
P2CSTORE : P2P and Cloud File Storage for
Blockchain Applications

Marcelo Filipe Regra da Silva
Instituto Superior Técnico, Universidade de Lisboa

Abstract—Blockchain is currently revolutionizing the world. It
consists of a distributed ledger of transactions that can be used
for several purposes, for payment processing, money transfers,
data storing, among others. It is interesting to use blockchain
to store data because it is an immutable ledger that will ensure
desirable security properties. However, in blockchain technology,
it remains a problem fact that it can only store, in an efficient
way, data with small sizes because blockchain is replicated across
all nodes. It is also worth mentioning that public blockchains
like Ethereum charge the users per each byte stored making it
expensive to store large files. To tackle this problem we propose
P2CSTORE, a new storage system for blockchain applications
using both P2P and cloud subsystems. The usage of blockchain
to store files, for example, education certificates allow a better
authenticity assessment of these files. We show the benefits of the
approach with a blockchain application that manages education
certificates. The application stores hashes of the certificates in the
cloud and the certificates themselves in our storage system. In
the final sections, we made a system evaluation that corroborates
the fact that such a system with both P2P and cloud is relevant
and it works. Therefore, a combination of both is possible and
efficient, but it also improves availability without compromising
system performance.

I. INTRODUCTION

Nowadays data is an important component of our world. We
generate vast amounts of data daily, such as application logs,
browser search history, medical records, education certificates,
photos, among many other items that must be properly stored.
The current best way to store files is by using distributed
systems. One example of such a system is a blockchain [1].
Blockchain is a promising new technology that is generating
a vast interest world-wide, Portugal included [1].

Blockchain technology has several applicabilities such as
payment processing, money transfers, digital voting, im-
mutable data backup, data storing, among others. In our work,
we will be focusing on the storage capacity of the blockchain.
It is interesting to use the blockchain for storage because it
can enforce the authenticity of the stored data. After all, if
a node attempts to store something it first must make a valid
transaction on the blockchain, which ensures several properties
like integrity, authenticity, non-repudiation.

As an example, project QualiChain (https://qualichain-
project.eu/) is developing a blockchain-based system to en-
force the authenticity of university certificates, [2]. The idea
is to store certificate data in a blockchain, in such a way that
when a company receives an application for a given position,
it can check with the blockchain if the candidate certificate is
authentic. A natural approach would be to store the certificates
in the blockchain, but certificates are reasonably large (in the

order of a few megabytes). Public blockchains like Ethereum
charge the users per each byte stored making them expensive
to store large files, so storing all certificates from all users in
the blockchain would be very expensive.

Another approach, often used in blockchain-based dis-
tributed applications, also known as DApps [3], is to use
an external storage system to store data. These applications
typically store the hash of the file on the blockchain and the
actual file in a separate storage system.

To create a storage system for DApps, there are two com-
mon architectures: peer-to-peer (P2P) and centralized storage.
DApps often use as external file storage system a P2P file
system [4]–[6], as many blockchains are also P2P systems
[7], [8].

In a P2P system, there is no centralized server. In such
a system, some nodes share resources to store files. If a
node wants to get a particular file, it can request it from the
network. These systems are typically based on volunteer nodes
and therefore can be used free of charge. One example of
such a system is the IPFS that will be described later in this
document.

There is also the centralized architecture in which client
computers connect to a central server over the Internet. This
client-server architecture allows providing high-availability by
replicating the server and/or disaster recovery by doing back-
ups and similar mechanisms. Today, with the popularity of the
cloud model [9], this architecture is provided by many cloud
storage services [10], [11], that ensure high-availability but
charge for bytes stored and downloaded. This work will
leverage ideas from these two types of architectures — those
based on P2P and those on clouds.

This work was used to develop an article P2CSTORE:
P2P and Cloud File Storage for Blockchain Applications for
the The 19th IEEE International Symposium on Network
Computing and Applications (NCA 2020).

A. Objectives

Our general goal is to create P2CSTORE , a distributed file
system for DApps that leverages the two types of distributed
file storage systems previously described and allows devel-
opers to select among a wide range of configurations with
different trust, cost, and availability trade-offs. We will also
use a proof-of-storage (PoS) mechanism that allows a client
to check if a server has a file without downloading that file.

1

B. Document Outline

The remainder of the document is structured as follows.
In Section II we discuss related work that is relevant to our
solution. Section III describes the system implementations, in
particular, the general architecture of the solution, the rationale
behind our choices, the proof-of-storage algorithm, and several
communication protocols. Section IV evaluates the solution
that we propose and discusses the associated results. Finally,
Section V briefly concludes this document.

II. RELATED WORK

In this section we briefly discuss the state-of-the-art related
to our work in particular, P2P storage systems, cloud storage
systems and storage for DApps. We also present related work
on Proof-of-Storage systems and our use case, i.e. storage of
education certificates in the blockchain.

A. Peer-to-Peer Storage Systems

P2P systems represent a distributed systems paradigm
whereas data and computational resources are contributed by
many volunteer hosts to provide a shared state. In this type of
system, all nodes contribute to computational resources like
disk storage and CPU power. There are many systems of this
class, from old file-sharing services [12], to the much-cited
Chord [13] and Kademlia that is the basis of the popular
BitTorrent [14], among several others [15]. We look into
more detail to IPFS, as it is commonly used in the context
of blockchain [3]. There are other options in this space but
arguably not as popular as IPFS: Storj [5], FileCoin [6],
Ethereum SWARM [16], and Metadisk [17].

IPFS is a P2P distributed file system that leverages some
of the best previous techniques and algorithms [4]. IPFS is
content-addressable, i.e., when a file is stored it returns a
multihash (a self-describing hash) that can be used by anyone
connected to the IPFS network to retrieve this file, i.e., that
expresses the context of the file and is used to retrieve it. IPFS
is organized as a stack of sub-protocols. Each of the layers
is responsible for different functionalities within the system.
The layers are the identities layer, network layer, routing layer,
exchange layer, Merkle DAG + Files layer, Naming layer, and
finally the Application layer. IPFS solves some of the major
problems of P2P storage systems as it has a great incentive for
nodes to store data even when they do not need it, which helps
to tackle the problem of unavailability. Files are encrypted
and their integrity is checked with cryptographic hashes. It is
arguably less available than a central storage system because
nodes can leave and join the network at will and the download
speed depends strongly on the bandwidth of the nodes storing
the data.

B. Cloud Storage Systems

Cloud systems follow the classic client-server architecture.
In this type of architecture, a server, or set of servers, hosts,
delivers, and manages services and most of the resources
that are going to be consumed by the clients [18]. There are
many commercial cloud storage services such as Amazon S3

[10], and Google Cloud Storage [11]. In this work, we are
particularly interested in the security and availability aspects
of these services. Therefore, next, we discuss DepSky [] and
Unidrive [] two systems focused precisely on improving these
aspects.

DepSky is a cloud storage system that improves the in-
tegrity, confidentiality, and availability of files stored on com-
mercial clouds [19]. Files are stored through encryption, en-
coding, and replication of data across several clouds, creating
a cloud-of-clouds. DepSky addresses four major limitations
of commercial clouds, which are loss of availability, which
consists of temporarily unavailable connectivity, loss, and
corruption of data, loss of privacy because cloud providers
have access to both data stored and metadata, and vendor
lock-in. DepSky tackles these issues by exploiting replication
and diversity to store the data on several clouds (loss of
availability). Using Byzantine fault-tolerant replication to store
data on the clouds (loss and corruption of data). They employ
a secret sharing mechanism and erasure codes to prevent the
need to store clear data on the untrusted clouds (loss of
privacy). And finally, they use a combination of cloud storage
systems to prevent vendor lock-in.

UniDrive attempts to solve some of the challenges of
DepSky [20]. The authors point out what they consider is
a drawback of DepSky: that it requires a global clock syn-
chronization mechanism among clients and the existence of
an extra lock/release process in each write operation. Also,
DepSky uses a metadata file for each file/directory whereas on
UniDrive there is a single metadata file that captures all of the
metadata. UniDrive relies on the basic file upload/download
operation to transmit messages for locking and notification in
the synchronization of multi-cloud multi-device. This idea di-
verges from the DepSky lock-release mechanism. To improve
performance, they strip user data into smaller chunks, perform
erasure coding to add redundancy, like in DepSky. Afterward,
schedule the distribution of these chunks to the multi-cloud to
meet reliability and security requirements.

C. Proof-of-Storage

For a P2P storage system that stores data on peers storage
space, it is important to have some kind of cooperation
incentive mechanism to prevent the system’s collapse.

The PoS mechanism allows a client to check if a server has
a file without downloading that file. There is a lot of research
on cryptographic mechanisms that provide such proofs [21],
[22]. These mechanisms are homomorphic in the sense that
they produce integrity control structures that have the same
structure as the data to be checked. These mechanisms provide
verifiability (data integrity can be verified using proofs) and
unforgeability (a malicious server cannot forge a proof without
having the files). These mechanisms are interesting but are
heavy in terms of computation and space required, so they are
adequate for clouds but not for P2P networks.

A variant of Proof-of-Storage, sometimes called Proof-
of-Replication, allows verifying if some data D has been
replicated, i.e., if there are enough copies in the system [23],

2

[24]. Enforcing unique physical copies enables a verifier to
check that a prover is not deduplicating multiple copies of D
into the same storage space.

An alternative to having to prove replication is to ensure
cooperation [25]. There are two main cooperation schemes;
those based on reputation and those based on remuneration.

Reputation mechanisms have three stages [15], [26]. (1)
First, collection of information, meaning that peer reputation
is built based on the observation of the peer, experience
with it, and/or third-party recommendations. (2) Second, in
the cooperative decision stage, depending on the information
obtained, a peer will determine whether to cooperate with
another peer or not, depending on the reputation of that
other peer. (3) Finally, there is the cooperative assessment
which means that after an interaction, a node must provide an
assessment of the degree of cooperation of the peer involved
in it.

Remuneration (or incentive) mechanisms consist of four
main operations [6]–[8]. (1) First, the negotiation process in
which two peers may have to negotiate the interaction terms.
(2) Second, the cooperation decision, meaning that during the
negotiation and based on its outcome, a peer will determine
whether to cooperate or not. (3) Third, there is the cooperation
evaluation, in this phase, the requesting peer has to evaluate
the provided service. (4) Finally, the remuneration which can
consist of virtual currency or real money or even bartering
units, meaning quotas defining how a certain amount of
resources provided by the service may be exchanged between
entities.

D. Education Certificates Storage on the Blockchain

Serratino et al. presented an ecosystem in which education
certificates can be verified through the Ethereum blockchain
[2]. The ecosystem is based on two smart contracts. The Con-
sortium Smart Contract (CSC) manages the Higher-Education
Institutions that are members of a consortium of HEIs. The
HEI Smart Contract (HSC) stores authenticators (i.e., crypto-
graphic hashes) of the education certificates issued by a HEI.
There is one HSC per HEI of the consortium.

There are two typical workflows. (1) A student graduates
in a HEI. The HEI issues the certificate and stores the
authenticator of the certificate associated with some id in its
HSC. (2) The ex-student applies for a job and provides her
certificate. The company inserts the certificate, the id and an
id of the HEI in an application, that contacts the CSC and the
HEI’s HSC to get the authentication and verify the certificate.

The HSC does not store the certificates, that have to be
stored externally. That work uses IPFS for that purpose.
P2CSTORE can be used instead of IPFS with the benefits
we mentioned, e.g., flexibility and improved availability using
replication.

III. P2CSTORE

In this section, we present the design and implementation
of the P2CSTORE system. We start by explaining the system
model. We analyze once again the problem definition and the

relevant properties and assumptions. Finally, we describe the
relevant algorithms.

A. System Requirements

The system has some requirements that are important to
mention: Data Freshness: When a client requests a file from
the system by send the URL of the file, the system must return
the most recent version of the stored file. Data Integrity: The
system must ensure that data has not been changed in any way.
In case that it has the system should be able to know and to
get the original version of the file. Data Availability: The data
must always be accessible to clients. The system must be able
to ensure that at any given time a certain file will be available
to be read by a user.

B. System Model

The P2CSTORE system is composed of a set of nodes that
communicate by message passing. Nodes can be online or
offline. For the system to properly function, nodes have to be
online at the same time. Nevertheless, nodes that are offline
during some operations can become online and recover later.
Clocks do not need to be synchronized.

A node is considered correct if it follows the algorithm,
otherwise it is faulty. The system tolerates several types of
node failures: a node can go offline and back online repeatedly;
nodes may go offline indefinitely; a node may tamper with the
content of the files it stores.

Nodes use Kademlia DHT [14] to find which nodes are
storing some specific content. Each node will exchange in-
formation through the lookup of other nodes. Each node has
a node ID and the Kademlia algorithm uses the node ID to
locate values on the network.

We assume the communication is reliable and secure. We do
not present a specific solution for how to obtain this as there
are several, e.g., using the TLS protocol [27] or the DTLS
protocol [28].

In the next sections, we will describe the system architecture
in more detail as well as some of the interaction protocols.

C. P2CSTORE System

In this section, we describe P2CSTORE in more detail.
To properly understand the P2CSTORE system we will first
describe its entities, what they are in the system, and what
they can do. Afterward, we will describe the system model.

1) P2CSTORE Entities: P2CSTORE is envisioned to be
used in a model where there is an interaction among three
types of entities: cloud storage providers, storage peers, and
client readers (see Figure 1). Cloud providers are commercial
public infrastructures that provide to their clients data storage
and high levels of availability. Storage peers are nodes that
store content from other nodes and participate in the routing
algorithm. Storage peers can perform all the operations on the
system. They make up the Peer Network. These participants
use the network like readers but also provide the storage and
due to that fact can also store content on the network/system,

3

Fig. 1: System Entities and their relationships

working as servers/storage providers as well. Readers are
nodes that do not store content from other nodes nor have
to give storage space to the system. This type of participant
can only read from the system.

We make the distinction between readers and the storage
peers that work like clients and can read from the storage
system because these readers do not have to participate in the
system, do not need to share storage space, and can not store
or delete any data, they can simply read. This was added to
allow the sharing of files among people that do not want to
participate in the system. To increase availability we also use
Cloud storage systems. It is important to mention that these
clouds do not execute any code, they are only there for storage
purposes.

D. P2CSTORE Overview

The problem that we solve, as described above, is to create
a storage system to store generic files for DApps.

P2CSTORE is based on a fairness condition: each node can
only use the same amount of P2P storage that it gives to the
system (however, it can use more in the cloud which might
incur some costs). This way the sustainability of the system
is ensured. One could think that this way it is not worth it to
use the system, given that an organization can only use what
it gives. However, it allows replicating files in a set of nodes,
improving availability.

This guarantee is enforced with two mechanisms that pre-
vent a node to use storage space in other nodes without
providing space in his (free-riding). The first is an extension
of the Kademlia routing table with extra data about the used
storage and the storage given to the system by the node. Every
time a node A wants to add some content to the system it does
verification on the routing table to see if a set of nodes on the
network have available storage for that file or not; when the
node A finds a destiny node B to store the file it will verify
on the routing table if the node B has available space for that
content. The second is a Proof-of-Storage algorithm, explained
in the next section.

It is worth mentioning that both the storage peers and the
readers can communicate directly to the clouds, however, if

Fig. 2: P2CSTORE System Architecture Overview

Fig. 3: P2CSTORE System Architecture Overview

a node A does not have access to the cloud but he wants a
file that is stored in the cloud owned by some other node B
who does have access, A can access to the cloud through B.
This is done by having the node A requesting a file f that
is stored only on the cloud of node B, and, if B agrees, it
can request on behalf of node A and send him the file himself
after retrieving it from the cloud.

E. Software Architecture

In Figure 2 and Figure 3 we can see two diagrams of the
system architecture. In Figure 2, we have a generic architecture
of the system, as described above it is composed of peers
of the peer network that also provide storage, by readers,
and lastly by cloud storage providers. In Figure 3 we have
a more detailed image of the Peer Network, in particular its
two major components, the Distributed Hash Table (DHT)
and the Routing Table. As described in the image, the DHT
is composed of a set of tuples < K,V alue >. This K
corresponds to the URL of the file, and the Value stores the
nodes that have the file stored. In the Routing Table, we
have the list of known nodes. It is also stored as a node
characteristic the amount of used storage and lend storage for
each known node.

F. Basic Operations

In any storage system, some operations are straightforward.
For instance, it must be possible to read data from the storage

4

Fig. 4: Get Operation Protocol Diagram

system and to write data. It is also important to be possible
to delete data as well as update data. All operations follow a
particular interaction protocol.

Get Operation: In Figure 4 we have a diagram of the
protocol for the Get operation. The node Storage Peer 1 is
attempting to get a file with a key K from the system, step 1.
To be able to do that he searches on the DHT for the nodes
that are storing the file with the key K, in our particular case
these nodes are at Storage Peer 2, 3, and 4 and sends the
request to each of them, step 2. If the cloud functionality is
enabled a request is also sent to the cloud.

Once each node receives the request, it will search for the
file locally using the given key K and send it as a reply to
the requesting node, in this case to Storage Peer 1, step 3.

Once the file is received by Storage Peer 1 it is necessary
to perform a proof of integrity to ensure that the file was
not corrupted in any way, step 4. This is performed by
calculating the hash of the contents of the file and comparing
the resulting hash with the file key, which, as previously
said, is the hash of the file contents upon file adding to
the system. If the two hashes match then the file was not
corrupted therefore it is stored locally and can be used/read
by the Storage Peer 1, otherwise, an error is thrown and the
file is rejected.

Add Operation: In Figure 5 we have a diagram of the
protocol for the Add operation. The node Storage Peer 1 is
attempting to add the file f to the system. To perform this
operation the system first needs to know how many replicas
of the file does the node Storage Peer 1 wants to have in
the system. This value is configurable by Storage Peer 1. By
looking at this example let us assume that he only wants three
replicas on the Peer Network.

Therefore it sends the request to add the file f to each of
the three online nodes that have available storage, and are

Fig. 5: Add Operation Protocol Diagram

closer to him, step 2. It also sends the file to the cloud if
that functionality is enabled. In our example, these nodes are
Storage Peer 2, 3, and 4.

Before sending the request, the system first verifies whether
or not Storage Peer 1 has the available space to store the
content, if so the request is prepared for sending, step 1. What
this means is that the system generates a hash of the contents
of the file, renames the file to the resulting hash, and then adds
it to the DHT, only once this is finished is the request sent to
the other nodes. After receiving the request, each node stores
the content locally and adds it to their local DHT, step 3. The
file is stored in a folder with the node ID of the requester
(Storage Peer 1 in this case) as the name. Also, the available
storage for the Storage Peer 1 is updated to include the addition
of the file. It works by multiplying the file size for the number
of replicas in which the file was stored and then add this value
to the already used storage for this node. For example, if a
node A wants to add one file f of 1MB to four different
nodes, and if it does so successfully, the used space of node
A is updated by multiplying 1MB by four, which is 4MB and
then add this value to the already used space of node A.

Finally, Storage Peer 1 receives a reply from the system
with the confirmation of the addition of the file into the
system and the respective URL of the file (the key of the
file), step 4. This key/URL could be later used to read the
file, delete it, or update it on the system.

Delete Operation: In Figure 6 we have a diagram of the
protocol for the Delete operation. The node Storage Peer 1 is
attempting to delete a file with a key K from the system. To
be able to do that he searches on his DHT for the nodes that
are storing the file with the key K, represented in step 1, in
our particular case these nodes are at Storage Peer 2, 3, and
4 and sends the request to each of them, step 2. If the cloud
functionality is enabled a request is also sent to the cloud.

Before sending the request, the system deletes the file from

5

Fig. 6: Delete Operation Protocol Diagram

the DHT. Upon receiving the request each of the Storage Peers
deletes the file locally, step 3. Afterward, each node sends the
reply to the Storage Peer 1, step 4

Also, the available storage for the Storage Peer 1 is updated
to include the deletion of the file. It works by multiplying the
file size for the number of replicas in which the file was stored
and then subtract this value to the already used storage for this
node. The used store value is stored in the routing table.

Finally, Storage Peer 1 receives a reply confirming that the
file was deleted.

Update Operation: For the update operation, a client gives
the URL of the file and the new file it wants to add to
the system, replacing the file with the updated one. We do
not describe the protocol for the update operation because
it consists simply of a delete operation followed by an add
operation.

G. User Interface

For simplicity the user interface is terminal-based. However,
it is possible to create a Web interface for the system, consid-
ering that the back-end remains the same, or very similar.

Each Storage Peer to interact with the system to launch a
new terminal and start the program. Then he is presented with
the P2CSTORE terminal. This terminal responds to a set of
commands/operations. For instance, it is possible to perform
all the previously described operations easily.

H. Proof-of-Storage Algorithm

In this section, we will present the algorithm for proof-of-
storage (that we designate PoS for short, but not to be confused
with Proof-of-Stake).

In the algorithm nodes play two roles: a prover, P , that is a
node attempting to convince a verifier, V , that it (P) is storing
some data, D. V issues a challenge, c, to P that answers it
with a proof π, according to the scheme in question.

Consider a node that wants to check if all its files are
replicated in other nodes. First, for each file f it has stored in

the system, V generates a random array of bytes that represent
positions of the file; the size of the array can be configurable
and the positions can be repeated on the array, meaning that
we can have index 1 several times on the array. Afterward,
V generates a nonce (to prevent replay attacks). This nonce
corresponds to a random string of configurable size. Then,
V creates a challenge object c containing the byte array and
the nonce, sends c to the node(s) that is(are) storing f , and
initiates a counter. A node that receives that request plays the
role of the prover. Once a prover P receives the challenge c it
will reply with the bytes corresponding to the positions given
by the list of bytes, and concatenates the result with the nonce
in the challenge.

Afterward, P executes a hash function on the resulting
string. This hash is then sent to V . Once V receives the hash it
will verify if it was sent in the available time-frame, if yes, and
if the response is correct than V has a proof that P is storing
file f properly. If the response was not sent in the available
time-frame the node down counter is incremented by 1. If this
counter reaches the threshold Tf (e.g., Tf = 5) the node is
considered faulty. If the response is not correct than V will
handle this node as being faulty. If a node is considered faulty
the system handles this case by marking locally (in a local
file) the node as faulty. Afterward, the V removes the files
that are storing that belong to P . Once this is done V will
need to update the DHT. It does so by adding the files again
into the system while ignoring the faulty nodes. This way the
files will be replicated among the number of nodes that they
configured.

On the Algorithm 1 we can see the four functions that make
the PoS algorithm on the Verifier side. Namely, we have the
storageProofRequest (lines 1-21) which is the main function
of the algorithm, here we call the function generateChallenge
(lines 34-45) that will generate the challenge as previously
described. Then for each of the nodes that are storing the file
we send the challenge, start the timer, and receive the response.
Afterward, we verify whether the response arrived on the
available time; if not then we increment the down counter by
1 and if this counter reaches a certain value n we consider this
node faulty and call the function handleFaultyNode (lines 23-
26) which will handle this case. After this we call the function
checkReplicationUpdateDHT (lines 28-32) that will update
the DHT according to the nodes that are now considered
faulty, ignoring the faulty ones. If the response arrived on
time than we have to verify the correctness of it. If it is not
correct that we call the handleFaultyNode (lines 23-26) and the
checkReplicationUpdateDHT (lines 28-32) to mark the faulty
nodes and update the DHT accordingly. Finally, if everything
is all right and the verifications were successful we proceed
to the next node.

On Algorithm 2 we can see the function that makes the
PoS algorithm on the Prover side. This functions is the
handleProofOfStorageChallenge (lines 1-11). This function
receives the challenge sent by the Verifier and obtains the
positions list, the nonce, and the file. Next, it will get the
respective character on the file associated with the position

6

1 Function storageProofRequest(file):
2 call function generateChallenge
3 for each node that is storing the file do
4 send challenge to node
5 start timer
6 get response from node
7 if response time greater than time available then
8 /* Assume node temporarily

unavailable */
9 increment node down counter by 1

10 if node down counter equals n then
11 /* n is configurable */
12 call function handleFaultyNode
13 end
14 call function checkReplicationUpdateDHT
15 end
16 else if response is not valid then
17 call function handleFaultyNode
18 call function checkReplicationUpdateDHT
19 end
20 /* Otherwise everything ok, continue */
21 end
22
23 Function handleFaultyNode(nodeInfo):
24 mark locally node as faulty /* Local file stores

faulty nodes */
25 remove files of faulty node
26 return
27
28 Function checkReplicationUpdateDHT(fileInfo):
29 /* This works like a new add, removes the

previous information on the DHT and adds
the file to the system ignoring the
faulty nodes */

30 remove file from the system
31 add file to the system
32 return
33
34 Function generateChallenge(fileInfo):
35 create a list of bytes of size n
36 while list of bytes size equals 0 do
37 generate random(file size -1)
38 /* random can be from 0 to file size */
39 if random number is an odd number then
40 add i to list
41 end
42 end
43 generate a random nonce
44 generate the challenge with the list of bytes plus the nonce
45 return
46

Algorithm 1: Verifier Functions – PoS Algorithm

1 Function handleProofOfStorageChallenge(challenge,
fileInfo):

2 get byte list from challenge
3 get nonce from challenge
4 get file from fileInfo
5 for each byte i in list do
6 get byte of position i of file
7 convert byte to character add character to response array
8 end
9 challenge response equals response array plus nonce

10 send the hash of the response to verifier
11 return
12

Algorithm 2: Prover Function – PoS Algorithm

on the list and make an array. Once all the positions of the
challenge list are converted to characters of the file in a string
we add the string plus the nonce creating the response or proof.
Finally, we send the hash of the response to the Verifier.

IV. EVALUATION

A. Experimental Evaluation

The goal of our evaluation is to answer three main questions:
Which is faster to use the P2P storage system or Cloud-based
storage system? What are the costs of using multiple clouds
to store data versus P2P systems or the Ethereum blockchain
itself? What is the cost of the PoS mechanism?

1) Methodology: In the experimental evaluation, we chose
to split the test scenarios between P2P, P2P with Cloud, and
P2P with PoS. We divided the testing into three categories
because they compose the important aspects that will allow us
to answer the previously asked questions. For the clouds, we
used S3 [10] and GCP [11] because they are the most common
and also because they are included in the library JClouds [29].

We performed all the operation tests with sets of 100
operations, namely the add, get, delete operation tests. For
the PoS algorithm tests, we did sets of 100, 150, and 200
operations for file sizes of 5Bs, 100KBs, 1MBs, and 10MBs.
We choose these values because they represent the usual file
size of an education certificate, or even of a PDF file, from
a few KBs to a few MBs. In all the experiments below,
we report the average time taken for these operations to
complete. We decided not to test the update operation because
it simply is the combination of a delete operation followed by
an add operation. For the evaluation environment, we used
the PlanetLab Europe [30] test network. We chose this test
network because it has a set of nodes across Europe which
allowed us to test the system in a realistic deployment. The
nodes that we used were in different countries to increase
geographic diversity and hence obtain results closer to a real
deployment. Next, we will discuss the obtained results, draw
our conclusions, and attempt to answer each of the above
questions.

B. Operations Latency Evaluation

In this section, we measure the latency of each operation,
i.e. the time it takes since a client issues a request until it sees
that the operation is completed successfully.

The color scheme of all the four graphic legends indicates
the file size variations between tests and helps on the analysis
and interpretation of the graphic. Due to the different mag-
nitude of the results, all graphics below are on a logarithmic
scale except the one in Figure 10.

On the obtained graphics the Xs axis represents the
results of the operations for each of the test scenarios of the
operation. The Ys axis represents the time spent in seconds.

1) Add operation: As we can see in Figure 7, for larger
files the time it takes to write both in the P2P and clouds
increases. The increase is very huge on the 10MB file for the
P2P because the code was not written concurrently for this

7

Fig. 7: Results for 100 add operations for different file sizes.

operation. This is the main reason that we are seeing such a
huge difference when compared with the smaller sizes. As we
can see on the clouds the increment is much smaller because
we are writing to the cloud once, instead of the P2P in which
we are writing 5 times due to the number of nodes we want
to store the data into.

2) Get operation: As we can see in Figure 8, for larger
files the time it takes to write in the P2P and on both
clouds increases. The increase is greater on the 10MB files
for the P2P because our implementation does not exploit
concurrency. In fact, for each of the 5 nodes used for storage
purposes the writer node to send the data, wait for the
operation to complete, and only afterward start writing on the
next node.

3) Delete operation: As we can see in Figure 9 for
larger files the time it takes to delete from the P2P and both
clouds remain roughly the same. The increase is residual.
Interestingly, S3 takes a substantially large time to perform
the delete operation when compared with GCP, and this
time is roughly constant regardless of the file size. This is
because in S3 a delete corresponds to the insertion of a delete
marker [31], and in fact, one can observe that the deletion
time is similar to the insert time for small files (Figure 7).

4) PoS Algorithm: This test is different from the previous
ones because it only applies to the P2P system. After all, it
is used to ensure that the peers are storing the content that
they promise to, as previously explained. Also in Figure 10
the graphic is not on a logarithmic. This test was not done for
the clouds because they do not execute any code.

As we can see in Figure 10 for larger files the time it takes to
perform the PoS algorithm, and respective reply to the verifier,
increases but not by much because the file size also increases,
and on the challenge generation the file size is used to generate
the random file. The challenge size consists of a list of bytes
with 16 positions in which each one points to a respective
character in the file. This way even for larger files the time it
takes to generate the challenge will not increase significantly
because the list size is 16. However, it is worth reminding that
this value is easily configurable.

C. Discussion

In this section, we will answer the previously asked
questions and try to draw a few conclusions.

Which is faster to use P2P storage system or Cloud-based
storage system?
After analyzing the results we can conclude that for smaller
files the P2P is faster, however, this depends on the nodes
that compose the system. For different nodes, either with
faster CPUs or with fast network connectivity or that are
close to each other the obtained results could be different. It
is also important to point that for the clouds the scenarios
are similar. If the cloud server that we are accessing is closer
or further away the time it takes to communicate with it also
decreases or increases, respectively. But it is also important
to point out that the code to write, get and delete was not
done concurrently on the P2P level, therefore the times could
be easily reduced by making the code operate concurrently.
This improvement would alter our conclusions because for
larger files the time it takes to add and get files from the P2P
would reduce significantly, making the P2P a better solution
overall.

What are the costs of using multiple clouds to store data
versus P2P systems or the blockchain Ethereum itself?
This question is very interesting namely because the cost
differences are huge between the three scenarios. The cost of
storing a 256bit on the Ethereum network is 20000 gas. The
cost of gas at the time of writing this document is 105 Gwei
and each Gwei is 0.000000001 ETH [8], [32]. We can easily
calculate the cost of storing a file with 1KB [33]. Considering
that 256bit costs 20000 gas then 1KB costs 80000 gas which
gives us a transaction fee (Fiat) of $3.00352. The cost of
storing data on Amazon S3 depends on the region and it also
varies depending on the space used. It is paid monthly and
it depends on the usage and amount of data stored [34]. We
did an experiment to attempt to find out the cost of storing
certain values in the S3 storage bucket, and we discovered
that using the Price Calculator [35] for 100GBs a month,
10000 requests of either PUT, COPY, POST, LIST, 10000
requests of either GET, SELECT and considering a data
returned of around 50GBs and 50GBs of scanned data it
would cost around 2.49 USD for the US East Ohio region
for the S3 Standard cost. For GCP, the cost is similar to
S3, meaning that there is also a monthly cost depending on
the usage and amount of data stored [36]. Finally, the cost
of having a P2P node machine connected has an associated
electricity cost. This value depends on the country and region

8

Fig. 8: Results for 100 get operations for different file sizes.

Fig. 9: Results for 100 delete operations for different file sizes.

Fig. 10: Cost of the PoS for different file sizes and total number of files (configuration with P2P storage only).

as well as the machine that is being used. In conclusion, the
cheapest solution seems to be the P2P storage system because
the only associated costs are the ones related to the fact
that the storage machines must be connected for the system
to operate. But the price of S3 and GCP includes the costs
that both AWS and Google have with their always-connected
servers. That and for larger files, the cost of electricity would
not vary, but both on the clouds and the Ethereum network
the costs will increase as the file size increases as well.

What is the cost of the PoS mechanism?
Overall we believe it is worth having the PoS mechanism
implemented in the system. The advantages are greater than
the possible drawbacks. Namely the fact that with this mech-
anism we can ensure that each node is only using the amount
of storage it gives to the system. And also we can ensure
that at the PoS time if a node is not storing the content as
it was supposed to it will be marked as faulty and discard
by the verifier node for future interactions. This mechanism
prevents the system from collapse by incentivizing cooperation
among nodes and sharing resources while punishing those
that do not comply with this as previously described. The
one thing that is worth discussing further is the frequency
that the PoS mechanism will be executed. In our system this
is configurable, therefore for different applications, different

values could apply better than others. Performing PoS requests
consumes system resources, therefore the frequency of PoS
requests should be properly considered according to the type of
application that is being used. This mechanism helps to ensure
the system’s sustainability and it is an important component of
our system, however, it is up to the developers/administrators
to configure how often is worth it to perform this operation
for each file/node.

Lastly, it is worth mentioning that using this solution to
work parallel to a blockchain application would not interfere
with the previously obtained results. Our solution is designed
to have files be easily referenced through for example some
kind of smart contract of the Ethereum blockchain.

D. Functional Evaluation - System Requirements

In this section, we will perform a qualitative functional
evaluation of the P2CSTORE . We will assess if the P2CSTORE
fulfills the requirements previously described. If not, why and
if yes, how does the system P2CSTORE makes it possible.

As described in Section III there are a set of requirements
that the system is supposed to ensure. Considering that it
is not practical to test them quantitatively we will do it
qualitatively. We will explain how we ensure each of the
system requirements, in particular:

9

Data Freshness: This requirement is ensured because when-
ever a file is added to the system, it is created a new entry for
it on the DHT. Every time a new operation to either delete or
update the content of the file takes place the old file will be
deleted, and for the update, a new file will be added. These
changes occur both on the physical storage as well as on the
DHT, this way we ensure that the data presented to the user
in case of a get operation happens is always correct and up to
date.

Data Integrity: This requirement is ensured by performing
an integrity check upon getting the data from the system. When
a new file is added to the system the hash of the file’s contents
is generated and that becomes the file key to access the file.
Once someone performs the get operation the system verifies
if the hash of the contents of the file retrieved from the system
is the same as the file key that is on the DHT. If the values
match, then the integrity of the file is good. Otherwise, the file
is considered corrupted and is rejected by the system. This way
if anyone attempts to change the file contents or manipulate
data, the system will be able to spot it and reject those changes.

Data Availability: Our system is prepared to have both
cloud storage providers as well as a configurable number
of peers. These values are configurable by each user to
increase availability. Therefore the availability is related with
the number of clouds + peers configured by each user.

V. CONCLUSION

Blockchains can only store small amounts of data. To store
larger files it is necessary to have some kind of storage system,
parallel to the blockchain. In this document, we proposed a
Storage System for Blockchain.

The proposed solution presents an architecture of a P2P and
Cloud Storage System that uses the best of both. It uses both
to improve the availability of the system as well as the cost
of usage, giving to the developer/administrator the flexibility
to manage the trade-offs of using P2P and Cloud Storage
Systems.

The document starts by presenting several related works
that will help with the development of the project. We ana-
lyzed several systems as well as the blockchain in particular
Ethereum. In the next section, a description of the Implemen-
tation was presented. Afterward, the evaluation of the system
was described and the obtained results.

REFERENCES

[1] M. E. Peck, “Blockchains: How they work and why they’ll change the
world,” IEEE Spectrum, vol. 54, no. 10, pp. 26–35, 2017.

[2] D. Serranito, A. Vasconcelos, S. Guerreiro, and M. Correia, “Blockchain
ecosystem for verifiable qualifications,” in Proceedings of the 2nd
IEEE Conference on Blockchain Research & Applications for Innovative
Networks and Services, September 2020.

[3] A. M. Antonopoulos and G. Wood, Mastering Ethereum: building smart
contracts and dApps. O’Reilly Media, 2018.

[4] J. Benet, “IPFS-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[5] S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, “Storj a peer-
to-peer cloud storage network,” 2014.

[6] J. Benet and N. Greco, “Filecoin: A decentralized storage network,”
Protoc. Labs, 2018.

[7] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[8] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, 2014.

[9] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A view of cloud computing,” vol. 53, no. 4, pp. 50–58, Apr. 2010.

[10] “Amazon S3,” https://aws.amazon.com/s3/.
[11] “Google Cloud Storage,” https://cloud.google.com/storage/.
[12] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “Measurement study

of peer-to-peer file sharing systems,” in Multimedia Computing and
Networking, vol. 4673, 2001, pp. 156–170.

[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of ACM SIGCOMM, 2001, pp. 149–160.

[14] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” in International Workshop on
Peer-to-Peer Systems, 2002, pp. 53–65.

[15] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, R. G.
D. Geels, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao,
“OceanStore: An architecture for global-scale persistent storage,” in Pro-
ceedings of the 9th International Conference on Architectural Support
for Programming Languages and Operating Systems, Nov. 2000.

[16] Swarm, “SWARM: Storage and communication for a sovereign digital
society,” https://ethersphere.github.io/swarm-home/, 2019.

[17] S. Wilkinson, J. Lowry, and T. Boshevski, “Metadisk a blockchain-based
decentralized file storage application,” Tech. Rep., 2014.

[18] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems:
concepts and design. Pearson Education, 2005.

[19] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “Depsky:
dependable and secure storage in a cloud-of-clouds,” ACM Transactions
on Storage (TOS), vol. 9, no. 4, p. 12, 2013.

[20] H. Tang, F. Liu, G. Shen, Y. Jin, and C. Guo, “Unidrive: Synergize
multiple consumer cloud storage services,” in Proceedings of the 16th
Annual Middleware Conference. ACM, 2015, pp. 137–148.

[21] B. Wang, B. Li, and H. Li, “Panda: public auditing for shared data with
efficient user revocation in the cloud,” IEEE Transactions on Services
Computing, vol. 8, no. 1, pp. 92–106, 2015.

[22] N. T. F. de Carvalho, “A practical validation of homomorphic message
authentication schemes,” Master’s thesis, University of Minho, 2014.

[23] J. Benet, D. Dalrymple, and N. Greco, “Proof of replication,” Protocol
Labs, July, vol. 27, p. 20, 2017.

[24] B. Fisch, “Tight proofs of space and replication,” in Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, 2019, pp. 324–348.

[25] L. Strigini et al., “Resilience-building technologies: State of knowledge
– ReSIST NoE deliverable D12,” 2007.

[26] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Wide-area cooperative storage with CFS,” in Proceedings 18th ACM
Symposium on Operating Systems Principles, 2001, pp. 202–215.

[27] T. Dierks and C. Allen, “The TLS protocol version 1.0 (RFC 2246),”
IETF Request For Comments, Jan. 1999.

[28] E. Rescorla and N. Modadugu, “Datagram transport layer security
version 1.2 (RFC 6347),” IETF Request For Comments, 2012.

[29] “Apache jclouds,” https://jclouds.apache.org/, accessed: 2020-09-19.
[30] “Planetlab europe,” https://www.planet-lab.eu/, accessed: 2020-09-19.
[31] “Amazon s3 - developer guide,” https://docs.aws.amazon.com/AmazonS3/latest/dev/

delete-or-empty-bucket.html, accessed: 2020-09-19.
[32] “Eth gas station,” https://ethgasstation.info/, accessed: 2020-09-13.
[33] “Eth gas station calculator,” https://ethgasstation.info/calculatorTxV.php,

accessed: 2020-09-13.
[34] “S3 pricing,” https://aws.amazon.com/pt/s3/pricing/, accessed: 2020-09-

13.
[35] “Aws s3 price calculator,” https://calculator.aws/#/createCalculator, ac-

cessed: 2020-12-03.
[36] “GCP pricing,” https://cloud.google.com/storage/pricing, accessed:

2020-09-13.

10

