
Stochastic Multi-objective Combinatorial Optimization
Algorithms

Miguel António dos Santos Machado Tavares
Instituto Superior Técnico, Universidade de Lisboa, Portugal

ABSTRACT
Multi-Objective Combinatorial Optimization (MOCO) has
several real-world applications such as Virtual Machine Con-
solidation, Configuration of Software Product Lines, among
others. Recently, new approaches for MOCO have been pro-
posed based on iteratively solving Propositional Logic formu-
lations. Moreover, this approach has been shown to effectively
solve more constrained problem instances. On the other hand,
stochastic approaches are usually better on less constrained
instances.

In this work, we present Neon, a generic stochastic approach
for solving MOCO problem instances formulated as Multi-
Objective Boolean formulas. Moreover, Neon incorporates
Logic-based techniques that would allow a faster convergence
of the stochastic algorithm.

INTRODUCTION

Motivation
With single-objective problems, the goal is to find the optimal
assignment that minimizes the cost function, that in this case,
is a single point. With multi-objective problems, there are vari-
ous cost functions that we want to minimize, so the number of
optimal assignments can grow exponentially. There are many
real-world problems that can be translated into multi-objective
problems [3, 10, 4]. At the moment there are tools to find
approximations of the set of optimal assignments, however,
these tools are all focused on the specific real-world problems
and to our knowledge, there is no tool to solve generic multi-
objective problems. Our objective is to create a robust tool
that can solve generic multi-objective problems.

There are many algorithms that have the purpose of solving
multi-objective problems. These algorithms have been stud-
ied for many years, and are divided into two main categories:
stochastic and constraint-based algorithms. Stochastic algo-
rithms are good to find a good approximation of the set of
optimal assignments when the problems are not highly con-
strained. Constraint-based algorithms can find the exact set
with the best solutions, however, it is very time consuming.

Recently, hybrid algorithms have been gaining interest, us-
ing techniques from both stochastic and constraint-based al-
gorithms. These algorithms can produce better results than
stochastic or constraint-based algorithms on real-world prob-
lems. For this reason, our tool will use a hybrid algorithm.

Contributions
In this work, we introduce Neon, a tool used to solve generic
Multi-Objective Combinatorial Optimization instances. Neon
is built on top of sat4j-moco, a tool that uses a constraint
based algorithm to find feasible assignments on generic Multi-
Objective Combinatorial Optimization instances. The main
contributions of this thesis are as follows:

• We start by extending sat4j-moco, by adding the stochastic
algorithms NSGA-II and MOEA/D.

• We implement two smart operators, operators that use con-
straints based techniques, and apply them to NSGA-II and
MOEA/D, thus creating hybrid algorithms.

• We create the structure improvements technique, which
exploits exactly-1 and at-most-1 constraints, forcing them
to always be satisfied by the stochastic approach of the
algorithms.

• We perform an analysis on different types of real-world
problems formulated as generic Multi-Objective Combi-
natorial Optimization instances, in order to evaluate the
proposed algorithms.

Organization of the Document
This document is structured as follows. First, some general
concepts are presented in Section 2. Next, algorithms used to
solve Multi-Objective Combinatorial Optimization problems
are presented in Section 3. In Section 4 we propose a hybrid
algorithm to solve generic MOCO instances. The evaluation
of the results is present in Section 5. Finally, we conclude this
work in Section 6.

PRELIMINARIES
In this section, we will start by defining several terms and
notations that will be used in the rest of the document.

Multi-Objective Combinatorial Optimization
Let X = {x1, . . . ,xn} be a set of n Boolean variables. Given
a set of p literals l1, . . . , lp, their corresponding weights
w1, . . . ,wp and a positive integer k ∈ N we have that a Pseudo-
Boolean (PB) constraint c has the form:

∑wi · li ./ k, ./∈ {≤,=,≥} (1)

Let f (X) be a PB expression known as cost function that has
the form:

1

Table 1: Satisfiable assignments and their costs for the instance
in Example 1

x1 x2 x3 f1 f2
1 1 1 3 3
0 1 1 1 3
1 0 1 2 2
1 1 0 3 1

∑wi · li (2)

For an assignment α : X −→ {0,1}, α(c) = 1 denotes a con-
straint c is satisfied by α and f (α) denotes the value of f (X)
for the assignment α .

Now let F = {c1, . . . ,cm} a set of m PB constraints and
O = { f1, . . . , fk} a set of k PB cost functions that we want
to minimize. A Multi-Objective Combinatorial Optimization
(MOCO) problem is defined as M = (F,O).

Let M = (F,O) be a MOCO instance and α,α ′ : X −→ {0,1}
be two distinct models of F . For an assignment α , O(α)
denotes the values of the cost functions in O for the assign-
ment α . We say that α dominates α ′, denoted by α ≺ α ′,
if ∀ f∈O f (α) ≤ f (α ′) and ∃ f∈O f (α) < f (α ′). We can now
define a Pareto-optimal solution as an assignment α such that
α(F) = 1 and there is no other complete assignment α ′ such
that α ′(F) = 1 and α ′ ≺ α . In this document, we will denote
a Pareto-optimal solution by α̃ . The set of all Pareto-optimal
solutions of a MOCO problem is called Pareto-front and it will
be represented by Ã. Given a MOCO instance, the goal is to
find its Pareto-front. However, since enumerating the complete
Pareto-front cannot be done within a reasonable amount of
time for most real-world cases, typically we are interested in
finding just a good approximation.

EXAMPLE 1. Let M = (F,O) be a MOCO instance where
F = {(x1 + x2 + x3 ≥ 2)} is the set of PB constraints and
O = { f1, f2} the set of cost functions that we want to minimize,
where f1 = (2x1 + x2) and f2 = (x2 +2x3). Table 1 shows all
the satisfying assignments and the Pareto-optimal assignments
are highlighted in bold. Note that three out of the four satisfi-
able assignments are Pareto-optimal. The first solution α1 =
((x1,1),(x2,1),(x3,1)) is not considered a Pareto-optimal so-
lution because at least one other solution dominates this one,
whereas the other solutions are non-dominated. So in this case,
Ã = {α̃2, α̃3, α̃4}, where α̃2 = {(x1,0),(x2,1),(x3,1)}, α̃3 =
{(x1,1),(x2,0),(x3,1)} and α̃4 = {(x1,1),(x2,1),(x3,0)}. In
fact, we can see that α1 is dominated for example by α̃2 since
O(α1) = (3,3) and O(α̃2) = (1,3).

Performance Metrics
Finding which solution gives the best performance in a single-
objective problem is simple: the solution with the smallest
cost is the best one. However, in the multi-objective case,
it is harder to find the Pareto-front within a time limit, and
sometimes the algorithms can only produce an approximation
of the Pareto-front. Let A1 and A2 be two approximations
produced by different algorithms for the same MOCO instance.

A1 is said to dominate A2 if all solutions in A2 are dominated by
some solution in A1. However, usually, this does not happen.
Most likely, both sets contain solutions that are not dominated
by some solution in the other set. For this reason, several
metrics have been proposed to compare the performance of
multi-objective algorithms. There are three types of metrics:

1. Convergence-based metrics: measure how close the approx-
imation is to the Pareto-front.

2. Diversity-based metrics: measure how well distributed the
approximation is.

3. Combined metrics: provide a combined measure of conver-
gence and diversity in a single value.

Let M = (F,O) be a MOCO instance where A is a Pareto-front
approximation. We define the set O(A) as a set of points,
where each point i is defined by the values that αi ∈ A takes
for each cost function f ∈ O. AR is a reference set used to
calculate the Inverted Generational Distance metric of a set A
and ideally it should be the Pareto front if it is known.

The Inverted Generational Distance (IGD) [1] is a combined
metric that measures the average distance from the cost vectors
in a reference front O(AR) to the closest cost vectors in O(A).
The IGD value of a set A can be obtained using the following
equation:

IGD(A) =
n
√

∑α∈AR minα ′∈A{
√

∑
n
i=1(fi(α)− fi(α ′))2}

|AR|
(3)

The hypervolume [12] is a combined metric that measures the
volume of the cost space dominated by a set of solutions A
up to a given reference point Z = (z1, . . . ,zk). This reference
point should be the worst possible cost vector. It can be ap-
proximated by setting each zi to the highest possible value
of fi. Let Cα be the hypercube with corners α ∈ A and Z.
The hypervolume value can be obtained using the following
equation:

HV (A) = Volume(
⋃

α∈A

Cα) (4)

RELATED WORK
In this section, various algorithms to solve MOCO instances
are presented. First, stochastic algorithms are presented in
section 3.1. Next, constraint based algorithms are presented in
section 3.2.

3.1 Stochastic Algorithms
Multi-Objective Evolutionary Algorithms (MOEAs) start by
generating a random population of assignments/solutions A,
referred to as individuals. In each iteration, referred to as a
generation, an offspring population B of size |A| is created by
applying mutation and crossover to the individuals of A. The
standard mutation operator iterates over the variables of the in-
dividuals and flips them with a given probability. The standard
crossover operator combines two individuals, by randomly

2

Algorithm 1: NSGA-II
Input: (F,O, stoppingcriteria, N)
Output: A

1 A← RandomPopulation(F,O,N)
2 while ¬stoppingcriteria do
3 A′← OffspringPopulation(A)
4 R← A∪A′
5 FN1, . . . ,FNp← FastNondominatedSort(R)
6 A← /0
7 i← 1
8 while |A|+ |FNi| ≤ N do
9 A← A∪FNi

10 i← i+1

11 FNi← SortByCrowdingDistance(FNi)
12 A← A∪FNi[1 : (N−|A|)]
13 return A

replacing the assignment of a variable from one individual
with the assignment from the other individual, creating two
new individuals. Then, |A| individuals among these two pop-
ulations are selected to be in a new population for the next
generation. This last step is where most MOEAs differ.

3.1.1 NSGA-II Algorithm
The NSGA-II algorithm [2] is an MOEA that distinguishes
itself by using nondominated sorting to rank the individuals,
using that rank to select the individuals that will be used on the
next iteration of the algorithm. The pseudo-code for NSGA-
II is presented in Algorithm 1. First we create a random
population A with size N (line 1). Then, the main cycle begins.
An offspring population A′ is created using crossover and
mutation operators (line 3). R is created from the union of A
and A′ (line 4), having size 2N. Next, we sort the individuals
from R into p sets FN1, . . . ,FNp using a nondominated sorting
approach (line 5). Each individual in FNi is dominated by at
least one individual from the previous set FNi−1 and cannot
be dominated by any of the individuals from its set FNi to
FNp. Then A is emptied (line 6). Next, while the size of A
does not exceed N, we keep adding the elements of the FNi
sets to A in order (lines 8 - 10). If |A|< N and |A|+ |FNi|> N,
then only some individuals from FNi must be added to A.
Since not all of the individuals can be added, we use the
crowding distances, to measure how far each individual is from
its neighbors. To promote diversity between the individuals,
the ones with higher crowding distances have higher priority.
Given this, each individual in FNi is assigned the value of its
crowding distance and then FNi is sorted according to these
(line 11). The first N−|A| individuals of the sorted FNi are
added to A (line 12). This continues until the stopping criteria
(line 2) is triggered. This condition is usually a time limit or a
maximum number of iterations for the algorithm.

3.1.2 MOEA/D Algorithm
MOEA/D [11] decomposes the MOCO instance into N single-
objective optimization sub-problems and solves them by evolv-
ing a population of solutions. In each generation, the popu-
lation is composed of the best solutions found for each sub-
problem. There are several scalarizations that could be used
in this algorithm to decompose the multi-objective problem.
In this work, we consider the Tchebycheff approach.

Algorithm 2: MOEA/D Algorithm
Input: (F,O, stoppingcriteria, N, T)
Output: P

1 P← /0
2 {α1, . . . ,αN}← RandomPopulation(F,O,N)
3 z← ReferencePoint(F,O)

4 {λ 1, . . . ,λ N}← WeightVectors(F,O,N)
5 for i = 1 to N do
6 Bi← ComputeNeighbours(λ i,{λ 1, . . . ,λ N}\λ i,T)

7 while ¬stoppingcriteria do
8 for i = 1 to N do
9 l,m← RandomIndex(Bi)

10 α ← Reproduction(αl ,αm)
11 α ← Improvement(α)
12 for j = 1 to k do
13 if f j(α)< z j then
14 z j ← f j(α)

15 foreach j ∈ Bi do
16 if g(α|λ j,z)≤ g(α j|λ j,z) then
17 α j ← α

18 P← UpdateNonDominated(P∪{α})

19 return P

Let λ = (λ1, . . . ,λk)
T be a weight vector, i.e., ∀i ∈

[1, . . . ,k],λi ≥ 0 and ∑
k
i=1 λi = 1. Let M = (F,O) be a MOCO

instance and z∗ = (z∗1, . . . ,z
∗
k)

T be the reference point, where
∀i ∈ [1, . . . ,k],z∗i = min{ fi(α)|α(F) = 1}. The respective
Tchebycheff scalarization for M has the form:

minimize g(α|λ ,z∗) = max1≤i≤N{λi · | fi(α)− z∗i |}
subject to α(F) = 1

(5)

For each Pareto optimal point x∗ there exists a weight vector λ

such that x∗ is the optimal solution of (5). So it is possible to
find different Pareto optimal solutions by altering the weight
vector.

The pseudo-code for MOEA/D is shown in Algorithm
2. It starts by creating an initial random population A =
(α1, . . . ,αN) (line 2), an initial reference point z = (z1, . . . ,zk)
that will be used in the Tchebycheff approach (line 3) and
N well distributed weight vectors (line 4). Then it computes
the Euclidean distances between each weight vector λ i with
every other λ j where j ∈ {1, . . . ,N}\{i}, saving the index j
of the T closest weight vectors to λ i in Bi (line 6). Next, two
random indexes l and m are chosen from each set Bi (line 9).
The members of the population with the indexes l and m then
go through mutation and crossover operators in order to get a
new individual α (line 10). α then goes through an optional
improvement operator, that must be provided by the user (line
11). Next, if the value of f j(α) is smaller than z j, z j is updated
to f j(α) (lines 12 - 14). After that, the neighboring solutions
of αi that are worse than α , according to the Tchebycheff ap-
proach, get replaced by α in the respective sub-problem (lines
15 - 17). Finally, the approximation P is updated, by removing
all individuals in P that are dominated by α and adding α if it
is not dominated by any of the individuals in P (line 18).

3

3.2 Constraint Based Algorithms
Constraint based algorithms rely on a constraint solving oracle,
in order to find assignments that are guaranteed to satisfy all
the constraints, and then blocking the assignments found, so
that new solutions can be found.

3.2.1 MCS Enumeration Algorithm
Let FH = {c1, . . . ,cm} be a set of hard PB constraints and OS =
{FS1 , . . . ,FSk} be a set of soft weighted PB constraint sets. A
Multi-Objective Weighted Boolean Optimization (MOWBO)
instance is defined asW= (FH ,OS). As in a MOCO problem,
the goal is to find its set of Pareto-optimal solutions.

Let W = (FH ,OS) be a MOWBO instance and C =
(C1, . . . ,Ck) be a tuple of sets such that Ci ⊆ FSi , 1 ≤ i ≤ k.
C is a Multi-MCS of W if and only if FH ∪

⋃k
i=1(FSi \Ci) is

satisfiable and FH ∪
⋃k

i=1(FSi \Ci)∪{c} is unsatisfiable for all
c ∈

⋃k
i=1 Ci.

Let C = (C1, . . . ,Ck) and C′ = (C′1, . . . ,C
′
k) be two Multi-

MCSs W. C dominates C′ (C ≺ C′) if and only if
∀1≤i≤k ∑(c,ω)∈Ci ω ≤ ∑(c′,ω ′)∈C′i

ω ′ and ∃1≤i≤k ∑(c,ω)∈Ci ω <

∑(c′,ω ′)∈C′i
ω ′. If no other Multi-MCS C′ exists such that

C′ ≺ C, then C is a Pareto-MCS.

It is possible to reduce a MOCO instance M = (F,O) to a
MOWBO instance W = (FH ,OS). We set FH = F and for
each fi ∈ O, where fi = ω1 · l1 + . . .+ωo · lo, we add a set of
soft constraints FSi = {(¬l1,ω1), . . . ,(¬lo,ωo)} to OS.

EXAMPLE 2. Consider a MOCO instance that is con-
stituted by a set of constraints F = {(x1 + x2 ≥ 1),(2x1 +
x2 − x3 ≤ 1)} and a set of cost functions O = {(5x1 −
2x2),(x2 +¬x3)}. An equivalent MOWBO instance would
have FH = {(x1 + x2 ≥ 1),(2x1 + x2 − x3 ≤ 1)} and OS =
{{(¬x1,5),(¬x2,−2)},{(¬x2,1),(x3,1)}}.
To identify all the Pareto-optimal solutions of a MOCO prob-
lem we just need to find all the MCSs of the MOWBO problem,
since there exists an equivalence between Pareto-MCSs and
Pareto-optimal solutions [7].

Let W = (FH ,OS) be a MOWBO instance with OS =
{FS1 , . . . ,FSk}, and C = (C1, . . . ,Ck) be a Multi-MCS of W.
Then, C =

⋃k
i=1 Ci is an MCS of the WBO instance W =

(FH ,
⋃k

i=1 FSi). This implies that Pareto-MCS enumeration of
a MOWBO instance W = (FH ,OS) can be reduced to enu-
merating the MCSs of the WBO instance W = (FH ,∪FS∈OS FS)
[7].

The pseudo-code for the Pareto-MCS enumeration algorithm
[7] can be found in Algorithm 3. The algorithm receives a
MOWBO instance. It starts by combining the soft constraint
sets into a single set (line 1). Then it builds a clone F ′H of
the hard constraints FH (line 2). Then, while F ′H is satisfiable
(line 5). While this is satisfiable, an MCS C is extracted for
the WBO instance (F ′H ,F

′
S) and is stored in U (lines 5 - 9). To

prevent the MCS C from being extracted again in the future, a
blocking constraint is added to F ′H (line 7). In the end of the
loop all the MCSs have been found. All the MCSs are then
converted into their respective Multi-MCSs (line 10). Finally

Algorithm 3: MCS Enumeration Algorithm
Input: FH ,OS
Output: Upareto

1 F ′S←
⋃n

i=1 FSi
2 F ′H ← FH
3 U ← /0
4 α ← PBSolver(F ′H)
5 while α , /0 do
6 C← MCS(F ′H ,F ′S)
7 F ′H ← F ′H ∪{(

∨
(c,ω)∈C c)}

8 U ←U ∪{C}
9 α ← PBSolver(F ′H)

10 Umulti←{(C∩FS1, . . . ,C∩FSn) : C ∈U}
11 Upareto←{C : C ∈Umulti∧@C′∈UmultiC

′ ≺ C}
12 return Upareto

the Pareto-MCSs are filtered by removing the Multi-MCSs in
Umulti that are dominated by other Multi-MCSs (line 11).

Stratification techniques that can be used to help finding lower
cost MCSs faster, can be integrated into the MCS enumeration
algorithm to improve the algorithm’s performance [9]. The
main idea of stratification is to focus on satisfying the literals
with larger coefficients. In the single-objective scenario, this
is done by partitioning FS into k sets A1, . . . ,Ak such that all
literals in Ai have higher coefficients than the ones in Ai+1.
Next, at each iteration 1≤ i≤ k, the MCS algorithm is used
with Ai as the set of soft constraints while additional hard
constraints are considered in order to ensure consistency with
the MCSs computed in previous iterations.

(Pi
1, . . . ,P

i
ki
) = Partition (L¬(FSi))

4. NEON - AN HYBRID MULTI-OBJECTIVE COMBINATO-
RIAL OPTIMIZATION SOFTWARE

Our new MOCO solver is developed on top of sat4j-moco,
a solver for generic MOCO instances that implements the
MCS based algorithm (see section 3.2.1 for details). To ex-
tend sat4j-moco, we developed a generic hybrid algorithm
that combines stochastic search and constraint solving, in an
attempt to generalize the algorithm proposed in [8].

In this Section, we present Neon, a Hybrid MOCO solver.
First, we cover the stochastic approach in Section 4.1. Then,
in Section 4.2 we propose to integrate constraint-based tech-
niques with stochastic algorithms for MOCO, thus creating
an hybrid approach. Finally, we propose a technique that
improves the performance of the stochastic algorithm by ex-
ploiting constraints in the MOCO instances in Section 4.3.

4.1 Stochastic Approach
The first objective of this project is to implement a fully func-
tional stochastic algorithm. The stochastic algorithms used in
Neon are the NSGAII and the MOEAD algorithms, introduced
in sections 3.1.1 and 3.1.2, respectively. Both algorithms are
already implemented in the MOEA framework 1.
1http://moeaframework.org/

4

Neon receives as input a file in an extended OPB format 2 that
supports multiple objective functions. No additional informa-
tion is provided about the problem to be solved since Neon
was created to solve generic MOCO problems.

The stochastic algorithms both use the same operators, offered
by the MOEA framework. For the initialization of the initial
population, a random operator which initializes all variables
uniformly at random is used. Next, mutation and crossover
operators are used to evolve the population. For the mutation,
the user can choose between two operators. As the default
mutation operator, we implement the single point mutation
operator (SPM). This operator mutates an individual with a
probability of p. If it chooses to mutate the individual, it
then selects one of its Boolean variable assignments, and with
uniform probability, it changes it’s value. The second muta-
tion operator is the uniform mutation operator (UM) already
implemented in the MOEA framework. The UM operator
chooses for every variable if it is going to be mutated, while
the SPM operator chooses for every individual if a random
variable is mutated. This means that UM makes bigger muta-
tions but takes longer to do so, when compared to SPM. For
the crossover operator, we use the uniform crossover (UX), an
operator that changes two individuals by iterating over all the
variables and, with some probability, it exchanges the value
of the variable i from one individual with the same variable i
from the other individual, thus creating two new individuals
in the end.

EXAMPLE 3. Consider the set of variables
X = {x1,x2,x3}. Let α1 = {(x1,0),(x2,0),(x3,0)} be
an assignment over the set X. Now imagine that we apply
the SPM operator over this assignment, a new possible
assignment, where the value in bold would be the value that
the operator evolved, is α1′ = {(x1,0),(x2,1),(x3,0)}.

EXAMPLE 4. Consider the set of variables
X = {x1,x2,x3}. Let α1 = {(x1,0),(x2,0),(x3,0)} be
an assignment over the set X. If we apply the UM operator
over this assignment, a new possible assignment can be
α1′ = {(x1,1),(x2,1),(x3,0)}, where both x1 and x2 are
mutated.

EXAMPLE 5. Consider the set of variables X =
{x1,x2,x3,x4,x5}. Let α1 = {(x1,0),(x2,0),(x3,0),(x4,0),
(x5,0)} and α2 = {(x1,1),(x2,1),(x3,1),(x4,1),(x5,1)} be
two assignments over the set X. After applying the UX opera-
tor over these two individuals, we could get as new possible
assignments α1′ = {(x1,0),(x2,1),(x3,0),(x4,0),(x5,1)}
and α2′ = {(x1,1),(x2,0),(x3,1),(x4,1),(x5,0)}, where the
assignments of the variables x2 and x5 swapped from one
individual to the other.

A feature added, which is enabled by default, is the unit prop-
agation (UP), a standard feature in SAT and pseudo-Boolean
solvers usually used to simplify a set of propositional clauses.
The procedure is based on solving clauses that have a single
literal l and since all clauses must be satisfied then we know
the literal has to be true. All the other clauses that contain the
literal l are removed since they are satisfied and the literal ¬l

2http://www.cril.univ-artois.fr/PB16/format.pdf

is removed from all clauses remaining, leaving a simplified
set of clauses equivalent to the initial. In the pseudo-Boolean
case the idea is to find constraints that have a unique assign-
ment to it’s variables in order to become satisfiable and force
those variables to keep the assignment found. All the other
constraints that contain any of the forced variables can be
simplified, by replacing the variable with the value assigned
previously. All the deduced variables keep their values during
the run of the stochastic algorithm, so therefore there is no
need to encode these variables into the individual.

EXAMPLE 6. Let F be a set of four constraints where F =
{(x1 >= 1),(−x2 − x3 >= 0),(x4 + x5 >= 1),(x2 + x6 >=
1)}. By applying UP to this set of constraints we can infer,
from the first constraint, that x1 = 1 in all feasible assignments
and that x2 = 0,x3 = 0 from the second constraint, since if x2
or x3 are set to 1 the constraint is violated. From the third
and forth constraints, we cannot infer anything, since these
constraints are satisfied if at least one of the variables is set
to 1. However, we now know that x2 = 0, which means that
the forth constraint can now be reduced to (x6 >= 1). We
can now infer that x6 = 1, just as it happened with the first
constraint. Therefore, after applying the UP we find that a fea-
sible assignment to this problem must have the partial assign-
ment α = {(x1,1),(x2,0),(x3,0),(x4,_),(x5,_),(x6,1)} and
all constraints but the third one can be removed, since they
are always satisfied by the partial assignment α .

4.2 Hybrid Approach
In this section, we explore the smart operators added to the
stochastic algorithms, to create a hybrid algorithm. Studies
show that stochastic algorithms fail to provide valid solutions
for big and tightly constrained instances in reasonable time
[6, 5, 8]. Hence, Neon integrates smart operators that use con-
straint solvers in order to find feasible individuals. Neon uses
two smart operators, the first is the smart mutation operator,
which produces a feasible individual by fixing an unfeasible
one. The other one is the smart improvement operator, which
produces an improved version of an already feasible individ-
ual.

Before applying any of the operators, Neon selects an individ-
ual within the given population. After selecting an individual,
it finds the set of literals that belong to constraints violated
by the assignment. If the set is empty then the individual is
feasible and smart improvement is applied, otherwise smart
mutation is applied.

4.2.1 Smart Mutation
The pseudo-code for smart mutation is presented in Algorithm
4. Smart mutation receives the individual to be fixed, a set
of violating variables V , which is the set of literals belong-
ing to constraints violated by the assignment and the set of
constraints F . Smart mutation starts by creating a set of as-
sumptions (line 1), which is a partial assignment that the PB
solver tries to satisfy along with the problem’s constraints.
The set of assumptions is constituted by all literals except the
ones from the set V .

EXAMPLE 7. Let F be a set of three constraints defined
by F = {(x1 + x2 ≥ 1),(x2 + x3 + x4 ≥ 2),(x5 ≥ 1)} and let

5

Algorithm 4: Smart mutation algorithm
Input: OriginalIndividual , V , F
Output: FixedIndividual

1 A←∪x∈OriginalIndividual,x<V{(x)}
2 IsSat← Solve(F,A)
3 while ¬IsSat & A , /0 do
4 C← GetUnsatCore()
5 A← A\ (A∩C)
6 IsSat← Solve(F,A)
7 if ¬IsSat then
8 SetParetoTerminationCondition()
9 return OriginalIndividual

10 FixedIndividual← GetModel()
11 AddBlockClause(∑x∈FixedIndividual{(¬x)} ≥ 1)
12 return FixedIndividual

α = {(x1,0),(x2,1),(x3,0),(x4,0),(x5,1)} be an assignment
for F. The set of assumptions would be {(x1,0),(x5,1)}, since
the second constraint is violated by the assignment and x2,
x3 and x4 appear in that constraint, therefore the respective
literals are not include in the assumptions.

Afterwards, a SAT solver tries to find a new model for the
problem that satisfies both the problem’s constraints and the
assumptions (line 2). If an assignment is not found, the opera-
tor tries to find where the conflict is, by getting an unsat core
(line 4), which is a subset of assumption literals that make
the formula unsatisfiable, then remove those literals from the
assumptions (line 5) and call the solver again (line 6). This pro-
cess is repeated until the formula becomes satisfiable, the set
of assumptions becomes empty or a conflict budget is reached.
The conflict budget is used to ensure that the algorithm does
not get stuck in smart mutation, finishing unsuccessfully. If the
solver proves unsatisfiability when the set of assumptions is
empty (line 7), then a termination condition for the stochastic
algorithm is activated (line 8). In both cases smart mutation
returns the individual that was to be mutated (line 9), since
no new individual was found. The termination condition ex-
ists due to the fact that every time a model is found (line
10), a blocking constraint is added to the formula (line 11)
to guarantee that the same model is not found again by the
SAT solver, promoting diversity in the population. Therefore,
if the solver cannot find more models, it means that all the
existing models have been found and blocked and any further
search is unnecessary because the Pareto front was found. The
pseudo-Boolean blocking constraint is constituted by the sum
of the negation of the literals found in the assignment being
greater or equal than 1, forcing future assignments to have
at least one literal different from the assignments previously
found.

EXAMPLE 8. Let α = {(x1,0),(x2,1),(x3,1),(x4,0)} be a
model returned by the SAT solver. The blocking constraint for
α is x1 +¬x2 +¬x3 + x4 ≥ 1.

If this point is reached, then this run of smart mutation is
considered to be successful and the new individual is returned
(line 12).

Algorithm 5: Smart improvement algorithm
Input: OriginalIndividual,F,O
Output: ImprovedIndividual

1 A←
GetImprovementAssumptions(∪x∈OriginalIndividual{(x)})

2 MCSOracle(F ∪A,O)
3 ImprovedIndividual← GetModel()
4 if ImprovedIndividual = /0 then
5 IsUnsat← Solve(A)
6 if IsUnsat then
7 SetParetoTerminationCondition()

8 return OriginalIndividual
9 MCS← GetMCS()

10 AddBlockClause(∪x∈MCS{(x)})
11 return ImprovedIndividual

4.2.2 Smart improvement
The pseudo-code for smart improvement is presented in Al-
gorithm 5. Smart improvement also receives the original in-
dividual. It starts by creating a set of assumptions (line 1),
however, since this operator is applied to feasible individuals,
there are no violated constraints. Therefore, to get the set of
assumptions, the smart improvement operator starts by iterat-
ing over each equals-1 and at-most-1 constraints, which is the
type of constraints that we know how to exploit in the structure
improvements technique, and with some probability, referred
to as relaxation rate, it chooses to either add all the literals
belonging to each constraint to the assumptions or adds none
of them. For the literals that do not belong to any of these
constraints, the same is done but to each literal individually.

EXAMPLE 9. Let F be a set of three constraints defined
by F = {(x1 + x2 ≤ 1),(x3 + x4 = 2),(x5 + x6 ≥ 1)} and let
α = {(x1,0),(x2,1),(x3,1),(x4,1),(x5,1),(x6,0)} be an as-
signment for F. The first two constraints are of the type at-
most-1 and exactly-1, respectively, therefore, for each one
of these constraints, we choose with random probability to
either add all literals in the constraint to the assumption set,
otherwise no literals are added . Since the literals x5 and
x6 do not belong to an at-most-1 or exactly-1 constraint, we
randomly choose to add them individually. A possible set of
assumptions would be {(x1,0),(x2,1),(x6,0)}, if the operator
chooses to add the literals from the the first constraint as well
as x6. The set of assumptions {(x1,0),(x5,1)} is impossible to
be obtained, because to add x1 we also need to add x2 to the
assumptions.

Next, an MCS oracle is then called in order to find an MCS
(line 2), using the state-of-art CLD algorithm with stratification
[9]. In case the CLD algorithm finds an MCS, a model is then
extracted, otherwise, the model is empty (line 3).

If no model is found, then a PB solver is called (line 5) to
find if the formula is still satisfiable. If that is not the case, a
termination condition for the stochastic algorithm is activated
(line 7). The original individual is then returned (line 8).

6

If there is a model, the smart improvement operator gets the
MCS found and adds it as a blocking clause to the formula so
that CLD only finds each MCS once (lines 9 - 10) . The new
individual is then returned and smart improvement is said to
be successful (line 11).

EXAMPLE 10. Let M = (F,O) be a MOCO problem with
F = {(x1 + x2 ≥ 1),(2x1 + x2 + x3 ≤ 2),(x4 + x5 = 1)}
is a set of constraints and O = {(3x1 + x2 + ¬x3),(x4 +
2¬x5)} is a set of cost functions we want to min-
imize. An equivalent MOWBO instance would have
FH = {(x1 + x2 ≥ 1),(2x1 + x2 + x3 ≤ 2),(x4 + x5 = 1)}
and OS = {{(¬x1,3),(¬x2,1),(x3,1)},{(¬x4,1),(x5,2)}}.
Let α = {(x1,1),(x2,0),(x3,0),(x4,1),(x5,0)} be an as-
signment for this problem with O(α) = (4,3), where
smart improvement is going to be applied on. Let a
possible set of assumptions be {(x4,1),(x5,0)}. C =
{{(¬x2,1)},{(¬x4,1),(x5,2)}} be a Multi-MCS found by
smart improvement. This Multi-MCS equals to the assignment
α = {(x1,0),(x2,1),(x3,1),(x4,1),(x5,0)}, where O(α) =
(1,3).

4.3 Structure Improvements
In this section, the structure improvement (SI) technique is
proposed. SI exploits the structure of the problem in order to
improve the performance of the stochastic part of the hybrid al-
gorithm. This is achieved by using integer variables to encode
some constraints, instead of encoding each Boolean variable
into the problem, since some constraints, such as the at-most-1
and exactly-1 constraints, could be satisfied by construction
by using a different encoding. Let (x1 + . . .+ xn = 1) be an
exactly-1 constraint. By encoding these n variables into the
individual, there are many possible assignments that do not
satisfy the constraint, since to satisfy this constraint we need
exactly one variable xi where 1≤ i≤ n to be set to 1 while all
the other variables must be set to 0. A way to do this would be
to encode the constraint as a variable y ∈ {1, . . . ,n} where if y
is set to i, then xi = 1 and all the other variables are assigned to
0, which we denote as (y, i) = {(x1,0), . . . ,(xi,1), . . . ,(xn,0)}.
If the constraint was an at-most-1 type, then 0 would also be
part of the domain of y which would mean that all variables
are set to 0.

EXAMPLE 11. Let F = {(x1+x2 = 1),(x3+x4 ≤ 1),(x5+
2x6 + x7 = 2)} be a set of PB constraints. If we en-
code x1, . . . ,x7 as Boolean variables, the stochastic algo-
rithm can find many possible assignments, such as α1 =
{(x1,1),(x2,1),(x3,0),(x4,0),(x5,1),(x6,1),(x7,0)}, which
violates the first two constraints. Note that for a constraint
x1 + . . .+ xn = 1 there are 2n different assignments to these
variables, however, only n different assignment satisfy the
constraint. Using SI, an individual is encoded using only
the variables y1,y2,x5,x6,x7, where y1 ∈ {1,2} encodes the
first constraint and y2 ∈ {0,1,2} encodes the second con-
straint. Since the third constraint is not an at-most-1 or an
exactly-1, we do not encode it using an integer variable. Let
α = {(y1,2),(y2,0),(x5,1),(x6,1),(x7,1)} be an assignment
for this encoding. We can see that α satisfies both the first
and second constraint, since (y1,2) = {(x1,1),(x2,0)} and
(y2,0) = {(x3,0),(x4,0)}. As a matter of fact, all the possible

assignments in the stochastic algorithm have to satisfy the two
first constraints, only the third can be violated.

The first step to implement the structure improvement tech-
nique is to find all the constraints that are of the type exactly-1
or at-most-1. Then, we choose which constraints to remove
by prioritizing the ones with the most variables. Note that
we must look at all the constraint’s literals, since if a literal
also belongs to a constraint that was already selected for the
SI, then we cannot choose this constraint, since it may get
different assignments from each constraint.

To encode a new individual for the stochastic algorithm there
are two steps. First, the encoding of all the Boolean variables
that do not have their assignment forced by the UP and do
not belong to constraints that are being exploited by the SI.
Then, there is the encoding of the exploited constraints. A new
integer variable y that is exploiting a constraint c has a domain
of ∪xi∈c,xi<SI{xi}, meaning that if a variable that is already
being exploited by the UP then we do not encode it in the new
variable. We call the set of variables that are not exploited
by the UP as free variables. Note that if the constraint being
exploited is a type at-most-1 then 0 must also belong to the
domain of y.

EXAMPLE 12. Let F = {(x1 = 0),(x1+x2+x3 = 1)} be a
set of constraints. With unit propagation disabled, structure im-
provements will encode the second constraint as y1 ∈ {1,2,3}.
A possible assignment now could be α1 = {(y1,1)}, meaning
that the true assignment is {(x1,1),(x2,0),(x3,0)}. This as-
signment satisfies the second constraint, however, the first one
is violated. With unit propagation enabled, x1 will be set to
0, which can be concluded by analyzing the first constraint.
This way, structure improvements will encode the second con-
straint as y1 ∈ {2,3}, where (y1,2) = {(x1,0),(x2,1),(x3,0)}
and (y1,3) = {(x1,0),(x2,0),(x3,1)}. This way all the possi-
ble assignments will not only satisfy the second constraint but
also the first one.

Now that the stochastic algorithm is now using mixed in-
dividuals while the smart operators use Boolean individuals.
Therefore we must be able to translate from a mixed individual
into a Boolean one and vice-versa.

A mixed individual is constituted by nb Boolean variables
and nsi integer variables that result from the structure im-
provements. To transform the individual into a full Boolean
assignment, there are three types of variables that need to be
taken into account: nup variables fixed by the UP, nsi variables
representing the constraints exploited by the SI and nb Boolean
variables. We now explain the three steps, one for each type
of variable:

• We start by adding the nup variables forced by the unit
propagation to the Boolean assignment;

• Then we need to find out the position of each of the nb
variables in the Boolean assignment. To do this, a mapping
that translates the positions is used.

• Finally there is the decoding of the nsi variables that rep-
resent the constraints exploited. We need to know which
variable encodes each constraint. Then, for each value i of

7

the assignment, we find the ith non-forced variable and set it
to true in the Boolean assignment while the other variables
of the constraint are set to false.

EXAMPLE 13. Let F = {(x1 = 0),(x1+x2+x4 = 1),(x3−
x5 ≥ 0)} be a set of PB constraints. For this problem the UP
would set x1 to be 0, and the SI would encode the second
constraint as y1 ∈ {1,2}, where y1 = 1 means that x2 = 1 and
y1 = 2 means x4 = 1. Note that x1 cannot be set to 1 in this
encoding because it was already forced to be 0 by the UP. With
this, our individual would be encoded as x′1x′2y1.

Now let α = {(x′1,0),(x′2,1),(y1,2)} be an individual that we
want to transform into a full Boolean assignment. From the
UP we have that x1 = 1, and from y1 = 2, we have that x4 = 1
and x2 = 0. Finally from looking up the mapping created
we know that x′1 and x′2 represent the variables x3 and x5,
respectively, meaning that the assignment of these variables is
x3 = 0 and x5 = 1.

The procedure to transform the model returned from the SAT
solver into an individual is similar to the previous one. All the
variables are iterated and depending on the type of variable
there are three different approaches:

• If the variable is one of the variables removed by the UP, it
is ignored;

• If the variable is not being exploited by either UP or SI, then
we must find its position in the individual. Once again, a
mapping similar to the one created before is used.

• Finally, there is the encoding of the nsi variables that repre-
sent the constraints exploited by SI. We analyse all variables
set to 1 that belong to a constraint exploited by SI. By know-
ing which constraint it belongs to, we can find the value of
the exploited constraint in the mixed individual.

EXAMPLE 14. Let F = {(x1 = 0),(x2+x3+x4 = 1),(x5+
x6 ≥ 1)} be a set of PB constraints. For this prob-
lem the UP would set x1 to be 0, and the SI would en-
code the second constraint as y1 ∈ {1,2,3}. Let α =
{(x1,0),(x2,0),(x3,1),(x4,0),(x5,0),(x6,1)} be an assign-
ment found by a PB solver that we want to translate to an
individual. x1 can be ignored, since the variables forced by
UP are not encoded into the individual. x5 and x6 are not
affected by either UP or SI, therefore we just need to find their
positions in the individual, which are x′1 and x′2 respectively.
x2 and x4 are exploited by the SI, however, since they are
assigned as 0, we can ignore them. x3 is affected by the SI
and is set to 1, so we search all constraints exploited by SI. A
match is found in the second variable of the second constraint,
which is encoded as y1, so y1 is set to 2. The assignment in
the individual would then be {(x′1,0),(x′2,1),(y1,2)}.

5. EXPERIMENTAL RESULTS
All results were obtained on a dual socket Intel® Xeon® CPU
E5-2630 v2 @ 2.60GHz, with a total of 12 cores and 24
threads, and 64GB of RAM. As for the instances, these are in
OPB format 3.

3http://www.cril.univ-artois.fr/PB16/format.pdf

(a) Hypervolume of the hybrid algorithms.

(b) IGD of the hybrid algorithms.

Figure 1: Performance of hybrid algorithms in VMC prob-
lems without wastage constraints with and without structure
improvements.

Both MOEA/D and NSGA-II were tested with a population
size of 100 and a timeout of 1800 seconds. The timeout
of 1800 seconds was also used with the MCS Enumeration
(MCSE) algorithm. The single point mutation and uniform
crossover operators were tested with probabilities 0.05 and
0.8 respectively. As for the smart operators they were used
with probability 0.01 and a conflict budget of 50000 for both
smart mutation and smart improvement. To avoid confusion
in the results, we denote the hybrid NSGA-II as H_NSGA-II
and the hybrid MOEA/D as H_MOEA/D. If the algorithm has
the structure improvements technique enabled, it is defined as
NSGA-II_SI or MOEA/D_SI.

We evaluated the quality of the Pareto front approximations
using the Inverted Generational Distance (IGD) [1] and Hyper-
volume [12] performance metrics, both presented in section
2.2. The IGD is a combined metric that measures the average
distance from the cost vectors in a reference front O(AR) to the
closest cost vectors in O(A). Smaller values of IGD show that
the population has solutions with higher quality. Hypervolume
is another combined metric that measures the volume of the
cost space dominated by population A up to a given reference
point Z = (z1, . . . ,zk), therefore, higher values are preferred.

5.1 VMC without wastage
In this section we are analysing the results of Neon on a sim-
plified version of VMC without resource wastage. Once again
stochastic algorithms cannot find any feasible individuals for
this problems, since this simplified version is still too con-
strained for this type of algorithms.

8

(a) Hypervolume of the MCSE algorithm.

(b) IGD of the MCSE algorithm.

Figure 2: Comparison of the performance between hybrid
and constraint based algorithms for VMC without wastage
constraints.

The performance of the stochastic algorithms with the ap-
plication of smart operators is presented in figure 1. In this
problem the addition of the structure improvement technique
helps both hybrid algorithms achieve a better performance,
as we can see on figure 1a where the H_NSGA-II_SI shows
the best performance until the thirteenth instance point and
reaches an hypervolume of 0 after thirty eight instances, while
H_MOEA/D_SI has the best performance from the thirteenth
instance point onwards, until it reaches 0 after forty instances.
Both algorithms without structure improvements show similar
performances, with H_MOEA/D being slightly better, and
both reaching 0 in around thirty instances. Figure 1b shows
similar results, where both algorithms achieve a better per-
formance if the structure improvements technique is used. In
this case H_NSGA-II_SI shows better performance until the
twentieth instance mark and in the rest the H_MOEA/D_SI is
ahead.

Next, on figure 2 we compare the performance of the MCSE
algorithm with both hybrid algorithms using structure improve-
ments. On figure 2a we can see that MCSE shows very poor
performance, with an hypervolume value of 0 on almost thirty
five instances. However, the stratified MCSE algorithm is able
to obtain the best performance out of all the algorithms by
a good margin, never reaching an hypervolume value of 0.
As for the IGD values which can be seen on figure 2b, once
again MCSE shows the worst performance, with IGD values
over 2.5 on more than ten instances, while stratified MCSE
achieves the best values, with an IGD of 0 on almost seventeen
instances and at most 1 for the remaining ones.

(a) Hypervolume of the stochastic algorithms.

(b) IGD of the stochastic algorithms.

Figure 3: Performance of stochastic algorithms in FTP with
and without structure improvements.

We can conclude that for these instances the structure improve-
ments technique is able to help the hybrid algorithms achieve
better performance. All the hybrid algorithms perform better
than the constraint based algorithm MCSE, however stratified
MCSE outperforms all the other algorithms.

5.2 Flying Tourist Problem
The FTP problem is not as hard and constrained as the VMC
problem, and therefore stochastic algorithms are able to find
solutions for some of the instances, as can be seen in figure 3.
NSGA-II and MOEA/D can only find feasible individuals on
four and one instances, respectively, as we can see in figure
3a. The addition of structure improvements to the stochastic
algorithms helps improve this number by three for NSGA-II
and four for MOEA/D, meaning that the algorithm with best
performance is the NSGA-II with structure improvements,
finding feasible individuals in seven out of the eighty instances,
which is still a very poor performance.

The performance of the hybrid algorithms is presented in figure
4. Since stochastic algorithms only find feasible individuals for
a small number of instances, we do not compare their results
with the results from the hybrid algorithms. These algorithms
obtain much better results, being able to find solutions in
almost all instances. From figure 4a we see that all algorithms
start with an hypervolume of 1 having similar values in forty
instances and diverging after this point. After fifty instances
both hybrid MOEA/D algorithms achieve an hypervolume of
0.5 while H_NSGA-II_SI shows an hypervolume of 0.3 and
H_NSGA-II a value of 0.2. As for the IGD value, figure 4b
shows that all these algorithms are able to get an IGD value

9

(a) Hypervolume of the hybrid algorithms.

(b) IGD of the hybrid algorithms.

Figure 4: Performance of hybrid algorithms in FTP with and
without structure improvements.

of 0 for twenty instances. The hybrid MOEA/D results then
reach a value of 0.5 at the sixty fifth instance while both hybrid
NSGA-II algorithms reaches a value of around 0.7.

Finally for the FTP instances, figure 5 shows the comparison
of the MCSE algorithm with the hybrid algorithms MOEA/D
and NSGA-II both with structure improvement technique en-
abled. From figure 5a we can see that the MCSE algorithm
achieves a performance very similar to H_NSGA-II_SI. MCSE
with stratification enabled is able to obtain better results, hav-
ing a similar hypervolume to H_MOEA/D_SI throughout all
instances. On figure 5b we see that the MCSE algorithm
achieves an IGD value of 0 for almost thirty instances, but
shortly after reaches the highest IGD value, showing the worst
performance on half of the instances. As for the stratified
MCSE, it achieves better performance, according to IGD, than
H_MOEA/D_SI between the twentieth and fortieth point and
then they both show identical IGD values for the rest of the
instances.

6. CONCLUSIONS AND FUTURE WORK
In this thesis we explored algorithms for Multi-Objective Com-
binatorial Optimization problems. We introduced Pseudo-
Boolean Optimization problems in order to explain what is
Multi-Objective Combinatorial Optimization and then showed
different state-of-art algorithms used to find the Pareto-front
of the problem. We also proposed Neon, which uses hybrid
algorithms to solve generic MOCO problems, and a technique
called structure improvements.

To evaluate the results of the algorithms, the performance
metrics hypervolume and inverted generational distance were

(a) Hypervolume of the MCSE algorithm.

(b) IGD of the MCSE algorithm.

Figure 5: Comparison of the performance between hybrid and
constraint based algorithms for FTP.

used. The algorithms were tested using instances of Set Cov-
ering Problem, Flying Tourist, Development Assurance Level
Allocation and Virtual Machine Consolidation. For problems
very low constrained such as the Set Covering Problem, hybrid
algorithms were able to obtain results as good as the stochastic
algorithms, which have the best performance. For most of
the remaining problems, the hybrid algorithms were able to
obtain similar or better performance than the constraint based
algorithm MCSE, however obtaining worse performance than
stratified MCSE. The structure improvements technique in-
creases the performance of hybrid algorithms for most cases,
failing to improve the performance when testing instances
of Set Covering Problem or Development Assurance Level
Allocation, since these problems are not ideal for structure
improvements to be applied.

Stratification greatly increases the performance of the MCSE
algorithm to the point where no other algorithm performs
similarly, for some cases. As future work, an interesting idea
would be to implement stratification in the smart mutation
operator in order to improve the hybrid algorithms in Neon.

The structure improvements technique is effective in improv-
ing the performance of the hybrid algorithms MOEA/D and
NSGA-II, so we could also improve this technique by ex-
tending the exploit of at-most-1 and exactly-1 constraints to
at-most-k and exactly-k constraints, or even to new types of
constraints.

7. REFERENCES
[1] Carlos A Coello Coello and Margarita Reyes Sierra.

2004. A study of the parallelization of a coevolutionary

10

multi-objective evolutionary algorithm. In Mexican
International Conference on Artificial Intelligence.
Springer, 688–697.

[2] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and
TAMT Meyarivan. 2002. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[3] Yongqiang Gao, Haibing Guan, Zhengwei Qi, Yang
Hou, and Liang Liu. 2013. A multi-objective ant colony
system algorithm for virtual machine placement in cloud
computing. J. Comput. System Sci. 79, 8 (2013),
1230–1242.

[4] Christopher Henard, Mike Papadakis, Gilles Perrouin,
Jacques Klein, and Yves Le Traon. 2013.
Multi-objective test generation for software product
lines. In Proceedings of the 17th International Software
Product Line Conference. ACM, 62–71.

[5] Rafael Olaechea, Derek Rayside, Jianmei Guo, and
Krzysztof Czarnecki. 2014. Comparison of exact and
approximate multi-objective optimization for software
product lines. In Proceedings of the 18th International
Software Product Line Conference-Volume 1. ACM,
92–101.

[6] Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and
Hany Ammar. 2013. Scalable product line configuration:
A straw to break the camel’s back. In 2013 28th

IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 465–474.

[7] Miguel Terra-Neves, Inês Lynce, and Vasco Manquinho.
2017. Introducing Pareto minimal correction subsets. In
International Conference on Theory and Applications of
Satisfiability Testing. Springer, 195–211.

[8] Miguel Terra-Neves, Inês Lynce, and Vasco Manquinho.
2019. Integrating Pseudo-Boolean constraint reasoning
in multi-objective evolutionary algorithms. In
Proceedings of the 28th International Joint Conference
on Artificial Intelligence. AAAI Press, 1184–1190.

[9] Miguel Terra-Neves, Inês Lynce, and Vasco M
Manquinho. 2018. Stratification for Constraint-Based
Multi-Objective Combinatorial Optimization.. In IJCAI.
1376–1382.

[10] Yuan Yuan and Wolfgang Banzhaf. 2018. ARJA:
Automated repair of java programs via multi-objective
genetic programming. IEEE Transactions on Software
Engineering (2018).

[11] Qingfu Zhang and Hui Li. 2007. MOEA/D: A
multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on evolutionary
computation 11, 6 (2007), 712–731.

[12] Eckart Zitzler. 1999. Evolutionary algorithms for
multiobjective optimization: Methods and applications.
Vol. 63. Citeseer.

11

	Introduction
	Motivation
	Contributions
	Organization of the Document

	Preliminaries
	Multi-Objective Combinatorial Optimization
	Performance Metrics

	Related Work
	3.1 Stochastic Algorithms
	3.1.1 NSGA-II Algorithm
	3.1.2 MOEA/D Algorithm

	3.2 Constraint Based Algorithms
	3.2.1 MCS Enumeration Algorithm

	4 Neon - an Hybrid Multi-Objective Combinatorial Optimization Software
	4.1 Stochastic Approach
	4.2 Hybrid Approach
	4.2.1 Smart Mutation
	4.2.2 Smart improvement

	4.3 Structure Improvements

	5 Experimental Results
	5.1 VMC without wastage
	5.2 Flying Tourist Problem

	6 Conclusions and Future Work
	7 References

