
Feature Engineering Automation for Time Series
Analysis
Hélio Domingos

Instituto Superior Técnico.
Lisbon, Portugal

helio.domingos@tecnico.ulisboa.pt

Abstract—In recent years, time series data have been one of
the most growing types of data since people and business usually
measure their performance over a period of time. Temporal
data is usually associated with the task of forecast. To forecast,
a data scientist needs to create features that help describe
the behavior of data. To help data scientists, there have been
proposed frameworks that automate the data science pipeline in
other fields of research, for example for classification of tabular
data, but not for time series. In this work, we describe the main
Automate Machine Learning frameworks and propose a new
framework that automates the process of creating a pipeline
of analysis of time series. The focus is on creating descriptive
features, that adapt to the data. Those features are aggregated
in sets and they are evaluated and selected for the model. With
this work, we aim to deliver a tool that will reduce data scientists’
work developing pipelines of analysis, and help them concentrate
on the analysis of results.

Index Terms—AutoML, Machine Learning, Time Series, Fea-
ture Engineering, XGBoost

I. INTRODUCTION

Data science is a combination of fields from databases
to data visualization passing through statistics, data mining,
data analysis, and machine learning. In recent years, industry
understood the importance of analyzing and extracting value
from data in order to improve their business model, decision
making and even products.

The data science pipeline includes data collecting, clean-
ing, exploring and visualizing to understand their structure,
creating models and interpreting results. The data scientist
needs to know his target problem and be aware of the data
limitations. Also, he needs to choose the best algorithm(s) to
fit the data and choose the hyperparameters of the algorithms
that maximizes accuracy. All these choices need to be well
performed by the data scientist and each case is different
from the previous one which needs study before applying any
technique. This process can consume a lot of time and human
resources until achieving good results.

Automated machine learning (AutoML) aims to develop
tools that build machine learning models without human in-
tervention. This includes automating each step of the machine
learning pipeline that was previously presented. The goal is
that users provide data and the AutoML system automatically
determines the approach that performs the best for their dataset
[1].

Steps of the pipeline such as model selection or hyperpa-
rameter optimization were being studied by decades and they

are well-defined and optimized. On the other hand, feature
engineering needs more attention. There are frameworks that
automate this step but with huge needs of computational and
time resources.

In this work we purpose a framework that could automate
feature engineering applied to time series data. Our proposal is
based on the composition of a set of operators which pick the
original data series and adds features, enriching the series. Our
framework explore different models and different techniques
of feature engineering. Those features will be used to forecast
the series. To evaluate the forecast, we will compare the results
of a neural network model without features against the results
of a decision tree model based with feature engineering. With
this work, we expect to forecast time series with low error.

II. RELATED WORK

Industry have been focusing on developing frameworks to
substitute data scientists. Some frameworks are AUTO-Weka
[2], AUTO-Sklearn [3], TPOT [4], Hyperopt-Sklearn [5].
Also, companies such as Google, H2O.ai, Tazi.ai, DataRobot,
Feedzai, are developing their own frameworks as their busi-
ness.

In the following sections present a survey of the most
relevant AutoML techniques proposed to date, categorized in
accordance with each data science pipeline phase: data clean-
ing, feature engineering, model generation and hyperparameter
optimization.

A. Data Cleaning

Data cleaning is an important step that depending on how
is performed can create a big difference in model performance
leading to different results. Existing AutoML frameworks
understood this importance and included some steps to deal
with this problem. These steps usually deal with imputation
of missing values, removing of outliers and scaling features to
a normalized range. For example, the Data Science Machine
[6] only cleans the data by removing the null values, convert
categorical variables using one-hot encoding, and normalize
features.

B. Automated Model Selection

Model selection is the task of selecting a proper model
from a set of candidate models and setting its hyperparameters
in order to achieve a good learning performance [7]. There

are many classification algorithms and for each one different
hyperparameters are associated.

The first work that allowed to select models automatically
was AUTO-WEKA [2]. This framework was implemented in
the standard WEKA package [8], which is a machine learning
framework and combine Bayesian optimization [9] [5] meth-
ods to define a good instantiation of WEKA for a given dataset.
A new version of AUTO-WEKA [10] supports regression
algorithms, optimization of all performance WEKA’s metrics,
parallel runs to boost computation and completed integration
with WEKA. Other popular framework is AUTO-SKLEARN
[3] [11], which is built-in Scikit-Learn package.

C. Automated Hyperparameter optimization
The first techniques used to solve hyperparameter opti-

mization were grid and random search. Later works showed
that is possible to tune hyperparameter by using a bayesian
optimization or genetic algorithms.

1) Grid Search: The first approach proposed to explore
combinations of values in the search space was grid search and
is the most commonly used method. After setting the search
space, this method creates an exhaustive searching through
every possible configuration in the search space and evaluate
the model for each combination.

2) Random Search: Random Search is an alternative to
grid search [12]. It tries to find the optimal hyperparameters
randomly, which do not guarantee that finds the optimal values.

3) Sequential Model-Based Optimization(SMBO): SMBO
is the state of the art in hyperparameter optimization. In order
to run SMBO, it is needed a search space, a metric to opti-
mize (usually accuracy), the surrogate model of the objective
function, criteria to select the next promising configuration
and history of information about the previous configurations
explored.

D. Feature Generation
Feature generation is the process of creation features from

a given dataset. The purpose is to explore hidden relationships
between features creating new features in order to maximize
the model performance. It is hard to generalize because is a
task that requires domain knowledge. The number of possible
generated features can be limitless since it is possible to
perform operations on existed features. This process is the
part that most heavily involves humans since it is driven by
intuition and knowledge about the domain.

1) Feature Generation without domain knowledge: As part
of the Data Science Machine(DSM), it was developed the
Deep Feature Synthesis(DFS) algorithm [6] that demonstrated
its efficacy in online data science competitions beating human
teams. DFS explores the schema of entity-relation datasets.
The feature space cardinally grows very quickly due to ap-
plying all operators in all features. Most of the generated
features are irrelevant for the use case. In order to reduce
the feature set, DFS reduces the size of the feature space by
employ Truncated SVD transformation. Then, they calculate
its f − value according to the target and choose high ranked
features.

2) Feature Generation with domain knowledge: In the work
of Friedman and Markovitch [13], they developed an algorithm
that generates features by using relational expansions. Addi-
tionally to the labeled set, the algorithm receives a body of
external knowledge represented in relational form. It uses the
input features as objects to construct new learning problems
with the information provided by the knowledge base. A
knowledge base is a library usually made from contributors
specialized in some area that contains structure or unstructured
data about a specific topic. Examples of knowledge bases are
WordNet [14], Wikipedia, TextRunner [15], and many others.

E. Feature Selection

Feature Selection is the process that finds a feature subset
based on the original feature set. It can have a huge impact
on model performance: memory, computational cost and time.
Load the model with too many features can lead to overfit if
they are not the proper ones and could take too much time
(the curse of dimensionality) to learn the model. These might
be enough reasons to spend some time choosing what features
better describe data.

Feature selection includes dimension reduction and feature
ranking. When the feature set has high dimensionality or
great redundancy might be necessary to apply dimension
reduction techniques. The truth is some features encode ir-
relevant information in a specific context (e.g. the first name
of people with cancer). These techniques can be divided into
feature selection or feature projection. In the first type, the
most common methods are lasso and greedy search. Feature
projection transforms the data in high-dimensional space to
a lower one, where the most used techniques are principal
component analysis (PCA), non-negative matrix factorization
(NMF) and linear discriminant analysis (LDA).

F. Time Series

According to Esling [16], time series are sequences of
measurements for a single entity over time, which are collected
at equally spaced points in time, describing the behavior of a
process, system or event.

We define a time series, ts, as a vector of timestamps,
ti, with length N , and associated measurement xt. Each
measurement can be a combination of D variables. Therefore,
a time series is defined as:

ts : X = (x1, x2, ..., xN) ∈ RN×D (1)

where, for each t ∈ {1, 2, ...N}, xt ∈ RD represents the t-th
measurement of all variables D. Also, the N measurements
have been collected at equally spaced time intervals.

A stationary time series is one whose properties do not
depend on the time at which the series is observed. Thus, time
series with trends, or with seasonality, are not stationary — the
trend and seasonality will affect the value of the time series
at different times. On the other hand, a white noise series is
stationary — it does not matter when you observe it, it should
look much the same at any point in time.

In order to automatically know if a time series is stationary
and what to do if so, we can apply the Augmented Dickey-
Fuller test.

1) Augmented Dickey-Fuller test: The Augmented Dickey-
Fuller test is a type of statistical test called a unit root test.
There are a number of unit root tests and the Augmented
Dickey-Fuller may be one of the more widely used. It uses an
autoregressive model and optimizes an information criterion
across multiple different lag values

• Null Hypothesis (H0): It suggests the time series has a
unit root, meaning it is non-stationary. It has some time
dependent structure.

• Alternate Hypothesis (H1): It suggests the time series
does not have a unit root, meaning it is stationary. It
does not have time-dependent structure.

If the series is non-stationary, we need to manipulate it
in order to have a stationary time series. One way to make
a non-stationary time series stationary is to compute the
differences between consecutive observations. This is known
as differencing. Differencing can help stabilise the mean of a
time series by removing changes in the level of a time series,
and therefore eliminating (or reducing) trend and seasonality.

2) Time series Forecast: Hyndman [17] defines the time
series forecast task as ”predicting the future as accurately
as possible, given all of the information available, including
historical data and knowledge of any future events that might
impact the forecasts”.

3) Ensemble-based Approach: Ensemble methods is a ma-
chine learning technique that combines several base models
in order to produce one optimal predictive model. XGBoost
[18] is short for Extreme Gradient Boosting and is an efficient
implementation of the stochastic gradient boosting machine
learning algorithm. The stochastic gradient boosting algorithm,
also called gradient boosting machines or tree boosting, is a
powerful machine learning technique that performs well or
even best on a wide range of challenging machine learning
problems. Tree boosting has been shown to give state-of-the-
art results on many standard classification benchmarks. It is
an ensemble of decision trees algorithm where new trees fix
errors of those trees that are already part of the model. Trees
are added until no further improvements can be made to the
model.

4) Neural Networks Approach: Artificial neural networks
draw inspiration from computational biology. The advantage
of neural networks is the ability to learn highly nonlinear
patterns in the data. As in the scope of machine learning,
neural networks are function approximators that not only learn
a mapping from X to Y , or Y given X , but are able to learn
novel representations of the data. Artificial neural networks
do not have the memory to understand sequential data. The
idea behind Recurrent Neural Networks(RNNs) is to make use
of sequential information. RNNs are called recurrent because
they perform the same task for every element of a sequence,
with the output being depended on the previous computations.
They are networks with loops in them, allowing information
to persist, [19]. RNN’s have troubles about the short-term

memory. If a sequence is long enough, they have a hard time
carrying information from earlier time steps to later ones.
Therefore, these causes the need of Long Short Term Memory
(LSTM) which is a special kind of RNN’s, capable of learning
long-term dependencies. LSTM’s have skills to remember the
information for a long periods of time.

G. Python Libraries

The most common approach to classify time series focuses
on manually calculate its properties by applying basic statics
like mean, variance and others, and explore other measures like
signal processing. Then these properties are used as features.

For feature engineering, libraries such as pandas [20]
or sickit-learn [21] provide a lot of useful methods.
Recently, were developed two python libraries to automati-
cally extract features from time series which enable automated
calculation of important features.
tsfresh [22] implements interfaces like the ones men-

tioned above which allow integrating with traditional pipelines.
It provides 63 time series characterization methods, which
compute a total of 794 time series features. Each time series is
represented as a feature vector with size [nsamples, nfeatures]
rather than the raw dataset with size [nsamples, ntimestamps].
This output can be used as input to any machine learning
algorithm. Features are ranked and selected by the FRESH
algorithm implemented by this library. The algorithm performs
hypothesis tests to measure the dependency between the target
labels and each feature’s values, and selects a subset of
the features based on the p-values computed by these tests.
Its widespread adoption shows that the market and recent
needs due high production of temporal data require a way
to automatize feature engineering [23] [24].

H. Open Issues

The frameworks present at the beginning of this section
focus on supervised learning. Those frameworks enable do-
main experts building reasonable well-performing machine
learning pipelines without the need to understand how to do
it [25]. Most of them are specialized in model selection and
hyperparameter optimization, while feature engineering is not
so much advanced. Besides, feature engineering with domain
knowledge is not very developed, and what is done requires
external knowledge sources.

III. FRAMEWORK

We designed a system with a set of modules that represent
the data science pipeline. This way each module can be
changed by other implementation, it is especially important
when we want to compare our results with other alternatives
for feature engineering.

A. Load Data Module

The Load Data Module is responsible for loading data from
a given file, in one of several formats, such as sql, csv and
xls files. It receives as input a string path to the data source
and returns time series structure populated with given data

as output. This module is also responsible for analysing the
index and calculate which granularities can be explored (for
example: if data corresponds to a window of one year it is not
possible to forecast if the framework aggregate all the data by
year).

B. Data Profiling Module

We included a step of exploration of the data to better
interpret and model the series. We explore stationarity, level,
trend, seasonality and noise. This data can be used to help
fill missing values and later help build a model. Also, these
insights are shown in the visualization tool.

1) Test of Stationarity: Augmented Dickey-Fuller test: As
present in section II-F, this test is the most widely used when
we want to test stationary. Here we define the threshold of the
p-value and its meaning.

• p − value > 0.05: Accept the null hypothesis (H0), the
data has a unit root and is non-stationary.

• p− value <= 0.05: Reject the null hypothesis (H0), the
data does not have a unit root and is stationary.

If the test suggest the time series is non-stationary, we will
compute the differences of first order. Then, we apply the test
again. If the result is negative, we repeat the process with the
second order difference, until the test suggests that the time
series is stationary.

C. Data Cleaning Module

There are several alternatives to cleaning or curating a
dataset. Some methods are correlated to the domain of the
problem, or some insight that the user knows about the data
and he knows which method the framework should use. We
did not perform all of them neither tried to automatize this
step.

Usually, in time series problems data scientists start by
creating a new range of dates between the first timestamp
and the last one. This may originate a lot of missing values.
In our case, we understand that by doing that we might
ending create data points that do not exist in the real world
application. Duplicate values with the same timestamp are
removed. Detection of outliers is also an important task to
identify data points that do not correspond to the seasonal
pattern or its value is far from the trend. Smoothing a time
series remove the influence of outliers, reduce ups and downs,
and the time series get close to its trend. This can improve the
model performance and it is better for larger datasets.

We developed methods for missing values and methods to
smooth time series. They are: Moving average - this method is
responsible to smooth the time series using a sliding window;
interpolate missing values - this method is responsible for
imputation of missing values with one of the following tech-
niques: delete the missing values, imputation with the mean
or imputation with the seasonal value.

D. Feature Engineering Module

In this module, we explore different ways to generate
features. We define two types of operators: extraction-based

and granularity-based. The extraction-based are operators that
exploit hidden features on the target instances. The granularity-
based operators will exploit different time granularities on
data. They are responsible to create a new time series with
a smaller time interval by aggregating data points. To help the
analysis and the testing of each operator we will separate the
operators in groups. The groups are:

• Lag Features This group of features represent the past
observations. The operator Add the data point at time
t− n to the tuple of observations at time t.

• Time Features This group of features represent the
timestamp unities. It can be the ”second of minute”,
”minute of hour”, ”hour of day”, ”day of year”, ”day
of month”, ”day of week”, ”week of year”, ”month”,
”quarter” and ”year”.

• Aggregation Features This group of features represent
transformations of the behaviour of the trend or aggregate
data point with the same time granularity by one of five
aggregate functions, namely: sum, maximum, minimum,
average or median.

– Up or down? Looks to the result of the Difference
operator and evaluate if the difference is positive or
negative. If is positive, the operator returns True, is
is negative, return False.

– Big Up Looks to the result of the Difference operator
and evaluate if the difference is above or below the
standard deviation(calculated on difference operator).
If is positive, the operator returns True, is is nega-
tive, return False.

– Big Down Looks to the result of the Difference
operator and evaluate if the difference is below
or above the negative standard deviation(calculated
on difference operator). If is positive, the operator
returns True, is is negative, return False.

– Difference Compute a new data point given by the
difference between one point and its successor.

– Derivative: Compute a new data point by the n
derivative.

– Time-granularity: Aggregate all data points by
the same time-granularity and uses an aggregation
function from the set {sum, maximum, minimum,
average, median}: ”second-granularity”, ”Minute-
granularity”, ”Hour-granularity”, ”Day-granularity”,
”Week-granularity”, ”Month-granularity”, ”Year-
granularity”.

• Smooth Features This group of features represent dif-
ferent types of moving averages that transform the series
in a series closer to the trend:

– Moving Average Add a new value to the tuple of
observations at time t that is the n moving average
calculating by the average of different subsets of size
n of the full data set.

– Exponential Moving Average Add a new value
to the tuple of observations at time t that is the
n exponential moving average calculating by the

average of different subsets of size n of the full data
set and places a greater weight and significance on
the most recent data points.

– Discrete Wavelet Transform: Compute a new data
point given by the Fourier Transform.

• Composition Features After test each feature, we select
the best features from each category above, with the
methods described in the next section, and the framework
calculates a new feature that is the composition of two
features selected. For example, if a feature selected from
the group Smooth Features is ”moving average of window
5”, and a feature selected from the group Aggregation
features is ”Up or down?”, we calculate the feature ”Up
or down?” with the data from feature ”moving average
window=5”. This way we create another feature that is
the composition of two well performed features.

1) Feature Selection: As explained before, Feature Selec-
tion is an important task to reduce the model complexity and
overfit. When a feature is generated we observe its statics. If
it has more than 30%of missing values or a standard deviation
below 1, the feature is deleted.

After the model computation in the Forecasting Module, it
is calculated a score, a the five top ranked features will be
used in the Final model. The rest are deleted.

2) Baseline Approach: In our implementation we use four
LSTM layers with 50 neurons, each one with a dropout of
20%, to avoid overfitting. The last layer is a simple layer with
one neuron that will indicate the value of the forecast. This
means that our baselines needs to learn 6050 edges.

The training takes at most 10 epochs and we have a early
stop condition that is if the error became steady in at least 3
epochs the train stops. Here, we do not use generated features
to enrich data.

3) Regression Ensemble Approach: The ensemble that we
use in this framework is the Xgboost algorithm. It is di-
vided into 5 stages. It starts by using the features from the
Lag Features group; then uses the Time Features group; the
Aggregation Features group; the Smooth Features group; the
Composition Features group; and final builds a Final Model
with a selection of features of each group of features.

E. Visualization Module

Visualization is a key factor when we talk about pro-
cess automatization. The user needs to understand the steps
performed, important decisions that were taken, and more
important, the results.

We use a open-source framework - streamlit 1 - that
allows us to integrate with our code and create a simple and
interactive app. The user can explore the data, features and
line charts.

IV. CASE STUDIES

Each test, or case study analysis, follows the same structure.
The data from the case study is used as input to the framework.

1https://www.streamlit.io/

In each step we will discuss the results provided by the
visualization tool.

1) Metrics: Measuring the accuracy of the overall predic-
tions with a single metric is not simple as there is no metric
that could describe the error behavior. In our framework, we
display a set of different measures to help the user making
decisions about the predictions.

The mean absolute error, or MAE, is calculated as the
average of the forecast error values, where all of the forecast
values are forced to be positive.

MAE =
1

n

n∑
t=1

|et| (2)

The mean absolute percentage error, or MAPE, is the
average of the percentage errors. Percentage errors have the
advantage of being unit-free, and so are frequently used to
compare forecast performances between data sets. The most
commonly used measure is:

MAPE =
100

n

n∑
t=1

∣∣∣∣etyt
∣∣∣∣ (3)

Measures based on percentage errors have the disadvantage of
being infinite or undefined if yt = 0 for any t in the period of
interest, and having extreme values if any yt is close to zero.

The root mean squared error, or RMSE, is a quadratic
scoring rule that also measures the average magnitude of the
error. It’s the square root of the average of squared differences
between prediction and the observed value.

RMSE =

√√√√ 1

n

n∑
t=1

(et)2 (4)

The Pearson correlation coefficient, for short correlation,
is a measure of the strength of a linear association between
two variables and is denoted by r. It can take a range of
values from +1 to -1. A value of 0 indicates that there is no
association between the two variables. A value greater than 0
indicates a positive association.

Finally, the accuracy. We evaluate the forecast problem as a
classification problem, where the output means if the value will
increase or decrease relative to the day before. The positive
variable is ”increase” and the negative is ”decrease”. Accuracy
is given by the sum of instances well predicted as ”increase”
or ”decreased” divided by the total of predictions.

2) Data: The data selected consist in a set of financial
series with different characteristics. We examined the daily
change of closing prices of Nio and the SP500 index. The
stock prices are downloaded from Yahoo finance. The main
reason for choosing each dataset it is their variation along
time. The Nio Stock looks like a valley. It starts with a high
value, decreases, and then increases. Also, it was chosen by
the number of data points, which are much less than the other
case studies. The SP500 index is the most linear trend. This
was chosen mostly by its uptrend and as a good representation
of all financial time series.

A. Nio Stock

The Nio stock is made up of 505 data points, with a low
standard deviation of about 3.7 and is not stationary. On
Figure 1 is shown the daily values at the closing market time,
from Sep 12, 2018 to Sep 14, 2020. Visually, the stock value
behaviour can be split into three periods of time.

The first period goes from Sep 12, 2018 to Mar 7, 2019.
The stock opens negotiating at 6.6$, and quickly goes up to
11.6$, a 75% appreciation, in the second day on the market.
This value will be the maximum until Jul 7, 2020 when it
reaches the price of 13.22$. This period is marked by a high
volatility with significantly changes day for day. The second
period ends on May 22, 2020. During this period, the price
decreases, devaluing 81%, when it reaches 1.32$ on Oct 1,
2019. This is the historical minimum. After that, the trend is
positive, and the stock appreciate 166%.

The third period has a notable upward trend. The stock
appreciate 1050%, reaching 37.7$. From Figure 1, it is visible
a pattern that can explain future values. That pattern consists
in a appreciation of 7$ in one or two days, followed by a small
period of devaluation.

This dataset is relative small, with only 505 data points. This
is an important aspect to take in consideration in the analysis
that follows. Also, the test period corresponds to the one with
higher changes that aren’t observed before.

Fig. 1. Daily close value for Nio stock between Sep 12, 2018 and Sep 14,
2020.

1) Data profiling: The framework starts by analyzing the
stationary property. The Augmented Dickey-Fuller test in-
formed that the data is non stationary, so it performs a first-
order differencing. The time series after data profiling is shown
in Figure 2, where we can see a different time series. The new
values are more bonded between -10 and 10, mean is close to
zero, and the values outside the range -10 to 10, correspond to
the first and last period, specially the last one when the stock
grew very fast.

2) Baseline: The MAE is about 12.86, RMSE of 16.48
and MAPE is 435.07, accuracy is near 0.46, which means
that the model only could predict correctly less than half of
the positive variations. The predicted values are relative well
bounded in the range of observed values. In the observed time
series we have a high value followed by a low value, resulting
in consecutive ups and downs. However, in the predicted time

Fig. 2. Nio stock data after data profiling.

Fig. 3. Lag Feature Importance.

series we have two ups or two downs consecutive before
changing the trend. This result in a low accuracy and high
errors. The results are lacking correlation with the observed
values, and the correlation coefficient is near zero.

3) Lag Features: The MAE is about 10.09, RMSE is about
14.09, MAPE is 163.78, accuracy 0.47, and correlation 0.08.
Although very poor results, they are slightly better than the
baseline. The predictions are very disperse without a clear
correlation between observed and predicted. Analysing the
features used that corresponds to previous observations, we
can’t name a feature or a set of features that can describe the
data. The score of each feature shown in Figure 3 indicate
that lag 2 was the most used feature to split the data. Since
XGBoost built different trees each time we run the algorithm,
these feature scores can have different values. We ran the
procedure several time and the top features, namely lag 2,
lag 6 and lag 5, always scored high.

In the baseline analysis, we saw that the observed time
series has consecutive ups and downs. So, an even number
of previous observations will help to notice that pattern. And
since in the last period we have a very high upwards trend,
recently previous observations will help to notice the upward
trend, than the older observation, when the value was lower.
Finally, lag 11 and lag 20 play and important role to help
discover the patterns in the last period.

4) Time Features: The MAE is about 9.43, RMSE is about
13.44, MAPE is 120.10, accuracy 0.56 and correlation 0.19.
The results are better than baseline and Lag Features. This
means that the time of buying the Nio Stock is more important
that previous observations. Again, we can apply the analysis
made about Lag Feature and apply here. These features are
related to the day of the year, day of the week, as explained

Fig. 4. Time Features Importance.

Fig. 5. Aggregation Features Importance.

in section III-D. The feature with the highest score is ”week
of the year”. Since we have a small dataset, with only 3 years
of data, it wouldn’t be clear that this feature can split the most
data points.

5) Aggregation Features: Similar to Lag Features, aggre-
gation features are correlated to past values, however they
are transformations of those past values. MAE is about 8.11,
RMSE is about 11.22, MAPE is 113.62, accuracy is 0.67 and
correlation is 0.60. These results show a better performance
than previous approaches and a significant increase in both
accuracy and correlation when compared against our baseline.
In Tesla analysis similar results were obtained. Now we have
a clear correlation between actual data and predicted values.
”Derivative” is the feature with highest score. It is a very
representative feature, it always scores higher if we ran the
procedure several times. Features aggregated by weeks follow
the top. ”Mean by week” and ”max by week” can help
describe the patterns mentioned before. The rest of features
are aggregations to the values of weeks and months. Days are
not present since we have only one observation for each day.

6) Smooth Features: The results of smooth features are the
best ones. MAE is about 2.84, RMSE is about 5.65, MAPE is
31.25, accuracy is 0.93, and correlation 0.93. The data points
have a high correlation and small errors. In Figure 6, we have
the top scoring features. The three Exponential smoothing
features used rank in the top, meaning that the most recent
values describe better than previous ones. This is in line with

Fig. 6. Smooth Features Importance.

Fig. 7. Composition Features Importance.

Fig. 8. Final Model Features Importance.

the results from Aggregation features, where the top ones are
related to small unities of time. Also, it is according to Lag
Features, where the most recent observations scored higher in
feature importance. Followed by Exponential moving average
features, we have normal moving averages. The first one to
appear in the rank is the one with lowest range, of 8. Finally,
features extracted from wavelet transformations have a lower
score.

7) Composition Features: The results of composition fea-
tures are far from the results expected. MAE is about 10.32,
RMSE is about 14.22, MAPE is 129.40, accuracy is 0.40, and
correlation -0.04. The observed values and predicted values
do not have correlation. The range of the predicted values are
between -6 and 6, although the observed values are in a range
between -10 and 50. The top features are all related to lag
features. This can explain the bad results, since Lags features
obtained similar errors. Also, composition features have more
features than the other sets of analysis. This could lead to
overfit and increase the complexity of the model.

8) Final Model: The final model joins all features selected
from each approach. The final result has the best performance
above all. MAE is about 1.87, RMSE is about 2.93, MAPE is
19.02, accuracy is 0.98, and correlation 0.92. The best features
chosen, shown in Figure 8, are picked from all sets of study.
Meaning that in spite of Smooth Features results have an high
accuracy, high correlation and low errors, the other features
could be important too. ”lag 7 composed with big down” is
the most descriptive feature, followed by ”mean by week” and
”exponential smoothing with alpha of 0.8”. In the analysis of
smooth features, we said that an exponential moving average
with a lower alpha describes the data better than an higher
alpha. Here we see the opposite, meaning that is the set of
features that matter and not only one feature by itself.

Table I resumes the results from each approach. The final
model has a superior performance compared to the baseline,
the observed values are correlated to predicted values, which

TABLE I
RESULTS FROM NIO DATASET.

MAE RMSE MAPE Accuracy r
Baseline 12.86 16.48 435.07 0.46 -0.03

Lags Features 10.09 14.09 163.78 0.63 0.17
Timestamp Features 9.43 13.44 120.10 0.56 0.19
Aggregated Features 8.11 11.22 113.62 0.67 0.60

Smooth Features 2.84 5.65 31.25 0.93 0.93
Composition Features 10.32 14.22 129.40 0.40 -0.04

Final Model 1.87 2.93 19.02 0.98 0.92

Fig. 9. Daily close value for SP500 index
between Jan 29, 1993 and Sep 14, 2020.

do not happen on the baseline, and the final model is able to
predict more correctly if the next data point will be higher or
lower than the actual one. This can be very important in the
context of stock forecast, where the user could know if the
stock value will increase or decrease and that way do a more
informative action.

V. SP500 INDEX

The SP500 index is made up of 6957 data points, with a
high standard deviation of about 68.23 and is not stationary.
On Figure 9 is shown the daily values at the closing market
time, from Jan 29, 1993 to Sep 14, 2020. Visually, the stock
value behaviour can be split into two periods of time.

The first period goes from Jan 29, 1993 to Mar 9, 2009. The
index value opens negotiating at 44, and gradually goes up to
154, a 250% appreciation, after 7 years. Then it depreciates
55% along 2 years. The pattern repeats once more. The second
period has a notable upward trend. The index value appreciate
500%, reaching 360.

This dataset is big, with 6957 data points. This will be more
informative than other dataset with a smaller size. This way,
the model can learn better the trend and patterns. Also, the last
period is the most interesting and it corresponds to one third of
the all dataset. In the Nio stock analysis, we saw that the most
interesting period only corresponded to 1/10 of the all dataset.
Of course, this factor will impact the model performance.

A. Data profiling

The framework starts by analyzing the stationary property.
The Augmented Dickey-Fuller test informed that the data is
non stationary, so it performs a first-order differencing. The
new values are more bonded between -100 and 100, with some

Fig. 10. SP500 index data after data profiling.

Fig. 11. SPY500 index: Lag Feature Importance.

exceptions. Mean is close to zero, and the distribution fit a
normal distribution.

B. Baseline

The baseline results, or the LSTM results, show poor
predictions. The MAE is about 25.92, RMSE of 40.50 and
MAPE is 435.07. Accuracy is near 0.48, which means that
the model only could predict correctly less than half of the
positive variations. The predicted values are relative well
bounded in the range -10 to 0 and between 5 and 15. We
can say that the model was not able to predict value outside
this range and because of that it has a bad performance.
Results are lacking correlation with the observed values, and
the correlation coefficient is near zero.

C. Lag Features

These lags features results show poor predictions The MAE
is about 27.49, RMSE is about 44.14, MAPE is 400.10,
accuracy 0.48, and correlation -0.08.

Predictions are very disperse without a clear correlation
between observed and predicted values. Analysing the features
used that corresponds to previous observations, we can’t name
a feature or a set of features that can describe the data. The
score of each feature shown in Figure 11 indicate that lag 11
was the most used feature to split the data, tied with lag 5.

D. Time Features

Time features show poor predictions. The MAE is about
26.29, RMSE is about 41.90, MAPE is 362.67, accuracy 0.52
and correlation -0.02. Again, we can apply the analysis made
about Lag Feature and apply here. The data points are too
disperse to say that there is a correlation between observed
values and predicted values. These features are related to the

Fig. 12. SPY500 index: Time Features Importance.

Fig. 13. Aggregation Features Importance.

day of the year, day of the week, etc, as explained in section
III-D. The feature with the highest score is ”week of the year”.

E. Aggregation Features

Similar to Lag Features, aggregation features are correlated
to past values, however they are transformations of those past
values. MAE is about 19.14, RMSE is about 30.63, MAPE
is 270.64, accuracy is 0.73 and correlation is 0.65. These
results show a better performance than previous approaches
and a significant increase in both accuracy and correlation
when compared against our baseline.

”Derivative” is again (as in the Tesla and Nio case study)
the feature with highest score. It is a very representative
feature, because it double the score of the second most used
feature, ”difference”. Features aggregated by weeks follow
the top. ”Mean by week” and ”max by week” can help
describe the patterns mentioned before. The rest of features
are aggregations to the values of weeks and months. Days are
not present since we have only one observation for each day.

F. Smooth Features

The results of smooth features are the best ones. MAE is
about 4.95, RMSE is about 15.28, MAPE is 32.48, accuracy
is 0.96, and correlation 0.93.

The data points are over the regression line. Resulting in
a high correlation and small errors. In Figure 14, we have
the top scoring features. The three Exponential smoothing
features used rank in the top, meaning that the most recent

Fig. 14. Smooth Features Importance.

Fig. 15. Composition Features Importance.

Fig. 16. Final Model Features Importance.

values describe better than previous ones. This is in line with
the results from Aggregation features, where the top ones are
related to small unities of time.

Followed by Exponential moving average features, we have
normal moving averages. The first one to appear in the rank
is the one with lowest range, of 5. Finally, features extracted
from wavelet transformations have a tied score with the rest
of moving average features.

G. Composition Features

The results of composition features are far from the results
expected. MAE is about 27.40, RMSE is about 43.22, MAPE
is 98.65, accuracy is 0.49, and correlation -0.05.

The observed values and predicted values do not have
correlation. The top features are all related to lag features.
This can explain the bad results, since Lag features obtained
similar errors. Also, composition features have more features
than the other sets of analysis. This could lead to overfit and
increase the complexity of the model.

H. Final Model

The final model joins all features selected from each
approach. The final result has the best performance above
all. MAE is about 3.37, RMSE is about 14.46, MAPE is
21.05, accuracy is 0.98, and correlation 0.94. The best features
chosen, shown in Figure 16, are picked from all sets of study.
Meaning that in spite of Smooth Features results have an high
accuracy, high correlation and low errors, the other features
could be important too. ”lag 20 composed with big down” is
the most descriptive feature, followed by another composed
feature, ”lag 10 composed with big down”. In the analysis of
smooth features, we said that an exponential moving average
with a lower alpha describes the data better than an higher
alpha. Here we see the opposite, meaning that is the set of
features that matter and not only one feature by itself.

Table II resumes the results from each approach. The final
model has a superior performance compared to the baseline,

TABLE II
RESULTS FROM SP500 INDEX DATASET.

MAE RMSE MAPE Accuracy r
Baseline 25.92 40.50 435.07 0.48 0.03

Lag Features 27.49 44.14 400.10 0.48 -0.08
Time Features 26.29 41.90 362.67 0.52 -0.02

Aggregated Features 19.14 30.63 270.64 0.73 0.65
Smooth Features 4.95 15.28 32.48 0.96 0.93

Composition Features 27.40 43.22 98.65 0.49 -0.05
Final Model 3.37 14.46 21.05 0.98 0.94

the observed values are correlated to predicted values, which
do not happen on the baseline, and the final model is able to
predict more correctly if the next data point will be higher or
lower than the actual one. This can be very important in the
context of stock forecast, where the user could know if the
stock value will increase or decrease and that way do a more
informative action.

VI. CONCLUSIONS

In this work we proposed a framework that automatize the
process of analysis of a time series. The framework starts by
cleaning the data, generate features, analyse those features,
select the best features and create a model that can predict
values with low error.

The framework was able to process a set of different datasets
and deal with their differences and create different models with
different sets of features. Through the visualization tool, the
user can follow the process and be informed of each decision
of the framework, for example what is the transformation
applied if the time series is not stationary, or if it has missing
values. Then it shows the sets of features computed and the
results of forecast with the XGBoost model. The user can see
the Mean Absolute Error, the Root Mean Squared Error, and
the Mean Absolute Percentage Error, accuracy and a plot of
the correlation between the observed data and predicted values.

With our cases studies we observe that the Final Model of
each dataset has always a better performance than the chosen
baseline.

To improve this framework, we suggest automate the op-
timization of parameters of the XGBoost model; test other
methods to select features; explore Wavelet transformations to
generate features.

REFERENCES

[1] Frank Hutter, Lars Kotthoff, and J. Vanschoren. Automatic machine
learning: methods, systems, challenges. Challenges in Machine Learn-
ing. Springer, Germany, 2019.

[2] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-
Brown. Auto-weka: Automated selection and hyper-parameter optimiza-
tion of classification algorithms. CoRR, abs/1208.3719, 2012.

[3] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springen-
berg, Manuel Blum, and Frank Hutter. Efficient and robust automated
machine learning. In Advances in neural information processing systems,
pages 2962–2970, 2015.

[4] Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline
optimization tool for automating machine learning. In Automated
Machine Learning, pages 151–160. Springer, 2019.

[5] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
Algorithms for hyper-parameter optimization. In Advances in neural
information processing systems, pages 2546–2554, 2011.

[6] James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis:
Towards automating data science endeavors. 2015 IEEE International
Conference on Data Science and Advanced Analytics (DSAA), pages
1–10, 2015.

[7] Quanming Yao, Mengshuo Wang, Hugo Jair Escalante, Isabelle Guyon,
Yi-Qi Hu, Yu-Feng Li, Wei-Wei Tu, Qiang Yang, and Yang Yu. Taking
human out of learning applications: A survey on automated machine
learning. CoRR, abs/1810.13306, 2018.

[8] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The weka data mining software: An
update. SIGKDD Explor. Newsl., 11(1):10–18, November 2009.

[9] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential
model-based optimization for general algorithm configuration. In In-
ternational conference on learning and intelligent optimization, pages
507–523. Springer, 2011.

[10] Lars Kotthoff, Chris Thornton, Holger H Hoos, Frank Hutter, and
Kevin Leyton-Brown. Auto-weka 2.0: Automatic model selection and
hyperparameter optimization in weka. The Journal of Machine Learning
Research, 18(1):826–830, 2017.

[11] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lin-
dauer, and Frank Hutter. Practical automated machine learning for
the automl challenge 2018. In International Workshop on Automatic
Machine Learning at ICML, pages 1189–1232, 2018.

[12] Richard Loree Anderson. Recent advances in finding best operating con-
ditions. Journal of the American Statistical Association, 48(264):789–
798, 1953.

[13] Lior Friedman and Shaul Markovitch. Recursive feature generation for
knowledge-based learning. CoRR, abs/1802.00050, 2018.

[14] Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database.
Language, Speech, and Communication. MIT Press, Cambridge, MA,
1998.

[15] Michele Banko, Michael J. Cafarella, Stephen Soderland, Matt Broad-
head, and Oren Etzioni. Open information extraction from the web.
In Proceedings of the 20th International Joint Conference on Artifical
Intelligence, IJCAI’07, pages 2670–2676, San Francisco, CA, USA,
2007. Morgan Kaufmann Publishers Inc.

[16] Philippe Esling and Carlos Agon. Time-series data mining. ACM
Computing Surveys (CSUR), 45(1):12, 2012.

[17] Robin John Hyndman and George Athanasopoulos. Forecasting: Prin-
ciples and Practice. OTexts, Australia, 2nd edition, 2018.

[18] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting
system. CoRR, abs/1603.02754, 2016.

[19] Andrej Karpathy, Justin Johnson, and Fei-Fei Li. Visualizing and
understanding recurrent networks. CoRR, abs/1506.02078, 2015.

[20] Wes McKinney et al. Data structures for statistical computing in python.
In Proceedings of the 9th Python in Science Conference, volume 445,
pages 51–56. Austin, TX, 2010.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[22] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W Kempa-
Liehr. Time series feature extraction on basis of scalable hypothesis
tests (tsfresh–a python package). Neurocomputing, 307:72–77, 2018.

[23] D Ignatov, Pavel Spesivtsev, and Vladimir Zyuzin. Multilabel classi-
fication for inflow profile monitoring. MACSPro’2019, Vienna, pages
21–23, 2019.

[24] Ivan Lazarevich, Ilya Prokin, and Boris Gutkin. Neural activity clas-
sification with machine learning models trained on interspike interval
series data. arXiv preprint arXiv:1810.03855, 2018.

[25] Marc-André Zöller and Marco F. Huber. Survey on automated machine
learning. CoRR, abs/1904.12054, 2019.

	Introduction
	Related Work
	Data Cleaning
	Automated Model Selection
	Automated Hyperparameter optimization
	Grid Search
	Random Search
	Sequential Model-Based Optimization(SMBO)

	Feature Generation
	Feature Generation without domain knowledge
	Feature Generation with domain knowledge

	Feature Selection
	Time Series
	Augmented Dickey-Fuller test
	Time series Forecast
	Ensemble-based Approach
	Neural Networks Approach

	Python Libraries
	Open Issues

	Framework
	Load Data Module
	Data Profiling Module
	Test of Stationarity: Augmented Dickey-Fuller test

	Data Cleaning Module
	Feature Engineering Module
	Feature Selection
	Baseline Approach
	Regression Ensemble Approach

	Visualization Module

	Case studies
	Metrics
	Data

	Nio Stock
	Data profiling
	Baseline
	Lag Features
	Time Features
	Aggregation Features
	Smooth Features
	Composition Features
	Final Model

	SP500 index
	Data profiling
	Baseline
	Lag Features
	Time Features
	Aggregation Features
	Smooth Features
	Composition Features
	Final Model

	Conclusions
	References

