Hard-state Protocol Independent Multicast — Source
Specific Multicast (HPIM-SSM)

Margarida Marques Simodes
margarida.simoes@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

January 2021

Abstract

In IP communications, multicast routing protocols provide an efficient way of distributing traffic from a
node to a group of nodes in the network. This is achieved through a distribution system usually formed
by one or more trees connecting the sources to the receivers through optimal paths. The main multicast
protocols and most used currently are from the PIM family which includes the PIM-DM, PIM-SM, and
PIM-SSM protocols. Due to their soft-state nature, PIM protocols suffer from slow convergence caused
essentially by their slow reaction to events and changes in the network.

In this MSc Dissertation we developed a hard-state version of PIM-SSM, designated by HPIM-SSM,
which overcomes several limitations of the current PIM-SSM protocol. We present the specification of
HPIM-SSM. The protocol was implemented in Python and tested in a network emulated environment.
The correctness of the specification was verified through model checking techniques using the Promela
language and SPIN tool. We compared the convergence time of HPIM-SSM and PIM-SSM by creating
and executing convergence time tests in both protocols. For this purpose we also implemented the PIM-
SSM protocol in Python. Our results show that HPIM-SSM has much better convergence performance
than PIM-SSM at the cost of some added stored information, making it suitable for high speed networks.

Keywords: IP Multicast; Multicast routing protocols; PIM; PIM-SSM

1. Introduction

Traditional IP communications support unicast
transmissions where a host sends packets to a sin-
gle host (one-to-one communications) and broad-
cast communications where a host sends packets
to all hosts connected to a specific subnet. IP multi-
cast communications allow a host to send IP pack-
ets to a subset of all hosts within the network. It
provides a distribution system, usually formed by
one or more trees for delivering multicast traffic
from sources to groups of interested hosts. For
applications that use group communication, e.g.,
videoconferencing, Internet TV distribution, stock
quotes exchanges, or distance learning, the utiliza-
tion of an IP multicast protocol is essential for effi-
cient management of the resources of the network
[14, 9, 15].

Currently, the main multicast routing protocols
of the Internet are PIM-DM [1], PIM-SM [3], and
PIM-SSM [3]. Between these three, the most pop-
ular among the telecommunication operators and
more widely used are the PIM sparse mode pro-
tocols: PIM-SM and PIM-SSM [6]. However, all
PIM protocols suffer from slow convergence due to
the slow reaction to events such as link failures, or

cost changes. These issues derive from the soft-
state nature of PIM protocols that rely on the peri-
odic transmission of control messages to keep the
state of routers updated. In addition, there may
be losses of the stored state in the routers, lead-
ing to network inconsistencies, unwanted removal
of trees, and subsequently tree rebuildings. This
can cause excessive network congestion and loss
of multicast data, a limiting factor for their deploy-
ment in high-speed networks. In previous work, a
hard state version of PIM-DM designated by HPIM-
DM [2] was developed. It keeps the main charac-
teristics of PIM-DM but has a better convergence
time, faster reconfiguration in the presence of net-
work failures or unicast route changes, and more
resilience to replay attacks.

In this work, we developed a hard-state version
of PIM-SSM, designated by HPIM-SSM. HPIM-
SSM has a much faster convergence than PIM-
SSM and guarantees that the trees built have op-
timal paths from the receivers to the source. The
tree states are stored in the routers and are only
removed or changed when a control message or
other specific event in the network happens. The
routers do not rely on timers to keep their states up-

dated or to transmit control messages. The trans-
mission of control messages is triggered by spe-
cific events and is immediate. HPIM-SSM also
overcomes some of the PIM issues, like the lack
of reliability and sequencing in the transmission of
messages. The HPIM-DM protocol has the same
guarantees.

The correctness of the specification was veri-
fied through model checking techniques using the
Promela language [12] and SPIN tool [13]. The
protocol was implemented in Python based on its
specification and its implementation was tested us-
ing NetKit-NG [5], a network emulated environ-
ment. PIM-SSM was also implemented in Python
and this implementation was used to perform con-
vergence time tests. These tests were also per-
formed in HPIM-SSM, which allowed us to com-
pare the convergence of both protocols regarding
a group of network events.

2. State of Art

In this section, we will describe some of the PIM
protocols, namely, PIM-DM, PIM-SM, PIM-SSM
and HPIM-DM.

2.1. PIM

The Protocol Independent Multicast (PIM) is not
dependent on a specific unicast routing protocol,
and it uses the information of the unicast routing
table to perform the RPF check and create distri-
bution trees. A router can only have one root in-
terface for any entry in the multicast routing table.
PIM routers do not send or receive routing updates,
which reduces the overhead significantly in the net-
work compared with other multicast routing proto-
cols like DVMRP. PIM has two modes of operation:
sparse mode (PIM-SM and PIM-SSM) and dense
mode (PIM-DM).

PIM-DM [1] is meant for dense networks since
it assumes that all subnets in the network have
hosts interested in receiving multicast traffic. It
uses source trees to distribute multicast traffic
to the hosts, and these trees are built using a
flood-and-prune behavior.

PIM-SM and PIM-SSM are meant for sparse
networks and work with a completely different
strategy of PIM-DM. Trees are built from the
bottom to the top and is the interest of the hosts
that triggers this process. Routers explicitly re-
quest to receive multicast traffic using PIM Join
messages that are sent towards the root of the
tree. In PIM-SM, a shared tree is used to distribute
multicast traffic to the receivers. The root of a
shared tree is the RP. There is a shared tree
for each active multicast group in the network.
Sources must register with the RP to notify it
that they are active through a source registration

process. Then they can start transmitting multicast
traffic to the RP that forwards it downwards the
shared tree. PIM-SM enables a last-hop router
to switch from the shared to the source tree
for a specific source through the source tree
switchover process. For each pair (S, G), a dif-
ferent source tree is built having as root the source.

2.2. PIM-SM and PIM-SSM issues

Lack of protection in control messages One of
the problems in PIM is the absence of protection
in some control messages. The routers do not
know if the messages they sent are delivered to
the intended receivers, given that messages can
be lost in the network. We present now an example
showing the possible consequences of the lack of
protection of Join messages in the Prune Override
Mechanism. PIM routers expect to receive over-
riding Joins from downstream neighbors that wish
to continue receiving traffic in response to a Prune
sent by other neighbors in the link. If overriding
Join messages are lost or delayed in the network,
and the AW does not receive these messages be-
fore the Prune override timer times out, it goes to
the Nolnfo state and the traffic ceases to be trans-
mitted on the link while one or more routers are still
interested in receiving it.

Lack of message ordering guarantee Besides
the lack of protection in control messages, there
is also no guarantee that the transmission order is
preserved. If a downstream router sends a Prune
to the AW and then sends a Join, but the Prune
is the last one to arrive, the AW is pruned, and
the router stops receiving traffic despite still be-
ing interested. If the opposite occurs, the router
sends first a Join and then a Prune, but the mes-
sages are received in the inverse order, the AW
will keep forwarding traffic with no downstream in-
terested routers.

Slow Tree Reconfiguration When an event that
causes a tree reconfiguration occurs, e.g. the
RPC changing in a router, the reconfiguration of
the tree may only happen through the periodic re-
construction of the tree (which can take 3 min-
utes) or through the reception of periodic mes-
sages (around 1 minute). During this time, the tree
may not have the best configuration making multi-
cast traffic not being forwarded through the optimal
paths between routers and the source.

Designated Routers on shared links The DR
in a shared link is the router responsible for send-
ing Prune and Joins messages on behalf of hosts.
The DR is the router with the highest IP address
at the link and not the one with the shortest path
to the root node. If a host in a shared link joins
a multicast group, a path will be installed between
the DR of the link and the root node, to deliver the

multicast traffic to the interested host. If the DR
is not the router in the link with the shortest path to
the source, the path installed will not be the optimal
one.

2.3. HPIM-DM

HPIM-DM (Hard-state Protocol Independent Multi-
cast - Dense Mode) is a hard-state version of PIM-
DM that was developed on a previous MSc Dis-
sertation [2]. Like PIM-DM, it is meant for dense
networks, and it is IP routing protocol-independent.
One main difference from PIM-DM is that routers
maintain knowledge of the existing multicast trees
at all times by keeping information about all up-
stream routers from which multicast traffic can be
received. Another difference is the implementation
of a synchronization process that allows a router
joining the network to immediately learn which
trees are active and thus start receiving multicast
traffic if interested.

3. HPIM-SSM Specification

HPIM-SSM (Hard-state Protocol Independent Mul-
ticast — Source Specific Multicast) multicast routing
protocol is a hard-state version of PIM-SSM meant
for sparse networks, that aims to react faster to net-
work changes, and have better resilience to replay
attacks and reliability in the transmission of control
messages. In section 2.2.4 we presented some
issues of the PIM-SM/PIM-SSM protocols that we
propose to solve or at least minimize. In the spec-
ification, we will discuss the type of control mes-
sages, and the states needed to be stored in the
routers. Besides the tree maintenance, we will
cover the synchronization process and the reliabil-
ity and sequencing of the messages.

3.1. Protocol Overview

Before entering into the details of the protocol,
we present an overview of its main concepts and
ideas. As PIM-SSM, HPIM-SSM is an IP multicast
routing protocol that relies on a unicast routing
protocol to perform the RPF checks. The creation
of trees is also triggered by hosts manifesting
interest in a specific source and group using
the IGMPv3/MLDv2 protocols. With a hard-state
version of PIM-SSM, we ensure a faster con-
vergence of the protocol and eliminate the need
of periodic transmission of Join messages, the
periodic reconstruction of trees, and the delays
caused by timers. To built a hard-state version we
need to ensure that control messages are received
and processed in the correct order in each router.
Like PIM-SSM, HPIM-SSM uses the Join/Prune
messages to create the source trees and the
Assert to elect a single forwarder in each link,
which is also responsible for sending the interest
upwards. In HPIM-SSM, the Assert is triggered

=lm
0

(s1,6)
Source

Figure 1: HPIM-SSM Overview

by the arrival of interest at a link and this interest
can be of routers or hosts. With this, we avoid
the need for the DRs and all the problems that
PIM-SM/PIM-SSM suffer from the relation of the
DR with the Assert (explained in section 2.2.3.A).
An interface can only forward and send interest
upwards if it is in the AW state, and in every link, an
AW must be elected. In the presence of interest,
the non-root interfaces can be AWs and the root
interfaces can become non-root, and therefore,
potential AWs. Given that, all interfaces need to
store the interest and the RPC of their neighbors.
Due to the hard-state nature of the protocol,
when a router joins the network it is necessary a
synchronization process with its neighbors so it
can learn information about the existent trees in
the network.

Figure 1 illustrates the main concepts of the
protocol described above. It shows a network sce-
nario where initially R1, R3, and R4 are running
HPIM-SSM and both Receivers are interested in
(S1, G) multicast traffic. R4 has a better RPC than
R3. When the receivers manifest their interest,
R3, and R4 save it, the Assert is triggered, and R4
is elected AW since it has better RPC. R4 sends
the interest to its next hop router’in the unicast
routing table for the source S1. When R1 receives
the interest, saves it, and becomes AW. It does
not send the interest upwards since it is directly
connected to the source. The orange arrows
represent the tree created and the path used to
forward the (S1, G) traffic from the source to the
receivers. After the tree being created, R2 starts
the HPIM-SSM protocol and synchronizes with its
neighbors (R4 and R1) to learn information about
the active trees in the network. Each purple arrow
represents the synchronization process between
two neighbors.

In section 3.2 we explain the Hello protocol, in
section 3.3 the concepts of creating and maintain-
ing trees, and in section 3.4 and 3.5 the interest
and assert state machines respectively. Section
3.6 covers the removal of tree state, section 3.7
the installation and removal of a tree in the net-
work, and section 3.8 the synchronization process
and the information that needs to be exchanged

initially. In section 3.9 is covered the message se-
quencing and reliability mechanisms and in section
3.11 the message’s format. Finally, in section 3.11
is covered the existence of loops in the HPIM-SSM
protocol.

3.2. Hello Protocol

The Hello protocol in HPIM-SSM is the same as in
HPIM-DM and its description can be accessed on
the folder "docs” of the GitHub repository [7].

3.3. Tree Formation and Maintenance Concepts

Two types of messages are used in the tree forma-
tion and maintenance procedure: (i) Assert mes-
sages used in all links to elect the AW and (ii)
Join/Prune messages to inform neighbors about
the interest of a router in joining or leaving an (S, G)
source tree. Assert, Join, and Prune messages are
multicasted between neighbors (link-local scope).
When a router receives a notification of interest
on a non-root interface and the interface becomes
AW, it propagates the interest towards the source
of the tree. A router will indefinitely consider a
downstream neighbor being interested until it ad-
vertises otherwise. A tree is removed when there
are no interested receivers left for the correspond-
ing source by the transmission of Prune messages
towards the source.

3.4. HPIM-SSM Interest

The interest/no interest of the hosts triggers
the creation/removal of the trees. Interfaces
know if there are any hosts interested with the
IGMPv3/MLDv2 protocol. The creation/removal
of trees is done by sending Join/Prune messages
upwards until reaching a router directly connected
to the source. The Join message indicates to
the receiving router that the sending router is
interested in receiving multicast traffic from a
specific (S, G) tree, and the Prune message
indicates the opposite. When an interface receives
a Join (S, G) message from a neighbor, it stores
the interest of the neighbor in receiving multicast
traffic from the (S, G) tree. This information is only
removed upon the reception of a Prune (S, G)
message from the same neighbor. Routers send
Join/Prune messages when there is a change in
their interest state. Both Join and Prune messages
are multicasted through root interfaces and include
the IP address of the source (S) and the multicast
group (G).

Root interfaces receive multicast traffic accord-
ing to the interest state of the router, and non-root
interfaces transmit the multicast traffic according to
their forwarding state. The interest state of a router
depends on the forwarding state of its non-root in-
terfaces. The forwarding state of a non-root inter-

face depends on its Assert state. The Assert states
will be detailed in section 3.2.5. For now, we will
only mention the AW state, already covered in the
description of the other PIM protocols. The defini-
tion of these states is:

* A non-root interface can be in two states re-
garding the downstream interest on an (S, G)
tree: DOWNSTREAM INTERESTED (DI) or NOT
DOWNSTREAM INTERESTED (NDI). It is in the
DOWNSTREAM INTERESTED state if it is con-
nected to at least one interested neighbor or host
and in the NOT DOWNSTREAM INTERESTED
state otherwise.

* A non-root interface can be in two states re-
garding the forwarding state on an (S, G) tree:
FORWARDING or PRUNED. The forwarding state
of a non-root interface depends on its Assert state.
It is FORWARDING if it is the AW and is PRUNED
otherwise.

* A router can be in two states regarding the
interest on an (S, G) tree: INTERESTED (l) or
NOT INTERESTED (NI). A router is INTERESTED
if it has at least one non-root interface in the
FORWARDING state and is NOT INTERESTED
otherwise.

3.5. HPIM-SSM Assert

The Assert is used in point-to-point and shared
links to elect an AW. The AW is the router respon-
sible for forwarding the traffic to the link as well
as propagating the interest towards the source.
Without the election of the AW, if a downstream
router sent a Join message to a shared link, every
router would receive it and propagate this interest
towards the root of the tree, creating parallel paths
and duplication of traffic.

The AW is the non-root interface connected to
the link that has the lowest RPC value to the source
(in case of a tie, the interface with the highest IP ad-
dress wins), thereby assuring the creation of an op-
timal path between the hosts and the source. The
Assert message is used to elect the AW of a link
for a specific source and group and contains the
RPC of the sending router to the multicast source.
It is multicasted through non-root interfaces and in-
cludes the IP address of the source and multicast
group. The Assert process developed has the fol-
lowing properties:

* It has 2 states: Assert Winner(AW) and Assert
Loser(AL)

* Only the non-root interfaces have Assert state
regarding an (S, G) tree

* A non-root interface in the DOWNSTREAM IN-
TERESTED state can be in the AW or AL state

* A non-root interface in the NOT DOWN-
STREAM INTERESTED state is always in the AL

Saves interest of
R1and sends
Assert with RPC

Saves interest of
R1and sends
Assert with RPC

R3 R4
RL
R2

Figure 2: Interest and Assert

R1

state

Relation Interest-Assert and Stored States

The AW must have updated interest information
to decide if it can remain AW and act as the link for-
warder. The interest information sent by a neighbor
must always be stored by the receiving interface ir-
respective of the current interface type and state
(root, non-root, AW, AL) since any interface can
become an AW. The AW election is triggered by
the arrival of a Join message or interested hosts.
Therefore, when the AW is elected it already has
interest information. There is then a coupling be-
tween the interest and assert states.

Initially, all non-root interfaces in the link in the DI
state consider themselves being the AW and trans-
mit an Assert message containing the RPC of their
routers. The root interfaces can not have Assert
state and so, do not send an Assert message. If
a non-root interface receives interest for some tree
(S, G) but has no route on its unicast routing ta-
ble for the source S it sends an Assert message
with infinite cost. All interfaces in the link (root and
non-root) receive the Assert messages and save
the RPC contained in them. The non-root inter-
faces will then use the RPCs stored to elect an AW.
The root interfaces do not have an Assert state, but
save the RPCs because they can become non-root
interfaces and, therefore, potential AWs.

Figures 2 and 3 show the trigger of the Assert
and the Assert messages exchanged when R1
multicasts a Join message to the shared link. In
both figures, R1 and R2 are connected to the link
through a root interface and R3 and R4 through a
non-root interface. All interfaces save the interest
of R1 and the non-root interfaces of R3 and R4
send an Assert message with their RPC. All
interfaces save the RPCs included in the Assert
messages and the non-root interfaces of R3 and
R4 elect an AW.

If there is a change of the RPC (without interface
role change) in a non-root interface in the DI state
(AW or AL), that interface has to send an Assert
with its new RPC. Even if another router is elected
AW, no additional messages need to be transmit-
ted because interfaces know the more updated

Saves RPC of all
neighbors and
elects AW

Saves RPC of all
neighbors and
elects AW

Assert Assert @

R3 R4
Saves RPC of all Saves RPC of all
neighbors @ @ neighbors
R2 R1

Figure 3: Assert process

RPC of each other. If at a given moment there are
no interested neighbors or hosts left for a specific
(S, G) tree, the non-root interfaces will change
from the DI to the NDI state and send an Assert
Cancel message. An Assert Cancel consists of
an Assert message but instead of containing the
RPC of the router, it contains a predefined value
(very high value), that acts as an infinite metric. It
is used to alert the neighbors, the router can no
longer be the one responsible for forwarding data
in the link and its RPC can be removed. When an
interface receives the Assert Cancel, it removes
the RPC of the neighbor that sent the message.
The other events that trigger the transmission of
Assert Cancel messages are when an interface in
the DI state (in the AW or AL state) becomes root
or is removed.

Initially, it was considered in our specification
and implementation of HPIM-SSM an Assert simi-
lar to the one of PIM-SM/PIM-SSM protocols. This
Assert had the same four properties mentioned
above but routers only stored who the AW was and
its RPC. The number of Assert messages needed
to be transmitted was higher. We then identified
some scenarios where different routers disagreed
on who the AW was, although only one router con-
sidered itself the AW. We then developed a new
Assert, the one we just described, that shows to
be more efficient (less transmission of messages)
and correct and with a simpler state machine.

3.6. Removal of tree state

The removal of the tree state is important, other-
wise, routers would maintain indefinitely their mul-
ticast routing tables referring to (S, G) trees that do
not exist anymore in the network. This state would
only be removed by restarting the HPIM-SSM pro-
tocol in the routers. Removing the tree state is re-
moving the entry in the multicast routing table re-
garding the (S, G) tree, including all downstream
and the upstream interfaces associated with it. A
router can remove the state regarding an (S, Q)
tree when all downstream interfaces are in the NDI
state regarding that tree, and no assert informa-
tion is stored. An interface has no assert informa-
tion when no RPCs are stored of any neighbor. An
interface removes the RPC of a neighbor when it

receives an Assert Cancel message from it, when
the neighbor fails, or when its Boot Time changes.

3.7. Installing and removing a tree

When a non-root interface receives the interest of
a host or router referring to a new tree, it becomes
DOWNSTREAM INTERESTED for that (S, G) tree.
This will trigger the Assert, and if the interface be-
comes the AW, it changes to the FORWARDING
state. The router then changes to the INTER-
ESTED state since it has a non-root interface in
the FORWARDING state and sends a Join (S, G)
message through its root interface. The Join mes-
sage will be received by the upstream routers, and
the process is repeated until it reaches the first-hop
routers. When a first-hop router is in the INTER-
ESTED state, and the source is active, traffic is for-
warded down the tree by the routers in the INTER-
ESTED state until it reaches the interested hosts.
Tree removal or pruning follows the same logic.
When all non-root interfaces of the last-hop routers
do not have any more hosts interested in receiv-
ing multicast traffic for a specific tree, they become
NOT DOWNSTREAM INTERESTED, change to
the NI state, and consequently to the PRUNED
state. The routers then change to the NOT INTER-
ESTED state since they no longer have non-root
interfaces in the FORWARDING state and send a
Prune (S, G) message through their root interfaces.
The Prune message will be received by the up-
stream routers, and the process is repeated until
it reaches the first-hop routers. When all routers
are in the NOT INTERESTED state, it means that
no hosts in the network are interested in receiving
the multicast traffic for that source and the traffic is
no longer forwarded.

3.8. Synchronization

Similarly to HPIM-DM, during the synchronization
process, a new router learns information from its
neighbors that allow it to integrate in the network
correctly. In our case, since Join messages are
not sent periodically, and the formation of the tree,
as well as the Assert, is triggered by them, the
new router must receive the equivalent of the in-
formation contained in the Join messages previ-
ously sent in the link, i.e. learn for which trees
the routers connected to the link through a root
interface (downstream routers of the link) are in
the INTERESTED state. The new router must also
learn the RPC of the routers that are connected to
the link through a non-root interface in the DOWN-
STREAM INTERESTED state since these routers
sent an Assert with their RPC previously to the
link. All routers in the link are already storing these
RPCs to later perform an AW election locally when
triggered. Remember that the local AW election
does not trigger the transmission of Asserts even

for the router that became AW.

The process that assures the consistency of syn-
chronization and the synchronization protocol in
HPIM-SSM is the same as in HPIM-DM and its de-
scription can be accessed on the folder "docs” of
the GitHub repository [7].

3.9. Message Sequencing and Message Reliability
The message sequencing and message reliability
mechanisms are similar to the ones used in HPIM-
DM and its description can be accessed on the
folder "docs” of the GitHub repository [7].

3.10. Message Format

We present below the format of the protocol header
that all control messages include as well as the
specific fields of each one of the control messages.
The format of all the control messages (including
this protocol header) used in our implementation is
identical to the ones used in HPIM-DM and can be
accessed on the GitHub Repository [7] in the folder
“docs/HPIMStateMachines.pdf”.

Protocol Header The packet of all control mes-
sages includes this header that contains the follow-
ing fields: BootTime, Version, Type, Security Iden-
tifier, Security Length, and Security Value. The
definition of all fields except the Type is equal to
the HPIM-DM protocol. The field Type determines
the control message that is being transmitted and
can have the following values: 1-Hello; 2-Sync; 3-
Assert; 4-Join; 5-Prune; 6-Ack.

Hello, Assert, Join/Prune, ACK The Hello and
ACK message’s format is equal to the ones of
HPIM-DM. The format of the Assert message in-
cluding the definition of the fields is equal to the
lamUpstream message of HPIM-DM. The Join and
Prune messages have the same format in HPIM-
SSM, having as the only difference the message’s
type at the Protocol Header. Besides, this format
is equal to the Interest messages’ format of HPIM-
DM.

Sync The Sync messages format is similar to
the one of HPIM-DM. All fields are the same except
the Sync Entry field. In HPIM-SSM, the Sync En-
try field can have two different formats, depending
on the information being exchanged. During the
synchronization process, interest and assert infor-
mation can be exchanged. To distinguish between
these two types of information, every Sync Entry
field includes an Identifier, that can have the value
0 or 1 if interest or assert is being exchanged re-
spectively. When interest is being exchanged, the
Sync Entry field has the following subfields: the
Identifier, the Tree Source IP, and the Tree Group
IP. When assert is being exchanged, the Sync En-
try field has the following subfields: the Identifier,
the Tree Source IP, the Tree Group IP, the RPC,
and the RPC Preference. The RPC Preference is

Figure 4: HPIM-SSM Loop Network

the preference value associated with the unicast
protocol that provides the route to the source and
the RPC is the cost to the source. For both cases,
the Tree Source IP and Tree Group IP represent
the IP of the source and IP of the multicast group
of a certain tree (S, G).

Initially, it was considered another format for the
Sync Entry field of the Sync messages that showed
to be not correct in a specific scenario. In our im-
plementation, the Sync Entry field has not been up-
dated yet to the new format.

3.11. Existence of loops in HPIM-SSM

It can happen in a network with routers running
HPIM-SSM, the creation of a loop. By loop,
we mean that routers store tree state indefinitely,
which can only be removed by restarting the proto-
col. A loop can only happen when the routers are
running different unicast protocols. Figure 4 is an
example of a network scenario that would create a
loop. Every router except router B is running OSPF
as the unicast routing protocol. Router B has a
static route configured to D. Each router has a root
and a non-root interface. The interfaces i0 are root
and the interfaces i1 are non-root. Router D is noti-
fied that the receiver is interested in receiving mul-
ticast traffic from a certain (S, G) tree and sends a
Join message through its root interface. Router C
does the same and the Join is multicasted in the
shared link triggering the Assert. Because router
B has the static route, it wins the Assert. It sends
a Join through its root interface (to router D), creat-
ing a loop. Router D does not send a Join message
again because it was already in the INTERESTED
state for that tree. If the source starts transmitting,
the traffic will not reach the receiver since router A
is not part of the tree.

This loop is a consequence of the obligation of
an Assert process to decide who forwards traffic
to the link and send Joins upwards. In fact, a
router can be elected AW without being the next-
hop router of any downstream neighbor in the link.
In this example, the next-hop router of router C is
router A and not router B.

4. HPIM-SSM Correctness Tests

We developed a model in the Promela language
that was tested with the SPIN tool [13] to verify
the correctness of the HPIM-SSM protocol speci-
fication. More precisely, we wanted to prove that

the state machines of the HPIM-SSM protocol are
correct, so that regardless of the events that occur
in the network and their order, the routers always
converge to the correct state.

We modeled the assert and interest state ma-
chines in a single model to verify the correctness
of each one as well as the combination of the two.
The two state machines are highly linked, since the
interest triggers the assert and the forwarding state
of an interface depends on the assert and interest
states. We did not model the synchronization pro-
cess since it was already tested in a previous work
(correctness of the HPIM-DM protocol [2]) and the
process is the same in both protocols, having as
only difference the type of information exchanged
in the Sync messages.

The code developed and used in this verification
can be accessed in our GitHub repository [10] in
the branch “Promela”.

5. Protocol Implementations

In this section, we address the implementation of
the HPIM-SSM and PIM-SSM protocols. Both pro-
tocols were implemented in Python3 and made to
run in systems with the Linux operating system.
Using Linux has several advantages, namely, the
possibility of changing the multicast routing table
and define the root and non-root interfaces for each
multicast tree. We chose Python because it is a
high-level language that allows us to abstract from
the machine language. It has available high-level
functions that implement multicast and network-
ing operations that in other languages it would be
much harder to implement and possibly with sev-
eral limitations. Python has good readability and
offers good documentation. It is an object-oriented
language and that allowed us to build an imple-
mentation based on classes. Each class includes
a set of methods and variables that perform very
well-defined functions in the operation of the pro-
tocol. Classes are connected by association or in-
heritance.

The implementation of the HPIM-SSM and PIM-
SSM protocols was based on the HPIM-DM [7] and
PIM-DM [8] implementations respectively. The PIM-
DM implementation is part of the previous work
that developed the HPIM-DM protocol. The struc-
ture of the protocols, including the classes and their
methods, is equivalent to the one of PIM-DM and
HPIM-DM protocols and the state machines were
adapted to the new protocols.

HPIM-SSM
The implementation of the HPIM-SSM protocol
was made according to its specification (section 3)
and can be accessed in our GitHub repository [10].
It has the goal to demonstrate that the specifica-

tion, our principle, is feasible and can function in
real environments. Moreover, it would be not pos-
sible to perform the convergence time tests, that
contribute to the convergence time analysis of the
protocols, without an implementation. The IGMPv3
protocol was not implemented. Although the hosts
must manifest their interest, all the other protocol
functionalities could be implemented and tested,
not being dependent on the IGMPv3.

PIM-SSM
The implementation of the PIM-SSM protocol was
made according to the RFC7761 [3] and can be
accessed in our GitHub repository [11]. The imple-
mentation was needed to perform the convergence
time tests, and compare the times obtained with
the ones of the HPIM-SSM protocol.

Due to the short time, we do not implement
the designated router functions mentioned in the
RFC7761. For the tests we performed and the
events to which the time analysis was made, the
designated routers’ operations were not necessary
to be implemented.

6. HPIM-SSM implementation tests

To verify that the protocol was implemented cor-
rectly we developed some tests in Python. We
used the NetKit-NG software to perform the tests
since it emulates a network environment and cre-
ates virtual machines. The routers need to run a
unicast routing protocol. We chose the OSPF pro-
tocol which is being executed with Quagga[4].

All these tests were performed with the imple-
mentation of the protocol having the old assert.
The synchronization process and its mechanisms
are the same but the information being exchanged
in the Sync messages was different (only interest
information was exchanged). The final assert and
the update of the information being exchanged
in Sync messages were developed after and no
extensive implementation tests were made due to
the short time. Nevertheless, the correctness of
the assert and its relation with the interest was
verified with model checking techniques (section
4). The new Assert implementation, as well as the
PIM-SSM implementation, were tested and cor-
rected during the development of the convergence
time tests.

Apart from the network with the routers running
the HPIM-SSM protocol we created a management
network consisting of a central node (a router) con-
nected to all other routers through point-to-point
links (each one in a different subnet). This cen-
tral node received logs from all routers contain-
ing the transmission and reception of control mes-
sages, as well as the state changes (assert, inter-
est, neighborhood). All these events were regis-

Pruning the tree when last
interested neighbor becomes not
interested

=3 sec. (without Prune loss) Immediate

[150, 210] sec. (with Prune loss)
=60 sec.

=2 sec
Router gains interest with Join %2 sec
loss
Neighbor becomes not
interested, but router is still
interested
Router joins the network
AW loses its role due to RPC
increase

AW loses its role by becoming
root and Assert Cancel is lost
Join/Prune arrive out of order

< 2.5 sec. (without Join loss)
Immediate
[3, 5.5] sec. (with Join loss)
<180 sec.
<180 sec.

Immediate
Immediate

<180 sec. =2 sec

<210 sec. (if Join is last) Immediate

< 60 sec. (if Prune is last)

Figure 5: Convergence time values

tered in the logs with an associated time. To en-
sure all routers were synchronized we configured
the NTP (Network Time Protocol) with the cen-
tral node being the server and all other nodes the
clients. We tested the synchronization with and
without trees, the creation and removal of trees,
and the forwarding of multicast data with an ac-
tive source. Each one of this group of tests was
performed in an automated way.

7. Protocols convergence time and stored state
7.1. Convergence time
In this section, we compare the convergence time
of the HPIM-SSM and PIM-SSM protocols. There
were identified some events where the perfor-
mance of the protocols is significantly different. We
study the behavior of the protocols regarding each
of the events by comparing the time they took to
converge to the correct state. We address the
theoretical convergence time values of both proto-
cols regarding the events defined and we discuss
the convergence time tests performed in protocol
implementations to obtain practical values for the
convergence time.

Convergence time: theoretical values
For each event, we calculated the theoretical up-
per limits of the time the protocols would take to
converge to the correct final states. This informa-
tion is summarized in Figure 5. The upper limits
were calculated based on the RFC7761 [3] for PIM-
SSM and based on our specification (section 3) for
HPIM-SSM. We can easily observe that for HPIM-
SSM all these events have almost an immediate
reaction while in PIM-SSM values as high as 210
seconds can be reached. Although in the HPIM-
SSM protocol messages can also be lost, the reli-
ability of message transmissions ensures very fast
recovery and convergence of the protocol. In the
events with message loss, for the theoretical and
practical values, we assumed only the first mes-
sage was lost.

Convergence time: practical values
For the first three events of last section, we re-
inforced our confidence in the theoretical values
obtained by performing convergence time tests.

We did not perform these tests for the rest of the
events due to their implementation complexity and
not having the IGMPv3 implementation

We used the implementations of the HPIM-
SSM and PIM-SSM protocols to perform the tests.
These tests simulate the events previously de-
scribed, by creating an initial scenario in the net-
work, triggering the event, and then measuring the
time for the routers to converge to the correct final
states. All the tests implemented can be accessed
in our GitHub repositories: [11] for PIM-SSM and
[10] for HPIM-SSM.

Similarly to the implementation tests of HPIM-
SSM described in section 6, we created a manage-
ment network, with a central node connected to ev-
ery router by a point-to-point link. The central node
received logs from all routers containing all state
changes and reception/transmission of messages.
All these events were registered in the logs with
a time associated. All routers had the NTP pro-
tocol configured. They were the NTP clients and
the central node the NTP server. For the conver-
gence time tests, is very important that all routers
are synchronized in time, and with the NTP we as-
sured that. The convergence times were calcu-
lated from the logs, by seeing the time difference
between the initial and final state of routers. The
results obtained were in accordance with the theo-
retical values presented in Figure 5.

7.2. Stored State

In section 7.1, we compared the time PIM-SSM
and HPIM-SSM take to converge and conclude the
HPIM-SSM has much faster convergence and re-
action to network events. In this section, we com-
pare the amount of information that needs to be
stored at the routers for both protocols. It is clear
that HPIM-SSM requires more stare information
but less timers than PIM-SSM.

HPIM-SSM needs to store more state informa-
tion regarding each neighbor than PIM-SSM. The
sequencing and reliability of messages mecha-
nisms, as well as the synchronization process,
need to use several sequence numbers and some
timers. All interfaces have to store tree state in-
formation regarding the neighbors i.e. assert and
interest information. An interface has to store for
each neighbor, tree state (its RPC and interest)
and the synchronization state (UNKNOWN, MAS-
TER, SLAVE, SYNCED). It also has to store se-
quence numbers regarding each neighbor that in-
clude the BootTime, the neighborSN, the Check-
pointSN, the SyncSN, and the SnapshotSN. An in-
terface with at least one neighbor needs to store
its BootTime, interfaceSN, Hello Timer, and who
its neighbors are. All interfaces need to store
their type (root or non-root), and state regarding

the ACK-protection mechanism (Retransmission
Timer and pending acknowledgments). Regarding
atree (S, G), each interface saves its Assert, down-
stream interest and forwarding state. It also has
to store state regarding the IGMP/MLD protocols
to know if any local hosts are interested. Finally,
each router needs to save the source and multi-
cast group IP addresses of each existent tree, as
well as its RPC and interest state (INTERESTED
or NOT INTERESTED).

PIM-SSM does not store so many state informa-
tion but uses more timers than HPIM-SSM. The
Hello and Neighbor Liveness Timers are used by
both protocols but PIM-SSM needs to use addi-
tional timers to control the Assert, the forward-
ing state of an interface and the pruning of links.
PIM-SSM uses the following timers: Assert Timer,
Prune Pending Timer, Join Timer, Override Timer,
Expiry Timer, Hello Timer and Neighbor Liveness
Timer. Regarding sequence numbers, each inter-
face only needs to store the generation ID of each
neighbor. Regarding the interest information, PIM-
SSM needs to store the downstream state of non-
root interfaces, but does not need to store this inter-
est in root interfaces like it happens in HPIM-SSM.
Regarding the Assert information, it needs to be
stored in all interfaces who the AW is and the inter-
face Assert state. Contrarily of HPIM-SSM, PIM-
SSM only needs to store the RPC of the AW and
not of all neighbors. Finally, the upstream state of
the router (Joined or not Joined) has to be stored.

8. Conclusions

IP Multicast routing is essential for group communi-
cation applications since it helps saving network re-
sources, being much more efficient and adequate
than unicast or broadcast. PIM is one of the main
multicast routing protocols with the sparse-mode
protocols PIM-SM and PIM-SSM being the most
popular and widely used. lts deployment is grow-
ing, and so, clients expect reduced traffic loss and
fast convergence. Improvements made to the cur-
rent protocol will lead to better performance and
better service delivered by IP multicast applica-
tions. That is the motivation for our work. Some
major limitations of the PIM protocols are slow con-
vergence, slow tree reconfiguration, and network
overhead caused by the periodic transmission of
control messages and rebuild of the trees. There
is also a lack of protection and ordering guaran-
tees in the control messages. More specifically, in
PIM-SSM since the trees are built from the bottom
to the top and the DR can be the router not hav-
ing the best RPC to the source, while the Assert
is not triggered, the tree will not have the optimal
path from the source to the interested hosts. It can
happen that the assert is never triggered, or in the

case that is triggered, it can happen a periodic re-
construction of the tree which creates instability in
the network.

We developed a hard-state version of PIM-SSM,
designated by HPIM-SSM, that has faster conver-
gence and reacts to network changes almost im-
mediately. These network changes are, for exam-
ple, the appearance of a new router in the net-
work, change in interface costs, change of inter-
face roles, or rebuild of the tree due to change of
interest in a router. Trees are built from the bot-
tom to the top with an optimal path from the inter-
ested hosts to the source. In HPIM-SSM, the As-
sert is triggered by the interest and elects an AW
in all links, as the interest is propagated towards
the source. This ensures the creation of a tree
with an optimal path from the hosts to the source
and eliminates the need for the DRs. HPIM-SSM
ensures that control messages are processed in
the order they were transmitted and ensures the
messages are received by all routers that should,
due to a message sequencing and message reli-
ability mechanism, respectively. Due to its hard-
state nature, there is no periodic transmission of
messages or periodic reconstruction of the trees.
This reduces considerably the number of control
messages transmitted in the network and reduces
the data packets that could potentially be lost dur-
ing these reconfigurations, contributing to reduced
network overhead.

In this report, we presented a specification of the
HPIM-SSM protocol that was then verified through
model checking techniques. This verification is im-
portant to ensure that regardless of the network
events happening in the network, or the order in
which the routers in a link receive a certain con-
trol message, the assert and interest machines are
always respected and that the routers always con-
verge to the correct states. It was also verified the
correctness in the interaction between the assert
and interest state machines. The protocol was im-
plemented in Python, based on the specification of
HPIM-SSM, and tested using a network emulated
environment. To compare the convergence time of
the HPIM-SSM with PIM-SSM, it was also imple-
mented in Python the PIM-SSM protocol. To evalu-
ate our protocol and compare its convergence with
the PIM-SSM protocol, we developed a set of con-
vergence tests that were performed in our imple-
mentations of HPIM-SSM and PIM-SSM. The re-
sults obtained show that, for the events studied, the
HPIM-SSM protocol has much faster convergence
than PIM-SSM and the reaction is almost immedi-
ate. Also, significant time differences were noticed
in the tests with loss of control messages, having
HPIM-SSM a much better performance due to the
reliable message transmission mechanism.

10

References
[1] A. Adams, J. Nicholas, and W. Siadak. Proto-
col independent multicast - dense mode (pim-
dm): Protocol specification (revised). RFC
3973, RFC Editor, January 2005.

Pedro Francisco Carmelo de Oliveira. Robust
multicast routing protocol. Technical report,
October 2018.

B. Fenner, M. Handley, H. Holbrook, I. Kou-
velas, R. Parekh, Z. Zhang, and L. Zheng.
Protocol independent multicast - sparse mode
(pim-sm): Protocol specification (revised).
STD 83, RFC Editor, March 2016.

(2]

(3]

[4] Paul Jakma. Quagga routing suite.
https://www.quagga.net/. Last accessed
20 May 2020.

[5] Netkit-NG. Netkit-ng homepage.

https://netkit-ng.github.io/.
20 December 2019.

Wendell Odom, Jim Geier, and Naren
Mehta. CCIE Routing and Switching Official
Exam Certification Guide (Exam Certification
Guide). Cisco Press, 2006.

Last accessed

(6]

[7]1 P. Oliveira. Hpim-dm implementation.
https://github.com/pedrofran12/hpim_dm.git.

Last accessed 20 December 2020.

[8] P. OQliveira. Pim-dm implementation.
https://github.com/pedrofran12/pim_dm.git.

Last accessed 20 December 2020.

[9] Eric Rosenberg. A Primer of Multicast Rout-
ing. Springer, 2012.

[10] M. Simdes. Hpim-sm implementation.
https://github.com/Marga97/hpim_sm.git. Last
accessed 2 December 2020.

[11] M. Simdes. Pim-ssm implementation.
https://github.com/Marga97/pim_ssm.git. Last

accessed 2 December 2020.

[12] Spinroot. Promela manual pages.
http://spinroot.com/spin/Man/promela.html.

Last accessed 20 December 2019.

[13] Spinroot. Spin formal verification.
http://spinroot.com/spin/whatispin.html.

Last accessed 20 December 2019.

[14] Beau Williamson. Developing IP multicast
networks, volume 1. Cisco Press, 2000.

[15] Ralph Wittmann and Martina Zitterbart. Mul-
ticast communication: Protocols, program-
ming, & applications. Elsevier, 2000.

