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The quantum internet will enable quantum networked technologies, namely by distributing
bipartite entanglement over large distances. However, some of its possible applications in areas
such as communication, sensing and computation may benefit from multipartite entanglement
being shared between several nodes. In our work, we address the problem of distributing optimally
this type of entanglement over noisy quantum networks, where each link is an entangled pair. To
do this, we describe the noise of the network with depolarising channels, verifying its effect on the
distribution of GHZ multipartite entangled states. We also introduce tools from classical routing
theory that are capable of creating a framework to address the optimality problem, allowing the
inclusion of additional parameters. An algorithm for optimal distribution of a 3-qubit GHZ state
maximising simultaneously the fidelity of the final state and the probability of success is presented
and simulated in different models of quantum networks. We also derive approximations on the
complexity scaling of our algorithms that corroborate the polynomial runtimes of the simulations.
Furthermore, we determine the conditions yielding this simultaneous optimality for GHZ states
with a higher number of qubits, and for other types of multipartite entanglement. This work paves
the way to optimally generate multipartite quantum correlations over noisy quantum networks, an
important resource for distributed quantum technologies.
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I. INTRODUCTION

With an increasingly growing number of applications
for quantum processing of information, more than ever,
the need of quantum internet connecting these quantum
devices capable of processing something that is funda-
mentally different from the classical counterparts, is also
growing. There’s an international effort that aims at de-
livering a quantum internet - Quantum Internet Alliance
(QIA) - which envisions several intermediary steps char-
acterised by their functionality [1] before arriving at a
full-fledged quantum internet.

A quantum network is no more and no less that a set
of terminals capable of connecting to each other using
quantum communication, in the same way a network
is a set of terminals connected to each other through
classical communication. Quantum communication re-
lies on encoding the information in qubits which are the
fundamental unit of quantum information, analogously
as bits are the classical unit of information. Using these
qubits, applications can be developed, for example pro-
tocols for ensuring secure and private communications
and access to quantum computers and quantum metrol-
ogy networks.

Because of the nature of the physical processes and
technologies that are the ground base for quantum com-
munications, a quantum network will be inherently dis-
tinct when it comes to describing the parameters that
affect the communications, e.g fidelities of shared quan-
tum states, decoherence times of quantum memories
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and probabilistic behaviour of quantum communication.
All this requires finding an approach to quantum net-
works that is compatible with their description and cur-
rent state of the art of the concealed quantum technolo-
gies. Moreover, the current stratification of the model
of the quantum internet [1, 2] involves various stages of
functionalities according to the current developments in
the underlying engineering of devices capable of quan-
tum communication and processing of information.

The upcoming Quantum internet development relies
on connecting two points through a quantum link, re-
lying on bipartite entanglement which has been in par-
ticular focus lately. All in all, multipartite entangle-
ment, which is able to connect more than two points
in a quantum internet, comes as the natural extension
when regarding the types of states that we might con-
sider. Moreover, some applications like quantum sensor
networks [3–6], some quantum communication protocols
[7–9] and different forms of performing distributed quan-
tum computation [10, 11] all require the distribution of
multipartite entangled states across a quantum network.
Finding the optimal way to distribute this multipartite
states is therefore necessary for the applications built
on top of it, specially considering that some parameters
of the final state can render the state useless, e.g the
fidelity of a quantum state usually has a threshold that
guarantees the presence of entanglement in the state
[12]. Furthermore, understanding how the noise of the
network, present in each individual quantum link, af-
fects the final state is key to finding the optimal way to
distribute such state.

For the bipartite case, the protocols for extending the
range of entanglement are well established [13], and so
is the characterisation of the parameters that affect the
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final quality of the entangled pair and its distribution.
The problem of routing when it comes to bipartite en-
tanglement is regarded in [14–18], mostly by maximis-
ing the probability and rate of success using varying
schemes, including on-demand generation of entangle-
ment and also considering continuous models, with con-
tinuous entanglement generation in the background.

When considering the case of multipartite entangled
state, some schemes for distribution have already been
studied [19–21], but still, most work makes some sim-
plifications such as by considering pure states or homo-
geneous networks. The past work mainly focused on
finding distribution schemes rather than implementing
them on a quantum network and finding the best way
to distribute given such scheme, which introduces one
of the main goals of this present work.

II. OBJECTIVES AND OVERVIEW

Given the developments in the schemes for distribut-
ing multipartite entanglement, the main goal of this
project is create a systematic approach, i.e a frame-
work, to distribute multipartite states across a network,
taking into account a given scheme for distribution. We
should be able to provide an algorithm that takes into
account heterogeneous networks and the possibility of
mixed states arriving from errors in the network pro-
tocols like entanglement generation and entanglement
swapping. This is done by introducing different param-
eters that affect the quality of the final entanglement,
namely the fidelity (a measure of quality of a quantum
state), probability of success, communication times and
quantum memory decoherence factor.

More than just including this parameters, to make the
framework complete, the method should leave space and
considerations in case more parameters are needed or
some constraints in the quantum network exist. This is
crucial for a developing quantum internet with changing
underlying technologies.

This was done dividing the framework in three main
components that depend on each other, but making the
approach systematical.

The first component was borrowed from algebraic the-
ory of classical routing. It’s an important concept which
essentially groups all the characteristics of each param-
eter in one mathematical object called an algebra for
routing. In this object the values of the parameters of
each link in the network are taken into account, as well
as how the weights of each path are calculated and how
the best paths are found by ordering relations. These al-
gebras have well-defined properties that can provide ad-
vantages when trying to prove if the algorithms provides
the optimal solutions for the routing problem, making it
a simple yet effective approach to characterise the mul-
tiple parameters needed. In a language closer to the
usual in this subject, the algebras define a metric for
how paths are created and weight, for this reason we
use both terms equivalently.

FIG. 1: Overview of the constructed framework in this
project.

The second component is the distribution scheme.
This distribution scheme states which operations and
protocols must be realised to achieve the desired state
distributed across the terminal nodes of the network,
i.e the nodes that in the end share the desired state.
This distribution scheme is an input, as much as the
parameters of the network are, and will affect the met-
rics and how to find the algorithm that optimizes the
state distribution. In this project, we use one distri-
bution scheme for Greenberger–Horne–Zeilinger (GHZ)
and graph states from [19] and introduce one trivial
scheme for any arbitrary state.

The third and last component is the algorithm which
finds the optimal way to distribute the desired state
given a distribution scheme. Together with the algebra
properties, this algorithms can be proven if they are
exact or not, and their complexities are analysed.

This three components and their relations are de-
picted in Figure 1.

III. DISTRIBUTION SCHEMES

A distribution scheme is essentially a set of instruc-
tions, where each instruction can be either a quantum
operation on qubits or a protocol with well-defined met-
rics for its effect on the parameters of distribution. After
the scheme is applied, the result is the distribution of
the desired state among the terminal nodes. Examples
of quantum operations are quantum gates and measure-
ments. One example of a quantum protocol is entangle-
ment swapping that takes two different entangled pairs
sharing one common node and extends the range of the
entanglement creating an entangled pair between the
furthest away nodes. This is done by performing a set
of measurements in the qubits of the shared node and
communicating the outcome, sending its information to
one node to perform corrections and retrieve the desired
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state.

A. GHZ Distribution Scheme

This first distribution scheme is capable of distribut-
ing GHZ states and any graph state, which follows from
the fact that the GHZ state is a completeKn graph state
and from this complete graph, any other type of graph
state can be obtained through stochastic local opera-
tions assisted with classical communications (SLOCC).

Starting from a tree configuration of links in a net-
work, where each link is an entangled pair, a set of
LOCC operations that consist of successive applications
of the star expansion protocol [19] can be made to ob-
tain in the end a star-graph, which is also LU (local
unitary) equivalent to a GHZ state.

For this reason, finding the optimal way to implement
this scheme in a quantum network starts by first solving
the Steiner tree problem, i.e finding the shortest tree
connecting the set of terminals, regarding the necessary
metrics.

To perform the necessary calculations, we adapted
this protocol to an identical one that can be understood
as merging star-graph states (or GHZ states) across a
tree. Since every tree can be modified through SLOCC
to set of star-graph states the protocol merges every
GHZ state into another GHZ state connecting every
node.

From the way the states are distributed using this
scheme, we will use the name tree scheme when referring
to it.

B. Arbitrary State Distribution Scheme

Unlike [19], where all states considered for distribu-
tion have necessarily a correspondent graph state (up to
LU), we want to generalise for any state possible. Tak-
ing advantage of the symmetry of the entangled bipar-
tite state |φ+〉 = (|00〉+|11〉)/

√
2, to distribute any mul-

tipartite state would pass through first establishing en-
tanglement between every terminal and one center node
and then projecting the desired state in the center node.
This would result in the desired state distributed across
the terminal nodes. Because of this, finding the best
way to implement this scheme is equivalent to finding
the shortest-star connecting the terminal nodes under
the necessary metrics.

From the way the states are distributed using this
scheme, we will use the name star scheme when referring
to it.

IV. METRICS IN A QUANTUM NETWORK

To fully describe the metrics in a quantum network,
we took advantage of tools in the classical theory of
algebraic routing, namely the algebras for routing. They

are a simple yet complete way of fully describing each
parameter important for the entanglement distribution
in a quantum network.

A. Bipartite Entanglement

Before jumping into distributing multipartite entan-
glement, since most schemes of distribution start from
constructing paths and merging those paths, it is im-
portant to first introduce the metrics for distributing
end-to-end bipartite entanglement. There are already
protocols for distributing bipartite entanglement across
a chain of entangled pairs: entanglement generation and
entanglement swapping. There are several crucial pa-
rameters for deciding the best way to distribute bipar-
tite entanglement, namely:

1. Fidelity - the quality of the entangled state. It
is a measure of how close a distributed state is to
the desired state. This parameter has a threshold,
meaning that for values inferior to, in this case,
1/2 the entanglement present in the state vanishes,
rendering the state useless.

2. Waiting time - the time it takes between starting
the protocol and signalling its completion. Since
this is not always deterministic, this time must be
considered part of a metric that takes also into
account the probability of success and becomes
the waiting time for each try.

3. Quantum memories - it is known [1] that in some
of the early stages of the quantum internet, the
capabilities of each node to preserve a given quan-
tum state will depend on the quantum memories
used. This memories, while being useful for stor-
ing the qubits for longer periods of time, will in-
troduce an error that can be quantised and there-
fore minded across a network, given a distribution
scheme.

4. Probability of Success - since some of the steps
in distributing entanglement are not necessarily
deterministic (entanglement generation, entangle-
ment swapping,...), it is important to introduce a
metric for the probability of success in generating
end-to-end entanglement. This metric will depend
on the nodes characteristics.

B. Multipartite Entanglement

As we cross to multipartite entanglement, a few things
become different. In our work we analyse in detail the
effect on the fidelity for both schemes and refrain the
other parameters to a simpler approach. We derive ex-
pressions for the fidelity of the final state when a gen-
eralisation to n qubits of a GHZ is considered, using
properties of the depolarising channel correspondent to
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(a) Shortest tree connecting a set of 4 terminals in a network.(b) Shortest star connecting a set of 4 terminals in a network.

FIG. 2: In theses figures an example of what a shortest tree and a shortest star are, highlighted in orange. These
examples correspond to the optimal solutions for distributing a GHZ state and an arbitrary state respectively,
assuming we want to minimize the number of entangled pairs used. Keep in mind that groups surrounded by a

traced orange line are LOCC equivalent to an entangled pair.

undergoing equally probable bit-flip, phase-flip and bit-
phase-flip errors.

For both schemes, the expression for a GHZ state of
3 qubits is identical. This comes from the fact that
the shortest-tree connecting three terminals is always
equivalent to the shortest-star. However, when more
qubits are considered the tree scheme becomes differ-
ent since some shortest-trees might include something
called Steiner nodes, which are auxiliary nodes neces-
sary to connect the terminal nodes that are not part of
the terminal nodes and need to be measured in the end.
This measurement will induce a depolarising channel on
one of the terminals, creating a more complex expres-
sion.

In here we present the completely-mixed GHZ state
with n qubits, which is the result of the star scheme:

f =

∏n
i=1

1+γi
2 +

∏n
i=1

1−γi
2 +

∏n
i=1 γi

2
(1)

Where γi = 4Fi−1
3 is the fidelity of each path between

terminal i and the center node. This transformation
(between Fi and γi) was made to simplify calculations
of the fidelities of a path, since using γ results in only
multiplying the γ values of each entangled pair along
the path.

For the tree scheme, we would have to add for every
Steiner node, a depolarising channel on the center node

V. ALGORITHMS AND SIMULATIONS

In this project we adapted an algorithm for the multi-
objective shortest-path (MOSP) problem, created an al-
gorithm to solve the Steiner tree problem, which finds

the best tree to distribute the desired states, and an al-
gorithm to find the best star to distribute an arbitrary
state. Along with extra properties for the metrics, we
proved the exactness of the star-algorithm when dis-
tributing GHZ states.

A. MOSP Algorithm

The MOSP algorithm provides the optimal paths be-
tween one node and every other node in a network. It
has been thoroughly studied in literature [22, 23] and
implemented in this thesis, providing some slight alter-
ations to the data structure that facilitated the transi-
tion between finding the best way to distribute bipartite
entanglement and to distribute multipartite entangle-
ment.

The algorithm goes from one node to its neighbours,
finding the set of non-dominated paths for each node.
It is easy to understand that for only one objective, if
two paths are equally optimal, they must have the same
weight. When we consider more objectives, equally im-
portant, the optimality of a path becomes more compli-
cated since one path can be better in one way while the
other can be better in another way. This requires a rela-
tion to be established - the dominance relation - and the
notion of optimality becomes the set of non-dominated
paths. For a path to dominate another it must be better
than the other in every sense (or for every objective).
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(a) Example of a simple quantum network with correspondent parameters. The final path fidelity depends on the
independent entangled pairs fidelity and the probability of success depends on the probability of entanglement generation

success and of entanglement swapping success.

(b) Solutions for the optimal paths problem (c) Solution for the shortest tree connecting three terminals,
equivalent to the distribution of 3-GHZ state

FIG. 3: Examples of shortest-paths and shortest-trees (which are equivalent to shortest-star for 3 qubits GHZ
states, which is the case) in a simple network. The parameters used are the fidelity and the probability of success.

B. Steiner Tree Algorithm

The implementation of this multi-objective Steiner
tree algorithm, which finds the shortest tree connecting
the required nodes (called terminal nodes), was made
using the MOSP algorithm as a starting point. Its struc-
ture takes a lot from the structure in our MOSP algo-
rithm, but instead of only saving paths connecting two
nodes, we allow the possibility of creating trees, com-
paring trees only and only if they connect the same set
of terminal nodes. From there, the previous dominance
relations can be implemented for the rest of the set of
objectives.

The algorithm starts at every terminal by finding the
best paths to the neighbouring nodes and when it finds
another path from another node, besides adding the
path, it also considers the tree constituted by both paths
and adds it to the neighbours list. By doing this an
approximated version of this algorithm (note that this
problem is computationally extensive) can also be con-

sidered by implementing an ordering in the list of the to
visit nodes, together with a stop condition of the first
found tree connecting all terminal nodes, i.e as soon as a
tree is found connecting all nodes, the algorithm stops.

C. Star Algorithm

The star-algorithm is very easy to understand: first it
finds the shortest-path between each terminal and every
other node using the MOSP algorithm and then creates
all possible stars, only choosing the non-dominated ones
for the set of solutions and constantly updating the set
of solutions if any new solution is found and a previous
one must be discarded. Some speed-ups are performed
in several stages of the algorithm, derived from proper-
ties of the algebras.
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(a) (b)

FIG. 4: Simulations for the Star-algorithm varying the number of terminals.

VI. COMPLEXITY

The star-algorithm needs the multi-objective
shortest-path algorithm since the first step in finding
the shortest is finding the shortest-paths from each
terminal to all other nodes of the network. From the
shortest-path algorithm structure, we can decompose
its complexity in the following elements:

1. How many nodes are visited or revisited, which
depends on the number of nodes N , and how many
times each nodes is visited hvisit = hvisit(N,λ, ...)

2. Each time a node is visited, how many optimal
paths hpaths = hpaths(N,λ, k, ...) it adds to its
neighbours

From these quantities we can draft a complexity for
the algorithm, taking into account that before adding a
path from the visited node to its neighbour, the dom-
inance relation must be verified for, at most, all paths
on the neighbour:

O
(
MOSP

)
= O

(
N · hvisit(N,λ)

)
·

· O
(
λ · hpaths(N,λ, k)2

) (2)

The quantities hvisit and hpaths will rely on the type
of network and the parameters distribution across the
network. Using uniform distributions for the parame-
ters of the fidelity and the probability of success, we
are able to calculate the complexity of the algorithm by
deriving expressions for the quantities hvisit and hpaths
that depend on the network type and parameter distri-
butions, and therefore compare these results with the
simulations.

Considering that the star-algorithm structure, its
complexity will depend on two different things: the com-
plexity of the multi-objective shortest-path algorithm

and the number of possible choices for trees that de-
pend on the number of optimal paths from each ter-
minal in each node. Therefore, the complexity of the
star-algorithm is given by:

O
(
Star

)
= O

(
T
)
· O
(
MOSP

)
+

+ O
(
N · hpaths(N,λ, k)T

) (3)

Where T is the number of terminals.
In the case of an ER network, the quantity hvisit

should grow with the number of neighbours, i.e the aver-
age degree of the network. However, due to the priority
queue ordering, this quantity is minimised to an aver-
age of hvisit = const. For an SCL network, the quantity
hvisit = const, since the number of neighbours is always
the same, from the network construction, and also from
the priority queue ordering.

As for the quantity hpaths the calculated results, that
take into account the threshold value for the fidelity and
its distribution, are the following:

1. ER networks with uniform distributions of the pa-
rameters fidelity and probability of success and
appropriate scaling of fidelity parameters

hpaths = 1 + η
logN

log 〈λ〉
(4)

2. SCL networks with uniform distributions of the
parameters fidelity and probability of success and
appropriate scaling of fidelity parameters

hpaths =
√
N + ηN (5)

Using this, the complexity of the MOSP algorithm
and the Star-algorithm can be calculated to be:

For ER networks:
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MOSP Algorithm:

O
(
MOSP

)
= O

(
N · λ · hpaths(N,λ, k)2

)
= O

(
N · λ ·

(
1 + η

logN

log λ

)2) (6)

Star Algorithm:

O
(
Star

)
= O

(
T ·N · λ ·

(
1 + η

logN

log λ

)2)
+

O
(
N ·

(
1 + η

logN

log λ

)T) (7)

For SCL networks:

MOSP Algorithm:

O
(
MOSP

)
= O

(
N · hpaths(N, k)2

)
= O

(
N ·

(√
N + ηN

)2) (8)

Star Algorithm:

O
(
Star

)
= O

(
T ·N ·

(√
N + ηN

)2)
+

+ O
(
N ·

(√
N + ηN

)T) (9)

From these complexities for the different algorithms,
we can observe that for ER networks, both the MOSP
and the Star algorithm are almost linear in the num-
ber of nodes of a network, making it a suitable option
for a future quantum network with a large number of
quantum nodes. For the case of the SCL, the complex-
ity is not linear in the number of nodes, but it also is
not exponential, growing polynomially with the num-
ber of nodes. These derivations come in line with the
numerical simulations made in the previous section, cor-
roborating the results.

VII. CONCLUDING REMARKS

In the beginning of this thesis, we proposed to intro-
duce a framework in which we gather the several parts
of the problem - the network parameters, the entangle-
ment distribution schemes and the routing algorithms -
and assemble them in order to solve the routing problem
when dealing with multipartite entanglement distribu-
tion.

We did this by taking some concepts from classical
routing theory - the algebras for routing and multi-
objective routing - that became how we would describe
each of the parameters taken into account, when finding
the optimal way to distributing multipartite entangle-
ment. We also used something very important from
quantum channels and operators theory that would al-
low us to derive simple expressions for the fidelity of the
final state. As we said in the beginning, the fidelity is

a very important metric regarding the functionality of
a quantum state, which is why, having a useful descrip-
tion of the depolarising channel and a complete form of
calculating the resulting state with depolarising chan-
nels, is of utmost importance in calculating the fidelity
of the state. This was achieved taking into account the
individual fidelities of each quantum link of a network
and the distribution schemes. Moreover, we introduced
from the literature a few quantum network metrics ca-
pable of modelling the entanglement distribution in the
case of bipartite, such as communication times, memory
decoherence times and the probability of success. This
was also extended for the multipartite case.

For both distribution schemes, the tree scheme and
the star scheme, we implemented two different algo-
rithms, targeting the two different problems (shortest-
tree and shortest-star). This algorithms were built
on top of the foundations laid by the classical rout-
ing theory, gathering the previously calculated metrics,
with their underlying properties, and the distribution
schemes themselves, into an efficient and adaptable ap-
proach on the problem of finding the optimal way of dis-
tributing multipartite entanglement in a quantum net-
work. This was fundamental to ensure that our algo-
rithm for the star scheme provided the optimal solution.

While simulating our algorithm on random networks,
we stumbled upon a dilemma that foresighted a new
problem to ensure that a quantum network is connected
- the scaling problem. This problem rose from the fact
that the fidelity is a parameter with a threshold of func-
tionality. We solved it by distributing the parameters
across the network such that the largest distance in a
network remains connected. By doing this in a sta-
tistical manner, it shed some light on the problem of
deriving the complexity of our algorithm, which we ac-
complished by taking into consideration the structure
of the algorithm and defining some quantities that de-
pended on the statistical distribution of the parame-
ters. This resulted in the fact that this approach on the
complexity is broader for other types of parameters and
respective distributions. We presented several results
from the simulations, which came in agreement with
the calculated values, namely with the star algorithm
scaling almost linearly (apart from a poly-logarithmic
function) with the number of nodes of the network.
In detail, for the case of the ER network, the scaling

was in O
(
N · (1 + η logN)T

)
which is specially impor-

tant for a network with an increasing number of nodes.
For the case of the SCL network, the scaling was in

O
(
N · (

√
N + ηN)T

)
.

While this framework is used to solve the problem tak-
ing into account these two distinct distribution schemes,
it is adaptable to new schemes and other parameters ca-
pable of characterising the entanglement distribution,
for example the rate of distribution [24].
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