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Abstract

Soliton hydrodynamics is an appealing tool to describe strong turbulence in low-dimensional systems.
Strong turbulence in quasi-one dimensional superfluids, such as Bose-Einstein condensates, involves the
dynamics of dark solitons and, therefore, the description of a statistical ensemble of dark-solitons, i.e.
soliton gases, is necessary. In turn, the evolution of this superfluid is described by the Gross-Pitaevskii
equation, of which solitons are stationary solutions. In this work, a phase-space (kinetic) description
of dark-soliton gases is proposed, introducing a kinetic equation that is formally similar to the Vlasov
equation in plasma physics. Besides this, a code which numerically solves the Gross-Pitaevskii equation
is also developed to provide a basis to compare and interpret the results to. It is shown that the
proposed kinetic theory can capture the dynamical features of soliton gases and that the latter sustain
an acoustic mode, a fact that is corroborated with the direct numerical simulations. This work’s findings
motivate the investigation of the microscopic structure of out-of-equilibrium and turbulent regimes in
low-dimensional superfluids.
Keywords: Bose-Einstein Condensation, Solitons, Quantum Fluids, Kinetic Theory, Quantum Turbu-
lence

1. Introduction

Unlike its classical analogue, which finds a compre-
hensive model in the Navier-Stokes equation, quan-
tum turbulence (QT) does not fit in an unified and
comprehensive description [1]. The difficulties in
establishing a suitable framework are rooted not
only in the coexistence of normal and superfluid
phases, but most relevantly in the topological na-
ture of turbulent structures: while in classical sys-
tems they assume arbitrary shapes and sizes, with
lengths spanning over several orders of magnitude,
in the quantum regime vorticity is quantised [2, 1].
As such, QT exhibits vortex tangling, as envisioned
by Feynman, resulting in a vorticity distribution
that is quite distinct from the continuous vortic-
ity present in classical fluids, making the dynam-
ics of QT rather complicated [3]. Both theoreti-
cal and experimental methods have been developed
to produce and investigate vortex tangling in Bose-
Einstein condensates (BEC) [4, 5].

The features of quantum turbulence are signifi-
cantly affected by dimensional constraints. This is
especially true for one-dimensional (1D) systems,
where quantum fluctuations may play quite a sig-
nificant role [6, 7, 8]. Moreover, angular momentum
quantisation is not possible in one-dimensional sys-
tems, and the role of vortices — major turbulence

manifestations in two and three dimensions — is
played by dark solitons (DS), topological defects
created by a phase jump in the order parameter
[9, 10]. Another interesting aspect of dark-solitons
is the fact of being fermionic [11, 12], being inti-
mately related to the type-II excitations on top of a
one-dimensional Bose gas as predicted by the Lieb-
Liniger theory [13]. Moreover, the concept of “soli-
tonic turbulence” is also present in some conditions
of strong turbulence in classical systems [14, 15],
which increases the interest around the develop-
ment of statistical methods for solitons. Previous
studies in 1D QT indeed exist, but are mostly (if
not exclusively) performed in the weak turbulence
regime [16], and it is still not clear what is supposed
to happen in a strong turbulence situation. What
sort of behaviour does one expect to observe for
dark solitons in 1D? And how will their fermionic
statistics work [17, 18]?

With the aim of understanding the microscopic
processes leading to strong turbulence in 1D super-
fluids, in this work a kinetic theory of dark-soliton
gases is developed based on the Klimontovich ap-
proach [19, 20], well-established in the context of
plasma physics but recently applied to atomic sys-
tems [21]. The starting point is a reduction of DS
to particle-like objects of effective negative mass,
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Figure 1: Density n(x) = |Ψ(x, t)|2 profile of a dark
soliton. Inset graph represents the corresponding
phase.

and the determination of the Hamiltonian and cor-
responding canonical structure for a dark-soliton
pair. Then, a distribution function describing a col-
lection of DS in the phase space is constructed, and
its corresponding transport equation obtained. Fi-
nally, by performing ensemble averages, the mean-
field dynamics of a DS gas and respective excitation
spectrum are determined. A gas of dark solitons
is found to sustain a collective excitation, which
is acoustic-like (massless) in the long-wavelength
limit, in agreement with the Bethe ansatz solution
of the Lieb-Liniger model. These results open a
venue towards a theoretical framework able to cap-
ture the spectral properties of strong turbulence in
1D systems.

2. Background
2.1. Dark-Soliton Hamiltonian
A homogeneous, one-dimensional superfluid at
zero temperature, is governed by the Gross-
Pitaevskii(GP) equation [22]

i~
∂Ψ(x, t)

∂t
=

(
− ~2

2m

∂2

∂x2
+ g|Ψ(x, t)|2

)
Ψ(x, t),

(1)
with Ψ(x, t) being the superfluid order parameter,
associated to the following Hamiltonian density

H{Ψ} = − ~2

2m

∣∣∣∣∂Ψ

∂x

∣∣∣∣2 +
g

2
|Ψ|4 . (2)

Dark solitons constitute exact solutions to Eq. (1)
parametrised by s and v, standing for the centroid
position and velocity, respectively, Ψ(x, t; s, v) =
e−iµt/~ψ0[x; s, v], where µ = gn0 is the chemical
potential, and [22]

ψ0[x; s, v] =
√
n0

[
iβ + γ−1 tanh

(
x− s
γξ

)]
. (3)

Here, β = v/c, γ = (1 − β2)−1/2, c =
√
gn0/m is

the sound speed and ξ = ~/√gmn0 is the healing

length. Because of the translational invariance of
the solution, the soliton Hamiltonian is a function
of the DS velocity only,

H(v) =
∫

(H{Ψ0} − µn0) dx

= 4
3mc

2n0ξ
(

1− v2

c2

)3/2
(4)

For small velocities, v � c, H(v) ' |M∗|c2 +
M∗v

2/2, where M∗ = −2mn0ξ is the effective mass
of the soliton [23]. Therefore, Eq. (4) suggests that
DS may be regarded as relativistic hole-like parti-
cles, with c playing here the role of the speed of
light. The canonical momentum may be obtained
via the relation v = ∂pH(v), which can be readily
inverted to provide

p =

∫ v

0

1

u

∂H(u)

∂u
du = M∗c

(
β

γ
+ δ

)
, (5)

with δ = arcsin(β) being the phase jump in the or-
der parameter from x − s = −∞ to x − s = +∞.
This shows that the parameter v is, indeed, the
kinematic DS velocity, v = ṡ, since s and p consti-
tute a canonical pair obeying the Poisson bracket
{s, p} = 1. As such, Eq. (5) allows one to
change the functional dependence on the Hamilto-
nian, H(v)→ H(p).

With the establishment of the canonical equa-
tions for a dark soliton, it becomes possible to gen-
eralize to a set of N solitons. In order to avoid
phase singularities within the order parameter, the
DS gas is considered to be composed of an array
kink−anti−kink pairs

ψgas[{sj ; vj}] =

N∏
j=1

ψ0[xj , (−1)jvj ]. (6)

We can repeat the procedure of the single DS to
formally obtain the equations of motion,

ṡj =
∂Hgas

∂pj
= vj , ṗj = −∂Hgas

∂sj
, (7)

with Hgas obtained from Eq. (4) as

Hgas(sj , pj) =
∑
k 6=j

H(sk, pk). (8)

Notice that the Hamiltonian is now a function of
the soliton positions sj and their momenta pj , as a
consequence of the breakdown of translational in-
variance for the case of randomly distributed soli-
tons. Of course, this results in 2N coupled equa-
tions, which are of little use. Crucially, Eq. (7)
now encodes the motion that a single soliton un-
dergoes due to its interaction with all the others.
In what follows, a Klimontovich procedure based
on the dynamics of Eq. (7) is implemented.
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3. Implementation
3.1. Microscopic Phase-Space Distribution Func-

tion
In order to construct a statistical description of DS
gases, the phase-space distribution function of the
canonical variables s and p are defined as [24, 25]

ρ(s, p, t) =

N∑
j=1

δ(s− sj(t))δ(p− pj(t)), (9)

satisfying the following relation with the total num-
ber of solitons in the gas

N =

∫∫
ρ(s, p, t) dsdp. (10)

Computing the time derivative, one has

∂ρ
∂t =

∑N
j=1 ṡj

∂δ(s−sj)
∂sj

δ(p− pj)

+ ṗj
∂δ(p−pj)
∂pj

δ(s− sj).
(11)

By using the property ∂xδ(x− y) = ∂yδ(y−x), one
obtains

∂ρ

∂t
+ ṡ

∂ρ

∂s
+ ṗ

∂ρ

∂p
= 0, (12)

which means that the DS phase-space distribu-
tion function may be regarded as an incompressible
fluid, ρ̇ = 0, in agreement with Liouville’s theorem.
The key point now is to understand that one can go
from the discrete dynamics to a continuous descrip-
tion in the phase space by making use of ρ(s, p, t),
and writing Eq. (7) as ṗ = −∂sV , where V is ob-
tained from Eq. (8) as

V (s, p, t) =

∫∫
Hgas(s− s′, p− p′)ρ(s′, p′, t)ds′dp′.

(13)
Notice that Eq. (13) defines a pseudo-potential de-
pending on both s and p (or v), which is a conse-
quence of the relativistic nature of DS: their mass
depends on their velocity. Together with Eq. (5),
establishing a relation between p and v = ṡ, the
Klimontovich equation may be recast as

∂ρ

∂t
+ v

∂ρ

∂s
− ∂V

∂s

∂ρ

∂p
= 0. (14)

Eq. (14) is very useful for numerical simulations
[26, 27, 28], but quite complicated to handle ana-
lytically. To describe the mean-field behaviour of
DS gases, the ensemble averages f ≡ 〈ρ〉 and 〈V 〉
are introduced, along with the corresponding devi-
ations as

δρ = ρ− f, δV = V − 〈V 〉, (15)

with 〈V 〉 obtained from Eq. (13) via the replace-
ment ρ → f . Inserting in Eq. (14), one obtains a
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Figure 2: The effective pairwise pseudo-potential as
a function of the soliton separation for v = 0 (solid
line) and v = 0.5c (dashed line).

kinetic equation for the smooth distribution func-
tion f(s, p, t),(

∂

∂t
+ v

∂

∂s

)
f − ∂〈V 〉

∂s

∂f

∂p
=
〈∂δV
∂s

∂δρ

∂p

〉
. (16)

The r.h.s of the latter defines the collision integral,
which depends on the details of the short-range na-
ture of DS collisions. It can be constructed, at dif-
ferent levels of approximations, by making use of
the BBGKY hierarchy [24], thus yielding different
kinetic equations. In what follows, dilute soliton
gases, N0ξ � 1, are considered, whereN0 = 1/〈s〉 is
the gas density determined by the averaged soliton
separation 〈s〉. In that regime, the correlations be-
tween the multi-particle distributions are neglected
and the collision integral in Eq. (16) is set to zero.
As such, the collisionless kinetic equation for the
single-particle distribution function is obtained,(

∂

∂t
+ v

∂

∂s

)
f − ∂〈V 〉

∂s

∂f

∂p
= 0. (17)

The latter is formally equivalent to the Vlasov
equation widely used to describe fully ionised plas-
mas [25, 29]. The Vlasov equation has also been
employed to describe photon-quasiparticles, where
long-range interactions are absent [30]. As this work
will testify briefly, the important difference stems
from the fact that the mean-field soliton-soliton in-
teraction is short-ranged, contrary to the case of
electrons and ions in plasmas interacting through
the Coulomb potential.

In order to model the interaction term in Eq.
(17), soliton iteraction is considered to happen via
an averaged two-body potential. This is justified
since dark solitons are localised objects of size ∼ ξ,
making their interaction to be short ranged [9].
As such, the two-body pseudo-potential is obtained
from Eqs. (6) and (8) by setting N = 2, and there-
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fore defining Hgas ' Hpair ≡ H(s, v), where

H(s, v) ' Hkin(s, v) +Hint(s, v)

− 8
3 |M∗|c

2
(

1− v2

c2

)−3/2

.

(18)

Here,

Hkin(s, v) = − 1
3
gn2

0ξ

γ3/2

[
2β2 − cosh (ζ)− 1

]
× csch (ζ) [cosh (2ζ)

− 6ζ coth (ζ) + 5] ,
(19)

is the contribution from the kinetic term in Eq. (2)
and

Hint(s, v) = 1
48
gn2

0ξ

γ3/2 csch7(ζ)

×
[(

16β2 − 35
)

sinh (5ζ)

+ sinh (7ζ) + 12ζ cosh (5ζ)

+
(
−432β4 + 448β2 − 171

)
sinh (ζ)

+
(
−176β4 + 464β2 − 207

)
sinh (3ζ)

+ 24
(
36β4 − 64β2 + 29

)
ζ cosh (ζ)

+ 12
(
8β4 − 32β2 + 21

)
ζ cosh (3ζ)

]
,

(20)
results from the interaction (non-linear) term,
where ζ = s/(γξ) and v = (v1 + v2)/2 is the av-
erage velocity of the soliton pair. The third term
in Eq. (18) corresponds to twice the energy of a
single soliton, s → ∞, and does not contribute to
the force term in the Vlasov equation. As it can be
seen in Fig. (2), the pairwise DS potential is attrac-
tive. However, since the DS mass is negative (and
hence the reduced mass of the DS pair), the result-
ing interaction is repulsive. Moreover, it is observed
that the potential has a range of order ∼ ξ, and be-
comes weaker for more relativistic (less massive, in
modulus) solitons.

3.2. Sound Modes of the Dark-Soliton Gas
In order to illustrate some of the features of the
transport equation, a starting point is to consider
small amplitude perturbations around a certain
equilibrium configuration,

f ' f0 + f̃1, with f1 � f0. (21)

Inserting this into Eq. (17), the linearised Vlasov
equation is obtained,(

∂

∂t
+ v

∂

∂s

)
f1 −

∂〈V1〉
∂s

∂f0

∂p
= 0, (22)

where 〈V1(s, p)〉 =
∫
H(s− s′, p− p′)f1(s′, p′)ds′dp′

with H being given by Eq. (18). Upon Fourier
transforming the latter (i.e. by making f1(s, p, t) =∑
k,ω f̃1(k, p, ω)ei(ks−ωt), the kinetic dispersion re-

lation of the DS gas is formally obtained as

1 = k

∫
H̃(k, v)

(ω − kv)

∂f0

∂v

∂v

∂p
dv, (23)

where H̃(k, v) is the spatial Fourier transform of
Eq. (18). The Jacobian ∂v/∂p allows one to elimi-
nate p and corresponds to a generalised mass term
that can be determined with the help of Eq. (5).
The dispersion relation can be numerically solved
for generic equilibrium configurations, accounting
for i) the relativistic nature of dark solitons, ii)
the velocity-dependence of their pairwise interac-
tion, and iii) the negativity of their mass (“hole-
like” nature). A particularly interesting and ana-
lytically tractable case is that of a non-relativistic
DS gas, distributed such that v � c. In that case,
H(k, v) ' H̃(k, 0) and ∂p/∂v ' −1/|M∗| can be
set, which yields

1 ' −kH̃(k, 0)

|M∗|

∫
1

(ω − kv)

∂f0

∂v
dv, (24)

where

H̃(k, 0) ' −1

2
|M∗|c2sξ

(
28

9
+ (7π2 − 15)k2ξ2

)
+O(k4).

(25)
It can immediately be seen that the negative signs
in Eqs. (24) and (25) cancel, thus confirming that
the nature of the DS interaction is, indeed, repulsive
as earlier stated.

The distribution function is formed by consid-
ering fluctuations on top of homogeneous soliton
gases, f0(s, v) = N0g0(v). An interesting situation
corresponds to that of a cold dark-soliton gas, for
which solitons are prepared at rest, distributed in
velocity as g0(v) = δ(v). Although this distribu-
tion is correct for classical particles, it may not be
generally accurate to describe solitons. The reason
stems from the fact that solitons are fermions, as
one can immediately see from Eq. (6) for a two-DS
wavefunction [17],

ψ2(x2, x1; 0, 0) = −ψ2(x1, x2; 0, 0), (26)

in agreement with Lieb-Liniger theory [11, 12]. The
fermionisation of the DS gas must therefore be in-
cluded in the equilibrium at a semi-classical level.
For that task, the distribution function

g0(v) =
1

2vF
Θ(vF − |v|), (27)

may be used, where vF = π~N0/|M∗| is the 1D
Fermi velocity of the DS gas. As a matter of fact,
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the later reduces to the Dirac-delta distributed gas
in the limit vF → 0, i.e. for sufficiently diluted DS
gases. The dispersion relation in (24) thus provides

ω2 = v2
F k

2 +
N0k

2H̃(k, 0)

M∗
. (28)

In the long-wavelength limit kξ → 0, this corre-
sponds to a solitonic first sound, ω ' v1k, where

v1 = c

√
π2

4
Γ2 +

14

9π
Γ (29)

is the first sound speed and Γ = N0ξ is the DS
gas dilution parameter. In the validity range of Eq.
(17), Γ � 1, v1/c ' 0.703

√
Γ, meaning that the

effects of the Fermi pressure are not relevant for
very dilute gases. Indeed, the effect of the fermion-
isation becomes relevant for densities of the order
Γ & (56/(9π3)) ' 0.203.

3.3. Numerical Method
In order to validate the kinetic approach developed
in this work, a computer code was developed, using
C++ language, which integrates Eq. (1) with the
initial condition of Eq. (6).

There exist several well described and studied
methods for discretising the GP equation in litera-
ture [31, 32, 33, 34, 35, 36, 37]. The one employed
is a time-splitting finite difference (TSFD) method
[38],



Ψ
(1)
j = e−i[Uj+|Ψ(2)

j |
2] ∆t

2 Ψn
j ; 0 ≤ j ≤ J

i
Ψ

(2)
j −Ψ

(1)
j

∆t = − 1
4

(
δ2
xΨ

(2)
j + δ2

xΨ
(1)
j

)
; 0 ≤ j ≤ J

Ψn+1
j = e−i[Uj+|Ψ(2)

j |
2] ∆t

2 Ψ
(2)
j ; 0 ≤ j ≤ J

(30)

Which can be adapted to a choice of boundary
conditions.

This method consists in the separation of the GP
equation into two splitting steps known as Strang-
Splitting [39, 36], which are then solved sequen-
tially in the code: whilst the nonlinear part is
solved exactly, the linear part is discretised through
a Crank-Nicolson finite-difference (CNFD) method
[32, 36, 34].

The TSFD method is particularly favourable be-
cause it is unconditionally stable, time reversible,
second-order accurate in both time and space, it
conserves mass (or total particle number), and is
time transverse invariant [36, 32]. In addition, as
it is an implicit scheme where only a linear system
needs be solved at each time step, it has a memory
cost of only O(J) operations in the one-dimensional
case.

1 2 3

4 5 6

Figure 3: Evolution of a small N = 20 dark soli-
ton gas (Γ = 0.05) in a homogeneous BEC through
several snapshots (1 through 6) of the density pro-
file during simulation. Between each snapshot ni =
2× 106 iterations have elapsed.

The developed code integrates the GP equation
statically an dynamically and can be adapted to vir-
tually any specific set of initial conditions in one-
dimension. The code allows one to choose the ap-
plied external potential, if any; allows for differ-
ent sets of boundary conditions — homogeneous
infinite systems or bounded trapped BECs are the
most common; allows one to introduce the soliton
gas with any initial velocity distribution, and in
any density configuration; and it is also possible to
introduce other excitations to the system such as
phonons, or to include more than one soliton gas.

Fig. (3) depicts the time evolution of the density
profile in the representative case of an initialised
very diluted, Γ = 0.05, dark soliton gas on a ho-
mogeneous BEC. In this picture one may observe a
soliton chain-like repulsion upon interaction.

4. Results
As can be observed in Fig. 4, the DS gas seems
to sustain a collective mode which is acoustic (non-
dispersive) in the long wavelength limit. In order to
characterise this mode quantitatively and to com-
pare with the theory, the dynamical structure fac-
tor, (5), may be used

S(ω, k) =

∫∫
e−iωt+ikx|Ψ(x, t)|2dxdt, (31)

as depicted in Fig. 5. As can be seen, there is
a good agreement between the first sound mode in
Eq. (28) and the numerics is obtained in the re-
gion k . N0, i.e. for wavelengths lying above the
inter-particle separation 1/N0. Above this value,
the coarse-graining assumption of the phase space
breaks down. Moreover, for shorter wavelengths in
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Figure 4: Numerical simulation of a cold dark-
soliton gas, g0(v) = δ(v), depicted for a concentra-
tion parameter Γ = 0.2. One observes the formation
of an acoustic mode, which preludes the solitonic
turbulence.
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Figure 5: Dynamic structure factor S(ω, k) as ob-
tained from the numerical integration of Eq. (1),
for Γ = 0.25 (top) and Γ = 0.3 (bottom). In both
panels, the solid line corresponds to the first-sound
mode in Eq. (28) (no free parameters), while the
top curve indicates an hybridisation mode between
Bogoliubov excitations (dashed lines) and DS first
sound with dispersion ω ' v2k (not shown, see
text). The vertical dotted lines depicts the bor-
der of the expected validity of the Vlasov equation
(17), k = N0.

the range k ∼ ξ, the description of DS as hole-
like particles fails and the internal structure of the

0 0.5 1 1.5 2
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0.5
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Figure 6: Dynamic structure factor S(ω, k) as ob-
tained from the numerical integration of Eq. (1),
for a density Nb = 0.1ξ of small amplitude oscilla-
tions in the BEC. The dashed curve indicates the
Bogoliubov excitation spectrum.

solitons becomes important, what hinders the va-
lidity of the kinetic equation. Finally, the effects
of collision integral in Eq. (16) are expected to
play a prominent role for sufficiently dense DS gases
N0 ∼ ξ, as well as for sufficiently large velocities,
v ∼ c. In both situations, the short-range binary
collisions between solitons needs to be taken into
account.

An additional feature can be observed in Fig. (5):
the emergence of an energetic mode ω ' v2k, with
v2 > c. This mode does not correspond to the low-
lying (Bogoliubov) excitations on top of the super-
fluid - a fact that was verified numerically - and is
certainly not that of a soliton gas (for which the
slope is v1 � c, as discussed above). At this stage,
this mode is understood to be a consequence of the
hybridisation between the Bogoliubov (fast) and the
first-sound (slow) modes, as a result of the interac-
tions between solitons and phonons.

This fact is further cemented by the observation
that, in a system initialised with small (fast) exci-
tations and in the absence of solitons, Fig. (6), the
only collective mode corresponds precisely to the
Bogoliubov excitations on top of the Bose-Einstein
condensate.

5. Conclusions

This work establishes the foundations of a kinetic
theory of dark soliton gases in one-dimensional su-
perfluids based on the Klimontovich approach. By
considering that dark solitons behave as particles
of negative mass, and assuming that they inter-
act via an ensemble averaged pairwise potential, it
was possible to define a kinetic equation governing
the phase-space distribution function of an array
of dark solitons, or rather a dark soliton gas. The
approach described here allows one to describe soli-
tons statistically in analytical grounds, a feature
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that is virtually impossible with studies based on
the Gross-Pitaevskii equation. One important fea-
ture of the soliton gas is that it supports a first
sound mode, which is much less energetic than the
phonon modes on top of the condensate. This is
a consequence of solitons behaving as weakly inter-
acting particles of negative mass.

Another significant accomplishment in this thesis
was the development of a computer code which in-
tegrates the GP equation for a versatile initial set
of conditions. The numerical simulations provided
the confirmation and visual materialisation of the
studied systems.

Through this work, a more comprehensive, mi-
croscopic description of solitonic turbulence is pos-
sibly en route, an aspect of central importance
when dealing with strong turbulence regimes in one-
dimensional superfluids. In a near future, with the
help of a hydrodynamic model that can be directly
obtained from the developed kinetic equation, it
may be possible to describe solitonic turbulence as
a Kolmogorov theory of weak turbulence of dark
soliton gases. If successful, this description will un-
veil important mechanisms underlying the spectral
properties of strong quantum turbulence in low-
dimensional superfluids, to be experimentally pro-
duced either in atomic or polaritonic Bose-Einstein
condensates, or in quantum fluids of light [40].
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S. Sinha, and L. Santos. Quantum fluctuations
in quasi-one-dimensional dipolar bose-einstein
condensates. Phys. Rev. Lett., 119:050403, Aug
2017.

[9] D J Frantzeskakis. Dark solitons in atomic
bose–einstein condensates: from theory to ex-
periments. Journal of Physics A: Mathematical
and Theoretical, 43(21):213001, may 2010.

[10] Mark J. H. Ku, Biswaroop Mukherjee, Tarik
Yefsah, and Martin W. Zwierlein. Cascade of
solitonic excitations in a superfluid fermi gas:
From planar solitons to vortex rings and lines.
Phys. Rev. Lett., 116:045304, Jan 2016.

[11] Jun Sato, Rina Kanamoto, Eriko Kaminishi,
and Tetsuo Deguchi. Exact relaxation dynam-
ics of a localized many-body state in the 1d
bose gas. Phys. Rev. Lett., 108:110401, Mar
2012.

[12] Tomasz Karpiuk, Tomasz Sowinski, Mariusz
Gajda, Kazimierz Rzkazewski, and Miroslaw
Brewczyk. Correspondence between dark soli-
tons and the type II excitations of the lieb-
liniger model. Physical Review A, 91(1), Jan-
uary 2015.

[13] Elliott H. Lieb. Exact analysis of an interacting
bose gas. ii. the excitation spectrum. Phys.
Rev., 130:1616–1624, May 1963.

[14] Roumaissa Hassaini and Nicolas Mordant.
Transition from weak wave turbulence to soli-
ton gas. Phys. Rev. Fluids, 2:094803, Sep 2017.

[15] A. Cazaubiel, G. Michel, S. Lepot, B. Semin,
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