. A typical power consumption curve goes up in the morn-
ing, peaks at lunch time and starts going down again until the
evening.

As expected from Figure X(a de cima), the power
consumption begins to rise until around 11 AM,
where it reaches a plateau of peak consumption.
Around 5 PM, the power drain begins to drop down
until it reaches idle levels. We have an idle regime
drive throughout all days in which there’s little to
no activity in the campus. In particular, we have
seen the Civil building mean hourly energy con-
sumption gone up by around 20% from 2017 to
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2018 (≈ +30kW average offset).

2.1.2 Clustering and Feature Selection

Building an Hierarchical Clustering Dendrogram
and retrieving kMeans [24] silhouette scores us-
ing Python’s scikit-learn [5] library confirms that we
have two main data clusters.

This way, we establish a proper plateau plot of
both consumption regimes, differentiating them by
cluster labels. The result plot is presented below,
on Figure 5.

Figure 5: Plateau plot for hourly power consumption at Civil
building in both years, during 24 hours, with the two highlighted
consumption trends. Typical operation day (in blue) and lower
operation day (in red).

Addressing feature selection, we add a parame-
ter WeekDay (= 1 on week days and =0 on week-
ends) to our feature dataset, distinguishing be-
tween weekend and business day consumption. In
addition, as we experience hourly and monthly pe-
riodic variations, two feature columns which con-
vert timestamps into discrete values of hour and
month are also loaded in the dataset. Most of our
features, such as in other studies of the kind [15],
are meteorological parameters, which are known to
have an impact on energy consumption and posi-
tively influence prediction models. We got our data
for the period 2016-2019 from IST’s Meteorological
Services [4]. Their data files include the following
features:

1. Temperature (in degrees Celsius)

2. Relative Humidity (in percentage, %)

3. Wind Direction (in degrees)

4. Wind Gust (in m/s)

5. Wind Speed (in m/s)

6. Solar Radiation (in W/m2)

7. Atmospheric Pressure (in mbar)

8. Precipitation (in mm/h)

9. RainDay (=1 in a day with reported precipita-
tion, =0 otherwise)

To conclude, we add feature columns Power -
1 and Power - 2 correspondent to the power con-
sumption of the previous two entries, that is, of the
previous two hours. We shall further explain the
use of these features upon model loading.

To find the right balance between model com-
plexity, computational time and accuracy, we de-
ployed feature selection algorithms. We used all
three approaches to feature selection in order to
improve our feature extraction decision. Starting
by the filter methods, we use the kBest routine,
which uses an ANOVA classifier function, avail-
able in Python’s scikit-learn library [5]. The highest
scores are laid on this following table:

Feature kBest Score
Power-1 44,2

Precipitation 6,6
Solar Radiation 1,68

Temperature 1,39
Table 1: kBest algorithm highest scores and features for k=4.

Moving towards the wrapper approach, using
RFE (recursive feature elimination) supported by
a linear regression model [5]. Choosing to find the
two main important features, we get the following
affinity ranking:

Feature RFE Affinity
Wind Gust 1

Wind Speed 1
Hour 2

Power - 1 3
Table 2: RFE algorithm 2-fold highest ranking features.

Finally, the ensemble approach is deployed us-
ing an Extra Trees Regressor [5] to scan for fea-
ture importance. We have listed those results on
the next table.

Feature Feature Importance
Power - 1 8,34E-01

Solar Radiation 1,02E-01
Hour 4,64E-02

WeekDay 6,74E-03
Table 3: Extra Trees Regressor feature importances.

As such, we shall inject in our model the fol-
lowing features, which scored as important to all
three methods: Solar Radiation, Power - 1, Hour
and WeekDay. These parameters are expected to
have an impact on IST buildings’ energy consump-
tion. While nearly all of the correlations found were
self-explanatory, the Solar Radiation feature was
found to be a good proxy value of the power con-
sumption, going up in the morning and, afterwards,
going down until the end of the day.
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2.1.3 XGBoost Regression Model

In order to build our prediction regressor model,
several tests were conducted as to assess which
one performed best using our data and features.
The elimination criteria was based on the com-
mon metrics: Mean Absolute Error (MAE), Mean
Squared Error (MSE) and Root Mean Squared Er-
ror (RMSE). The models verified under a test size
of 15% for the concatenated data of both 2017
and 2018 were: Linear Regressor (LR), Random
Forest Regressor (RF), uniformized Random For-
est Regressor (uRF), Multi-layer Perceptron Re-
gressor (MLP - Neural Network) [5] and XGBoost
[8]. In all four buildings, XGBoost outperformed
the other models, except for the North and South

Tower, where the absence of some data points is
expected to might have impacted the results.

Upon using the previously trained model, the
Power - 1 feature was replaced in its essence.
Instead of representing the previous hour power
consumption, and since the model should be used
a posteriori, it was actively loaded as the previous
year consumption at the same hour, day and
month. We expect this difference to help us build
the model in a quicker and non-recursive way.
The error results for the XGB model which was
used to determine our 2019 baseline are listed on
the table below. The results were averaged from
10 runs of the model, for each building, at a test
size of 12,5%, which was found to minimize errors.

Building 17 (kW) 18 (kW) MAE (kW) MSE (kW2) RMSE (kW) MAE (rel.) CV(RMSE)
Civil 164,3 183,3 8,23 194 13,5 0,047 0,078

Central 189,2 182,4 7,27 140 11,8 0,039 0,064
N. Tow. 102,5 114,4 8,88 294 17,1 0,082 0,158
S. Tow. 177,6 173,9 17,5 1393 37,2 0,100 0,212

Table 4: IST’s buildings average hourly power consumption for both years, XGB basline model error parameters (MAE, MSE
and RMSE), and error parameters relative to the 2-year average (MAE and CV(RMSE)). The behaviour at the Towers shows that
additional features should be considered, to lower the CV(RMSE). The model was trained with a concatenated 2-year-long data
set, which helps reducing meteorological induced variability.

The model feature importance percentages are
displayed on the table below, to show us how
deeply did our input variables influenced our pre-
dictions. We conducted ten rounds of modeling
as to better retrieve the final averaged feature im-
portance for each building and a globally averaged
feature importance.

Building S. Rad. Power-1 Hour WD
Civil 0,018 0,884 0,092 0,006

Central 0,022 0,869 0,102 0,006
N.Tower 0,017 0,88 0,094 0,009
S.Tower 0,027 0,846 0,111 0,016
Average 2,1% 87% 10% 0,9%

Table 5: Feature importances for each building and global av-
eraged feature importance, in percentage. Power - 1 and Hour
are, hence, the most relevant features in our study. WD stands
for WeekDay.

We now take a look at the buildings feature cor-
relation heat map (Fig. 6), built from all initial fea-
tures, in order to explain and validate our feature
selection, as well as to confirm or undertake fur-
ther adjustments to the model. We used Python’s
corr() function together with Seaborn to build this
map.

Figure 6: Civil building input feature correlation heat map.
Here, ”WeekDay” stands for the number of the day relative to
Sunday while ”var” stands for the usedWeekDay

In fact, we are using the top four correlated fea-
tures to our output parameter ”Power kW” (apart
from Power - 2, which would turn out redundant),
which boosts our model’s reliability. Considering
the Towers, we are getting higher error parame-
ters. In the South Tower heat map, we can see
that there’s a higher correlation with temperature,
which was confirmed by the North Tower heat map.
This can be explained by the building’s architecture
(glass window coated tower) and HVAC systems,
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which is a big contributor to the total load. To im-
prove the model, several training rounds were con-
ducted admitting the temperature as a feature, to
see if it would reduce the error. The result came
out to be negative, with error factors increasing
upon the consideration of temperature. It is then
assumed that the lower accuracy of the tower mod-
els can be due to the lack of data points, because
of faulty smart meters on both towers. Concern-
ing Civil and Central, the ECM impacted buildings,
we can confirm that the error parameters are good
enough to effectively establish a baseline model,
with CV(RMSE)s under 8%. In addition, the 5-fold
cross-validation r2 scores yielded a mean value of
98% for both buildings.

2.1.4 Savings M&V

To assess the measured savings, we integrate all
parts of our data model. Loading the model with
the IST’s meteorological features from the year
of implementation (2019) and plugging previous
year’s consumption data, at the same time and
day, as Power - 1, the previously trained model
retrieves its value predictions for the hourly con-
sumption at each building. We then compare it to
the actual smart meter retrieved consumption data
for the year of implementation, on a hourly basis.
To calculate the CO2 emissions reduction, we use
the value obtained from [7] [9] of 0,265 Kg/kWh,
valid for Portugal.

We know that ECMs have been implemented
across the Civil and Central buildings during the
month of April, by Campus Sustentável - IST [1]. It
focused on changing the lighting scheme to more
efficient LEDs on the highest consuming buildings.
The reporting period for the retrieved savings in
this section was considered to be from 01/06/2019
to 31/12/2019. This way, we leave one month for
ECM impact stabilization and then analyze a pe-
riod consisting of three months of normal scholar
activity, three months of holidays and one month of
exam season, so we can better estimate an over-
all savings percentage, for an university campus.
Formulas 1, 2 and 3 are used for calculating per-
centage savings, actual savings and the error pa-
rameter, in which M stands for Model, A for Actual,
S for Savings and Avg for the model average value,
followed by a table in which these calculated values
are displayed. The sums are performed on a hourly
basis and the used average RMSE was the value
present in Table X, for each building. Representa-
tive plots of the model behaviour versus predicted
data, hourly savings and CO2 kilograms saved for
a week in October 2019 at the Civil building are
also displayed in Figures 7 and 8.

Figure 7: Model hourly behaviour for a week in October 2019
at the Civil building.

Figure 8: Hourly energy savings and hourly CO2 savings (b)
for a week in October 2019 at the Civil building.

S =

31/12/2019∑
1/6/19

(M −A) (1)

S(%) =

∑31/12/2019
1/6/19 (M −A)

Avg
× 100 (2)

Error =
RMSE

Avg
× 100 (3)

After ten averaged runs, the retrieved savings re-
sults were:

Building Savings Savings CO2

(%) (MWh) saved (ton)
Civil 16,9 ± 7,3 147,8 39,2

Central 20,6 ± 6,3 179,6 47,6
Table 6: Civil and Central buildings reported savings from
01/06/2019 to 31/12/2019, according to our model.

2.2. Blockchain
In order to deploy a ledger algorithm, an IBM De-
veloper public blockchain prototype was used. The
code and its significant updates are hosted on git-
hub [3] and a thorough tutorial on how to program
and use it is present in [10]. This application shall
allow users to share information by posting on the
network using a simple web interface (Fig. 9). The
used web framework was Flask [2]. In this sec-
tion, we shall explain the code and adjustments
that have been made, in order to deploy our M&V
solution and properly assess EPC execution.
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Figure 9: Blockchain network scheme.

2.2.1 Blockchain and Block classes

The Block object is initialized taking an index
(which serves as an unique identifier), the transac-
tions array, a time stamp, the previous hash string
and a default zero nonce as arguments.

In a network like this one, we want to prevent
transaction data tampering. To encode transaction
information, we use a cryptographic hash function.
A hash function is a function that takes input data
(of any size) and retrieves data of a fixed size from
it (the hash), which is used to identify the input [10].
These functions have to be easy to compute, de-
terministic (in the sense that the same data must
retrieve the same hash) and uniformly random re-
garding changes in input. This way, it is virtually im-
possible to figure out the input data from the hash
(the only way being to compute all possible input
combinations) but, having the input and the hash,
one can simply pass the input through the hash
function to verify a provided hash. This is known
as effort asymmetry.

In the context of our application, a com-
pute hash() function is responsible for encrypting
the data referent to the transaction string and, in
our case, encoding the savings information text to
be put on the block. The cryptographic hash func-
tion used to encode our strings was the Secure
Hash Algorithm 2 (SHA-256, [6]) (256 bits), de-
signed by the US National Security Agency (NSA),
considered to be safe.

In order to avoid chain tampering, we chain the
blocks together by having each of them store the
previous block hash. This way, we make sure that
any change in the previous blocks invalidates the
whole ledger.

In the Blockchain class, we can find the ini-
tializer function, the genesis (first) block creator

and the last block retriever property. The initial-
izer creates two empty arrays: chain and uncon-
firmed transactions. To initialize posting on the
chain, we have to create the first block using func-
tion create genesis block that joins an empty block
object to our current chain with index ”0”, so as to
ensure coherence between blocks.

At this point, it is still possible to tamper with data
by just changing the previous block and easily re-
computing all the blocks that follow. We avoid this
by exploiting effort asymmetry upon calculating the
hash, making it difficult and random. In our case,
we add the constraint that our hash should start
with n leading zeros. To prove that this compu-
tation was performed, we store a nonce (dummy)
variable on our blocks, that is incremented until the
calculated hash satisfies our constraint.

Figure 10: Proof-of-Work.

The proof of work function certifies that the hash
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is retrieved following an hash header constraint
and its difficulty (’0000’), saving proof of computa-
tion afterwards (Fig.10). Correspondingly, we have
a Boolean function called is valid proof that checks
if the computed hash for the block matches its input
content. After that, the add block routine receives
a block and its hash which then appends to the
main chain, after it confirms previous hash coher-
ence (perserved order of transactions) and com-
putation proof (data tampering). In addition, our
add new transaction function appends new trans-
actions to the unconfirmed transactions array.

The process of appending the unconfirmed
transactions to a block and computing proof-of-
work is called mining. Once our hash constraints
are met, a block is said to be mined and can be
added to the ledger. In most cryptocurrencies, this
mining computational activity is compensated by a
share of cryptocurrencies [10].

The mine function appends all unconfirmed
transactions to a block and adds it to the chain,
after undergoing PoW and previous block hash co-
herence, resetting the unconfirmed transactions’
array.

The check chain validity routine is used on the
consensus mechanism for different chains. It
checks if the computed hashes for the blocks in the
chain match what they were supposed to, accord-
ing to our cryptographic scheme.

On a longest-chain (more produced work) con-
sensus approach like ours, we thereby validate
each conflicting chain while checking what is the
longest one. This method is used on the further ex-
plained web-interface function consensus1 for that
exact purpose.

2.2.2 Flask framework

Concerning the web interface, we explain how
this solution handles the blockchain instructions
on the client side, by using submitting HTML re-
quests through app routes, using Flask [2] to cre-
ate a REST API that invokes operations in our
blockchain node [10].

To add new transactions to a block, the
new transaction routine saves the author and the
content of our transaction (hence, our savings),
recording the current time stamp.

Aditionally, our adapted version of this
blockchain requests the RMSE for a given
used baseline model and the mean energy con-
sumption value during the baseline period (in kW),
in order to confirm that our model CV(RMSE)
is satisfactory. This way, only transactions that

1We highlight the difference between block coherence, refer-
ent to previous hash matching, and conflicting chain consensus,
in which we design a decision mechanism to chose between two
different chains, hosted by different nodes.

guarantee a certain level of model accuracy can
be added to a block. In our solution, we chose
demand a CV(RMSE) of under 15%. The submis-
sion of these parameters by the nodes is further
discussed on Chapter 5.

If intentional manipulation or network latency oc-
curs, the copy of the chain in some nodes can be
compromised and differ from the other nodes. In
that case, the network needs to agree upon some
version of the chain to maintain integrity [10].

The consensus function clarifies just this lat-
ter point, by checking chain length when chains
of different nodes appear to diverge. This way,
it’s agreed that the longest chain corresponds to
largest amount of work (PoW) done and, hence,
valid.

In order to submit the mining command, the
mine unconfirmed transactions app route uses the
mine function of the Blockchain class, making sure
we have the longest chain before anouncing it to
the network, which enforces our consensus crite-
ria.

After a certain block is mined by some node, we
need to add it to each nodes’ chain. We do that by
defining the verify and add block function, which
loads the PoW to the Blockchain add block func-
tion.

We need a way for any node to announce to the
network that it has mined a block, so every node
can update their blockchain [10]. This way, the
other nodes can simply verify proof-of-work and
add the mined block to their respective chains. Be-
cause of this, the announce new block method is
called after every block is mined by a certain node.

Finally, to establish a network, we need to be
able to securely register new nodes and put them
up to date regarding the valid chain. The reg-
ister new peers and register with existing node
functions guarantee those exact methods, enabling
a node to register new other trusted nodes. This
last method will allow the remote node to add a
new peer to its list of known peers and initializ-
ing the blockchain of the new node with that of the
network-trusted node.

3. Implementation and Usage
We now integrate the model and blockchain com-
ponents to produce automated savings posts that
can be seen in an HTML page. Here we explain
how to run the localhost ports that host our two
blockchain nodes and how each building savings
are posted on each node, after calculation. The
average script execution time, in seconds, is listed
below on Table 5.1.

central node.py civil node.py
Exec. time (s) 5,576 5,416

Table 7: Average execution time (s) for each script.
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3.1. Blockchain Node Server and Application
To deploy our application, we first need to assign
our flask application to the node server.py script.
After that, we run the server ports in which we will
be able to post savings informations, using the run
command. We shall initialize two localhost ports,
one for each building to post on.

After this, an instance of our blockchain node is
running at localhost ports 8000 and 8001. On a
different terminal session, we can now run the curl
commands to register a new node (port 8001) with
a proxy node (port 8000) . Symmetrically, because
of application constraints, we need to do the same
thing to register the first node (port 8000) with the
latter one (port 8001) (Listing 5.2). This will make
the node at port 8000 aware of the nodes at port
8001 and vice-versa [10]. New nodes will also sync
their chain with the existing node so that they are
able to participate in the mining process.

Now, we just need to run the run app.py
front-end application on a different terminal ses-
sion. This will start our HTML interface at
http://localhost:5000, in which we can visualize
our chain transactions. By default, this applica-
tion syncs with localhost port 8000, but that pa-
rameter can be changed by updating the CON-
NECTED NODE ADDRESS field in the views.py
file [10].

3.2. Savings script
The central node.py and civil node.py scripts
which retrieve the energy consumption savings
information were built to: 1) treat the existing
datasets and train a XGB model 2) load the report-
ing period features to the same model 3) retrieve
the savings information post (string) and model
CV(RMSE) and 4) automatically post weekly sav-
ings information on our blockchain, corresponding
to the same week in 2019.

To make automatic posts we use python’s sched-
ule library, forcing code execution every Sunday.
We do this by defining a function which calculates
and posts savings and scheduling it to post in a
given weekday.

To post information on the nodes, we use HTML
requests and the httplib2 library. They retrieve
information about the current week consumption
in the reporting year (2019) and previous years
(2017 and 2018). Our posts also configure two re-
quest fields, ”Mean” and ”RMSE”, in order for the
blockchain to verify model CV(RMSE) upon post-
ing.

It was possible to verify that the value variation
between trained model results in different script ex-
ecutions was under 1%.

3.3. HTML page
In our visual interface, we can visualize our sav-
ings information content, the ”author” building and
the timestamp of the node post. There are but-
tons to request mining, returning to homepage
and refreshing the current page. Additionally,
there are two disabled features, which can be
used to further improve UI/UX: a Reply button,
on each post, that can be used to insert obser-
vations/comments to each week’s savings infor-
mation and input boxes, which may allow us to
submit a post directly on the HTML page through
the CONNECTED NODE ADDRESS (default port
8000). Notice that the input box posts are (cur-
rently) disabled since we lack the ”RMSE” and
”Mean” model accuracy fields which validate our
transactions.

4. Conclusions
4.1. Achievements
We were able to deploy a blockchain solution that
accurately estimates and stores savings in a trans-
parent manner. The validation mechanism is as-
sociated to the accuracy of the forecasting model,
which secures a framework for EPCs to be audited
in a clear, safe and trustworthy manner.

M&V 2.0 technology integration allows stake-
holders to better examine and estimate energy ef-
ficiency improvements locally and globally. These
represent the most significant reduction in energy-
sector CO2 emissions globally and help us get on
track with the three energy-related SDGs, saving
energy and balancing demand with supply side im-
provements.

Considering the lighting ECM deployment at the
two main buildings of the IST Alameda campus -
Civil and Central - we estimate savings on a weekly
basis, throughout the reporting period. Resort-
ing to a trained XGB [8] baseline model, we have
reached a savings level of 16.9 ± 7.3% and 20.6
± 6.3%, in the Civil and Central buildings, respec-
tively, and a cumulative 86.8 metric tons reduction
in energy related CO2 emissions, over a reporting
period of 7 months (Jun-Dec 2019). The models
yielded an average CV(RMSE) of 7.8% and 6.4%
for the Civil and Central buildings, respectively.

We store our savings information in safe
blockchain nodes, using an adapted version of the
IBM Developer [10] blockchain algorithm, which
only validates savings posts after verifying that the
baseline model’s CV(RMSE) is under 15%. The in-
formation is displayed to the user via a Flask web
interface, which interacts with each node server on
the established network.

Future adjustments and limitations are dis-
cussed in the sections below, so as to drive future
developments. Our results allow us to state that
our endeavor objectives were met and that this was
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a promissing innovation in the field of EPC audit-
ing.

4.2. Limitations and Future Work
During the development of this first prototype,
we’ve came across some limitations which prevent
us from presenting an universally accepted solu-
tion.

Regarding the baseline model, it is known that
the deployment of XGBoost regressor models can
be more computationally costlier than similar per-
forming algorithms, like Random Forests, which
can raise concerns of scalability. In this initial study,
we focused on delivering the most accurate model
in detriment of the most efficient one, which should
be taken in consideration when engaging in wider
applications.

In what concerns the integration of savings cal-
culations with blockchain node servers, there is a
need to establish an actual network and securing
a public-private key cryptography scheme [10], in-
stead of running the scripts on localhosts and hav-
ing virtually every possible user posting/changing
data on our buildings’ ledger. This way, the posts
can be added another level of security, after which
some data protection work is recommended on the
model side too, when handling key parameters, like
the model CV(RMSE).

Focusing on energy data and information, we
didn’t find any documentation available regarding
the deployment of these ECMs that we could com-
pare our results against. The baseline model was
proven to behave satisfactorily, well below the 25%
used as accepted standard for this industry, but we
exhort the community to further boost smart-meter
deployment in public buildings and thoroughly doc-
umenting ECM implementations in the future, help-
ing to maintain data consistency.

For the prosperity of technologies like this one,
we further recommend the standardization and de-
bureaucratization of energy savings and EPC pro-
cedures, making savings knowledge easily tangi-
ble to the end-user. Further adjustments can be
employed in smart cities applications of this solu-
tion which additionally would comprise water sav-
ings and renewable energy production/storage.
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