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Abstract—Steganography is the practice of concealing a mes-
sage within some other carrier or cover message. It is used to
allow the sending of hidden information through communication
channels where third parties would only be aware of the explicit
information in the carrier message. In this article propose a novel
approach for text steganography that can be classified as pure
steganography. The proposed algorithm uses the redundancy
in language semantics as the space for the hidden message. It
improves on existing algorithms by not requiring the message
receiver to be aware of the specific redundancies of any cover
message. We contextualize our system by thoroughly reviewing
semantic steganography and the concepts surrounding it, and
by surveying published systems in this area. Our results show
that a semantic pure steganographic system is possible and can
realistically be used, despite being limited by very low embedding
rates.

Index Terms—Steganography, Linguistic, Semantics, Monte
Carlo

I. INTRODUCTION AND BACKGROUND

Steganography systems describe methods for taking an
”innocuous” message, called covertext and embed it with some
plaintext message that is desired to remain hidden, outputting
a stegotext. This stegotext is a slightly altered version of the
covertext that is still ”innocuous” and from which the plaintext
is extractable. Effectively, steganography is the process of
encrypting a message and having the output appear to be a
non-encrypted message.

In certain contexts, a communication channel provider
might refuse to relay messages that it can see are encrypted
and does not know are trustworthy. Steganography finds ap-
plications in these situations and will continue to do so with
the growing threat of mass surveillance.

In this article we propose a novel system for semantic
steganography, which is the branch of text steganography that
uses redundancies in the vocabulary of natural languages as
the space for the plaintext message [1]. To do so, we first pro-
vide the necessary context by first conciliating and providing
available information on semantic steganography, and then by
surveying existing systems for semantic steganography.

A. The Steganographic Process

As described by Kingslin in [1], a steganography system
can be divided into two components:
• An embedding or injection method, where a covertext is

modified to receive the plaintext, outputting the stegotext.
This is performed by the message sender.

• An extraction method, where the plaintext is extracted
from the stegotext. This is done by the message receiver.
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Fig. 1. Diagram showing a generic setting for steganography.
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Fig. 2. Diagram showing the proposed hierarchy of the major families of
steganographic systems.

A diagram explaining the usage of these two functions to
hide and send messages can be seen in Figure 1.

Most Steganography methods can embed a hidden message
of any nature into a cover message of a specific nature, i.e. the
embedding and extraction functions will be constructed for the
specific given source of covers [2]. As such, Steganography
methods are usually classified according to the type of cover
message they work with [1], [3]–[5].

Text steganography is the family of steganographic systems
that use text as the cover message. It is often considered the
most difficult type of steganography. As Sharma describes it in
[6], this is because a text file lacks a large scale redundancy of
information in comparison to the other digital media formats.
In this section we provide and describe a hierarchy for the
classification of text steganography systems. A diagram of this
hierarchy can be seen in Figure 2.

B. Format-Based Text Steganography

Text steganography systems that alter the formatting of
text are called format-based steganography systems. Altering
the formatting of the text might involve operations such as
slightly altering the size or color of letters, moving words



or sentences a few millimetres, or even adding extra spaces
between words [1], [3]–[5], [7]. These systems are the most
commonly used for text steganography.

In [7], Bender states that these systems can be further
divided into two categories: ”Soft-copy safe systems”, which
are the systems in which the hidden message is not lost if the
text is copied onto a different file, these include the insertion of
spaces between words; And ”Hard-copy safe systems” which
are systems in which the text formatting is closely related to
the specific file format of the text, in these systems the hidden
message is likely to be lost if the text is copied onto some other
file, Bender [7] described that these systems can be treated as
a ”highly structured image”.

C. Statistical Text Steganography

Statistical text steganography, often also called random text
steganography [1], [3], [8], is the branch of text steganography
that deals with hiding information in statistical properties of
the covertexts. To achieve this, most statistical steganographic
systems usually deal with generating the stegotext itself (a
process mentioned in Section I-E). The stegotext is generated
in such a way that the desired statistical properties of the text
are verified.

D. Linguistic Text Steganography

Text steganography systems that deal with the linguistic
properties of the covertext are called linguistic steganographic
systems [1], [3], [4]. These systems perform modifications on
the text itself and exploit the ambiguities or redundancies of
natural languages.

As described by Kinglslin [1] and Singh [4], the family
of linguistic steganography systems can be further divided
according to which linguistic properties of the text are being
used to embed the plaintext. As such, the following two sub-
families of linguistic steganography can be formalized:
• Syntactic Text Steganography Linguistic steganography

systems that deal with the syntax of text are called
syntactic text steganography systems. Such systems might
change the grammatical structures of sentences to embed
a hidden message. Simpler systems in this family might
simply add or remove commas from text in places where
their necessity is arguable (such as the Oxford comma).

• Semantic Text Steganography Semantic text stenogra-
phy is the branch of text steganography that uses the
redundancy of words as the space for the hidden message.
Steganographic systems in this family rely on the natural
redundancy and ambiguity of natural languages.

E. Classifications for Embedding Functions

The embedding and extraction functions are the defining el-
ement of a steganographic system. As inverse functions, these
two methods are co-dependant and need to be jointly defined.
For their relevance, steganographic systems can be classified
according to the working principles of these functions. The
following classifications where proposed by Kaufmann in [2]:

• Steganography by Cover Modification Steganography
systems in which the embedding function alters an ex-
isting covertext are called steganography by cover mod-
ification. This is the most common working principle of
steganographic systems and is the one shown in Figure 1.
In [9], Osman considers that this category is further
dividable into substitution-based systems, in which parts
of the cover message are replaced; and injection-based
systems, in which new elements are inserted into the
cover message.

• Steganography by Cover Synthesis The generation of
a stegotext based on the plaintext is called steganography
by cover synthesis (or generation). This type of steganog-
raphy can be seen as difficult as it might be hard to
generate a cover message that is natural and innocuous.

• Steganography by Cover Lookup Steganography by
cover lookup describes steganographic systems in which
the cover messages are preexisting and not modified in
any way. In these systems, the message sender will use
the extraction function on all available cover messages
and choose the one that produces the desired plaintext.

F. Purity of Steganographic Systems

Steganographic systems can be classified according to the
requirement of prior information exchange. Usually this in-
formation exchange relates to some security measure of the
steganographic system, such as a secret key. More generically,
what needs to be exchanged are some additional parameters
that are needed in both the embedding and extraction methods.
Classifying steganographic systems based on this is relevant,
as the prior exchange of information might not be always
feasible.

The following are the three classifications most commonly
discussed when studying this property of steganographic sys-
tems [10]–[12]:
• Pure Steganography A pure steganographic system, as

formalized by Katzenbeisser in [10], is a steganographic
system that does not require the prior exchange of some
secret information. These systems are solely secured by
the iniquity of the stegotext and rely third parties not
being aware that there exists some hidden message [11].

• Secret Key Steganography A secret key steganographic
system is defined as a system that requires the prior
sharing of a secret key. This secret key, often called
stego-key [11], is required as an additional parameter
in the embedding and extraction functions. Secret key
steganography is closely related to symmetric cipher
encryption.

• Public Key Steganography Public key steganographic
systems take concepts from public key cryptography for
added security. These systems require the usage of two
keys, one public and one secret. The message receiver
will generate both keys using some key generation func-
tion and will place the public key in some publicly
available source. The public key is then used by the
message sender in the embedding function to generate



TABLE I
EXAMPLE OF A SHORT SYNONYM TABLE, USED IN [7].

big large
small little
chilly cool
smart clever
spaced stretched

the stegotext. To extract the plaintext from the message,
the original secret key needs to be used in the extraction
function.

G. On The Security of Steganography Systems
The primary objective of any steganography system is to

provide a hidden channel for communication, such that third
parties can intercept the cover messages and not be suspicious
that these messages are carrying a hidden embedded message.
Some third parties, might, however, be aware of the possibility
of usage of steganography in a certain communication channel.
In this situation, they might use the extraction functions
of some steganography systems to ”screen” messages for
possible hidden embedded messages. Because of this, it is
always ideal to first encrypt the hidden message by using, for
example, some simple symmetric-key encryption algorithm. If
the extraction function can be used on any cover message and
have some output, the natural randomness of some covertext
should be indistinguishable from the ciphertext produced by
some cryptosystem [10].

II. RELATED WORK

In our research, the following systems for semantic
steganography were surveyed and are here described.

A. Synonym Table Steganography Systems
Semantic steganography systems use the redundancy in the

words of natural languages as the space for a hidden message.
The most trivial implementation of such a system would be
one that replaces words in the covertext with their synonyms.
In our survey, the majority of such systems make usage of a
synonym table (exemplified in Table I) that is shared between
the message sender an receiver. These tables, of usually two
columns, pair words with their synonyms.

In these systems, the hidden message is encoded into the
choice of synonyms that was used in the covertext. This way,
each word in the covertext (that can be replaced by a synonym)
will encode a character of the plaintext, corresponding to
which column of the synonym table it is in.

In the approaches described by Bender [7], Rafat [13], and
Shirali-Shahreza [14], [15], the plaintext is first converted into
a binary string. This way, a two-column synonym table can be
used to encode the hidden message (there is one column for
each character of the hidden message alphabet Σ = {0, 1}).

In all of these systems [7], [13]–[15], the embedding method
functions as follows, for a given covertext and plaintext:

1) The plaintext is converted into an alphabet Σ such that
|Σ| = c, where c is the number of columns in the
synonym table.

The room was small and the air was cool.

The room was              and the air was           .  small cool

The room was                 and the air was              .  
0 small
1 little

0 chilly
1 cool

The room was little and the air was cool.

Cover message

Identify words in
synoynm table

The room was                 and the air was              .  1 little 1 cool

Get synonyms from
table

Choose synonyms
corresponding to
hidden message

Stego message

1 1Hidden message

Fig. 3. Diagram exemplifying the embedding process of the plaintext ”11”
into the covertext ”The room was small and the air was cool.” using a synonym
table steganographic system.

2) The covertext is scanned and occurrences of words in
the synonym table are identified.

3) The nth identified word of the covertext is replaced with
a synonym from the table’s column corresponding to the
nth character of the plaintext.

This embedding method is further clarified in Figure 3.
The stegotext generated by the message sender using the

aforementioned embedding method is sent to the message
receiver. Here, the corresponding extraction method is applied.
It can be described as follows:

1) The stegotext is scanned and occurrences of words in
the synonym table are identified.

2) The nth character of the plaintext will correspond to the
column of the nth identified word of the stegotext.

This extraction method is further clarified in Figure 4.
The authors in [6], [7] explain the usage of these systems in

a generic context, without specifying how a synonym table is
constructed. It is not entirely trivial how these tables should be
constructed. Words that seem synonymous in certain contexts
might not be interchangeable in other contexts [7], [16].

In [15], Shirali-Shahreza explored the usage of words that
have different spellings in American English and European
English (for example, ”Candy” and ”Sweets”). This work is
futher extended by Rafat’s research [13].

Acronyms and their unabbreviated counterparts can also be
seen as synonyms. In [14], the authors explored the application
of the abbreviations and acronyms commonly used in SMS
messages for such a system.



The room was little and the air was cool.

The room was              and the air was           .  little cool

The room was                 and the air was              .  1 little 1 cool

1 1

Stego message

Find column of
identified words

Hidden message

Identify words in
synoynm table

Fig. 4. Diagram showcasing the extraction process from the covertext
generated in figure 3.

smart intelligent astute brilliant

00 01 10 11

vomit puke

0 1

autumn fall

0 1

Fig. 5. Examples for sets of synonyms and the bits they can encode, as
described by Winstein in [16].

B. Variable Synonym Cardinality Steganography Systems

In the examples described in previous section, the synonym
table has a set number of columns and, as such, all words in
such a synonym table are restricted to having that set number
of possible replacements. Naturally, words can have differing
numbers of synonyms. These words have a potential to encode
more information that is not being exploited by the described
system.

The most trivial solution for this problem is the one
described by Winstein [16] in his description for a ”naive
algorithm”. The described approach groups words into sets
of mutually interchangeable synonyms. The system embeds a
binary message into the covertext, each word can embed as
many bits as the base two logarithm of the number of words
in its synonym set. As such, the number of elements in these
sets of synonyms is restricted to being some power of 2. This
approach is exemplified in Figure 5. A similar approach is also
used in [17] and [18].

C. Winstein’s Ideal Coding

In [16], Winstein improves on the aforementioned ”naive al-
gorithm” by proposing a related system in which the synonym
sets can have any number of words (as opposed to only powers
of 2). His proposal consists on converting the hidden message
into a multi-base number (each digit may have a different
base), where each digit corresponds to a word in the synonym

The
0 room

1 place
was

0 cold

1 chilly

2 cool

0 small

1 little

2 cramped

3 tiny

and the air was .

2Base 4 3

1Value 2 110011

The place was little and the air was cool.

Cover Message

Hidden Message

Stego Message

Fig. 6. Diagram showcasing the embedding of the hidden message ”10010”
into the covertext ”The room was small and the air was cool.”, using the
multi-base number approach described by Winstein in [16].

table, and the base of each digit is the number of replacements
that word can have. This solution can be visualised with the
diagram in Figure 6.

D. Mimic Functions

A well known approach for semantic steganography is the
one proposed by Wayner in his articles [19] and [20]. Here
Wayner described the construction of mimic functions and
their applications for text steganography.

A mimic function f is described as the function that alters
the statistical properties of a text file A to be the same as
some other file B. Formally, if p(t, A) is the probability of a
substring t occurring in A, then the mimic function f encodes
A so that p(t, f(A)) approximates p(t, B).

Wayner introduces mimic functions as the inverse of Huff-
man compression functions [21].

Wayner improved on his system by joining it with context-
free grammars to ensure the sentences maintain grammatical
consistency. This improved the iniquity of the stegotext, but it
still remained mostly devoid of meaning.

E. Markov Chain Based Text Steganography

In [22], Dai introduced the usage of Markov chains for
text steganography, this research was continued in [23]. Dai’s
proposal involves constructing a Markov model for the desired
covertext.

In Dai’s approach, the transitions of the Markov model are
labelled with parts of the hidden message. To synthesise the
stegotext, the plaintext is used to determine the sequence of
state transitions that is done over the model. This process is
exemplified Figure 7.
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Fig. 7. Diagram of a steganography system constructed using a Markov
model, as described in [22].Here, the hidden message ”0100” would synthesize
the stegotext ”is there a great”.
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Fig. 8. Diagram of grouped state transitions as described by Moraldo [24]. By
grouping two consecutive transitions, the transition ”is there” is made more
probable than ”is obfuscated”, as expected in text.

F. Moraldo’s Fixed Size Steganography

In [24], Moraldo described how Dai’s Markov systems
produce ”unnatural” looking text by not taking into account
the probability of transitions. With the way that transitions are
labelled, any outgoing transition from any given state has the
same probability of occurring in a stegotext.

Moraldo’s solution involves grouping multiple consecutive
transitions together and labeling these groups with parts of the
hidden message. More probable state transitions will occur in
more of these labelled groups. This way, the resulting stegotext
will have word sequences that occur with the frequency that is
expected of a real text. This system is exemplified in Figure 8.

G. Markov Chain with Huffman Coding

In [25], the authors also explore the problem of ensuring
a natural probability distribution of transitions on a Markov
based steganographic system. For their approach, the authors
make use of Huffman coding to construct a tree for the
transitions at each step of the Markov model. More frequent
transitions are labelled with shorter labels and are thus more
likely to appear in the hidden message. This is exemplified
in Figure 9. This system shares a lot of similarities with the
mimic functions described by Wayner [19] and with Moraldo’s
approach [24].

III. APPROACH AND IMPLEMENTATION

Semantic steganographic systems that use synonym tables
can be thought of as requiring two main operations that are
shared by the embedding and extraction functions.
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Fig. 9. Diagram exemplifying the usage of ”chained” Huffman trees to label
transitions in a Markov model, as described by Zhongliang [25].

• The identification of replaceable substrings in the cover
message.

• The labeling of the possible replacements for the identi-
fied substrings with characters from the hidden message
alphabet.

In synonym table semantic steganography, the hidden mes-
sage is constructed from the concatenation of the labels of
the identified replaceable sections, using the shared synonym
table.

In this section, we propose a novel algorithm for semantic
steganography that does not require the sharing of a synonym
table. To do so, we first define how the two aforementioned
operations can be performed in the absence of a shared
synonym table.

For the following sections describing our approach, it is
assumed that the message sender has access to some unspeci-
fied synonym table. This table can have a variable number of
synonyms for each word.

A. Replaceable Substring Identification

Our approach to have the message sender and receiver agree
on which will be the replaceable sections is the following: The
cover message is divided into substrings (or sections) of a fixed
size. This fixed size should be large enough to ensure that at
least one replaceable substring can be found by the message
sender inside the fixed-size sections. If each fixed-size section
contains a replaceable substring, then the whole section can
be thought of as a replaceable substring.

To try to maintain the replacement sets of each fixed-size
section independent from other fixed-size sections, we can
define the size of each section as a number of words. This
way no word is cut between two sections.

B. Substring Replacement Set Construction

To the possible replacements for each section, the message
sender can use his synonym table to identify the replaceable
words within each section and then the set of possible replace-
ments for each word. If we are treating the entire fixed-size
section as one replaceable substring of the message, we can
compute its set of replacements from the Cartesian product of
replacement sets of the identified replaceable words. A section
will have as many replacements as the product of the sizes



The room was small and the air was very cold.

The room was small and the air was very cold

The room was

small
little

cramped
tiny

and
cold
cool
chilly

very
quite

the air was

the air was very cold
the air was quite cold
the air was very cool
the air was quite cool
the air was very chilly
the air was quite chilly

The room was small and
The room was little and

The room was cramped and
The room was tiny and

Cover message

Split into fixed-size
sections

Get word synonyms
from synonym table

Compute fixed-size
section replacement
sets from cartesian

product of word
replacement sets

Fig. 10. Diagram showing the process of computing the replacement sets for
fixed-size sections of a message. In this example, the size of each section is
5 words.

of replacement sets contained in it. This procedure can be
visualised in Figure 10.

C. Section Replacement Labelling

In most synonym table steganographic system, word re-
placements are labelled according to their column in the
synonym table. In our approach, since we are assuming that
the message receiver does not have access to the table used
by the message sender, an alternative labelling method needs
to be implemented.

The proposed solution is as follows: A function that behaves
similarly to a hashing function can be used to map fixed-
size sections to characters of the hidden message alphabet.
This function, which we will refer to as a stego-hashing
function, should, for any given fixed-size section, determinis-
tically output a character of the hidden alphabet, with uniform
probability over the alphabet.

To construct a stego-hashing function, any existing hashing
function that operates on strings can be used. The output of
such function just needs to be limited to the size of the hidden
message alphabet, this can be done with the modulo operator.
As such, if h : S → N is an existing hashing function that
operates over strings, we can define the stego-hashing function
H(s) = h(s) mod |Σ|. The resulting value is used to index a
character of the hidden message alphabet.

The message sender can use this stego-hashing function to
compute the label for each section replacement of the cover
message. Then, the sender can select any replacement of each
section that hashes to (has been labelled with) the desired
character of the hidden message. The nth character of the
hidden message will correspond to the label of the nth selected
fixed-size section replacement. This process is exemplified in
Figure 11.

the air was very cold
the air was quite cold
the air was very cool
the air was quite cool
the air was very chilly
the air was quite chilly

The room was small and
The room was little and

The room was cramped and
The room was tiny and

Computed fixed-size
section replacement

sets for a cover
message

 c the air was very cold
 c the air was quite cold
 b the air was very cool
 a the air was quite cool
 a the air was very chilly
 a the air was quite chilly

Compute label for
each replacement

using stego-hashing
function

c b

 a The room was small and
 c The room was little and
 c The room was cramped and
 b The room was tiny and

 c The room was little and
 c The room was cramped and

 b the air was very cool

Hidden message

Select replacements
according to hidden

message

The room was cramped and the air was very cool.Stego message

Fig. 11. Diagram showing the embedding process of the proposed approach.
This example uses the replacement sets computed for the cover message in
Figure 10.

D. Hidden Message Extraction

To extract the plaintext from the stegotext, the message
receiver simply needs to split the stegotext into sections and
compute the stego-hash for each. The concatenation of these
stego-hashes is the plaintext. This process does not make use
of any synonym table. This is exemplified in Figure 12.

The major advantage of our approach over related systems
becomes apparent in the extraction method. The extraction
process is very light and does not require the sharing of a
synonym table. The message sender and receiver need only to
agree on the size of sections and on the used stego-hashing
function, which should be encompassable in a very short
message.

E. System Implementation

An implementation of this system, as described, was con-
structed in Java. The system was made so as to allow for an
external synonym table to be imported. It is made available,
in working condition, on a Github repository [26].

F. Synonym Table Construction

For usage with our implementation of this project, we
constructed a synonym table for the English language.

The base for our synonym table is WordNet [27], [28].
WordNet is a large lexical database of English constructed
and made available by Princeton University. This database is
composed of synsets. Each synset is a set of words labelled



The room was cramped and the air was very cool.Stego message

 c The room was cramped and  b the air was very cool

The room was cramped and the air was very coolSplit into fixed-size
sections

Compute stego-hash
of each section

c bHidden message

Fig. 12. Diagram showing the extraction process of the proposed approach.
This example uses the stegotext computed in Figure 11.

by a meaning. Each word in the synset can, in some context,
take the meaning of the synset. We firstly constructed a python
parser for WordNet.

One limitation of WordNet is that all words are in their
basic, non-inflected forms. To account for this, we pluralize
the words in noun synsets using the Inflect [29] library, and
conjugate the verb synsets with the MLConjug [30] library.

The desired synonym table should map each word to a set
of words that can replace it in any context, we define these as
the ”safe” replacement words.

To do this, we use the various synsets that a word appears
in to identify which words can always replace it, regardless of
the meaning that it takes on in a given context. As such, the
set of possible replacements for a word can be defined as the
intersection of all synsets in which that word appears.

The resulting replacement table is usable in many semantic
steganography systems beyond the system proposed in this
document and was made openly available on a Github repos-
itory [31], along with the code used to create it.

G. Embedding Failure Probability

When the message sender computes the possible replace-
ments for a fixed-size section, there is a probability that none
of the replacements will hash to the desired hidden alphabet
character. If this happens, the embedding might be considered
impossible for that specific covertext and plaintext pair. Be-
cause of this failure probability, the embedding algorithm can
be considered a Monte Carlo randomized algorithm. In [2], the
concept of embedding effectiveness is described as relating to
this probability of an embedding failure.

The message sender and receiver will want to negotiate pa-
rameters for the system that minimize this failure probability.
As such, it is relevant to estimate it.

In developing this project we have deduced the following
formula for the embedding probability for a hidden message
character m ∈ Σ on a fixed-size section c with r possible
replacements:

EP (m, c) = f(r) = 1− (1− 1

|Σ|
)r. (1)

By applying this formula to all the sections of a message,
we get the formula for embedding probability of a pair hidden
message M = {m1,m2, ...,mn} and cover message C =
{c1, c2, ..., cn, ...}, where the ith section of C has ri possible
replacements:

EP (M,C) =

n∏
i=1

(1− (1− 1

|Σ|
)ri). (2)

These formulas are useful for computing the embedding
probability for a known cover message that has been “pre-
processed”. To use these formulas, the number of section
replacements needs to be known for each fixed-size section
in the cover message.

By computing the expected value for this formula, we
can obtain a more “generic” formula for the embedding
probability on a cover message. If the individual sections and
their replacements are not known, the probability distribution
of the number of replacements can instead be studied. The
following formula for a lower bound was obtained using
Jensen’s inequality [32] and Equation 2:

EP (M,C) ≥ (

∞∏
r=1

(1− (1− 1

|Σ|
)r)RP (w,r))n (3)

This formula is more useful in that it can be used to estimate
the embedding probabilities for unknown cover messages,
based only on their length n and the probability of a section of
w words having r replacements, RP (w, r). This probability
is very dependant on the synonym table and it is not trivial to
compute.

The number of replacements for a section is the number of
possible combinations of replaceable words within the section.
If we assume that the numbers of alternatives for words in a
section are independent or almost independent, each word can
be interpreted as one of w independent trials, and that each
will have an outcome that is a number a ∈ {1, 2, ..., k} of
alternatives with a known probability {p1, p2, ..., pk}. As such,
the numbers of words in that have a replacements follow a
multinomial distribution.

To compute the probability that a section of w words
may have r replacements, RP (w, r), it is first necessary to
determine how r can be described as a multiplication of the
possible numbers of alternatives that words might have.

If for some value of r ∈ N there exist l sets E1, E2, ..., El,
such that each set Ei = {ei,1, ei,2, ..., ei,k} ∈ N∗0 verifies

k∑
j=1

ei,j = w and
k∏

j=1

jei,j = r. (4)

Then the probability that a section of w words may have r re-
placements can be computed with the multinomial probability
mass function, as

RP (w, r) =

l∑
i=1

w!

ei,1!ei,2!...ei,k!
p
ei,1
1 p

ei,2
2 ...p

ei,k
k . (5)



TABLE II
PROBABILITIES OF A WORD HAVING n REPLACEMENTS, AS SAMPLED

FROM THE CORPUS DESCRIBED IN SECTION IV-A, USING THE SYNONYM
TABLE DESCRIBED IN III-F.

Replacements Probability
not replaceable 96.260%

2 2.040%
3 0.722%
4 0.488%
5 0.186%
6 0.125%
7 0.101%
8 0.044%

9 or more 0.034%

IV. EVALUATION

A. Replacement Table

One of our main contributions was the synonym table
constructed as described in Section III-F.

The utility of a synonym table is dictated by how frequently
it can find a replaceable word, how many replacements can it
find, and how natural are the replacements.

Given the way that the synonym table was constructed, it
is ensured that it will never replace a word with another that
would not be a fit for that context. This has the shortfall that
the synonym table is somewhat restricted and will find fewer
replaceable words than if this was not verified.

Given that different words appear in text with different
frequencies, an appropriate way to extract some first order
statistics of the synonym table is to randomly sample words
from candidate covertexts and to count the number of re-
placements found for each. To do this we used a 3 million
word subset of the COHA corpus [33], along with a 2 million
word subset of the GloWbE corpus [34]. Together, these two
corpora provide a very wide and unfocused sample of the
English language. Table II shows the probabilities of words
being replaceable with a certain number of replacements, as
sampled from this corpus.

As is shown, the replacement table can find replacements
for about 3.74% of words randomly sampled from English
language texts.

In Section III-G we stated that a multinomial distribution
can be used to explain the distribution in the number of
replacements of a section, if we assume that the number of
alternatives for words in a section are independent from other
words. To defend this statement, we compare the probability
of a word being replaceable to the probability of consecutive
replaceable words. As sampled from the same dataset as de-
scribed in Section IV-A, each word has a 3.740% probability
of being replaceable, and a word that comes after a replaceable
word has a 3.836% probability of being replaceable itself.
These values are very similar and show that the replaceability
of a word is very independent from the replaceability of words
in its immediate neighbourhood.

B. Steganography System
Given the Monte Carlo nature of our system, the embedding

probability is one of the main factors to be evaluated. In
[2], embedding effectiveness is named as a measure for this
embedding reliability .

Equation 5 provides a formula to compute the probability
mass function for the number of replacements that a section
is expected to have. To validate this formula, the computed
expected probability is compared to the relative frequencies of
numbers of section replacements, as sampled from the dataset
described in Section IV-A. These results are plotted out in
Figure 13.

The predicted probabilities are a very close fit to the
measured values, which validates the provided formula. The
biggest difference between the projected and measured values
is seen for sections that are not replaceable. The formula
predicted a 2.210% frequency for these sections, but a real
occurrence rate over the dataset was measured to be 4.358%.
We estimate that this discrepancy is caused by the not perfect
independence of word replacements. The dataset might contain
areas with ”noisier” text with no replaceable words, these
might span multiple sections, each of with will have no
replacements, increasing the probability of non-replaceable
sections, as measured.

The formula described in Equation 3 provides a lower
bound for the expected value of the embedding probability (or
effectiveness) of our system. This formula (and the tightness
of its bound) can be validated by sampling candidate cover
messages and comparing the measured embedding probability
to the lower bound given by the formula. These values were
computed and are plotted out in Figure 14.

The effect of section size on the embedding probability of
messages can also be studied using the described setup. The
measured values for embedding probability are compared to
the values predicted by Equation 3 and Equation 5 as plotted
in Figure 15.

The results shown in Figure 14 show that the provided
formula offers a very close lower bound to the real probability
values. This allows for this formula to be used as a fully
analytical tool for the negotiation of parameters in a system
like this. As is clarified in this plot, longer messages have
lower embedding probability due to requiring embedding
successes over more sections.

In Figure 15 it is shown that, while the predicted values
do closely follow the measured probabilities, the expected
lower bound can take values that are above the real proba-
bilities. This can be explained by the fact that the formula in
Equation 5 predicted a lower frequency for sections with no
replaceable words. Because of this, it is shown that, if instead
of the values predicted by this formula, the real measurements
for the distribution of section replacements are used, the
formula will provide a true lower bound for the embedding
probability. In this figure the correlation between section size
and embedding probability is clarified. Longer section sizes
will have higher probability of having more replacements, and
provide greater embedding effectiveness.
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Fig. 14. Probability that a hidden message of size n is embeddable into some cover message. Using sections of 200 words, and assuming a hidden message
alphabet of size 29. Values were measured as sampled from the the dataset described in Section IV-A, and are compared to the expected lower bound provided
by Equation 3 with the replacement distribution computed with the probability mass function described in Equation 5.

The embedding capacity, or rate, is a very relevant param-
eter on the selection of steganographic systems. It relates to
the amount of information that can be hidden on a certain
cover message. For text steganography, this is calculated as the
size of the hidden message divided by the size of the cover
message. For the provided system, the embedding capacity
is 1

s , where s is the average size, in characters, of sections.
We compare the effect of embedding rate on embedding
probability with the results exposed in Figure 16.

As is shown, greater values for embedding probability can
be obtained by sacrificing the embedding rate, this is done by
increasing the section size.

V. FINAL REMARKS

A. Significant Contributions

• Provided conciliation of published knowledge on seman-
tic steganography, including a complete hierarchy of the
areas of text steganography that was not found in entirety
on a previously published article.

• Surveyed approaches to semantic steganography and pro-
vided original diagrams that help expose and simplify
their function.

• Introduced and evaluated the first approach for a pure
semantic steganography system.

• Constructed synonym table for the English language that
can be applied to many steganographic systems beyond
our own, and was made publicly available.

B. Comments on the System

In our evaluation of this system, we found that there are
some properties to it that might limit its applicability in real
life situations.

To ensure a reliable probability of embedding success, we
found that cover messages would have to be divided into sec-
tions of at least 200 to 300 words. Each of these sections can
encode a single character of the hidden message. This implies
that cover messages for usage as input to our implementation
of the system have to be extremely long documents. The most
viable option for these, if the cover messages are not written
from scratch, is that documents like books are used. A security
risk with the usage of these cover messages is that, if the
original document is publicly available, a third party might find
compare the original document with the resulting covertext and
identify that it has been tampered with, nullifying the point of
using steganography in the first place.

The main cause for the low embedding rate are the low
degrees of freedom for modifying the covertext. These degrees
of freedom are dictated from the possible replacements of
words as provided by the replacement table. Our synonym
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Fig. 15. Probability that a hidden message of 20 characters is embeddable into some cover message. Using a hidden message alphabet of size 29. Values
were measured as sampled from the the dataset described in Section IV-A. The lower bounds were computed using the formula described in Equation 3, one
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0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

50

100

Embedding Rate (%)

Pr
ob

ab
ili

ty
pe

r
Se

ct
io

n
(%

)

Measured Probability
Expected Lower Bound

Fig. 16. Embedding probability for one section, assuming a hidden message alphabet of size 29. Values were measured as sampled from the the dataset
described in Section IV-A. The expected lower bound was computed using the formula in Equation 3.

table has the low rate of only finding replacements for 3.74%
of words randomly sampled from English texts. Greater rates
of replacements would result in greater embedding rates for
the system, but a different approach to construct a synonym
table might be necessary.

C. Future Improvements

As the first system for semantic pure steganography, our
proposed approach has potential for further developments.
Some possible improvements are listed here.

A significant improvement in the construction of the syn-
onym table would come from building a system that could
identify the meaning being taken on by a word and identify the
correct synset from which to get the possible synonyms. This
would largely increase the number of possible replacements
per word and the number of replaceable words, which would,
in turn, result in a system with greater embedding rate.

Given these recent developments in machine learning for
natural language, there are now systems that can rewrite
sentences with different wording. One such system is the one
developed by Xu [35] which uses the BERT deep learning
model [36]. A system like this one could be used to replace
the synonym table altogether by listing the possible rewritings
of a sentence.

If the hashing stage of our system would also take in
information from previous sections, then the past choices of
replacements would have an effect on the result of other hash-
ings. This way, if there is an embedding failure on a section
with fewer replacements, then the system could backtrack
to a section with multiple choices for viable replacements
and change the selection. This would effectively perform a
tree search algorithm over the replacements of sections. This
modification could greatly improve the embedding rate.

VI. CONCLUSION

With this article we have provided the groundwork for
constructing a system for semantic pure steganography, and
have implemented it and thoroughly analysed its properties.
In doing this, we have made multiple contributions to the
field of steganography and more specifically semantic and text
steganography. These contributions go beyond our implemen-
tation of the system itself.

Despite the downfalls of our system, we see that, as a
whole, it is an important step in the development of future
systems for semantic pure steganography, and that, with further
developments such as the ones described in Section V-C, it can
become a strong tool for truly innocuous communication.
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