
1

Fault Tolerance Support in an R P2P cycle-sharing system

Tiago Alexandre Serafim Monteiro

tiago.alexandre.monteiro@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

DECEMBER 2020

Abstract

Volunteer computing has the goal of taking advantage of idle computing cycles to use in big computations. Several systems

have already explored successfully this possibility. In some of these systems it is possible to be a volunteer and a client and in

some only a volunteer for important projects. In this paper, we introduce a new system that takes this advantage of the R

language, providing a market to buy/sell remote computation time. This system is focused on the R language to make these

remote computations secure and reliable since in R the computations are frequently long. In this paper, we focus more on the

fault-tolerance problems of this new cycle-sharing system like the possibility of a volunteer leaving the volunteer network

causing the loss of this computation. We explore the existing solutions and adapt them to this system making it fault-tolerant,

able to provide more information of the remote computations to the clients and using the idle cycles in the network the make

these computations faster as possible.

Keywords: Volunteer Computing, Cycle-Sharing, RemotIST, Partial Results, R-project, R language, Checkpoint, cycle-shar-

ing checkpoint, cycle-sharing parallel computing, fault-tolerance

1. Introduction

The opportunity to use idle computer cycles has gotten the

attention of the computing world due to the big advantages

that it gives. Volunteer computing consists of a set of dona-

tors that give their resources to projects, which use the re-

sources to do distributed computing and/or storage [19], this

is, sharing their CPU cycles and storage. SETI@Home [1]

was the first successful project in VC and later

SETI@Home’s core software evolved and became the Berke-

ley Infrastructure for Open Network Computing (BOINC)

[4]. BOINC is the largest and most successful “volunteer

computing” project, using donator resources to help more

than 50 known projects 1. One of the things that makes this

cycle-sharing concept so successful is the fact that many users

are willing to provide their resources [2][3]. However, in a

volunteer network, there is no guarantee that the resources

will be available when they are needed. This turns VC into a

complex system where choosing the volunteers is critical and

managing the resources available is hard. Also, when a vol-

unteer leaves the system with a running computation this

means that the computation may be lost, and it is necessary to

restart it, therefore having a fault-tolerant system is almost

mandatory to make this VC possible.

The RemotIST project [5][6][7] is a project developed at

Instituto Superior Técnico (IST) to use some of these availa-

ble idle cycles to help the R community with their heavy com-

putations using a marketplace for the exchange of credits for

computations. R [8] is a language and environment for com-

puting and graphics design increasingly used by scientists and

data miners for the development of statistics and data analy-

sis. R is one of the leading languages in data science along

with Python and therefore increasingly popular. The big prob-

lem with R is that its users end up suffering due to the pro-

cessing time of large amounts of data in which the lack of

1 Known projects are listed at https://boinc.berke-

ley.edu/wiki/Project_list

resources makes the results time-consuming. RemotIST uses

a peer-to-peer system to provide a volunteer computation,

sending the code to be executed remotely in a host and return-

ing the results at the end of the computations. To make this

P2P system, the volunteers must install a client software part

of RemotIST that adds them to the client/donor network and

starts to provide their resources or to use the network’s avail-

able resources. After this, they communicate with the central-

ized RemotIST server providing the code to be remotely exe-

cuted and this centralizer server starts looking for donators

that make the best offer to perform this computation. In cy-

cle-sharing systems like BOINC, the volunteers donate their

cycles to help projects, but they don’t get cycles in return. In

RemotIST any node in the network can be a volunteer or a

client. To make this network fair, a market to share the cycles

was created and after each computation, the volunteer re-

ceives credits that he can spend to make his computations

later in the cycle-sharing network. To prevent malicious code

in the donators machine, RemotIST implemented a sandbox

that runs the client code. This sandbox helps protect the host

against cases of unknown malware and software vulnerabili-

ties, with security mechanisms that allow hosts to run un-

trusted programs in an isolated environment with limited ac-

cess to the machine’s resources and other information.

Currently, RemotIST has some problems that appear in a

VC system like, failure prevention and recovery and using the

resources available efficiently. Starting with monitoring there

is no notion of the status of the running programs on the do-

nator’s machine. remote needs it because the users are paying

for the computation and need to know if this is going well.

This leads to big problems with wasted resources. In an R

program, it is possible to have computations that are too ex-

pensive and if these computations have some buggy code this

means that the entire computation is useless for the client and

mailto:tiago.alexandre.monteiro@tecnico.ulisboa.pt

2

it could be prevented if the client had this notion in the middle

of computing and not in the end. The client should have some

possibility of monitoring the status of his running application

and with the information from some partial results, give the

ability to stop the computation at any time. There is also the

possibility of the client to decide the deadline to have his com-

putations done has been reached., This can be easy if we track

the progress of the computation in the host machine and allow

the client to check the status of his computation and can even

help RemotIST in the case of clustering decisions in the fu-

ture. This monitoring is not so trivial since in R we have huge

data associated with the computations that require a lot of

memory, this means that saving a variable and provide it to

the client when he needs scales with the amount of memory

that the variable occupies. Also, by tracking the progress we

are adding overhead to the computations if the progress

checkpoints are not well spread.

In a cycle-sharing system, the availability of resources is

not something we can take for granted. The volunteers can

leave and join the network at any moment, even if they are

making a computation. In [9] the host that accepts some job

gives a credit to make a security deposit and only recovers it

after the computation. Even with this, we can’t avoid the de-

parture of the host and this is the current failure problem of

RemotIST. If the host decides to leave the network with some

computation running, this computation will be lost. To toler-

ate this fault tolerable techniques are required to prevent the

loss of the computation or at least to reduce the loss and to

recover the computation in another host. Recovering a com-

putation in another host is not so easy in R if we consider that

most of the computations require a lot of memory and to re-

cover, we must save all this application data, send it to the

new host and resume. This also includes the files that the cli-

ent sends to start the application since it is desirable to make

a client’s computations without having to force it to continue

online for the duration of the whole computation running in

the hosts.

Using a cycle-sharing environment to make some compu-

tations may have the goal that the cycle-sharing system

doesn’t take more than the client’s computer to finish the

computations, or to computing expensive computations that

were not possible without joining the resources available

form more than one donator. This leads us to the last problem

that we want to contribute to RemoteIST the efficient use of

the available resources. R is strongly related to data science

and mathematical computations which require a lot of re-

sources like memory and CPU. Such resources may not be

enough if only using one volunteer. The opportunity of using

more than one volunteer and guaranteeing that they share the

computation and keep the system fault-tolerant is the desira-

ble scenario for RemotIST.

This may collide with the credits systems because it is ex-

pected to only use one host and it may need some policy ad-

justs. To focus only on the improvement of the efficient use

of the resources we do not address this.

Our main contributions are the tracking of the status of the

computation by adding some monitoring techniques, to track

the running code in a host, providing partial results to let the

2 MPI is maintained at https://www.open-mpi.org/

client check how is the computation, and provide fault-toler-

ance to the system by adding a managed network, a central

marked and checkpoint that doesn’t increase the computa-

tion’s overhead drastically. And the last contribution is to

make it possible for the system to use more than one host to

finish a computation.

2. Related Work

R is a programming language and environment for graph-

ical computation and statistics [8] used to develop statistical

software and data analysis. R is one of the fastest-growing

languages, has grown incredibly in the last 5 years [12]. Its

growth and popularity give R an important role in companies

such as Facebook and Google due to its success in the prob-

lems it solves [13][14].

A novel method for monitoring the progress of a Java ap-

plication with low overhead is presented in [15]. They use a

Pastry [16] p2p network for cycle-sharing with distributed

hash tables (DHTs) and monitoring the execution of the code

in each node that has some computation.

Checkpointing is a technique that consists of taking a

snapshot, an image of the system, of the application’s state at

some time, and saving this snapshot to some storage. Saved

checkpoints are used for rollbacks which consist of using the

last checkpoint to recover the last computation and resuming

it, using the checkpoint information to construct the previous

state of the application by resetting the environment, and re-

suming the previously running state.

Some systems like Condor [10] and Sun Grid Engine [11]

use a dedicated host to keep the checkpoints of the computa-

tions to make sure the cost of a loss is as small as possible.

With the presence of various cores in a computer being

something normal, the need to take advantage of all these

cores in a computer began to gain attraction but writing par-

allel programs were difficult and tedious. PC is a type of com-

putation where many calculations or the execution of pro-

cesses are made simultaneously, using the multi-core feature

is one example [17]. The first development of a multi-core

model was the Message Passing Interface (MPI2)[18].

One of the fundamental primitives for constructing fault-

tolerant, strongly consistent distributed systems is distributed

consensus [31]. Distributed consensus ensures consensus of

data among the nodes of a distributed system to agree on a

proposal. A consensus algorithm [32] is a mechanism through

which a network agrees on something proposed on the net-

work for example imagine that you and your family are going

on a trip and you have two possible destinations, the goal of

a consensus algorithm is to ensure that you and your family

reach a consensus about which destination are you going

travel to.

One algorithm implementing consensus is the traditional

algorithm Paxos [33,34,35].

Another algorithm, simpler and recent, implementing con-

sensus is Raft [36].

3. Architecture

Based on the previous architecture and with the objectives

of system fault tolerance, the system architecture was

3

designed to attend to the previous architecture problems and

to enable the development of a stable platform that can be

scalable and fault-tolerant. To provide such a platform the

system’s design was based on the following requirements:

The client may fail during computing, or may not even be

online during computing;

• The Market, Client, and Volunteer must be independent;

• The Market must be able to handle multiple Client orders

and be scalable;

• A Volunteer can join and leave the network at any time;

• A Client’s computing should not be lost when a Volun-

teer leaves during a computation;

• The Client must be able to access partial results of the

computation, know its status and cancel it;

• The growth of the network should not affect the Market;

• The network must be ready to enable checkpoint and PC.

The system design introduced new entities and reused

some existing ones, so when we refer to Client we are refer-

ring to the client who wants his job to be executed remotely,

Volunteer the entity that wants to share its resources in ex-

change credits in a remote execution, Market to the system

that controls the work of the client and the network, Worker

the entity responsible for controlling and monitoring the

works that are being performed by the Volunteer and super-

node a Volunteer who is important in the network and who

monitors the state of the other nodes connected to you.

The Client to create a job communicates with the Market

and sends the necessary files/data so that the execution of that

job can be remote. The Market after receiving this infor-

mation inserts the work in a Queue [20] that is accessible by

Workers who, when receiving a new job from Queue, choose

the best Volunteer available to perform the work. The list of

the status of online volunteers consulted by Workers is con-

stantly updated by Super Nodes (SNs). When a Volunteer fin-

ishes the job, he sends the results to the Market to store the

results. The Client can request the results from the Market at

any time after the work is completed and upload these results

to his local environment. A more detailed explanation of how

the requirements were met will be made in the following

chapters that explain in more detail each of the entities.

3.1 Client

As the objective is voluntary computing in exchange for

credits for a Volunteer, there is always the person interested

in having their computing performed remotely, this person is

the Client. The Client aims to run a piece of code using the

resources that exist on the network for reasons of better CPU,

memory, or simply to run in parallel while the Client is con-

cerned with other computing. The Client must be able to cre-

ate a job, defining the requirements and from there the Market

is responsible for choosing a Volunteer who will be responsi-

ble for Computing. There are some concerns that we try to

address such as:

• The possibility of the client going offline while compu-

ting the requested job

• The volunteer disconnects while computing the client's

work

• The client code has errors that do not allow the job to be

completed

 So that the Client does not have to go online during this

whole process, the Market, as soon as it receives all the nec-

essary information for the Client's computing, starts its search

for a Volunteer who meets the requirements and assigns a

worker who is responsible for monitoring the work being

done by the Volunteer. As soon as the Volunteer finishes the

work, the results are stored in the Market so that the Client

can later upload them to his personal computer.

There is a possibility that during the process a Volunteer

will not complete the job so that the Client will never be with-

out his work due to a Volunteer connection failure, whenever

the network verifies that the Volunteer has dropped a new

Volunteer is chosen by the Worker to initiate a Client's work

order. Ideally, the new Volunteer would continue computing

the old Volunteer code using a created checkpoint.

Something common, due to computation that would not be

possible on the Client, but possible on a volunteer or even

since no code review or tests have been done, is that the code

to be executed remotely contains errors. Whenever a compu-

tation is interrupted in a volunteer due to an error in the code,

the information of the state of the environment is saved, sav-

ing the variables and also saving the information of what

caused the error so that the Client can consult later. Errors are

not always exceptions, many times they can be mutations in

variables that do not go according to expectations, another

mechanism for solving this problem is the partial results and

history of changes in the variable, the Client can define what

he wants to observe a variable and that variable whenever it

changes creates a record of what was changed and when thus

keeping a history of changes in the variable that allows the

Client to understand what happened to the variable and if it

was supposed to. The Client can also load the state of the var-

iable by indicating the time point in the history that he intends

to load to do tests in his environment, so there is the possibil-

ity of the Client doing tests on a variable in the middle of

computing the volunteer.

The client can interrupt a job at any time, credit collection

issues are not addressed in this document. Whenever a com-

putation/work is completed, a record is created in the market

for the result of the same, so the client can have more than

one job to be performed at the same time without having the

consequences of losing the results of some work. work and

the Client can then define which results to load into their en-

vironment and only delete the results from the market if they

want, they are never automatically deleted.

3.2 Volunteer

A volunteer wants to make his resources available in ex-

change for credits without compromising the safety of his ma-

chine. To perform a client's job, it is important to guarantee

the following features in a volunteer:

• Execution of work by the client

• Partial results

• Checkpoint creation

A volunteer can ask the Market to enter the network, after

receiving authorization the Volunteer waits for the contact of

a worker to distribute jobs that meet the parameters

4

established by the Volunteer to accept a job (CPU, RAM,

credits, etc.).

It is important to ensure that the execution of this compu-

tation is non-blocking, that is, that the execution of this com-

putation never blocks the volunteer or compromises the vol-

unteer's security. For this, it was decided that the work com-

putation was done in a sandbox controlled by the volunteer,

which informs the sandbox of the resources it needs to per-

form the computation and starts it. In this way, if there is ma-

licious or blocking code, the volunteer process is not affected,

and the sandbox guarantees the security of the code you are

executing. A code required for partial results and checkpoint

is also inserted in the sandbox.

During computing, it is necessary to track variables that

were requested by the Client. This tracking should also not be

blocking and create the least possible overload in computing.

For this, whenever the Volunteer will start computing in the

sandbox, he informs the partial results module which varia-

bles are to be observed, whenever one of these variables

changes and only when they change, the partial results are re-

sponsible for registering this change and for to send to the

market and the nearest nodes. During code execution when a

variable is changed and belongs to the tracking variables, the

partial results process is notified and validates the changes

made to the variable, after computing the changes, notifies the

Volunteer Server warning that there is a new partial result that

must be sent over the network, the Volunteer Server sends it

immediately to the market and later in synchronization pro-

cesses to the nodes to which it is connected or to the SN to

distribute.

The creation of checkpoints should also not be blocked,

for this, there is also a process that is informed when it is in-

tended to run a checkpoint that is responsible for creating a

checkpoint with information about the state of the environ-

ment and the point where the execution goes to the send asyn-

chronously to the market and close nodes.

3.3 Market

The fact that there is an exchange of credits for a job makes

it necessary to control the transactions and to manage and

monitor the jobs requested by a client. Since the network is

super volatile and it would be difficult to guarantee security

in a network where nodes are always connecting and discon-

necting, it was decided that it would be better to have a market

entity that would be responsible for managing the work cir-

culating between Client and Volunteer. So, the market must

manage several features:

• Authentication & Registration

• Credit control

• Management and monitoring of nodes in the network

• Job management by the client

A Client/Volunteer can create an account and authenticate us-

ing the marketplace which validates the account data and is-

sues a temporary session token to communicate with the mar-

ket. In the voluntary case, it can then associate several ma-

chines to your account, whenever it starts a voluntary node it

chooses the associated machine and the market issues a token

for the machine to use during communication between the

market and another token that serves for the other nodes to

validate the reliability of the volunteer, all these tokens ex-

pire.

There is not much in-depth credit management in the mar-

ket and the market keeps the credit information for each ac-

count and carries out credit transactions when a job is done,

some modules made from previous work were reused and

adapted and improved to the market.

Being a P2P network, it was assumed that it would be quite

volatile, the Market is responsible for monitoring a Volunteer,

if he stays from the network to create a metric that classifies

the node in the future, Volunteer data is also kept every mi-

nute and saved in a time series table, to unlock predictions

about the node in the future to assist in the decision of the

node for a certain job.

Last but not least, the flow of data and orders for a job is

also managed by the Market, the Market is responsible for

receiving the client's orders, saving the information necessary

for the remote execution of the job, saving the information of

partial results and finally save the final state of the computa-

tion so that the Client can request this information from the

market at any time if none of the nodes does have it available.

In addition to the Market, there is another important entity

that is the Worker. The Worker maintains the responsibility

of granting that a job is assigned to a node, that all the infor-

mation about the computation that a node needs to perform

the job is sent, and that the job is completed, either success-

fully or in error.

3.4 Network

 The goal of having a network is essential to use the re-

sources that exist for its organization. One of the serious prob-

lems of a P2P network, which this is no exception, is the entry

and exit of nodes at any time and the way the network is or-

ganized. Since our goal is to group nodes to share resources

based on a metric such as available BW, we chose to create a

structured network.

Another objective was to remove some load from the Mar-

ket regarding the control of nodes and their state so that if

there are 1000 nodes, the Market does not have to receive

1000 pings every second to inform its status. We chose to cre-

ate SNs in the network that is responsible for grouping and

managing the remaining nodes to create small clusters of

nodes that have a strong connection between them and that

allow the sharing of partial results, checkpoints and PC of

closest nodes. These SNs are nodes that have demonstrated

stability in the network and that have a set of resources that

the market considers relevant for an SN. With SNs, we re-

duced the market load, and if in 1000 nodes, 10 are SNs, the

market only receives information from the network of 10 or-

ders and not 1000, and this group of SNs grows together with

the network so that the SNs themselves do not have much of

a burden on monitoring and requests received from the nodes

it controls.

Therefore, we opted for a structured network represented

with SNs that aims to reduce the market load using the SNs

to obtain the status of the nodes that it manages and inform

the market and improve the grouping of nodes. to improve a

computation, either by sharing checkpoint for when a node

falls another node in that cluster is immediately ready to

5

resume computing, or by sharing the computing when execut-

ing tasks that can be done in parallel.

The network is organized in a hierarchical form of the mar-

ket, SNs, and nodes. An SN is a node that has a very good

market confidence metric so that each SN can manage the re-

maining nodes. The use of a raft adaptation serves to make it

possible to manage the network of SNs and their communica-

tion so that a node can be in one of the following states:

• Leader: when the node leads the SN network

• Candidate: when a node does not obtain contacts from a

leader and applies for a leader

• Follower: normal state of an SN that follows a leader

• Node: State of a node that does not even belong to the

SN network but must respond to requests from SNs

So, the cycle of a node can be Node -> Follower -> Candidate

-> Leader. A Leader can also be demoted by the Follower

network.

In the Node state, a volunteer tries to enter the network

informing the market, the in-form market then the leader who

must find an SN to add the new node to the network. The

leader in turn asks each SN why it should stay with this node

using a metric such as the network band between the SN and

the new node to be added. The leader receiving the metric

chooses which SN the new node will be assigned to and in-

forms the SN that the new node must be added. The SN, in

turn, informs the node that it will be your SN, and the node is

added to the network, a node that is no longer able to com-

municate with its SN asks the market again to enter the net-

work maintaining the computations it has to run.

The leader is responsible for managing the network and

ensuring that the number of SNs is following the stipulated,

so the leader has a timer in which he scrolls through the list

of SNs to check their status. If one of the SNs fails the timer

for a certain number of consecutive times, the leader decides

that this SN should be removed from the SN network, starting

by informing the other SNs that the network will transition to

a new state and asking for validation. of SNs, if the number

of positive acknowledges corresponds to the majority, the SN

that does not respond to the leader is removed and added to

the block list of nodes that can pass to SNs to ensure that the

same node is not added back to the network SNs in the next

election if the leader does not receive the number of approvals

necessary to remove the node from the network, it is assumed

that the leader has a network failure that does not allow him

to communicate with the SN he wants to remove and for this,

he withdraws as the leader and becomes a normal node, with

the former leader also being added to the temporary blocking

list of the election of SNs, in case of a tie the vote of the leader

counts as two. If the SN network does not have the super num-

ber we wish the leader also initiates a request to each SN to

suggest a new node that wants to be added to the SN network

and that is not on the temporary block list. Each SN suggests

the best node in the list of nodes it is managing, according to

the metric used to describe a node, and then the leader

chooses the best node from those proposed informing the net-

work that a new node will be added, if the majority of the

network approves the entry of the new node in the SN list, the

node transitions to SN, if it does not approve this node is

added to the temporary block list and the process is restarted.

The choice of a leader follows the same logic as Raft, a

node that does not receive heartbeats from a leader after a cer-

tain time decides to change its status to the candidate and de-

cides to ask the network for votes, in this case, the SNs, if it

has the most of them emerge as a leader and begin to manage

the network if they do not receive enough votes, they return

to follower status. Whenever a candidate receives enough

votes, he also asks the market for authorization to proclaim

himself as a leader. The market is used to make decisions

when there are network consensus problems such as when

there is only one node in the network, the market chooses that

node as a leader or as when a new leader tries to immerse

itself and the market knows that there is currently another

leader. If the leader continues to exist but this SN has just

ceased to be able to communicate with the leader, eventually

the leader will remove the node from the network and the next

time this node asks for votes, the other SNs will inform that

he has does not belong to the network.

4. Implementation

During implementation, it was defined that the system

should be scalable, independent, resilient and realistic. There-

fore, it was decided an approach that allowed a client to be at

the same time a volunteer, through a single R library.

The Market would be a service that exposes a REST API

[21] that allows the Client/Volunteer to communicate with

him for everything related to remote execution. It was decided

to implement the market in node.js [22] for the speed, scala-

bility and easy maintenance of REST APIs.

The worker was also implemented in node.js, with a queue

in RabbitMQ [23] for the management of jobs due to its scala-

bility and fault tolerance. As a database, it was decided to the

relational database PostgreSQL [24] that also allows at the

same time to have time series tables with a TimescaleDB [25]

extension that that transforms a normal PostgreSQL table into

a time series table called hypertable. Finally, the management

of the P2P network was also very important. We tried at first

to use R to carry out this management using an adaptation of

the Raft algorithm to our needs, but it ended up being a very

difficult task due to the low multi-threading capacity of R. So,

we looked for a solution that would allow us to have a good

threading capacity but at the same time a good communica-

tion between the Market and R, itself. The best solution

turned out to be Java using the rJava [26] library which allows

calling Java code in R. For the communication between the

nodes written in Java, the Java RMI [38] protocol was used

and finally for the communication between a node and the

Client, socket.io [39] was used. In the next sections, we will

explain in more detail how each of these modules was imple-

mented and what features can be used in each one.

4.1. Client

The client was implemented in R and is a library that has a set

of functions to allow the client’s use of the network for his

computations. RemotIST controls and manages the session

information and data of the requested jobs. The library imple-

mented for the Client consists of a set of functions that allow

the Client to communicate with the Market using the REST

protocol.

6

4.2. Market

The Market is composed of several components, the first

of which is the Market server that has the function of inter-

acting with the Client, the second component is the database

that stores Jobs' information, accounts, partial results, and

node information, the third component is the queue of Jobs to

be solved and finally, the last component is the worker whose

function is to control the Jobs that come from the queue and

distribute it to the Volunteers on the network.

4.2.1. Market Server

The Market server written in node.js is composed of a

REST server that provides the endpoints. Most of the config-

urations can be changed in the file .env like DB config, net-

work config etc. Besides, to be a REST API it has two mod-

ules:

Job Manager: this module is notified when a job creation

request appears in the REST API, this module ensures that the

job is inserted in the queue so that an available worker can

handle it.

Peer Manager: this module implements socket.io to com-

municate with volunteer nodes. It is here that a new node re-

quests to enter the network and almost always the communi-

cation between the Market server are made or by the leader

of the network or SNs, a common node only notifies the mar-

ket when it wants to enter. We have communitaction inter-

faces with the market and the peer where PEER is the volun-

teer's inter-faces, SUPER_NODES_SIZE the maximum

number of SNs and MAR-KET the communication interfaces

of the market.

4.2.2. Database

The database chosen was PostgreSQL for being one relational

database that can have some time series tables with the Time-

scaleDB extension. Although PostgreSQL itself is already

quite enough, it was considered that in the future a huge

amount of data on the volunteers' historical status could be

stored. For this, it was decided to convert the table that stores

the information of the nodes into a time series table using

TimescaleDB which transforms a PGSQL table into a time

series table.

4.2.3. Queue and Worker

A queue is an ordered list of items where the first item en-

tering the list is the first item leaving the list. The queue was

implemented using RabbitMQ due to its fault tolerance, a

Worker consumes this queue to ensure that each worker han-

dles a job and that job is never lost. Can-and should-have

more than one worker to consume the queue. Worker, imple-

mented in node.js, consumes the queue using AMQP[27].

Whenever the worker receives a new item from the queue, he

chooses a volunteer who matches and transfers the necessary

files for the volunteer to run the job. When the job ends the

worker acknowledges that the item has already been com-

pleted, if it is not possible to find a volunteer, the worker

sends the job to the end of the queue.

4.3. Volunteer

The volunteer implementation was focused on 3 important

points:

• Communication interfaces to be used in the R library

• Creation of a volunteer server

• Communication with Java code

For the communication in R, it was decided that a client

could also be a volunteer and therefore it would be important

that the same library created for the client also had the faces

for the volunteer. Thus, it was decided that the logic of the

volunteer should be implemented as an addition to the Client's

library and thus sharing the same authentication system. The

library thus adds interfaces for managing volunteer machines

and interfaces for starting the volunteer The startVolunteer

function also creates a REST server that exposes some end-

points for the communication between the volunteer and a

worker.

Finally, the startJava and stopJava functions are used to com-

municate with the network module that uses a lib called rJava.

Thus, the volunteer who can also be a Client uses the same

library that reuses the authentication part, creates a REST

server to communicate with the worker, and finally creates a

bridge between R and Java for the network module which will

be explained in the next chapter.

4.4. Network

 network module was implemented in Java, being one of

the important points the communication between nodes it was

decided to use for this Java RMI creating 3 interfaces that ex-

tend from the Remote Interface that allows the RMI commu-

nication. These 3 interfaces are:

• Raft - to implement the functions of the raft algorithm

• ServerMembership - for managing the network such as ob-

taining superPeers, adding a new node to the network, remov-

ing a node, or even blocking a node.

• ServerRMI - to manage the state of the node

There is also a connection between the market and the

node using a Socket.io client for Java that allows the node to

communicate with the market and vice versa.The Raft imple-

mentation in java implements the state information necessary

for Raft like currentTerm, votedFor, log, commitIndex,

lastApplied, nextIndex and matchIndex and the two most im-

portant functions in Raft:

Pair<Long, Boolean> appendEntriesRPC(long term,

String leaderId, long prevLogIndex, ArrayList<String> en-

tries, long leaderCommit) throws RemoteException;

Pair<Long, Boolean> requestVoteRPC(long term, String

candidateId, long lastLogIndex, long lastLogTerm) throws

RemoteException;

The first one is invoked by the Leader to replicate the log

and to send heartbeats. The second is used by a Candidate to

gather votes.

The Server Membership is an addition that controls our

network, it receives messages from the Market through the

Socket.io connection and spreads the information to the other

nodes using Java RMI.

5. Evaluation

In this chapter, we will evaluate how our market works, par-

tial results, and remote computations on the network. Is

7

important that the market can be scalable and guarantee good

response times, for that we will start by evaluating:

1. How the market behaves with a lot of information in the

database

2. How the market behaves with many workers

3. Market storage of partial results

4. Computing overhead

The first point is to test the obtaining of the list of available

nodes as well as their current data and past statistics, for that

we will test the behavior with 100k rows, 1M rows, and 10M

rows. The second point is the scalable part of the market. Here

we intend to test the market response times for many jobs

based on the available workers, we intend to test for 1k, 10k

and 100k Jobs and 5, 10, 15 workers. The third point corre-

sponds to the test of passing results from the market to the

Client, here we will test how the market behaves with 1k, 10k

and 100k Clients asking for results at the same time. In the

last point, we intend to test what is the difference between

using the network or running locally for each of the indicated

test scripts.

In the partial results, it is important to understand the in-

formation gain when compared to the added computation

added. It is intended to understand the addition to the compu-

tation time when there are 1, 5 and 10 partial result variables

to be tracked so that the client can later visualize during the

computation.

Finally, it is intended to evaluate the network and its be-

havior with the entry and exit of nodes, so it is important to

evaluate:

• Reaction time for node entry in the network

• Time to choose an SN

• Time to elect a leader

In the first point, we intend to identify how long the net-

work takes to detect a node entrance and to complete, as well

as a node exit. For this case, a network with 10 nodes and 2,

3, and 4 SNs will be used. In the second point, we intend to

understand the times of election of an SN based on a network

with 10 nodes and 2, 3 and 4 SNs. Finally, we intend to un-

derstand how long it takes for SNs to find a new leader also

in a network with 10 nodes and 2, 3 and 4 SNs.

R provides good packages to make a benchmark of run-

ning applications like rbenchmark and microbenchmark. To

evaluate the project, we used different computations for the

tests such as:

• Fibonnaci calculation

• Prime factorization

• Knn model

All tests were made on a server with 2CPUs and 4GB

RAM and one personal computer with CPU Intel Core i5-

8250U 1.60GHz, 8GB RAM and SSD. Database and Rab-

bitMQ are running using docker containers. We will have the

Database, RabbitMQ Queue, Market Server and Workers

running on the server and the Clients and Volunteers running

on the personal computer.

5.1. Timeseries Table vs Normal Table

To evaluate the performance of using a time series table or

a normal table for the peers’ statistics we used two types of

tables with similar queries. The goal was to understand how

the system would behave with a lot of data and how could

time series help with it.

 100k
1M 10M

HY-

PERT

ABLE

Planning

Time: 1.267

ms

Planning

Time: 0.099

ms

Planning

Time: 0.124

ms

Execution

Time: 0.260

ms

Execution

Time: 1.499

ms

Execution

Time: 19.020

ms

TA-

BLE

Planning

Time: 0.083

ms

Planning

Time: 1.397

ms

Planning

Time: 9.790

ms

Execution

Time: 0.397

ms

Execution

Time:

2179.911 ms

Execution

Time:

17129.179 ms

Table 1 - Hypertable vs normal table

In Tab. 1 we can find the results of the similar queries on

tables with 100k, 1M, and 10M rows. Using a normal table

until 1M was doable without a time series table however, if

we start growing more up to 10M rows using a normal table

can be a bottleneck and find statistics about one peer can take

17s. By using a time series table the times of execution for

10M rows are 19ms which are more acceptable for a scalable

platform. Based on the results of table 1 we can conclude that

using a time series table to handle big amounts of data about

the peers on the network is a good and scalable approach.

5.2. Market

To evaluate the market, we used a script that would create

1k, 10k, and 100k jobs at the same time. To understand how

it would behave we used the RabbitMQ monitoring system.

Figure 1 - RabbitMQ monitoring results

Fig. 1 shows the monitoring graphics of RabbitMQ, the

red one is the number of queue messages waiting to be

handled and the green on is the rate os messages by each

consumer/worker (example if you have 5 consumers and you

have 16k/s your system is handling 16*5k messages per

second which are 80k/s). In the green one, we cal also see 3

groups of 3 spikes. The first spike is for 100k jobs, the second

8

one for 10k jobs and the last small one for 1k jobs. In both red

and green graphs, you have 3 groups, the first group (closer

to left) is the results using 15 workers, the middle one using

10 workers and the right one using 5 workers. Increasing the

number of workers shows that we can keep our system

running without failing any tasks and keep is scalability, even

with 5 workers, the system can handle 100k jobs in a few

milliseconds. We can also see that increasing the number of

workers improves the system and his fault tolerance.

Another important measure is to understand how the market

behaves when having multiple requests of the clients, to test

these behaviors we used a script to simulate a Client call 1k,

10k and 100k times to get a partial result for a big variable

and measured the average response time.

Figure 2 - Market's average response time to a partial

result call

The market showed up a good performance to handle up

to 100k requests, as showed in Fig. 2, without any failure or

any increase in the average response time. This test was only

made with one market and we can always add more instances

of the market to make it more scalable.

Finally, it was important to understand the overhead of our

system comparing the local running against running in the

volunteer network. To evaluate this, we used some scripts of

a Fibonacci calculation, prime factorization, KNN [28] model

calculation, and Fibonacci with system sleep.

Figure 3 - Script running this in local and using volun-

teer network in ms

Fig. 3 shows that the overhead is a continuous value of

around 2-6ms, Fibonacci with sleep showed up this behavior

more because in the other script this 2-6ms represented about

50% increase of time but we can see that if you have a more

expensive computation the RemotIST’s overhead is around 2-

6ms making is really useful for heavy computations.

5.3. Partial Results

To evaluate the partial results, we decided to run the

scripts using 5, 10, and 15 partial results variables to track.

Fibonacci with sleep also had more than 100 mutations com-

pared to the Fibonacci normal script.

Figure 1 - Partial Results Overhead in ms

Fig. 28 shows that the overhead of tracking a partial result

is about 1ms per each tracking variable, this value can be ex-

plained because all the tracking is made in parallel to not in-

crease too much the overhead of the normal computing, even

for Fib With Sleep that had some extra mutations the results

showed that the increase of each variable to be tracked

doesn’t add too much overhead to the running code.

5.4. Network

To evaluate the network behavior, we configured the sys-

tem to have 2,3 and 4 SNs. Then we started 10 nodes, during

the start it would already select the leader and the SNs, but

we want to evaluate the system on running and not on start.

After havin

g the 10 nodes we created one more to evaluate the new

entry of a node, we crashed an SN to evaluate the reaction of

the network to choose a new SN and finally, we crashed the

leader to evaluate the reaction of the SNs to the election of a

new leader.

Figure 4 - Network running behavior evaluation in ms

Fig. 4 shows the results for 2, 4, and 4 SNs to the proposed

tests. We can see that increasing the number of SNs increases

the time to choose an SN and the reaction to the new node.

This is expected and should be a concern to limit the number

of SNs because to add a new node or choose a new SN the

leader needs the feedback of every other SN, having more

SNs can increase this time, even if the call is made in parallel

(they already are). For the leader election time, it will also

increase but less than the others because the others will need

all SNs feedback to choose the SN to control the new node or

the node to be promoted to SN and the leader election will

only need the majority feedback of the SNs to elect a new

leader.

6. Conclusion

0 5 10 15

Reaction time for node…

Time to choose a super…

Time to elect a leader

P2P Network Behaviour

4 Super Nodes 3 Super Nodes 2 Super Nodes

9

VC makes it possible to have idle resources being used to

help the ones who need them. RemotIST is a VC system ap-

plied to the R community to support their big computations.

Like other available systems, RemotIST has some problems

related to the loss of computation, resource usage and provid-

ing more information to the clients using it. It was possible to

see how other platforms use some methodologies to make

partial results using a parallel process to deal with it, to select

storage hosts to make checkpoint and how to make it possible

in a way that making a checkpoint doesn’t have big overhead

and at the evolution of the PC. With these new functionalities

based on the needs of RemotIST and the available solutions

that we studied.

During the analysis of the previous implementation of the

system, it was found that the system was not ready to proceed

with checkpoint and PC because there was no notion of a net-

work. We decided to change our objectives to create the mar-

ket, to make the client and volunteer real and to create a net-

work that is scalable and fault-tolerant. The checkpoint im-

plementation was started but unfortunately not finished due

to the amount of work although the system is now ready to

have a checkpoint and is super configurable.

The implemented Marked showed good results for scala-

bility and fault tolerance, it was possible to see that having

some job logic separated and creating a new independent pro-

cess called the worker to handle jobs made It possible. With

workers now, jobs will not be lost and even if a worker

crashes you have more workers to handle the jobs and keep

the market running. The market also showed up that it can

handle a considerate number of requests without failing. One

of the important features that also showed good results were

the partial results, using a parallel process to handle it showed

us that it doesn’t have much overhead to the system making

it doable. The network also showed fault-tolerant, it can han-

dle node leaves, the node enters and crashes keeping the con-

sensus of the network.

Overall, the system showed some signs that it is on a good

path to make it possible to be used one day as an R package

by everyone using R to use a cycle-sharing P2P network.

Since we were not able to keep the established objectives

during the first phase of the project it is necessary to give a

future to all the effort made to build the system. For future

work we a few major topics.

Credits Management System: Create the logic for the cred-

its and metrics such as when the client stops the computation

or when it runs in parallel or uses other volunteers to store

checkpoints.

Finish Checkpoint Implementation: We were not able to

finish the checkpoint implementation, but we did however

good research about how to do it in R. We were able to split

the computations and choose if we want to run the next com-

putation or if we want to run a checkpoint. We have a system

that stores the environment with the current variables of it.

With the information of the last computation and the last en-

vironment snapshot, it is possible to load the environment to

another volunteer and proceed with the computation where it

had stopped. Furthermore, it is also possible to use the net-

work to spread the checkpoints among a group of closer

nodes.

Use network groups to run parallel jobs: The network is

now ready to create a group of closer nodes and the commu-

nication with R and Java is already provided. For the future,

it is a good idea to start analyzing the code before each com-

putation to understand if we can run some jobs in parallel and

more than one volunteer and to spread huge data to make huge

computations possible following a map-reduce approach.

Prediction of P2P nodes:The P2P network is volatile and

one good strategy is to detect some peer’s patterns to under-

stand if the following volunteer will disconnect during the

computation or if it will not have the necessary resources for

it. We already store peer’s information in a time series table

to allow future work to create a prediction model system for

peers.

7. References

1. Eric Korpela, Dan Werthimer, David Anderson, Jeff Cobb, and

Matt Lebofsky (2001) SETI@HOME—MASSIVELY DIS-

TRIBUTED COMPUTING FOR SETI

2. D.Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D.

Werthimer. SETI@home: An experiment in public-resource

computing. Communications of the ACM, 45:56–61, 2002.

3. Folding@Home Distributed Computing, http://folding.stan-

ford.edu/

4. D. P. Anderson. BOINC: A System for Public-Resource Com-

puting and Storage. In 5th IEEE/ACM International Workshop

on Grid Computing, pages

5. Francisco Banha (2017) Secure Remote Execution for the R Pro-

gramming Environment

6. Ricardo Wagenmaker (2017) Computational Cost Estimation

using Volunteer Computing in R

7. Ricardo Maia (2018) Mercado de computação voluntária para R

8. What is R? https://www.r-project.org/about.html

9. Ali Shoker (2017) Sustainable Blockchain through Proof ofeX-

ercise

10. D. Thain, T. Tannenbaum, and M. Livny. Distributed computing

in practice: The condor experience. Concurrency - Practice and

Experience, 17(2-4):323–356, 2004.

11. W. Gentzsh. Sun Grid Engine: towards creating a compute

power grid. In Int. Symposium on Cluster Computing and the

Grid, pages 35–39, 2001.

12. The Impressive Growth of R https://stackover-

flow.blog/2017/10/10/impressive-growth-r/

13. How Big Companies Are Using R for Data Analysis

https://www.northeastern.edu/levelblog/2017/05/31/big-com-

panies-using-r-data-analysis/

14. Understanding How R is Used in Data Science

https://www.datasciencegraduateprograms.com/data-science-

with-r/

15. Ali Raza Butt, Xing Fang, Y. Charlie Hu, and Samuel Midkiff

(2014) Java Peer-to-Peer, and Accountability: Building Blocks

for Distributed Cycle Sharin

16. M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exploiting

network proximity in peerto-peer overlay networks. Technical

report, Technical report MSR-TR-2002-82, 2002, 2002. h

http://research.microsoft.com/˜antr/PAST/ localtion.ps i (17 Oct

2003).

17. Gottlieb, Allan; Almasi, George S. (1989). Highly parallel com-

puting. Redwood City, Calif.: Benjamin/Cummings. ISBN 0-

8053-0177-1.

10

18. William Gropp, Ewing Lusk, and Anthony Skjellum. Using

MPI: Portable Parallel Programming with the Message-Passing

Interface. MIT Press, Cambridge, MA, 1999.

19. R. Wolski, N. Spring, and J. Hayes. The network weather ser-

vice: A distributed resource performance forecasting service for

metacomputing. 1999.

20. Cohen, Jacob Willem, and Anthony Browne. The single server

queue. Vol. 8. Amsterdam: North-Holland, 1982.

21. Masse, Mark. REST API Design Rulebook: Designing Con-

sistent RESTful Web Service Interfaces. " O'Reilly Media, Inc.",

2011.

22. Tilkov, Stefan, and Steve Vinoski. "Node. js: Using JavaScript

to build high-performance network programs." IEEE Internet

Computing 14.6 (2010): 80-83.

23. Videla, Alvaro, and Jason JW Williams. RabbitMQ in action:

distributed messaging for everyone. Manning, 2012.

24. Momjian, Bruce. PostgreSQL: introduction and concepts. Vol.

192. New York: Addison-Wesley, 2001.

25. Stefancova, Elena. Evaluation of the TimescaleDB PostgreSQL

Time Series extension. No. CERN-STUDENTS-Note-2018-137.

2018.

26. Urbanek, Simon. "rJava: Low-level R to Java interface." (2013).

27. Naik, Nitin. "Choice of effective messaging protocols for IoT

systems: MQTT, CoAP, AMQP and HTTP." 2017 IEEE inter-

national systems engineering symposium (ISSE). IEEE, 2017.

28. Guo, Gongde, et al. "KNN model-based approach in classifica-

tion." OTM Confederated International Conferences" On the

Move to Meaningful Internet Systems". Springer, Berlin, Heidel-

berg, 2003.

29. Urbanek, Simon. "Rserve--a fast way to provide R functionality

to applications." PROC. OF THE 3RD INTERNATIONAL

WORKSHOP ON DISTRIBUTED STATISTICAL COMPUTING

(DSC 2003), ISSN 1609-395X, EDS.: KURT HORNIK, FRIE-

DRICH LEISCH & ACHIM ZEILEIS, 2003 (HTTP://ROSUDA.

ORG/RSERVE. 2003.

30. Ancona, Davide, et al. "RPython: a step towards reconciling dy-

namically and statically typed OO languages." Proceedings of

the 2007 symposium on Dynamic languages. 2007.

31. Ren, Wei, and Randal W. Beard. Distributed consensus in multi-

vehicle cooperative control. Vol. 27. No. 2. London: Springer

London, 2008.

32. Ongaro, Diego, and John Ousterhout. "In search of an under-

standable consensus algorithm." 2014 {USENIX} Annual Tech-

nical Conference ({USENIX}{ATC} 14). 2014.

33. Lamport, Leslie. "Paxos made simple." ACM Sigact News 32.4

(2001): 18-25.

34. Lamport, Leslie. "Fast paxos." Distributed Computing 19.2

(2006): 79-103.

35. Chandra, Tushar D., Robert Griesemer, and Joshua Redstone.

"Paxos made live: an engineering perspective." Proceedings of

the twenty-sixth annual ACM symposium on Principles of dis-

tributed computing. 2007.

36. Ongaro, Diego, and John Ousterhout. "In search of an under-

standable consensus algorithm." 2014 {USENIX} Annual Tech-

nical Conference ({USENIX}{ATC} 14). 2014.

37. Howard, Heidi, and Richard Mortier. "Paxos vs Raft: Have we

reached consensus on distributed consensus?." Proceedings of

the 7th Workshop on Principles and Practice of Consistency for

Distributed Data. 2020.

38. Rai, Rohit. Socket. IO Real-time Web Application Development.

Packt Publishing Ltd, 2013.

39. Pitt, Esmond, and Kathy McNiff. Java. rmi: The remote method

invocation guide. Addison-Wesley Longman Publishing Co.,

Inc., 2001.

