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Abstract
Machine Learning and Cloud Computing have been two of the
fastest growing areas in the the past few years. Recent devel-
opments have emerged regarding machine learning optimiza-
tions, enhancing their accuracy and training time. However,
for optimization procedures that have very large datasets and
many hyperparameters, most users turn to the cloud to offload
the inherent computation that would otherwise be infeasible
locally. In order to do so, users face the task of picking cloud
parameters to deploy their machine learning jobs which can
be difficult due to the wide range of possible configurations
and whose misconfiguration translates into large, unnecessary
costs for large scale models. Recent state-of-the-art systems
have taken the approach of performing optimization of both
cloud configurations and machine learning hyperparameters
in a joint fashion, with the goal of minimizing cloud related ex-
penses while reaching the best hyperparameter configuration
for the specified machine learning algorithm. Nonetheless,
the optimization procedure involved by these approaches can
also require exploring a large number of expensive configura-
tions and impose, in its turn, large economical costs. It is thus
crucial that the optimization procedure is as time efficient as
possible and converges rapidly towards the optima. This thesis
proposes Hydra, a self-tuning system solution that performs
optimization of machine learning algorithms improving some
drawbacks of extended state-of-the-art systems by rapidly
converging towards the optimum solution without wasting
time on bootstrapping the model, using many low-budget eval-
uations of configurations while applying transfer-learning to
enhance the models’ performance, ultimately reducing overall
costs by 35% of the extended work.

1 Introduction
Machine learning (ML) has emerged as a popular research
area that aims at automating model building in order to de-
velop self learning systems. ML branches from artificial intel-
ligence and pursues the goal of extracting information from
data for decision making, pattern identification, and many
other possible applications requiring minimal human interac-
tion. Some examples of ML applications are website recom-
mendation services [19], satellite image recognition [18] and
many more [7, 24]. For a ML algorithm to learn and achieve
a good accuracy, the data used in it needs to have both quality
- the training data should be representative of the target appli-
cation scenario - and quantity - a sufficiently large volume

of data should be available to provide an adequate character-
ization of the phenomenon to be modeled. Since end-users
need ML models to be built as fast as possible, the training
procedure also demands relatively high resource requirements
that scale with the targeted accuracy and amount of training
data.

As the amount of digital data grow, novel sophisticated ML
algorithms are developed and larger applications for ML are
frequently deployed, demanding an exponential amount of
resources from users in large scale jobs. Associated to these
models are hyperparameters, which is a type of parameter that
controls the training process of ML algorithm. To enhance the
accuracy of ML model, end users were accustomed to tune
its parameters, but the complexity of testing and tuning the
hyperparameters of a ML job has become prohibitive given
the increasing complexity of the ML jobs being currently
used. Therefore, researchers have investigated automated op-
timization techniques that address hyperparameter selection
of machine learning jobs [8, 21, 28]. These optimization meth-
ods follow a black box approach, which requires testing the
model multiple times in different configurations. Given the
resource-intensive nature of training and optimizing complex
ML jobs [9], users have naturally turned to the cloud to deploy
this kind of jobs.

Cloud computing is one of the areas in technology that has
bloomed more in recent years, allowing us to offload large
workloads to large data centers that have the ability to process
them in a relatively short time. Given the abundance and
heterogeneity of available cloud resources, users are faced
with a complex choice when they need to pick the right type
and amount of resources for deploying their jobs. Thereupon,
researchers developed systems such as [5, 24], to perform
cloud optimization that enables users to reach a decision for
what type of cloud configurations should it pick to perform a
certain job.

Unfortunately, though, most of the existing literature looks
at the optimization of the cloud configuration for a ML job
and at the tuning of the hyper-parameters of a ML job as to
two independent problems. Only very recently [5], the im-
portance of jointly optimizing these two types of parameters
has been recognized. In fact, the choice of hyper-parameters
related to, e.g., the synchronization of the parallel/distributed
training process can be strongly affected by the number and
type of cloud resources employed to support the training pro-
cess. As a consequence, optimizing the two set of parameter
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independently, as done in most of the existing literature, can
lead to identifying configurations that are up to 3.7× less ef-
ficient [5]. On the other hand, joint optimizing these two set
of parameters leads to an exponential growth of the resulting
search space, urging for novel solutions that can efficiently
crawl this search space and minimize the cost and latency of
the resulting optimization process.

1.1 Objectives
In the following, the state of the art in the area of optimization
of ML training jobs in the cloud is critically analyzed. In
the light of this analysis, two main research directions are
identified and proposed for my MSc dissertation:
1. Investigating how to extend BOHB [8], a recently proposed

method for hyperparameter tuning to optimize, in a joint fash-
ion, both the model’s hyper-parameter and the choice of the
underlying cloud platform. The key idea at the basis of BOHB
is to test configurations "partially", i.e., allocating an intention-
ally limited "budget" (e.g., time or cost) to each configuration
test and timing out the testing once the allocated budget is
depleted. This information is used to build a model of the
application’s efficiency over the set of untested configurations,
which can then be consulted to drive the optimization process.
The process is then repeated iteratively, invoking the model to
select which configurations to test in the next iteration, which
will test a number of configurations decreased by a factor
𝛽, allocating to each configuration test a budget increased
by the same factor 𝛽. Unlike in conventional model-driven
approaches [12, 14, 28], which do not explicitly control the
cost of testing a configuration, the cost incurred to create a
model can be significantly reduced.
2. BOHB predicts the quality of a configuration via models

that are built considering a specific testing budget. As the
optimization process progresses, the budget used for testing
increases exponentially, and the number of configurations
tested at each iteration also drops with an exponential rate. As
a consequence, the models used by BOHB, as the optimiza-
tion process evolves, are based on an exponentially decaying
number of configurations, which, we argue, can limit their
prediction accuracy significantly. To cope with this limita-
tion, we plan to extend BOHB to incorporate transfer learning
techniques aimed at extrapolating the predicted configuration
quality across different budgets. Through the use of transfer
learning techniques, the models used by BOHB to steer the
optimization process will be able to retain and exploit the
knowledge acquired when testing configurations with smaller
budgets.

1.2 Contributions
This thesis focuses on the analysis of machine learning opti-
mization systems, providing insights and developing a system
that covers underlying drawbacks of recent state-of-the-art
systems that are shown to have good performances. The main
contributions are:
• Overview analysis and comparison of state-of-the-art sys-

tems.
• Hydra, a self-tuning system solution that performs op-

timization of machine learning algorithms improving some
drawbacks of previous systems by rapidly converging towards
the optimum solution without wasting time on bootstrapping
the model, using many low-budget evaluations of configura-
tions while applying transfer-learning to enhance the models’
performance, ultimately reducing overall costs.

2 Related work
In this section we will start by introducing state-of-the-art
systems in the context of hyperparameter optimization and
then we will transition to cloud optimization systems.Finally,
a brief summary of the presented state-of-the-art techniques
is discussed.

2.1 Hyperparameter Optimization
As previously discussed, in machine learning many algo-
rithms require the user to set some hyperparameters. This
type of parameters are called hyper because they influence
how the algorithm will learn. Examples of hyperparameters
are the synchronization method and batch size used by dif-
ferent workers in a distributed training process [22]. Unfortu-
nately, guessing a good value for a model’s hyperparameters
beforehand is far from being a trivial task, as their correct
tuning is affected by a large number of factors, such as the
shape of the function that the ML model is learning or the
number/type of computational resources being harnessed in
the learning process. Machine learning algorithms tend to
have large training times and require a large number of re-
sources such as powerful CPUs and in some cases even one or
more GPUs. Given this, it is imperative that the optimization
task minimizes both cost and time while providing a set of
hyperparameters that ensure optimal (or close to optimum)
performance. In this section we will review some state-of-the-
art optimization techniques in the scenario of hyperparameter
optimization that approach the problem in different ways.

Bayesian Optimization The existing approaches that use
Bayesian Optimization for hyperparameter optimization build
a model, often based on Gaussian Processes, that predicts,
for each possible hyperparameter value, the corresponding
accuracy achievable by the model. A great advantage of this
model is that it accumulates all data from previous evaluations
of the objective function, which typically leads to producing
more accurate predictions and, consequently, to enhance the
speed of convergence towards optimal solutions.

This technique proves to be very efficient in providing
highly accurate configurations but there are some intrinsic
weaknesses associated to it, such as: i) it needs to have some
samples before building a model; ii) each individual sample
has a high cost; iii) GPs are very slow to train, especially if
a large number of configurations have been tested. Conse-
quently the initial phase is costly and slow. Besides this, in
large datasets or in scenarios with a substantial amount of
hyperparameters, BO will scale poorly because it will need to
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train the algorithm on the whole dataset and build increasingly
complex models for each hyperparameter it is added.

In the following, we will discuss some algorithms that
mitigate this disadvantage by adopting techniques such as
transfer learning and others that provide cheaper costs and
meet the same or better results in the process.

Hyperband Hyperband [21] (HB), is characterized as a model-
free technique of hyperparameter optimization that originated
from pure exploitation bandit problems, that have the goal of
minimizing regret, that is the distance from the optimal solu-
tion as fast as possible, in any setting. This algorithm extends
the Successive Halving [15] (SH) algorithm that performs in
the following way: Given a growth factor N, a minimum and
maximum budget (e.g. wall clock time), a fixed number of
randomly sampled configurations will be evaluated with the
minimum budget, then they will be compared. The top 1/N,
multiplied by the number of tested configurations will pass to
the next phase, which is similar to the previous phase, with
the difference that it only evaluates the passed configurations
and having the budget multiplied by N. This algorithm stops
when the maximum budget value is reached.

As described in [21], low budgets will produce noisy eval-
uations that can be misleading in SH, so HB tackles this
concern by doing multiple runs of SH and increasing, at each
run, the minimum budget. As such, HB mitigates the risk
of being biased, hence staying in the Successive Halving
iteration. However, it may not scale well when the budget
increases. Ultimately, HB recommends the configuration that
performed best across every run of SH.

HB has the advantage of being very fast regarding propos-
ing good configurations in early stages. By comparing it with
BO, it proposes configurations and converges faster in the
early stages. However, due to its stochastic nature, HB suffers
from the same issue of Random Search [3]. For instance, HB
does not leverage the information of previously done evalua-
tions, since it only maintains a record of the best performing
configuration, making it converge slowly and most likely not
reach the global optimum.

Fabolas Fabolas [17] is a state-of-the-art technique for hy-
perparameter optimization that tries to increase the efficiency
of BO when used to optimize machine learning jobs that
need to digest large datasets. The idea at the basis of Fabolas
is to infer optimal configurations for training using the full
dataset, based only on observations performed using a sub-
sampled dataset. This leads to speeding up the initial model
building phase and provides faster results when compared
to traditional BO-based hyperparameter optimization tech-
niques [12, 14, 28].

Producing a model while using a subsampled dataset will
result in cheaper function evaluations, however it will also pro-
duce a worse approximation of the objective function which
in turn will provide worse samples. To tackle this issue, Fabo-
las models accuracy and training time as a function not only
of the hyperparameters’ configuration, but also of the dataset
size. Based on this model, Fabolas seeks the best trade-off

global optimum. Finally, Fabolas extrapolates the knowledge
to the original dataset by predicting what configurations will
achieve the best result.

This approach of constraining the resources needed to build
the model in order to lower the cost of function evaluations is
similar to the HB approach of doing budget runs to minimize
cost. However Fabolas is not as fast as HB in the initial phase
but it does converge faster than BO in general.

BOHB BOHB [8] is a state-of-the-art technique that com-
bines two techniques that were previously discussed, namely
Hyperband [21] and BO [4]. It does so in order to leverage
the advantages that both algorithms bring, while minimizing
their disadvantages.

BOHB performs BO with a different modeling scheme,
instead of using GP to model the objective function, it uses a
Tree Parzen Estimator [4] (TPE). TPE uses a kernel density
estimator which instead of modeling the objective function
directly as GP does, models two different densities over the
input configuration space. These densities are represented by
𝑙 (𝑥) and 𝑔(𝑥); where the first density captures configurations
that performed significantly well, that are above a certain 𝛼

threshold, and the second has configurations that have unde-
sirable results, that are below the 𝛼 threshold. This change
of model came due to the fact that TPE scales better than
GP, while maintaining the support for mixed discrete and
continuous configuration spaces. After declaring the budgets
boundaries, the algorithm will start by doing the Hyperband
method with a relevant difference: unlike HB, BOHB does
not sample configurations randomly. Instead, it does not al-
ways randomly sample configurations; conversely, it relies
on the TPE-based models, constructed in previous HB runs,
to determine which configurations to test in the next HB run.
This way, the knowledge acquired by testing configurations in
previous HB runs is retained and exploited to drive the future
HB runs and enhance convergence speed.

This method has the speed advantage of Hyperband, i.e.,
it is able to reduce the cost of evaluating the quality of con-
figurations by controlling the computational budget allocated
over time to function evaluation. Additionally, BOHB selects,
with a small, user-tunable probability, configurations in a
purely random way (i.e., without consulting the model). This
design choice improves the robustness of BOHB in presence
of inaccurate/flawed models, which, in pure model-driven
approaches (e.g., based on BO [28]) are likely to hinder the
efficiency of the optimization process.

2.2 Optimization in the Cloud
This section reviews a set of state-of-the-art approaches that
tackled the problem of optimizing, according to different
metrics, the efficiency of complex applications to be deployed
on the cloud. As it will discussed, most of the solution in this
area of the literature treat the application as a black-box and
focus solely on the identification of the right amount and type
of cloud resources to be allocated to the application to meet
user-defined constraints on QoS.

3



Lynceus Lynceus [5] is a recent approach for the optimiza-
tion of cloud-based jobs. It adopts model-driven optimization
as [2] but it refines its model in a different manner. Lynceus is
a budget-aware and long-sighted self-tuning system of cloud
resources that has the goal of discovering the configurations
that minimize the execution cost of data analytic jobs by ensur-
ing that the maximum execution time constraint is followed
and the evaluation of a configuration does not exceed a given
budget, where a configuration in this scenario is composed
by cloud parameters (e.g. virtual machine type and number
of instances) as well as hyperparameters of machine learning
jobs.

To achieve its goals, this system has the following strategy:
At the beginning of the exploration phase, where it strives to
find a good configuration and there is a large uncertainty in the
cost model, Lynceus allows for a larger budget and presents
a more explorative behavior. As the system explores more
configurations and the cost model becomes more accurate,
the budget will decrease. In this phase, Lynceus adopts a
more careful and exploitative approach where it only selects
configurations that will not compromise the given budget,
while leveraging the cost model to achieve the maximum
shorter reward.

Lynceus does consider both cloud and application’s con-
figuration parameters jointly. However, due to its reliance
on BO, it suffers of the same problems already discussed
when introducing CherryPick, which are reacquiring an initial
bootstrapping phase that, may lead to testing very expensive
configurations.

Overall by the analysis of the table we get that:
• Only Lynceus aims at optimizing both cloud and appli-

cation parameters. The authors of that solution have also
reported experimental data that confirms the relevance of op-
timizing these parameters in a joint fashion, with gains (in
terms of cost reduction for the users) that can extend up to
a factor 3.7× when compared to solutions that optimize the
two set of parameters independently.
• Unfortunately, the reliance of Lynceus on BO [28] exposes

it to a number of shortcomings that have been highlighted by
the recent literature on hyperparameter optimization.

• There are techniques that do not require to build a model,
hence, in that short time window, they gain some benefit for
those resources, however they are quickly outclassed in terms
of convergence to the global optimum after some time.

3 The Hydra Optimizer
In this section we propose and cover the design/implementa-
tion of Hydra, a system that build on BOHB and extends it to
address its main shortcomings, such as the inability to extrap-
olate how the quality of configurations vary across budgets.
We also present variants of this system that try to balance the
economic cost of the optimization process by taking it into
account throughout the run.

3.1 Overview
Performing optimization of machine learning algorithm is an
expensive procedure. As a matter of fact, even with BO-based
techniques [28], which strive to minimize the number of
evaluations needed to reach a global optimum, each evaluation
can still be very demanding in terms of resources and time.
Other techniques, such as Fabolas [17], have addressed this
problem by using sub-sampling in the training dataset so as to
reduce cost of evaluating the quality of configurations during
the optimization process.

These techniques require a model to be built firstly in order
to produce results that can lead them to the global optima and
since this task is done by randomly sampling some configura-
tions there is always a fixed amount of resources that is spent
and do not contribute to the end goal in that time window. This
said, BOHB [8] leverages both Hyperband [21] and Bayesian
Optimization to produce results before the model has been
built and after, provide more information to the model with
the configurations that have been evaluated. This allows for
achieving convergence rates that are faster than BO, while
constraining evaluations to a budget, so as to reduce the cost
of the optimization process. BOHB then effectively counters
the presented issue with traditional BO. Furthermore it in-
herits some beneficial features of Hyperband in the sampling
phase, since it has the possibility of exploring random config-
urations, while reducing the penalty of it being sub-optimal
via the use of the Successive Halving [15] technique.

Extending BOHB to jointly optimize both the ML applica-
tions and the cloud configuration is not trivial. The first chal-
lenge with BOHB is understanding what is the most efficient
way to employ BOHB for this purpose. One key question that
arises is whether the cloud configurations should be treated
in an opaque way i.e. similar to additional hyperparameters
in a hyperparameter configuration. The risk of such a simplis-
tic approach is that it exposes to the risk of sampling very
expensive configurations that require a large amount of com-
putational resources unnecessarily, e.g., in the initial phases
of the optimization process where no or very little knowledge
is available on the job being optimized.

Another shortcoming of BOHB that we intend to address
is its inability to exploit information gathered when testing
configurations with small budgets. In order to overcome this
limitation, we plan to use transfer-learning. By recording the
performance of various configurations evaluated using diverse
budget levels, Hydra can leverage that information to find a
trend between budgets and use it to predict the performance
of configurations on larger budgets.

3.2 Design Details
Hydrais a solution that extends BOHB [8], which itself its an
extension of Hyperband [21]. Since BOHB proved to possess
the speed of Hyperband while being more likely to select
high quality configurations via model-based techniques, we
argue that by having a similar system with a richer model and
a more effective way to extract the model’s knowledge (via
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the use of alternative acquisition functions), one can further
enhance the efficiency of the optimization process.

In Hydra, we have selected Gaussian Process [25] as base
ML technique, since they are the most frequently used mod-
els in Bayesian Optimization due to their ability to provide
smooth and accurate uncertainty estimates. Specifically, we
use Gaussian Processes with Matérn 5/2 Kernels [11], which
is also a common choice in the Bayesian optimization litera-
ture given that it produces less restrictive smoothness assump-
tions [17] — an important feature, given that we plan to add
another dimension to the model’s feature space, namely the
Hyperband budget. Hydra supports various EI-based acquisi-
tion functions, including novel ones defined for being used in
the context of the HB optimization method.

BOHB only trains configurations using a single budget,
i.e. the largest budget for which a minimum pre-determined
number of configurations has been gathered. As a result, only
a subset of the available info is exploited whenever the model
is used/queried. This problem is solved in Hydra by consid-
ering budget as an extra feature and training a single model
with data gathered using diverse budgets, in order to enable
the construction of models that can extrapolate the trends that
arise when the budget varies. Recall also that the objective is
to find a configurations that has maximizes accuracy using
the full budget, so the models should be used to identify con-
figurations that will excel at full budget, but that will be at
least initially evaluated with lower budget, based on the SH
algorithm.

In Hydra, there are some parts of the system that we chose
not to change, having the similar behavior as BOHB, such as
instead of always using the model to predict a configuration,
we still use a probability of sampling instead a random config-
uration, thereby maintaining Hyperband theoretical guaran-
tees. When producing a prediction, Hydrauses the Hyperband
algorithm to determine how many configurations will be gen-
erated. If at least (𝑑 + 1) configurations (where 𝑑 is set to
the number of dimension in the configuration space) have
been evaluated, the model is used to make a prediction on a
configuration. Otherwise, we sample configurations randomly
according to a uniform distribution. Even if there are enough
results, there is always a probability (which as in BOHB we
set to 33.3%) that we chose to sample randomly.

The process of producing a prediction with a model im-
plies: (i) to train the model with all the collected data from
the evaluated configurations, and (ii) identify the incumbent
configuration, i.e., the one that the model predicts to yield the
best result (e.g. highest accuracy, lowest loss) when deployed
using the full budget. The main reason behind focusing on
choosing incumbents that have the highest budget is to guide
the model to focus on achieving the best performing con-
figurations on the maximum budget, where there is a higher
probability in sampling better configurations. However, by do-
ing so, in scenarios where there are no sampled configurations
that have as high budget value, such as the beginning of the
first Hyperband bracket, we drop that constraint and allow the
incumbents budget to take the value of the highest sampled

budget from the gathered data. To collect more information
about Hydrabehavior, we have also implemented multiple
variants that have a different take on how the predictions are
made, and in the following sections we will explain what are
the main differences and their purpose.

3.2.1 Budget Sampling
Analogously to Hyperband and BOHB, in Hydrathe notion
of budget can mapped to different metrics that constraint the
amount of resources consumed when training a ML model,
e.g. wall-clock time, iteration, algorithm epochs, cloud cost.

In both these systems, the algorithm starts by sampling
a number of configurations randomly, and evaluates them
using the lowest possible budget. In Hydrawe use the same
procedure, but, as in BOHB, at some point, when enough
configurations are gathered to build a model, we can start
choosing which configurations to evaluate by leveraging its
knowledge. To get a prediction from the model, we go through
the search space and for each different configuration (or for
a set of randomly chosen configurations if the configuration
space is too large to be exhaustively sampled) we compute
the Expected Improvement [10] (EI). Finally, we select the
configuration that has the highest EI value.

Differently from BOHB, though, in Hydrawe treat the bud-
get as a model’s feature. When querying the model, we need
therefore to establish what value of the budget to specify. The
Hyperband algorithm only determines which configurations
to evaluated at the beginning of a bracket. From that moment
on, the top configurations will pass to the next stage, to be
evaluated with a higher budget. This Successive Halving [15]
will happen until the maximum budget is reached and the
highest quality configuration using full budget is returned.
Thus, one may argue that the model should be queried to
identify the configuration that will achieve maximum quality
(e.g., accuracy/loss) in the maximum or final budget. However
it is also arguable that what matters in a stage of a bracket
is the performance of the configuration on the current bud-
get of that stage. Indeed, a poor performance in early stages
would reduce the odds of that configuration to be among the
top ones that proceed to the following stages with higher
budgets. Consequently we consider two variants: one that
selects configurations according to their EI value considering
full/maximum budget, which we call Full-Budget Sampling
(FBS), and another variant that similarly selects configura-
tions according to their EI value, but considering the current
stage budget. We name this variant Current Budget Sampling
(CBS).

The main advantage of the FBS strategy is that it will favor
configurations that excel on higher budgets. However, if a con-
figuration does fall short in its performance in lower budget
values, it may not be tested in higher budget levels, since Suc-
cessive Halving may discard that configuration. Conversely,
CBS will focus on picking configurations that excel on the
lowest budget of the current bracket, thus improving the odds
that a model chosen configuration passes through the initial
Successive Halving pruning of configurations. Clearly, these

5



two variants will have the same behavior when predicting
configurations on a bracket that has as initial budget value the
maximum budget value of the experiment.

3.2.2 Cost of evaluating configurations
In the cloud different choices of type and numbers of virtual
machines yield different costs. Hydrakeeps the cost factor
into account by incorporating several cost-aware acquisition
functions, which will be evaluated in the following chapter.
Expected Improvement per dollar is a classic technique to
keep into account costs in BO. However, Hydraintroduces a
new cost-aware acquisition function tailored for operating in
a successive halving scheme. By Expected Improvement per
dollar with the Budget Sampling variants discussed in section
3.2.1, with FBS we can sample configurations that have the
potential of achieving a high accuracy in higher budget values
while possessing a low economic cost. This may hamstring
FBS capacity of providing good configurations in low budget
value scenarios even more, however we can ensure that when-
ever a configuration that was sampled through the model, if it
reaches the highest budget value stage, it will have a reduced
cost. On the other hand, if we consider CBS with this variant,
it will sample very economic and well performing configura-
tions in the initial budget value of a bracket, but on the higher
budget value stages the configuration might achieve higher
than expected costs. This economic-cost reducing variant may
have a cost-reducing prospect, however we need to take into
consideration that duplicating a model that is already consid-
ered slow compared to Tree-structered Parzen estimators as
shown in BOHB [8] may deter the algorithm from being fast
and by consequence proving to have a higher economic cost.
When we are combining the economic cost variant Expected
Improvement per Dollar with budget sample variants FBS
and CBS, we are restricting both base model and cost model
to have the same target budget, e.i. sample according to max-
imum or current bracket budget. In order to have a prediction
that can leverage the performance of configurations on higher
budget values while reducing the cost of configurations on
current budget values, we developed another variant called
Hybrid Sampling. Essentially it uses FBS to retrieve the Ex-
pected Improvement of a configuration the highest budget
possible, while dividing the cost of the same configuration
but on the initial budget a bracket. Since Hyperband proposes
a large quantity of configurations in lower budget values, we
expect this to minimize the economic costs greatly in early
stages while providing the ability to outperform others in the
last.

3.2.3 Cost of identifying the next configuration to be
evaluated

Hyperparameter optimization of large machine learning mod-
els can have a high economic cost [29], especially in scenarios
where there is a need to rent computational power. In situa-
tions such as this, we want the optimization to be as efficient
as possible so that the optimization economic cost is as low

as possible and produces the best result. Unfortunately, with-
out querying the model for all possible configurations, e.g.,
using a grid-based approach, one cannot guarantee to have
correctly identified the configuration that the model predicts
to be the optimum. In BOHB, there are always a fraction of
configurations that are randomly sampled, and in scenarios
like we have described previously where there are associ-
ated economic costs to each configuration that is sampled,
having an under performing result can have an even more
negative impact. These situations can’t be avoided in Hydraas
well since we need initial results to build a model, and we
need Hyperband’s theoretical properties. However, we can
greatly reduce the economic cost of the optimization when
using the model to predict a configuration. This is done by
replicating the Gaussian Process model we use to predict the
accuracy/loss of a given configuration, but instead of feeding
performance-related information, we use economic-cost re-
lated information and finally, when calculating the Expected
Improvement of a configuration, we divide it by the predicted
economic cost given by this new model. When the search
space is too big to compute exhaustively the acquisition func-
tion on all configurations, Hydra supports a simple heuris-
tic that was already used in Fabolas [17], namely a mix of
uniform random sampling and sampling via a gaussian cen-
tered on the currrent incumbent. As an alternative, one could
have used other black-box optimizers such as Direct [16] or
CMAES [13].

4 Evaluation
This section evaluates Hydravia five different experiments,
where we perform 10 iterations of the standard Hyperband al-
gorithm, forming 2 identical configuration samples as in table
2, with varying budgets for each experiment. We first present
the settings of each experiment. Then, we compare how each
variant performs in each different environment measuring
the loss of configurations achieved and accumulated cost ($)
spent performing the optimization and the time taken. After
this, we will select two of the best performing variants and
compare them in the same experiments against state of the art
algorithms that are related to Hydra, namely Hyperband and
BOHB. We chose those algorithms because we want to estab-
lish experimentally if Hydracan outperform them in different
scenarios. We include among the baselines also a variant of
BOHB, which, instead of using the Tree-structured Parzen
estimator, relies on the same modeling techniques used in
Hydra. This allows for discriminating the effects of using
different modeling techniques (TPE vs Hydra’s GP-based ac-
quisition functions) and of different input data sets (including
or not the budget in the set of features fed to the models).

4.1 Test Environment
In this chapter we present five different experiments. Three
of the five experiments only have a single difference, which
is the machine learning model used to train the MNIST [20]
dataset. This dataset is composed of 70000 28x28 pixel im-
ages of size-normalized handwritten digits from zero to nine
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and has training set of 60000 and a test set of 10000 image ex-
amples. These three experiments have the budget associated
to the dataset size (number of images) used to train differ-
ent neural networks. The minimum budget used was 3750
images, and the maximum was 60000 images. These three
experiments were conducted using different neural networks,
namely CNN [1] (convolutional neural network), RNN (re-
current neural network) [27] and a multilayer neural network
[6]. These neural network models were trained in a public
cloud, namely Amazon Web Services (AWS), over a large
number of configurations (288) and the corresponding cost
and execution time were made publicly available [24] [5].
Table 1 has information about the hyperparameters used in
these datasets. The configuration space considered in these
experiments includes both parameters describing the type and
amount of virtual machines to provision from the cloud and
three models’ hyperparameters, namely learning rate, batch
size and synchronization type. From here on we will mention
theses experiments as CNN, RNN and Multilayer. In CNN,
RNN and Multilayer experiments we use as the economic
cost measure the cost in dollars ($) of training a model with a
given hyper-parameter configuration in AWS using the picked
virtual machine type (which has an associated cost per sec-
ond). Some other parameters of the optimization process in
these experiments are equal, such as the intermediate budget
values, as detailed in table 4.

CNN, RNN and Multilayer Experiment Search Space
Hyperparameter Values
Batch Size [16, 256]
Learning Rate [0.00001, 0.0001, 0.001]
Number of Workers [8, 16, 32, 48, 64, 80]
Synchronization type [asynchronous, synchronous]
Virtual machine Flavor [t2.small, t2.medium, t2.xlarge, t2.2xlarge]

Table 1. Description of CNN, RNN and Multilayer hyperpa-
rameter values.

The fourth experiment was selected as it was previously
used in the evaluation of BOHB. As such this experiment fo-
cuses solely on the problem of hyper-parameter optimization,
i.e., it does not include the type/amount of cloud resources in
the configuration space. Analogously to the previous experi-
ments, it also uses MNIST and a CNN. However, it considers
a set of seven hyper-parameters, see table 2, yielding a total
of 135000 possible different combinations.

CNN, RNN and Multilayer Experiment Search Space
Hyperparameter Values
Stochastic Gradient Descent Momentum [0.0, 0.2, 0.4, 0.6, 0.8]
Learning Rate [0.000001, 0.00001, 0.0001, 0.001, 0.01]
Number of Filter in Layer 1 [4, 8, 16, 32, 64]
Number of Filter in Layer 2 [0, 4, 8, 16, 32, 64]
Number of Filter in Layer 3 [0, 4, 8, 16, 32, 64]
Number of Hidden Units
in the fully connected layer [0, 4, 8, 16, 32, 64]
Dropout Rate [0.0, 0.2, 0.4, 0.6, 0.8]

Table 2. MNIST hyperparameter values.

Given that exhaustively evaluating the acquisition function
on all possible configurations is infeasible in this case, given

the vastness of the configuration space, we only compute
the acquisition function for 8000 configurations selected at
random, where 70% are uniformly distributed throughout
the whole search space and 30% sampled by centering a
Gaussian on the current incumbent. We will be referencing
this experiment as MNIST in the future. As cost metric we use
time here, since a single machine was used in this experiment.

The final experiment involved a UNet [26] neural network
adaptation in the context of Satellite Image Segmentation.
This network uses Feature Pyramid Network [23] that has a
size of 256*256*512 neurons with 1.2 gigabytes of training
data. The loss function is soft-max cross-entropy, and the
hyperparameters were machine type, batch size, learning rate,
momentum, and synchronization type. In this experiment
we performed the training in GPUs and used two different
machines, wall-clock time was used as budget and we have
the maximum budget as 5 hours and the minimum budget as
18 minutes and 45 seconds.

In the following section we will explain the workflow of the
optimizer in our experiments in order to clarify the analysis
of the results.

SH# Initial budgets
3750 7500 15000 30000 60000

Bracket 1 Bracket 2 Bracket 3 Bracket 4 Bracket 5
0 16 8 4 4 5
1 8 4 2 2
2 4 2 1
3 2 1
4 1

Table 3. Hyperband bracket decomposition with maximum
budget = 60000, minimum budget = 3750.

4.1.1 Plotting details
To simplify the visualization of the plots, after the first bracket
(31 explorations) we start plotting the incumbent of each op-
timizer. This is in fact the first point in which a full budget
configuration is evaluated, thus allowing to establish the no-
tion of currently known optimum. When an optimizer fails to
find a better incumbent, we plot a black circle with the cur-
rent incumbent loss, however when it upgrades an incumbent
we plot the point similarly to the points in the first bracket.
For each plot we mark with a red square the best achieved
loss value for each optimizer. We also plot the variance of
the plotted values with the same color as the optimizer. The
results are based in 300 runs of each optimizer (10 iterations
per run) for the CNN, RNN and Multilayer experiment, 50 for
UNet dataset and 20 for MNIST dataset. All the runs use de-
terministic seeds to initialize the random number generators
in each different run, making it possible to replicate the same
results for every different run. In the next section we will start
by presenting the results of every experiment with respect to
the performance of the various variants of Hydrathat were
developed in this dissertation.
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4.2 Comparison with state of the art optimizers
In this section we present the results gathered using the CNN,
RNN and multilayer neural network datasets and aim at eval-
uate the performance of the FBS and CBS with EI per $ vari-
ants of Hydraagainst two state of the art optimizers, namely
Hyperband (HB) and BOHB (BOHB-TPE). As previously
mentioned, we have also included a BOHB variant that uses
Expected Improvement as the acquisition function (and the
same Gaussian Process models as in Hydra) to isolate the
gains deriving from incorporating information on configura-
tions using different budgets in the model (as Hydradoes). We
start by analyzing the accumulated economic cost and loss.
In addition, we will provide a table which will contain the
optimization overhead and additional information about and
finally will sum up the analysis.
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Figure 1. Accumulated Cost ($) and Loss in CNN, scaled in
the first iteration.
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Figure 2. Accumulated Cost ($) and Loss in CNN, scaled in
the 2nd to 10th iterations.

4.2.1 Cost of the optimization process
CNN In Figure 1 we can see the cost accumulation progres-
sion with respect to our elected variants of Hydra, namely
FBS and CBS with EI per $, when compared with Hyperband,
BOHB and BOHB with EI. This figure is focused on the first
iteration, and we can clearly see that the FBS variant has a
significant advantage over BOHB-EI, and CBS with EI per $
variant. This advantage is even more apparent with respect to
BOHB-TPE and Hyperband. By analyzing, the remaining 9
iterations, see Figure 2, we see that the performance of FBS is
closely matched with BOHB-EI. Both of them are shadowed
by HydraCBS with EI per $, which is able to reach better con-
figurations with almost half the cost. Comparing CBS with EI
per $ with BOHB-TPE, we can even see a clearer advantage,
where with just only 2$ it is able to match its minimum loss
value throughout the hole experiment, spending on average
88% less.

RNN and Multilayer for FBS and CBS with EI per $, the
best performing variants would be by contrast CBS and CBS
per $. We show the gains of using CBS in these experiment in
figure 3. In these particular experiments, CBS is better than
FBS and it also proves to be better than BOHB-EI. Interest-
ingly CBS shows the exact same behavior as BOHB-EI in
figure 3. This is because CBS samples always according to
the same budget and it does not know any other result outside
of the initial budget. Since the training set’s configurations
contain the same budget value the model wants to predict to,
it will treat the configuration as if it does not have a budget
hyperparameter, because it has no knowledge of any other
configuration with a different value and it does not change
the predicted value until it finishes the bracket. After all, if
CBS ignores the budget dimension it essentially becomes like
BOHB-EI in iteration 1. We can verify the advantage of inter-
budget knowledge by the gains showed in figure 3. In these
plots we can view a great advantage of using Hydracomparing
it with Hyperband and BOHB-TPE, and even with BOHB-EI,
which is indirectly a "enhanced" version of BOHB.

MNIST Since MNIST has its economic budget value equal
to wall-clock time, we will show the comparison on section.

UNET In figure 4 (a) we can see that CBS with EI per $
manages to achieve better configurations with lower cost val-
ues than any other systems. We can see that in this experiment
FBS does not distinguish itself from other variants, closely
matching their loss values with the same cost. In figure 4
(b), we can see that FBS has in general better performance
than other variants. Hyperband has great results too, which
can indicate that this experiment is very hard to model. We
can also see that CBS with EI per $ has in general, better
performance than BOHB-EI and especially BOHB-TPE, and
it also has lower costs. BOHB-TPE has on average the largest
cost value.

4.2.2 Hydra Overhead
In this section we compare the overhead values obtained dur-
ing the experiment. As demonstrated in table 4 we can view
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Figure 3. Accumulated Cost and Loss with Multilayer in the
first iteration (a), and the second iteration (b)

the accumulated overhead of each system in each experiment.
Hyperband always has an almost non existing overhead and
is because it always randomly samples the configurations
that are to be evaluated. Across all experiments we see that
BOHB-TPE and Hyperband have the lowest total overhead
value, and especially in MNIST experiment, this difference
is very noticeable. This happens because the Tree-structured
Parzen Estimator used in BOHB-TPE is much faster than the
Gaussian Process models used in Hydra, and this is exacer-
bated in UNET experiment because the search space is almost
500𝑥 larger than CNN, RNN and Multilayer experiment, and
three orders of magnitude larger than UNET. This is mini-
mized by only computing the EI of 8000 configurations in
maximum, but it still has a sizable difference.

5 Conclusions
Hyperparameter optimization of machine learning is an es-
sential area of artificial intelligence that focuses on enhancing
the performance of machine learning models. Unfortunately,
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Figure 4. Accumulated Cost in dollars [$] in UNET experi-
ment focused in 1st Iteration (a) and focused on the remaining
Iterations (b)

Accumulated Overhead[s] over 258 explorations
Experiment Hydra FBS Hydra CBS-EI/$ BOHB-EI BOHB-TPE Hyperband
CNN 21.5 26.9 17.6 5.4 0.2
RNN 20.3 26.3 16.4 5.3 0.1
Multilayer 20.0 25.8 16.8 5.4 0.1
MNIST 596.4 803.9 504.6 172.8 0.2
UNET 9.7 13.3 8.5 3.8 0.1

Table 4. Overhead value for each system in each experiment

though, this process is notorious for being costly and time con-
suming. Novel state-of-the-art systems regarding this topic
have been significantly improving their performance and re-
ducing the associated costs. However, since the majority of
largest optimization tasks are performed in the cloud, it is
crucial that systems are as fast and efficient as possible, and
some, as covered in this report, present shortcomings and
miss out on leveraging some techniques that would otherwise
improve its performance and efficiency.

This thesis proposes Hydra, a self-tuning system solution
that performs optimization of machine learning algorithms
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improving some drawbacks of previous systems by rapidly
converging towards the optimum solution without wasting
time on bootstrapping the model, using many low-budget
evaluations of configurations while applying transfer-learning
to enhance the models’ performance, ultimately reducing
overall costs.

Hydra achieves consistently higher optimum convergence
rates than the extended systems in its full-budget sampling
variant in spite of having a slower and more complex model,
and lower economic-cost. Comparing with BOHB, Hydra
achieves 35% cost reduction while still maintain its speed due
to the Hyperband structure, and still outperforms BOHB.
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