Building GDPR-Compliant Web Applications with RuleKeeper

(extended abstract of the MSc dissertation)

Mafalda Baptista Ferreira
Departamento de Engenharia Informatica

Instituto Superior Técnico

Advisor: Professor Nuno Miguel Carvalho Santos

Abstract—Modern web applications provide many useful
services to end-users which require them to blindly share
their data. In 2018, the European Union issued the GDPR, a
comprehensive legislation that defines a system of laws aimed
at promoting the deployment of extensive security mechanisms
for the protection of users’ data and prevention of privacy
breaches. Unfortunately, most modern systems tend to be
optimized for performance, cost, and reliability, leaving security
as a secondary goal. As a result, not only the web users remain
prone to numerous risks, including the exposure of sensitive
data, but the organizations themselves may incur high fees in
the case of non-compliance with the GDPR. Considering these
challenges, this thesis studies the implications that GDPR holds
in web applications and clarifies the requirements organizations
need to follow when managing their information systems.
Particularly, this thesis presents RuleKeeper, a novel web
application framework, tailored to provide data security and
privacy protections according to GDPR-compliant policies.

I. INTRODUCTION

The continuous technological growth and globalization
have boosted the free flow of data and increased the scale of
collection and sharing of personal data. Nowadays, people
tend to share their data publicly and at an unprecedented
scale to use many of the services provided by both pri-
vate and public companies and authorities. Given that the
protection of natural persons concerning the processing of
personal data is a fundamental right [1][2], the need for
establishing some data privacy and security standards has
arisen. To protect citizens, the European Union has issued
a regulation that lays a collection of rules and guidelines
that aim to ensure the deployment of extensive security
mechanisms for the protection of users’ data and privacy
— the General Data Protection Regulation (GDPR) [3]]. As
today many data processing and storage platforms are based
on web applications, the existence of these mechanisms has
an essential role in the data privacy and security regarding
web applications because web users face numerous risks
whenever they entrust their data to web applications. One
of such risks consists in the exposure of sensitive data
which is considered one of the most serious web application
security risks since many applications and APIs do not
properly protect sensitive data, such as financial, healthcare,
and personally identifiable information. In fact, over the last
few years, this has been the most common impactful attack
on organizations [4]. Software exploits, weakly protected

data, mishandling of server-side services, or questionable
practices carried out by organizations are just a few examples
of hazards that may lead to data breaches and loss of privacy.
As a result, not only the web users remain prone to the
aforementioned risks, but the organizations themselves may
incur high fees in case of non-compliance with the GDPR.

However, building information systems as off now has
been at odds with compliance regarding the GDPR. Frame-
works have become an essential part of web development,
providing not only scalability, integration, and robustness,
but also being easy to integrate and time-saving. As these
frameworks are not GDPR-compliant by default, applica-
tion developers face numerous challenges in building their
applications in adherence to the strict GDPR data protection
policies. First, it is fundamental to understand what GDPR-
compliance really means, addressing the challenges it raises
and its ambiguities. Second, it must be stipulated which
GDPR policies need to be enforced to ensure GDPR-
compliance. Thirdly, the enforcement of GDPR policies
must be assured without disrupting existing web develop-
ment frameworks. The goal of our work is to tackle these
problems and make the following central contributions.

The goal of our work is to build a web framework
that enables web developers to write applications that can
handle user data in compliance with GDPR policies while
preserving the maintainability and performance delivered by
the modern web frameworks. Such framework shall allow
the specification of data protection policies in accordance
with the GDPR and hard guarantee the enforcement of such
policies throughout the entire application life cycle. It shall
help to prevent privacy breaches, increase transparency, hand
over control of data to its owner, and assist organizations in
avoiding penalties due to noncompliance.

In this paper we first present a detailed study of the GDPR
to determine its implications concerning personal data pro-
cessing and the challenges it raises, namely ambiguities,
indefinitions and omissions. We clarify the requirements
organizations need to follow when managing their informa-
tion systems. We notice that many of these requirements go
beyond traditional access control or obligation policies, and
report the need to specify the organization’s privacy policy
in a clear and concise way. Then, we propose RuleKeeper,
a web development framework for 3-tier web applications
which provides an API for the development of PDO-based

web applications and a system for enforcing compliance
with GPSL policies. RuleKeeper enables web developers to
write applications in compliance with GDPR policies while
preserving the maintainability and performance delivered
by modern web frameworks. We implemented a use case
application to determine both the relevance, usability of our
system, and the GDPR-compliance coverage, and also eval-
uated our system based on microbenchmarks. To promote its
widespread adoption, RuleKeeper is based on some of the
most popular tools used by web developers today, namely
MongoDB, Express, React, and Node.js. We will make our
system available.

II. RELATED WORK

This section relates both GPSL and RuleKeeper’s design
to prior work, oriented to the GDPR compliance.

A. Existing Research on GDPR Compliance

Some recent studies aim to investigate the best practices
and limitations in GDPR compliance and the extent to which
the data protection policies prescribed by this regulation
have been implemented in reality. The study by Mohan
et al.| [5] leverages on the importance of clear and concise
privacy policies and proposes some recommendations for
GDPR-compliant privacy policies supported by the princi-
ples laid out by the regulation. A recent study on Google’s
RTBEF [6]], highlights the challenges of implementing privacy
regulations in practice, showing that, although users are
exercising their rights, sometimes it is not a straightforward
decision, for example, when the public interest outweighs
the individual’s right to privacy. The impact of the GDPR
on storage systems [7]][8] was also studied, illustrating the
challenges of retrotting existing systems into compliance, the
implications for system designers and the issues it introduces
concerning performance. Schwarzkopf et al| [9] share a
vision in how to achieve GDPR compliance in web service’s
backends, oriented towards data subject’s rights and how to
provide them control of their own data, resorting to cross-
system abstractions and declarative specifications.

B. Security Policy Specification Languages

Much work has been done regarding security policy
languages, XACML [10] is characterized for being a very
expressive language concerning the access control domain,
and PPL [11] and A-PPL [12] are more oriented towards
privacy, extending XACML regarding privacy and account-
ability capabilities, respectively. This expressiveness has the
cost of having a high specification complexity and verbosity,
which makes them very user-unfriendly and decreases per-
formance, unsuitable to being used by Data Protection
Officers. Rego policies [13], are very simple, flexible, easy
to use, and maintainable. Although it is not privacy oriented,
its flexibility allows us to enhance it with the necessary
extension points. It supports structured document models,
such as JSON, a very valuable feature when building web
applications.

C. Policy Enforcement Systems for Web Applications

Over the years, several security systems proposed mech-
anisms to allow the enforcement of end-to-end security
policies for web applications, mostly employing information
flow control and its variants or mandatory access control.
Systems such as SIF [14], Fabric [15], or Hails [16] use
IFC techniques for enforcing fine-grained security policies.
However, these systems presented some major drawbacks.
First, the security policies must be specified alongside the
application code, which goes against our maintainability
goal. Riverbed [17], also based on IFC but unlike previous
systems, does not require developers to manually anno-
tate code with labels or specify security policies alongside
the application code. However, it only allows user-defined
policies regarding their own personal data, meaning that
a DPO is unable to specify the organization’s security
policy to be enforced by all users at the same time. As
for mandatory access control systems, Qapla [[18] provides
fine-grained access control in database-backed application.
Estrela [19] follows a different approach, leveraging some
interesting techniques for enforcing contextual and granular
policies concerning data protection regulations. However,
both these systems provide poor policy management and
maintainability, low usability by DPOs, and are also not
compliant with the GDPR by default. OPA [20] provides a
lightweight policy engine for a unified enforcement of Rego
policies. However, it does not provide mechanisms to ensure
proper compliance with all the GDPR requirements (such as
data subject rights) and is not compliant with the GDPR by
default. All these limitations have prompted us to develop
RuleKeeper.

III. GDPR IMPLICATIONS ON SYSTEM DESIGN

The General Data Protection Regulation (GDPR) [3] is
the core of Europe’s data privacy and security legislation.
It came into force in 2018, and it sets a collection of rules
regarding the protection of natural persons, respective to the
personal data processing. As the infringement of the regula-
tion can lead to high administrative fines, organizations are
urged to seek compliance. Unfortunately, the integration of
GDPR privacy requirements into information system brings
several challenges, as some of the guidelines lie in grey
areas and are up to interpretation. First, new actors are
introduced to the system, such as the data subject, data con-
troller, and data processor, urging the need to separate their
responsibilities in the system. Second, GDPR introduces
the concept of personal data. According to the regulation,
personal data is any information relating to an identified or
identifiable natural person all of the regulation applies to its
processing. Since the data is stored in databases, without any
standard or mandatory structure, information systems do not,
by default, distinguish data type categories, such as personal
data, sensitive data, health related data, or the others. With
the conception of personal data, it is expected to associate
the personal data to the corresponding data subject, that may
or may not have consented to the processing of its data.

However, information systems process data, with no regard
of who it belongs, and also query its databases without
having the data subject into consideration. As so, there is no
way to ascertain if the data subject that owns the data that is
being processed consented to it or not. Lastly, information
systems process and manage their data in accordance to
their domain and goals, meaning that organizations cannot
simply implement general purpose regulations, disregarding
regulations which are domain-specific and defined by the
organization. To mitigate these challenges for organizations,
we lay down a set of principles that organizations must
follow when managing their information systems. These
principles are organized in accordance with their responsi-
bility in the system: CX and PX concern the data controller
and data processor responsibilities, respectively.

CO01: Purpose Limitation

Art. 5 of the GDPR states that personal data should only be
<collected for specific purposes and should not be processed
in a manner that is incompatible with those purposes> It
does not clarify if the purposes must be the same for all
data subjects, or if it is possible to allow the processing of
personal data for only one of many specific purposes.

C02: Data Minimization
Art. 5 of the GDPR states that personal data should be
<adequate, relevant, and limited to what is necessary in
relation to the purposes for which they are processed>. The
data controller must specify which personal data item is
required for each purpose.

C03: Lawfulness of Processing

Art. 5 and Art. 6 of the GDPR state that the data processing
is lawful in when <«the data subject has given its consent
for one or more specific purposes, when it is necessary for
the performance of a contract, or if it is relevant to the
public interest>, amongst others, reflecting the lawfulness
base. However, the performance of a contract (which is
widely employed by organizations) is not associated with
any specific purpose, making it seem like, when the data
subject performs a contract, it is implicitly consenting to all
purposes of data processing, which may not be the case and
also limits the data subject’s freedom.

C04: Transparency of Processing

Art. 5 states that personal data shall be <processed lawfully,
fairly, and in a transparent manner in relation to the
data subject>. Art. 12 tells that <the controller shall take
appropriate measures to provide any information referred
to in Arts. 13 and 14, and any communication under Arts.
15 to 22 and 34 in a concise, transparent, intelligible and
easily accessible form, using clear and plain language>. It
reflects the need of elaborating a clear, concise, and complete
privacy policy that discloses the ways the organization
gathers, uses, discloses, and manages personal data.

P01: Storage Limitation

Art. 5 states that personal data shall be <kept in a form which
permits the identification of data subjects for no longer than
is necessary for the purposes for which the personal data

are processed>. The data processor has to decide the point
in time for marking data for deletion and erasing the expired
data, which involves finding a sweet spot between a three-
pronged trade-off: resource efficiency, performance, and full
compliance. It also fails to state the conditions that make
the data subjects prone to identification.

P02: Accuracy Preservation

Art. 5 states that personal data must be <accurate and,
where necessary, kept up to date; every reasonable step must
be taken to ensure that personal data that are inaccurate,
having regard to the purposes for which they are processed,
are erased or rectified without delay>. It does not define
unequivocally which criteria should be adopted to validate
the accuracy of personal data, which is highly dependent
on the business case. It also omits the definition of specific
deadline or criteria for the rectification/erasure of data if it
is found to be inaccurate.

P03: Accountability

Art. 5 states that controller shall be <responsible for,
and be able to demonstrate compliance with the regu-
lation>. Art. 30 complements it by affirming that each
controller/processor shall «<maintain a record of processing
activities under its responsibility>. Arts. 33 and 34 both
state that when the personal data breach is <likely to result
in a high risk to the rights and freedoms of natural persons,
the controller shall communicate the personal data breach
to the data subject and supervisory authority without undue
delay>. This involves the deployment of an extensive and
complex backend structure to support the monitoring of logs,
and the GDPR does not describe the level of detail at which
the monitoring activities must be carried out.

P04: Security of Processing

Art. 5 states that the personal data should be <«processed
in a manner that ensures its appropriate security, using
appropriate technical or organizational measures>. Art. 32
complements it with measures that may be implemented
to ensure the security of personal data. The data processor
needs to deploy a cross-cutting security infrastructure that
can mitigate the risks mentioned in both articles, which
translates in a quite extensive wish-list and requires consider-
able investments from the organizations to keep the systems
protected against constantly evolving security threats.

Data Subject Rights

Art. 12 states that the <controller shall facilitate the exercise
of data subject rights under Arts. 15 to 22>. It is advised
the controller to facilitate the exercise of the data subjects’
rights, including the provision of mechanisms that the data
subject can leverage to exercise its rights and, if applicable,
obtain, free of charge, an appropriate response from the
controller. Since the exercise of data subject rights depends
on the organization’s policy, organizations must specify in
their policy how the system should implement such rights,
stating which rights can be exercised automatically and
which ones must go through the data controller for approval.

With this set of principles and challenges in mind, we

introduce RuleKeeper, a web application framework that al-
lows the development of GDPR-compliant web applications.

IV. SYSTEM DESIGN

We present RuleKeeper, a web development framework
that allows the development of GDPR-compliant web ap-
plications. In particular, it implements a new access control
model that allows for the enforcement of declarative GDPR-
aware policies.

A. Design Goals and Threat Model

The goal of RuleKeeper is to allow the specification of
data protection policies in accordance with the GDPR and
hard-guarantee the enforcement of such policies throughout
the entire application lifecycle so as to help prevent privacy
breaches, increase transparency, and hand over control of
data to its owner. RuleKeeper is designed to be integrated
into 3-tier information systems. In the design of our system,
we consider the following main requirements: (i) GDPR-
policy compliance: Personal data processing must be re-
stricted according to a privacy policy that expresses con-
straints imposed by GDPR and the organization’s DPO, (ii)
Maintainability: The policy enforcement must be detached
from the application code and allow for the separation of
cross-cutting concerns and (iii) Good end-to-end perfor-
mance: The incorporation of the necessary logic required
for the validation and enforcement of policies should not
significantly slow down the performance of applications.

We consider the existence of a dedicated person — the
operator — which is responsible for the specification of the
privacy policy to be enforced by a given web application.
This policy is expected to reflect the specific terms of the
GDPR regulation that apply to the concrete organization
running the web application. We assume that the policy
correctly expresses the data protection measures that are
expected to be implemented. The web application developers
write the code of their applications using the programming
abstractions offered by our framework. This code is un-
trusted in the sense that the developer may accidentally
introduce bugs and vulnerabilities in the application that
can potentially lead to the violation of the privacy policy.
As for the execution environment, we trust the correctness
and integrity of the browser’s runtime, the security of
communication channels between client and server, and the
correctness and integrity of the server-side OS, web server,
and DBMS.

B. Architecture

RuleKeeper is a web development framework for 3-tier
web applications which provides a system for enforcing
compliance with GDPR data protection policies. Figure
illustrates a deployment of our system that supports the exe-
cution of a web application in the context of an organization.
RuleKeeper system is composed of two key components: a
middleware and a manager service. The middleware consists
of a set of libraries linked to the web application, which
export an API that allows the interaction between the web

Application
Developer Operator

4

v

Application Code

I

\ 'Policy‘ \ ‘ PDO J
&n:w

Consent
Service
E—
RK Data

HTTP T

ﬁ Response
|
HTTP. Context

Browser Request Handler

RuleKeeper
Middleware

Logic Tier ‘ RuleKeeper Manager
System
e
PDO:

Application Data
Data Tier Monitoring System

Presentation Tier

Figure 1: RuleKeeper architecture. Yellow boxes represent
components specific to the application; blue boxes refer
to RuleKeeper’s components; and purple boxes pertain to
external systems.

application and the GDPR policy enforcement system. The
manager service runs in a centralized management server,
and it is responsible for managing and coordinating the
GDPR data protection policies, which it then shares with
the middleware. The middleware uses these policies to
enforce GDPR compliance as the web application collects
and processes personal data.

There are two main actors that interact with RuleKeeper:
the application developer and the operator. The applica-
tion developer uses the middleware to develop and deploy
GDPR-compliant web applications. Application develop-
ment includes the specification of the data model, the imple-
mentation of the application operations, and the specification
of an access control model for the principals that interact
with the application. The operator is a person designated
by the host organization which is responsible for managing
the system and ensuring that the web application abides by
the GDPR requirements. The operator receives input from
the application developer concerning the web application’s
architecture (e.g., database model), and from the Data Pro-
tection Officer regarding the specific implementation of the
GDPR for the organization.

RuleKeeper operates using Purposeful Data Objects
(PDOs). PDO is a new abstraction that models the web
application’s state so as to satisfy GDPR restrictions. It
includes data model properties, application code aspects,
and the binding of such abstractions to the web application
concerning the restrictions imposed by the GDPR, such
as purposes and data minimization limitations. The sys-
tem maintains a specification of this abstraction, the PDO
Schema. This schema is built from two sources. The primary
source is from a declarative policy specified by the operator
in the GDPR Policy Specification Language (GPSL). GPSL
is a simple domain specific language that we have developed
to express GDPR policies for a given organization. The
second source is some additional information that needs to
be obtained at runtime, such as the data subjects’ consent.
The PDO abstraction allows the middleware to enforce the
GDPR policies, without requiring the developer’s direct

RBAC Role GDPR Role

A £
Plays Plays
| |
Principal -Acts on behalf of Entity
Storage Lawfulness
Invokes Conditions base Is
A A
Limited by Has
Operation Executed fo—>» Purpose «——Consents to— Owner
Collected Limited
only for accejs to
PDO Ha
Has
Accuracy Accurate if Data Type Preserved Replication

Assertions satisfies according to Policy

|
Has
v
Owner
Rights

Figure 2: Purposeful Data Object model.

involvement.

C. Purposeful Data Objects

To accommodate such requirements when building in-
formation systems, we present a new abstraction, named
Purposeful Data Objects (PDOs), which allows to model the
web application’s state, covering the required information
for achieving GDPR policy-compliance, as represented in
Figure 2] Some of the components presented in this model
represent aspects that already exist in typical MVC web
applications, and therefore are managed by the developer.
These components are represented in the PDO model using
yellow boxes. Green components represent the concepts
introduced by the GDPR and are managed by the operator.

In an information system, there is a set of users that
interact with the web application, which we name princi-
pals. Principals can have roles associated, representing their
function and permissions to execute some operations in the
system and their identification is done through their login.
These principals can represent entities in the organization’s
domain, involved in the personal data processing. To each
entity is attributed a specific role from the GDPR, describing
their role in the personal data processing. Data subjects
consent to one or more purposes regarding the processing
of their data, and therefore are owners of their data. To
ensure compliance with the GDPR regulations, information
systems must facilitate the exercise of data subject rights.
Organizations must specify in their policy how the system
should implement the owner rights, which includes which
data is accessible when fulfilling such right. PDOs are
accessed and processed through system operations, which
are executed to fulfill a specific purpose. As per the Purpose
Limitation and Data Minimization principles, each PDO
is collected for specific purposes and each purpose can
only process a limited and relevant set of data. Then,
each purpose must be associated with a lawfulness base,
representing the valid lawful reason to process the personal

data. Since principle Storage Limitation states that personal
data should be erased when it is no longer necessary to the
purposes for which the personal data was collected, purposes
must also be associated with storage conditions that restrict
the storing of the data collected for that purpose. Lastly,
Accuracy Preservation mandates that this data must be kept
accurate, which is assessed through accuracy assertions.

D. Application Development

The application developer is accounted for the implemen-
tation of the web application, which includes the specifica-
tion of the data model, the implementation of the application
operations and the specification of an access control model.
This implementation is agnostic to GDPR abstractions. First,
the web developer must specify how data of the application
domain is organized in the database, by indicating the
existing tables and its corresponding columns and data
types. Following the specification of the application’s data
model, the developer must now implement the application
operations’ logic. Operations are the heart of the application
as they are responsible for processing the application data
and displaying those results to the end-user. Lastly, not
all operations can be executed by all principles. The web
application principals must authenticate themselves in the
system, to express their role in the application, which
represent their function and permissions to execute the
application’s operations. To support this model, RuleKeeper
provides an authentication mechanism, enhanced with a
session management api.

E. Policy Specification

Following the implementation of the web application, the
operator is now responsible for writing a declarative policy
that unifies the concepts of the PDO model, through a GPSL
template provided as input to the RuleKeeper Manager.
With this in mind, we present GPSL, a domain-specific
policy specification language based on our PDO model.
GPSL allows an operator to specify, in a non ambiguous
way, the GDPR privacy requirements of the organization
in such way that, when interpreted by the RuleKeeper
system, the protection of personal data will be ensured to
be in compliance with GDPR. We present its core language
primitives and then elaborate on some future extensions to
be developed in future work.

Abstract notation: GPSL can be used to specify the or-
ganization’s privacy policy and the necessary mapping for
providing RuleKeeper with application-dependent context.

Az Y1, Ty Yn

In this expression, A represents the PDO model property
which GPSL describes and x;...y; represent its attributes.
We proceed to specify the PDO model with this notation.

1) Core GPSL Primitives: We present the core GPSL
primitives that are fully supported by the current version of
RuleKeeper. These primitives are used as the basic language
constructs for expressing GDPR-specific access control poli-
cies. Next, we enumerate each of these primitives.

Data Types: First we need to describe which data types d;
are classified as personal data. In a web application context,
the data type identifier does not hold any value, so, each
data type must be mapped to the corresponding table ¢; and
column ¢; in the database.

\D S dy.(t1.1), oy - (bcy) \

Purposes: To describe the purposes involved in personal
data processing, we associate each purpose p; with its
lawfulness base b; and the maximum data d; they are
allowed to process. If the lawfulness base is the explicit
consent of a data subject or the execution of a contract, it
is required the consent of the data subject.

P: pl.bl.dl, apnbndn

Operations: PDOs are accessed and processed through
system operations. Each operation o; is executed with a
purpose p; and to which is only allowed the access to
a subset of datatypes D;. In a web application context,
the operation identifier does not hold any value, so, each
operation must be mapped to the corresponding url u; in
the web application.

O:o01.p1.D1.U1,y ey 0P Dy gy

Entities: The entities e; involved in the personal data
processing must have roles r; associated, denoting their role
in the GDPR: data subject, data controller, data processor
or third party. Entities can either be declared statically in
the policy, in the case of data controllers, processors and
third parties, or can be mapped to a data table ¢; column ¢;,
if they correspond to data subjects.

E:ei.ry,...,en.ry ‘]EDS 1t

Consent: If the entity represents a data subject o;, it may
consent to a set of purposes P; regarding the processing
of the DPOs it owns. The concept of data subject consent
does not exist in the web application implemented by the
developer. It is managed by RuleKeeper’s consent service,
and does not require mapping to the application.

C: 01.P17 ...,On.Pn

Principals: Principals represent the users wu; that interact
with the system, which can have roles r; associated and can
act on behalf of some entity e;. Each role r; is only allowed
to execute a set of operations O; in the system.

U:ul.rl.el,...,un.rn.en‘ ‘R: r1.01, .., 0.0y,

Similar to the E; entity policy, the association principal-
entity can either be declared statically in the policy, in the
case of data controllers, processors and third parties, or can
be mapped in the database. In the last case, we define a
policy that makes an association between the column p;
that identifies principal and the column e; that identifies the

entity, in a table ¢;.

Data Ownership: Each PDO must be associated with its
owner. As PDOs correspond to data stored in the database
tables, we associate each table ¢; that contains personal data
with the column o; of that table that identifies the owner of
such data.

N: t1.01, ...,tn.On

The normal activity of the system will be the invocation
of operations that will interact with the data store. Each
operation o will be allowed to be executed by the principal
p if the following conditions are satisfied:

1) exists r in roles(p) such that r € granted-acess(o)
2) for all ¢ in typeset(o), exists p; in purposes(t), and
exists p, in purposes(o), such that p, € p;
3) for all t in typeset(o), exists p; in purposes(t), such
that t € maximum-data(py)
4) exists p in purposes(o) and requires-consent(p) then,
for all d in dataset(o), granted-consent(owner(d), d,
P)
The condition (1) validates the access control. The condition
(2) refers to purpose limitation and the condition (3) to
data minimization requirements. Condition (4) refers to to
lawfulness base requirements, where an operation that acts
upon the PDOs for a given purpose and that purpose requires
consent of the data subjects, it can only be executed if the
PDO owners have granted its consent. The nomenclature
used in these conditions is described as follows:

o granted-access(o): roles authorized to perform opera-
tion o, specified by the principals’ policy U and R.

o typeset(o): types of data processed by operation o,
specified by the operations’ policy Q.

e purposes(o). purposes to which the operation o is
executed, specified by the operations’ policy O.

o maximum-data(p): the maximum data the purpose p is
allowed to access, specified by the purposes’ policy P.

o requires-consent(p): checks if the lawfulness base as-
sociated with the purpose p requires the data subject
consent, specified by the purposes’ policy P.

o dataset(o): PDOs processed by the operation o, speci-
fied by the operations’ data type’s policies O and D.

o granted-consent(o, d, p): checks if the owner o con-
sented to the processing of its PDO d for purpose p,
specified by the ownership policy N, entities’ policy E
and consents’ policy C.

o owner(d): data subject that owns the PDO d, specified
by the ownership policy N.

GPSL Request
GPSL Request principal
GPSL Request principal operation
principal operation data
operation subjects subjects
I T I
PEP

il o1 ol I

7
H—f
. PDP

HTTP Context > Data 4 Policy
Re uest’_> Handler [—>| Ownership —>| Enforcement —> Decision
9 Hook Hook Hook Allow/Disallow

RuleKeeper Middleware

Figure 3: RuleKeeper’s policy enforcement flow.

F. Policy Enforcement and Lifecycle

As presented in Figure [T, RuleKeeper Manager is respon-
sible for storing and managing the GPSL template, which
is managed by the organization’s operator, and also for
storing the RuleKeeper Data, which is the required data
to evaluate the GPSL policies. The RuleKeeper Manager
merges this information, generating a GPSL manifest, that is
used by RuleKeeper’s middleware to enforce such policies.
RuleKeeper middleware is composed of three hooks that
interact with RuleKeeper’s PEP to convert the application
request to a GPSL authorization request, evaluated by Rule-
Keeper’s PDP, configured with the GPSL policies. The PEP
is responsible for generating a GPSL authorization request
and triggering the generation of an authorization decision in
the PDP. Figure [3] describes the GPSL policy enforcement
flow through arrows, representing the sequential interactions
with both PEP and PDP.

Context Handler: The data protection policies’ evaluation
depends on the entity performing the operation and on
the operation being executed, as different operations may
have different purposes or different access levels. So, PEP
generates a GPSL Authorization Request pre-filled with the
context of the request: the principal executing the request
and the operation being executed.

Data Ownership: To evaluate the GPSL policies, is required
to know to which data subject the processed data belongs to.
On top of that, requests to the web application may involve
personal data belonging to several data subjects at the same
time. PEP adds information to the GPSL Request regarding
the data subjects involved in the request.

Policy Enforcement Hook: The policy enforcement hook
receives the information generated by the previous hooks,
and as it intercepts the database query, it turns this request
into a complete GPSL authorization request by adding the
requested data. It then uses the complete GPSL request
to query the PDP, which returns the authorization decision
generated by the GPSL data protection policies evaluation.
In case of a positive authorization decision, the request
is forwarded to the application controller, otherwise, the
request is denied.

V. IMPLEMENTATION

We implemented a RuleKeeper prototype for MERN
web applications. The RuleKeeper prototype comprises a

middleware based on Node.js and Express, to be integrated
in MERN web applications, and a management server,
implemented as a MERN web server as well. We used
Mongoose to help us model the MongoDB application
data. These components communicate through web sockets,
implemented with Socket.I0. We implemented RuleKeeper
middleware as an external package, to incorporate it as
seamlessly as possible, requiring minimal effort from the
developer. RuleKeeper’s policy enforcement is based on
the interception of both the HTTP request and the subse-
quent database queries. To intercept the HTTP Request, we
used the Express built-in application-level. Intercepting the
database queries uses the same approach, but employing
Mongoose middleware. We specified our GPSL policies
using the Rego language and used Open Policy Agent as
our policy engine. We integrated the OPA Policy Engine
with the WebAssembly module to evaluate the policies.

VI. CASE STUDY

Not only the regulation is extensive and considerably
poor on specifics, but its implementation also depends on
the organizations’ domain. To evaluate the relevance and
usability of RuleKeeper, we applied it to a concrete case
study, allowing us to perform a real-world validation of
our system. We collaborated with LEB - Laboratérios
Elisabete Barreto, a clinical laboratory with the aim of
developing a prototype intranet service for supporting its
internal administrative processes.

A. GDPR support for health organizations

Whenever an organization seeks to be compliant with
the regulation, the data controller must learn, interpret, and
apply the regulation principles to their specific case. To
simplify that process, some associations study and develop
frameworks that determine the best approach for certain
types of organizations. Thus, organizations can follow a cer-
tified framework, developed and optimized by a specialized
association, without having to implement it from scratch,
making the process less error-prone. APAC, a Portuguese as-
sociation for clinical analysts who collaborates with national
and international health institutions, developed a turnkey
GDPR framework that highlights a collection of principles
and establishes a set of technical and organizational mea-
sures for achieving GDPR-compliance, adopted by LEB.

B. Internal Process Analysis

To design and develop a web application that supports the
internal administrative processes of the LEB organization,
we performed a detailed and extensive analysis of the impact
assessment reports regarding personal data processing for
clinical analysis laboratories, developed by APAC, and the
LEB’s internal administrative processes, conducted by LEB.
We selected the four LEB processes that process personal
data and therefore need to be compliant with the regula-
tion: (1) the pre-analytic process, (2) the analytic process,
(3) the post-analytic process and (4) the human resources
management process. The pre-analytic process is responsible

Laboratory

Specimens
submission.

Has medical
requisition?

Yes

Medical lNO

requisition
verification. Filling out the Specimens
verification.

‘ analysis form.

Inform the patient of .
the price and time of Specimens
the results. OK?

Yes
Patient registration.

Analysis
performed in the
laboratory?

lYes

Specimen
collection.

Inform the
laboratory.

o Dispatch the
—> specimens to the
laboratory.

Specimen
inspection.
Fault report and No__Specimens..Yes, Analytic
patient notification. OK? Process

Figure 4: Flowchart of the LEB pre-analytic process. Deci-

sion blocks are represented in yellow, process blocks in blue
and terminal blocks in orange.

for the patient registration and the specimen preparation and
processing. This process is individually detailed in Figure [}
The analytic process is responsible for the specimen analysis
and validation, the post-analytic process is responsible for
preparing and emitting the analysis results and the human
resources management process is responsible for hiring and
training new employees. As all of these processes process
personal data, APAC assigned a purpose to each one of
them. For the clinical processes, the purpose is Clinical
Analysis, and for the human resources management process,
the purpose is Human Resources.

C. Prototype Implementation

Taking into consideration our analysis of the LEB internal
administrative processes and their implications regarding
personal data, we implemented a prototype intranet service,
based on the MERN stack with an in-memory database. Our
prototype supports three types of users: patients, reception-
ists, and system administrators. It simulates the actions be-
tween such users and the service, supporting the mentioned
processes, specifically the following operations: (i) patient
registration by receptionists, (ii) patient data handling by
both receptionists and patients and (iii) user management
by system administrators. We implemented eight controllers
as described in Table To inform the data subjects on
the processing made regarding their personal data, LEB
composed a privacy policy and a document named Informa-
tion on the Processing of Personal Data. Both documents
disclose how LEB processes personal data and how it applies
data protection principles, meeting Arts. 12 (Transparent
Information), 13, and 14 (Information to be provided) of
the GDPR [3]. To demonstrate that GPSL fully supports the
policies detailed by LEB’s privacy policy, we matched the

LEB’s privacy policy requirements with the GPSL policies,
as depicted in Table

D. Portability Effort

The integration of RuleKeeper in our clinical analysis
laboratory prototype consisted in integrating the RuleKeeper
code in the LEB prototype web application and describing
the organization’s privacy policy in GPSL. To integrate
RuleKeeper in the LEB web application, it was required to
import and initialize RuleKeeper middleware. This involved
adding 3 lines of code to the LEB web application. Then,
RuleKeeper Manager requires a setup, involving setting up
the RuleKeeper tables and mapping them to the data model.
Lastly, we needed to integrate RuleKeeper management
api calls to update the RuleKeeper Manager tables. This
involved adding a total of 8 calls. Last and more challenging
of all, we tried to describe LEB’s privacy policy in the
GPSL’s Rego implementation. This task came out very
complex and tricky since the LEB privacy policy was lacking
important GPSL requirements.

VII. EVALUATION

We demonstrate that RuleKeeper enforces GDPR-policy
compliance, while providing good application maintainabil-
ity features and delivering good performance results. We
evaluate RuleKeeper’s performance as part of the prototype
implementation of our laboratory use case web application.

A. Methodology and Metrics

We evaluate RuleKeeper’s performance evaluation aiming
at measuring the performance overhead of RuleKeeper in
terms of latency and throughput. To measure RuleKeeper’s
latency, we measured the total execution time of the sys-
tem without RuleKeeper and the total execution time of
the system with RuleKeeper. The throughput measurement
was performed by saturating the system with and without
RuleKeeper and calculating the maximum sustainable rate.
To test requests that may result in different outcomes, we
performed these tests using 3 different controllers. For that
we describe 3 request types, characterized by parameters
that may influence RuleKeeper’s performance: the role of
the entity performing the operation and the number of data
subjects involved. We then associate each one of them with
a controller implemented in the use case application, as
described in Table

Our testbed is composed of five 64-bit Ubuntu 18.04.5
LTS virtual machines (VMs) provisioned with 20GB of
RAM and eight virtual Intel Xeon E5506 2.13GHz CPUs,
located in different physical machines but connected over a
local network. VM1 runs the use case application, extended
or not with RuleKeeper, depending on the test, and VM4
runs an in-memory MongoDB database with the use case ap-
plication data. VM2 executes an instance of the RuleKeeper
Manager prototype and VM3 runs an in-memory MongoDB
database with the RuleKeeper Manager data. Finally, VM5
is used to run the client-side experiments with up to 50 client
instances, running simultaneously to saturate RuleKeeper.

LEB Privacy Requirement

GPSL Policies

‘Personal data will be exclusively processed for the clinical analysis activity exercise,
by Elisabeth Barreto Laboratories”

‘The purposes of the data collected are: Management of information regarding clinical
analysis services, Human resource Management, Marketing (if applicable) and Video
surveillance, (if applicable)”, ‘The legal basis for the processing of your personal data
is the contract established at the time you ask us to perform clinical analysis.”

On the first visit to the laboratory, the patient is asked for the citizen card to open the
identification form and the following data can be collected: full name, date of birth, sex,
beneficiary number, TIN, photo, address, mobile phone/telephone, email and relevant
clinical observations.

The collected data is processed and stored computerized (...) during the minimum period
necessary for use according to the purpose for which they were collected

The data collected and held by LEB — Elisabeth Barreto Laboratories may be
transmitted (...) to the following entities: Health Insurance and Subsystems; Health
professionals; Subcontractors who will process the data on behalf of LEB — Elisabeth
Barreto Laboratories and according to the purposes determined by it.

To request the exercise of any data subject right, must be sent an e-mail to dpo@leb-
analises.com

Entities E policy: ‘Laboratory LEB’.‘data controller’

Purposes P policy: ‘clinical analysis’.‘execution of a
contract’, ‘human resources management’, ‘marketing’,
‘video surveillance’

Data Type D policy : (full name, date of birth, sex,
beneficiary number, TIN, photo, address, mobile phone,
clinical information)‘clinical analysis’. ‘patient A’
Consent C policy : ‘patient A’. clinical analysis’

This data is insufficient to specify a storage limitation S
policy.

Entities E policy: ‘health insurance A’.‘third party’, ‘sub-
contractor A’.‘data processor’.

Owner Rights W policy: ‘right to access’.‘indirect access
mode’

Table I: LEB privacy requirements matched with GPSL policies.

Controller Description

The receptionist can register new patients in the
system.
The receptionist can fetch a patient’s data. A
patient can fetch its own data.
The receptionist can fetch data from all patients
in order to query some parameters.
The receptionist can update a patient’s data. A
patient can update some aspects of its own data.
A system administrator can register a new user
in the system.
A system administrator can delete a user in the
system.
A system administrator can update a user in the
system.

Register Patient

Get Patient
Information

Get Information
from all Patients

Update Patient
Information

Register User
Delete User

Update User

Table II: Controllers implemented by the LEB prototype
intranet service.

Controller Entity Data Subjects
Access own patient data .
L GET /patients/:patientld DataiSubject !
Access patient data
2 GET /patients/:patientld Controller !
3 Access 100 patient data Controller 100

GET /patients/all

Table III: Controllers used for performance measurements.

B. Execution Time Overheads

We simulated traffic by generating 10.000 sample re-
quests sequentially for each one of the 3 controllers and
measuring the time required to return each response. For
each controller, we measured the total execution time of
the controller without importing RuleKeeper and the total
execution time of the controller with RuleKeeper, reporting
the arithmetic mean and 99th percentile. The execution time
does not include web page loading and rendering.

Table |[V| presents the execution time overheads and Fig-
ure [5] show our results, where the yellow bars represent the
controller execution time without RuleKeeper and blue bars
represent the controller execution time with RuleKeeper.

Controller Time RuleKeeper
(ms) Time (ms) Overhead
mean 9gth mean 9gth
#1 9.16 16.31 10.16 16.73 1.00 ms (9.84%)
#2 9.37 19.60 10.68 30.82 1.31 ms (12.27%)
#3 6273 145.14 69.47 159.82 6.47ms (9.70%)

Table IV: RuleKeeper overheads, sampled from the gener-
ated traffic.

Vanilla (ms) 62.7
[RuleKeeper (ms)

o
3

Latency (ms)
&

92 102 94 107

hY 2 3
o ones o ohes o ohes

Figure 5: RuleKeeper overhead for 3 controllers in the use
case application. Labels give the execution times.

On average, RuleKeeper overheads are low and likely
unnoticeable to web application users: 8-12%. As expected,
these are small client-perceived overheads. The overhead
does not change with the type of database operation
(read/update) since both types of requests pass through the
same hooks and the logic contained in the Database Update
hook produces a minimal overhead.

C. Operation Scalability

To evaluate RuleKeeper throughput under high load, we
used wrk2 to generate sample requests of the 3 controllers
and measured the maximum sustainable rate, i.e the max-
imum number of requests our server could respond to,
before it could no longer answer incoming requests within
a reasonable amount of time. We report the average oper-
ations/second, as observed in Figure @ where listed areas
represent the web application using RuleKeeper. In average,
RuleKeeper responds to 20-30% fewer requests, regardless
of the number of data subjects involved in the operation, but
with worse throughput when the entity performing the action
is not the data subject. Regarding the context of RuleKeeper
applications, the provided throughput is still very acceptable
to web application requests.

450

Controller 1 Controller 2 Controller 3

401

IS
8
3

371 %7
51 360

w
<
3

32

w
8
3

280
271 251

NN
S B
s 3
X

Throughput (reg/sec)
G
3
N

Number of Clients

Figure 6: Throughput measured using the pre-defined LEB
use case controllers.

D. Programming Effort

RuleKeeper prototype implementation is composed by the
RuleKeeper Middleware to be imported by the 3-tier web
applications, and the RuleKeeper Manager server. First, to
use the RuleKeeper middleware in a Node/Express 3-tier
application, the developer only needs to add 3 lines of
code: importing the RuleKeeper libraries and integrating
both the mongoose and express middlewares. It is also
mandatory to setup and boot the RuleKeeper Manager and
the RuleKeeper Manager database. So, the developer needs
to create the MongoDB database with an empty collection -
consent, import the code and define the mongodb database
url. Finally, the data model specified by the developer must
have, for each table that contains personal data, a column
that identifies the data owner to support the data ownership
mechanism.

VIII. CONCLUSIONS

In this thesis, we provided a detailed GDPR analysis to
fully understand the challenges of GDPR compliance in
information systems and presented a set of principles that
organizations must follow when managing their information
systems. Considering this set of principles and challenges,
we designed and implemented RuleKeeper, a novel web
application framework tailored to provide data security and
privacy protections according to GDPR-compliant policies.

10

RuleKeeper includes a declarative policy specification lan-
guage, GPSL, that allows to specify, in a non-ambiguous
way, the organization’s privacy policies, based on a novel
abstraction named Purposeful Data Objects. The PDO ab-
straction allows the application state modeling, covering
the required information to achieve GDPR-compliance and
supporting our GDPR analysis results. We collaborated with
LEB - Laboratérios Elisabete Barreto to perform a real-
world validation of our system, including the expressiveness
of GPSL policies. The experimental evaluation conducted
over RuleKeeper shows that the integration of RuleKeeper
in existing web applications only adds small client-perceived
overheads, while providing good application maintainability.

REFERENCES

The Member States, “Charter of Fundamental Rights of the European Union,”
Official Journal of the European Union, vol. C 326, October 2012.

, “Consolidated version of the Treaty on the Functioning of the European
Union,” Official Journal of the European Union, vol. C 326, October 2012.
The European Parliament and the Council of the European Union, “Regulation
(EU) 2016/679 of the European Parliament and of the Council of 27 April 2016
on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation),” Official Journal of the European Union,
vol. L 119, May 2015.

OWASP, “Top 10 - 2017: A3 sensitive data exposure,” https://www.owasp.org/
index.php/Top_10-2017_A3-Sensitive_Data_Exposure Accessed: 2020-12-10.

J. Mohan, M. Wasserman, and V. Chidambaram, “Analyzing GDPR compliance
through the lens of privacy policy,” CoRR, vol. abs/1906.12038, 2019.

T. Bertram, E. Bursztein, S. Caro, H. Chao, R. C. Feman, P. Fleischer,
A. Gustafsson, J. Hemerly, C. Hibbert, L. Invernizzi, L. K. Donnelly, J. Ketover,
J. Laefer, P. Nicholas, Y. Niu, H. Obhi, D. Price, A. Strait, K. Thomas, and
A. Verney, “Five years of the right to be forgotten,” in Proceedings of the
Conference on Computer and Communications Security, 2019.

A. Shah, V. Banakar, S. Shastri, M. Wasserman, and V. Chidambaram, “Analyz-
ing the impact of gdpr on storage systems,” in Proceedings of the 11th USENIX
Conference on Hot Topics in Storage and File Systems, ser. HotStorage’19.
USENIX Association, 2019.

S. Shastri, M. Wasserman, and V. Chidambaram, “The seven sins of personal-
data processing systems under gdpr,” in Proceedings of the 11th USENIX
Conference on Hot Topics in Cloud Computing, ser. HotCloud’19. USENIX
Association, 2019.

M. Schwarzkopf, E. Kohler, M. F. Kaashoek, and R. Morris, “Position: Gdpr
compliance by construction,” in Poly/DMAH@VLDB, 2019.

OASIS, “eXtensible Access Control Markup Language (XACML) version
3.0,” 2013, http://docs.oasisopen.org/xacml/3.0/xacml-3.0-core-spec-o0s-en.pdf]
Accessed: 2020-12-10.

C. Ardagna, L. Bussard, S. De, C. Vimercati, G. Neven, S. Paraboschi,
E. Pedrini, E.-S. Preiss, D. Raggett, P. Samarati, S. Trabelsi, and M. Verdicchio,
“Primelife policy language,” January 2009.

M. Azraoui, K. Elkhiyaoui, M. Onen, K. Bernsmed, A. S. De Oliveira,
and J. Sendor, “A-PPL: an accountability policy language,” in Data privacy
management, autonomous spontaneous security, and security assurance, 2014,
pp. 319-326.

C. N. C. Foundation, “Rego Policy Language,” 2019, https://www.
openpolicyagent.org/docs/latest/policy-language Accessed: 2020-12-07.

S. Chong, K. Vikram, and A. C. Myers, “Sif: Enforcing confidentiality and
integrity in web applications,” in Proceedings of USENIX Security Symposium
on USENIX Security Symposium, 2007, pp. 1-16.

J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers, “Fabric: A
platform for secure distributed computation and storage,” in Proceedings of the
ACM SIGOPS Symposium on Operating Systems Principles, 2009, pp. 321-334.
D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazieres, J. C. Mitchell, and
A. Russo, “Hails: Protecting data privacy in untrusted web applications,” in
Proceedings of the USENIX Conference on Operating Systems Design and
Implementation, 2012, pp. 47-60.

F. Wang, R. Ko, and J. Mickens, “Riverbed: Enforcing user-defined privacy con-
straints in distributed web services,” in Proceedings of the USENIX Conference
on Networked Systems Design and Implementation, 2019, pp. 615-629.

A. Mehta, E. Elnikety, K. Harvey, D. Garg, and P. Druschel, “Qapla: Policy
compliance for database-backed systems,” in 26th USENIX Security Symposium
(USENIX Security 17), 2017, pp. 1463-1479.

A. Bichhawat, M. Fredrikson, J. Yang, and A. Trehan, “Contextual and granular
policy enforcement in database-backed applications,” in Proceedings of the 15th
ACM Asia Conference on Computer and Communications Security, 2020, p.
432-444.

C. N. C. Foundation, “Open Policy Agent (OPA),” 2019, https://www.
openpolicyagent.org/ Accessed: 2020-12-07.

(1]
(2]
(3]

[4

[5

(6]

[7

[8

91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure
http://docs.oasisopen.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
https://www.openpolicyagent.org/docs/latest/policy-language
https://www.openpolicyagent.org/docs/latest/policy-language
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/

	Introduction
	Related Work
	Existing Research on GDPR Compliance
	Security Policy Specification Languages
	Policy Enforcement Systems for Web Applications

	GDPR Implications on System Design
	System Design
	Design Goals and Threat Model
	Architecture
	Purposeful Data Objects
	Application Development
	Policy Specification
	Core GPSL Primitives

	Policy Enforcement and Lifecycle

	Implementation
	Case Study
	GDPR support for health organizations
	Internal Process Analysis
	Prototype Implementation
	Portability Effort

	Evaluation
	Methodology and Metrics
	Execution Time Overheads
	Operation Scalability
	Programming Effort

	Conclusions

