
Termite2 - Supporting Scalable and
Usable Encounter-based Apps

Fernando Daniel Alves Moreira
Instituto Superior Técnico

Lisboa, Portugal
fernando.moreira@tecnico.ulisboa.pt

ABSTRACT
Today, almost every mobile application requires some form of com-
munication technology. This is specially true for data-sharing appli-
cations. These applications normally provide sharing functionalities
mostly through the internet, even when users are in proximity to
exchange data via peer-to-peer networks. This shows a lack of
peer group solutions within data-sharing applications. To solve this
problem a new paradigm and solution has emerged, the Encounter
Networks paradigm. Unfortunately, proper support for develop-
ing and testing applications that apply this network paradigm is
still lacking. Without the ability to easily develop and properly
test applications that support encounter networks, developers are
forced to publish applications without proper testing or to choose
more traditional forms of data sharing and communication for their
apps, i.e., through the Internet. In this project we present Termite2,
the next version of Termite, with improved system scalability and
usability. Termite2 provides an emulation test-bed solution for en-
counter network applications, allowing the user to create/model
encounter networks in a dynamic way to translate user interac-
tions using Android virtual devices. Currently, Termite has limited
scalability and usability, not providing proper support to create
large emulated networks with a larger number of virtual devices.
Termite2 improves Termite’s scalability by allowing emulators to
run distributed across multiple local or remote machines and it im-
proves usability by providing a new graphical user interface option
from where an emulated network is created and modeled. Termite2
was implemented using Java and the new graphical user interface
using JavaScript which integrates nicely with the Google Maps API
to display an interactive map of the emulated network. Termite2 1

can run on Windows, Linux or Mac, it supports Android mobile
applications and virtual devices.

Keywords: Termite2, Encounter Networks, Android Development,
Wi-Fi Direct, Virtual devices.

1 INTRODUCTION
Today, almost every mobile application requires some form of com-
munication technology and this is specially true for data-sharing
applications. These applications normally provide sharing func-
tionalities through the internet, using Wi-Fi or broadband cellular
1Termite2 source code, distribution files and documentation are publicly available at
https://github.com/nuno-santos/termite/tree/master/SourceCode/Termite2 [15]

Termite2, Fernando Moreira, IST

network. For example, suppose two users want to share some file
while being in the same physical location; to share this file, most
data-sharing applications establish a connection to a remote central
server or some kind of redirection service to exchange the data
between the users, even though they are co-located. This example
shows a lack of peer-to-peer and peer group solutions within data-
sharing applications. Thus, when mobile devices are co-located,
a new paradigm is now possible, the Encounter Networks para-
digm [13].

Encounter Networks provide an important shift regarding device
to device communication and data sharing. Instead of relying on a
central access point (router) with an Internet connection to establish
communication and data transferring, mobile devices can now use
short range communication technologies like Bluetooth, 802.11
WLAN or WiFi-Direct to achieve the same results when devices
are near each other. Unfortunately, there is a lack of tools that
support the proper development and test of applications based on
the encounter networks paradigm.

Let us then consider a scenario where a mobile developer, Alice,
wishes to create a photo sharing application for Android devices
where users can automatically share photos between them when
they are near each other. Assuming that Alice wants to support
encounter networks, she may choose an already available commu-
nication technology for this paradigm, e.g., Wi-Fi Direct, as the
communication technology for her application.

When developing her app, scalability is one of Alice application
requirements. Her application should be equally capable of handling
both small and large number of users connected at the same time.
With the currently available solutions, Alice would have to gather
dozens of Android devices in order to accurately test her app (using
Wi-Fi Direct communication), while also simulating reliable device
displacement to simulate users coming and going out of range
between each other. Alice can not afford this type of scalability
tests for several reasons (cost, time, complexity). Therefore, Alice is
forced to publish her application without proper testing or instead
choose another communication technology for her application. This
scenario clearly shows a problem regarding the inability to easily
and properly develop and test applications that support encounter
networks.

In fact, there is a lack of solutions capable of combining the
emulation/simulation of encounter networks (with proper multi-
node emulation and displacement) and on top of this network utilize
emulatedmobile devices (for our example Android devices) to create
testing scenarios for encounter based applications.

Our related work (Section 2) shows that network simulation and
emulation tools available today, while able to offer the necessary



Termite2, Fernando Moreira, IST

network layer capable of simulating/emulating encounter networks,
offer no support neither for virtual devices nor for testing encounter-
based applications on top of the network created. At the same time,
tools specially designed for application testing similar devices lack
the necessary network layer where the tests can be performed.

The only tool available today capable of properly supporting the
development and test of encounter based applications is the Termite
system [3] [20]. Termite is a test-bed solution that allows developers
to create and model encounters network where android devices
can be used to test encounter based application. However, as we
discuss on the related work section of this document, Termite shows
a level of system usability and scalability that is not satisfactory
when we consider the nature of the applications that it helps to
develop and test. This motivates us to create Termite2, an evolution
of the previous Termite system, with improved system scalability
and usability. Termite2 presents a new distributed architecture
that allows a user to create and model the emulated encounter
on one machine and distribute the computational load of running
a large number of emulators across multiple different machines.
Termite2 also presents a new graphical user interface (GUI) where
the emulated encounter network is created, modeled and presented
on a real world map. Managing the emulators used on the emulated
network can also be done from this interface through interactive
button prompts and selections.

Thus, this work provides the following contributions:

• Architectural design and creation of Termite2 test bed (the
next version of the Termite system with new system interac-
tions and protocols);

• Creation of the Termite2 Server components which allows
us to manage and use Android emulators running across
multiple local or remote machines;

• Design and creation of Termite2’s new graphical user inter-
face;

• Evaluation of Termite2 that presents major improvements
in terms of system usability and scalability, when compared
to Termite.

The rest of this document is organized as follows. Section 2 de-
scribes and evaluates different systems related to Termite2 goals.
Section 3 presents our project solution, describing Termite2 back-
ground (Termite) and its architecture. Section 4 presents the im-
plementation of Termite2’s new components (Termite2 Server and
Termite2 GUI). Section 5 presents the evaluation of the system.
Finally, Section 6 presents some conclusions.

2 RELATEDWORK
If we simplify Termite2 to its core functionalities, we can represent
the system as a tool that provides the ability for developers to
execute automated mobile tests running on Android emulators on
top of a network layer, properly modeled to express Encounter
Networks and all its characteristics. Therefore, for our related work
we focus on the tools/solutions that target each one of these layers,
thus addressing Network Simulators, Network Emulators, and Test
Frameworks.

2.1 Network Simulation
Network simulators are software solutions that can perform tasks
in abstract to demonstrate the behavior of a network and its compo-
nents, without performing the real and concrete behaviour of these
components or networks (simulation normally uses mathematical
formulas to mimic a specific component operation).

NS-2 [16] is an open source, object oriented TCL (OTcl [23])
script interpreter with a network simulation event scheduler. This
network simulator is used for setting up and running wired or
wireless network simulations that can be used to perform various
network tests. In order to do this, a user can write a simulation pro-
gram usnig the OTcl script language, to initiate the event scheduler,
setup the network topology, and tell the traffic source when to start
and stop sending packets through the event scheduler. NS-2 can be
used to extensively test new protocol solutions for various network
paradigms including encounter network. NS-2 is feature-rich when
considering protocol and network testing, but shows poor scala-
bility, regarding the number of network elements (nodes) that a
network can have when using this tool. NS-2 also provides various
graphical user interface options that allow a user to see the network
and all node interactions. Sadly the user interface is custom made
to work with NS-2 OTcl scripts, making the idea of adapting this
interface for our project too time consuming and difficult. However,
the real problem that renders this tool incapable of supporting our
project is the fact that NS-2 has no support for mobile application
development and testing, since it does not support mobile virtual
devices as network nodes of the simulated network.

NS-3 [17] was developed in order to improve upon the core archi-
tecture, software integration, models, and educational components
of NS-2, while maintaining almost all features. The major improve-
ment over NS-2 is that instead of relying on OTcl as its scripting
environment, NS-3 uses C++ programs or python scripts to define
the simulations. This made the tool significantly easier to use and
build on top of. Unfortunately, NS-3 still has the same problems as
the ones identified on NS-2; poor system scalability and no support
for mobile application testing on top of the simulated network, thus
making this tool not suitable for our project needs.

We could continue discussing other Network Simulation tools,
e.g., GloMoSim [1], OMNET++ [18], J-Sim [12], or OPNET [19].
Each one of these tools provide distinct advantages and disadvan-
tages [4] [14]. Despite any desirable quality all these systems may
have to this project, they all fail in providing support for mobile
application development and testing on top of the simulated net-
work; this is crucial for this project given its fundamental objective
of helping in the development of encounter-based applications.

The reason for disadvantages this comes from the concept of net-
work simulation itself. Network simulation tools are not concerned
with what is being developed and tested on top of the simulated
network. Instead, these tools focus on simulating and testing the
characteristics of the network itself in order to support its design
and development.

2.2 Network Emulation
Network emulators are normally available as hardware or soft-
ware solutions that copy the behavior of a network to functionally



Termite2 - Supporting Scalable and
Usable Encounter-based Apps Termite2, Fernando Moreira, IST

replace it. When compared to network simulators the major dif-
ference between them is that a network emulator allows network
architects, engineers, and developers to attach end-systems such
as computers to the emulated network; thus, such computers can
act exactly as if they were attached to a real network [11]. This
allows a user to accurately gauge an application’s responsiveness,
throughput, and quality of experience prior to applying or making
changes or additions to a system. As seen in the previous section,
this functionality is crucial for what we pretend to achieve with
Termite2. Most network emulation tools also provide the necessary
network characteristics to emulate encounter networks by allowing
the network nodes to move within the network. Unfortunately, all
the network emulation tools that we analysed for this project show
no support for emulated mobile devices. Nevertheless, some of the
tools present interesting solutions to system scalability; below we
present one of them.

NetWire [5] is a network emulation system at the physical and
MAC layer of the ISO/OSI network model. The ISO/OSI network
model defines the model partitions of a communication system into
abstraction layers, without regarding the underlying internal net-
work structure and technology, which makes the system extremely
efficient and consistent. NetWire’s main appeal is its distributed ar-
chitecture, achieved using a client/server approach to the emulated
network and the applications running on top. Each client (system or
application) can interact with one or more servers emulating one or
more networks using the NOEL protocol, which is an extension of
TCL over TCP/IP specifically designed for NetWire. This provides
the system with a number of features. The system is able to emulate
a wide range of network typologies. It has the ability to emulate
basic physical characteristics of the communication channels, such
as background noise. External applications can join the network
(Server side) and be linked together with host adapters at any time,
acting as if they where real computation nodes. Network and node
emulation can be spread among multiple workstations to distribute
the computational load, by connecting several network servers,
drastically improving the system scalability.

Unfortunately, when evaluating this system for our project needs,
NetWire has no GUI, it shows no support for virtual mobile devices
ormobile applications, and is unable to emulate encounter networks
since nodes within the network are stationary. Nevertheless, on
Section 3 we see that our project architecture is inspired by NetWire
client-server solution, and will use the same approach to separate
the network emulation and the virtual mobile devices running the
mobile application through multiple machines in order to improve
the system scalability.

2.3 Test Frameworks
In the previous sections we have focused on presenting tools that
target the network layer as a basis for the development of encounter
based applications. In this section we discuss tools that target the de-
velopment and testing of mobile application and see if they support
the necessary network layer to simulate peer-to-per tests.

MonkeyRunner [9] is a mobile framework primarily used in the
development and creation of automated tests for Android applica-
tions. MonkeyRunner provides an API for writing programs that
control an Android device or emulator from outside the Android

code. Developers can use this tool to create Python programs that
install Android applications and then run unit test suites automati-
cally. This includes automatic network tests but only if real devices
are used. In fact, MonkeyRunner is not capable of emulating or
simulating a network in which tests could be run on top off, but
it could be integrated in a network emulation tool, in turn mak-
ing this framework capable of supporting the testing and helping
the development of applications that use the encounter network
paradigm. However, the complexity and work needed to integrate
MonkeyRunner and the proper network emulation tool would re-
quire a huge engineering effort.

There exists a lot of commercial and open source solutions to
provide automated testing of mobile application. We have tools
like Appium [6], Expresso [21] and Robotium [22]. All of these
tools present distinct advantages and disadvantages [10], and we
could discuss each one of them in detail. It is, however, unnecessary
because all these tools show the same problem as the one found in
MonkeyRunner. In fact, none is capable of emulating/simulating a
network, which in turn renders them unable to properly execute
tests for the particular case of encounter based applications.

2.4 Termite
Termite [3] [20] is an emulation test-bed created to provide support
for the development and testing of mobile applications that apply
the encounter networks paradigm. Termite is the only system that
has the ability to properly test mobile applications running on
emulated mobile devices on top of an emulated encounter network,
with proper support for node displacement and interactions. Thus,
Termite presents itself as an obvious starting point for this work.
However, the system is not a perfect solution and upon usage, it
clearly shows low levels of usability and scalability which do not
satisfy our project requirements.

Termite system scalability is poor for three main reasons: i) Ter-
mite’s reliance on Android studio or user made scripts to create and
manage all emulator instances; ii) Android SDK [? ] (per default con-
figuration) can only manage a maximum of 16 emulator instances
running at the same time; and iii) emulating a large encounter
network requires a large number of emulators, which requires a
considerable amount of computational power to run (CPU and
RAM).

Thus, if one tries to use Termite to test an application on a
large emulated network where a high number of virtual devices is
required, the computer running the Termite, Android Studio and
all the necessary Android emulators, if not powerful enough, will
show a significant slowdown (or some emulator crashes). Therefore,
we think that the current version of Termite is only suitable for
testing mobile applications on small networks; this can be seen as a
major system flaw when we consider the nature of the applications
that Termite is helping to develop.

In terms of system usability we think that Termite presents two
major flaws: i) the system does not provide a proper GUI, and ii)
it does not allow the user to directly manage the virtual Android
devices without the usage of Android studio or a user made script.
Termite user interface consists of the input of specific written Ter-
mite commands in a terminal window in order to produce various
system operations like, node creation, node displacement, binding



Termite2, Fernando Moreira, IST

Figure 1: Termite’s components and their interactions.

of emulators to virtual nodes, etc. This lack of a proper graphical
user interface to help to visualize the modeling and execution of
the emulated network is a major system flaw. This is specially true
when we consider the nature of the applications being tested, where
the ability to see the virtual nodes moving and interacting with
each other within the network is a crucial part to properly analyze
the application behaviour, identify possible problems and under-
stand the network being modeled. Finally, Termite does not offer
a direct away to create and manage the emulator instances (using
the terminal or a visual interface). The user is instead required to
use Android Studio or their own scripts to create and manage the
emulated devices. This has a serious negative impact on usability,
specially when we considering a large emulated network with a
large number of emulators.

3 SOLUTION
As mentioned before on Section 1, the current Termite system is
the basis for our work. Thus, it is important to first briefly describe
Termite’s system architecture and its components, and then present
the new Termite2 main aspects.

3.1 Termite Background
Termite is a test-bed solution that helps users to develop and test
their mobile Android applications that use encounter networks. To
this end, Termite allows a user to emulate an encounter network
where each virtual node can be bound to an emulator running the
application being developed/tested (all emulators must run on the
same machine as Termite and when bound to virtual nodes we
called them target emulators). On this network the user is then
able to perform various peer-to-peer scenarios among the target
emulators.

The Termite system is comprised by the interaction of two sys-
tem components: Termite Client and Termite API. Termite Client
is Termite’s main component; it starts from a console window on
the developer machine and supports all user interactions with the

system using Termite commands (we call them T-Commands) in-
cluding the creation and modelling of the emulated network. The
Termite API is an Android library (developed for Android 5.1 or
above, allowing the library to be used on more than 92% of all An-
droid devices) that implements most of the WiFi-Direct API [7] and
must be used by the developer on the applications that they wish
to develop/test using Termite. These applications run on emulators
on the developer machine.

On Termite (see Fig. 1), Android emulators are identifiedwith two
addresses: localhost and a port number. For example, in Fig. 1 the tar-
get emulator A is identified by the addresses localhost:9010 and
localhost:10010. These addresses are set by the Termite Client
with the help of a configuration file configured by the developer
(on this file the user must specify the ports that she/he wishes to
use for the emulators). These addresses then enable two types of
interactions between Termite’s system components: Termite Client
to emulators, and emulator to emulator communication. Note that
with Termite, all these interactions happen locally on the developer
machine (localhost).

The Termite Client communicates with the target emulators A
and B, by sending messages respectively to localhost:9010 and
localhost:9020, which are then redirected2 to the application
(running inside the emulators) and received by a socket server
opened by the Termite API on port 9001 (within the enclosed net-
work environment of each emulator). Messages are sent from Ter-
mite Client to the emulators following instructions given by the
user on the Termite Client. These messages are called Commit mes-
sages and are sent in two cases: when nodes (within the emulated
network) move close to others, or when peer-to-peer groups are
formed between nodes (also within the emulated network).

Commit messages contain information that allows the Termite
API to trigger peer-to-peer events inside an application using the
WiFi-Direct API provided by Android [7]. One of such events is
the creation of a peer-to-peer group with other target emulators.
When this happens, applications can use the Termite API library
to create a socket connection with other group members, allowing
them to communicate (green arrows in Fig. 1). The target emu-
lator A connects with the Target emulator B using the address
localhost:10020. This connection is then redirected 2 to the ap-
plication running inside target emulator B and received by a socket
server also opened by the Termite API on port 10010.

3.2 Termite2
Termite2 architectural solution solves Termite’s usability and scal-
ability limitations. Thus, Termite2 presents two major system dif-
ferences when compared to Termite: i) Termite2 is able to use
emulators that are running across multiple machines, and ii) Ter-
mite2 has a new graphical user interface (in addition to the console)
accessed via a web browser that displays a visual representation of
the created emulated network on a real world map; this interface
allows a user to interact with Termite2 via clicks and menu choices.

The above mentioned differences are expressed on Termite2 ar-
chitecture through the creation of two new system components:

2 These redirections are set by the Termite Client on the emulators using the available
Android SDK command line tools and enable an outside application, like the Termite
Client, to send messages to applications running inside an Android emulator.



Termite2 - Supporting Scalable and
Usable Encounter-based Apps Termite2, Fernando Moreira, IST

Figure 2: Termite2’s components and their interactions.

Termite2 Server, and Termite2 GUI. These new components work
alongside the old Termite’s components, Termite Client and Termite
API; the corresponding components in Termite2 are called Termite2
Client and Termite2 API, respectively. Therefore, Termite2 is com-
prised by the interaction of the following components: Termite2
Client, Termite2 Server, Termite2 API, and Termite2 GUI. Fig. 2
shows Termite2’s components and their interaction.

Termite2 Client runs from a console window on the developer
machine where the emulated network is created and modelled. User
interactions with Termite2 are also performed through this Client;
however, the user is now able to choose between two interface op-
tions: the old console interface where system interactions are done
using written commands, or a new GUI where system interactions
are performed via interactive menus and options.

Termite2 API is an Android library (developed for Android 5.1)
with the same responsibilities and features as the ones found on
Termite API (on Termite system).

Just like with Termite, on Termite2 there are still two types of
communication to consider: from Termite2 Client to emulators, and
from emulator to emulator. However, these communications are
no longer performed in the same way as they where on Termite.
Fig. 2 shows the differences: Termite2 Client communicates with
the emulators through the Termite2 Servers (blue arrows); the same
happens for emulator to emulator communication (green arrows).

We assume that Termite2 Server(s) run in the same network as
the Termite2 Client (this can be overwritten if we use software that
can make remote networks appear as local networks, e.g., using
sshuttle [2] 3 which does exactly this.). There must be a Termite2
Server running on each local machine in which we want to run
emulators on. In order for Termite2 Client to access a Termite2

3sshuttle allows us to forward the IP addresses and ports of an entire remote network
to our local network

Server (and the emulators managed by it) the user must register
them. This consists of writing the local IP addresses of the machines
where Termite2 Servers are running on a file inside Termite2 Client
(called configuration file in Fig. 2).

In the following sections we describe Termite2’s new compo-
nents (Termite2 Server and Termite2 GUI) in more detail, and their
interactions.

3.2.1 Termite2 Server. Thanks to the new Termite2 Server com-
ponent, Termite2 is now able to support a much larger number
of emulators, distributed across multiple machines. In particular,
Termite2 Server identifies the emulators (running locally) the same
way as the Termite Client did. However, an important change is
that emulators are now also identified by the machine IP address
where they are running. For example, in Fig. 2, the emulator A is
identified by the addresses: localhost:9010, localhost:10010,
and the local machine 1 network address (192.168.1.1); emulator B
is identified by the addresses: localhost:9010, localhost:10010
and the local machine 2 network address (192.168.1.2).

As shown in Fig. 2, Termite2 Client connects with each regis-
tered Termite2 Server through the addresses 192.168.1.1:8085
and 192.168.1.2:8085. Note that the port value 8085 is prede-
fined on the Termite2 Server but can be changed to any other port
value chosen by the user by configuring a connectionports.txt
file inside Termite2 Server source folder. With these connections,
Termite2 Client is then able to discover and use the emulators that
are running on each Termite2 Server machine. These connections
are also used by the Termite2 Client to send the commit messages
(upon user interaction) to the emulators using the Termite2 Servers
as intermediaries (blue arrows in Fig. 2).

Like in Termite system, emulators can communicate with each
other when a commit message is received (using the Termite2 API
server socket on port 9001), informing the emulator/application
that a peer-to-peer group was created. When this happens, the
application can then use Termite2 API to create a socket connection
with the group member (the socket connection is done using the
addresses of each emulator, provided within the commit message
information). However, this connection is now performed with the
Termite2 Server(s) of each emulator as intermediaries. In Fig. 2 we
can see this and the addresses used by looking at the green arrows.

Lastly, it is important to present another capability of the Ter-
mite2 Server; it allows the user to manage the emulators life cycle
(create, destroy, start, stop and on them install and start applica-
tions) from the Termite2 Client components. This is crucial for
Termite2 scalability as it allows a user to create and manage a
large number of emulators (and the applications running inside)
distributed across multiple machines from a single control point.

3.2.2 Termite2 GUI. Termite2 GUI is a new interface option pro-
vided by the Termite2 Client. This interface runs inside a web server
on the developer machine. It can be accessed via a web browser and
in order for the Termite2 GUI to exchange data with the Termite2
Client, it connects to it through a socket server that runs on the
Termite2 Client on localhost:8081 (we show this connection on
Fig. 2).

Visually, this new interface is divided in three distinct parts (see
Fig. 3). The first one is the Network view, where the user is able
to create and model the emulated network on a real world map



Termite2, Fernando Moreira, IST

(provided by Google Maps) through interactive mouse clicks, drags
and menu choices. The virtual network nodes are also presented on
this view (red markers in Fig. 3). The second part is the Data View,
where the user is able to see relevant data associated with the virtual
nodes created on the network. This data includes virtual node name,
geographical location (coordinates) and what emulator is the virtual
node bound to (node bind is also done here through a simple select
menu); information regarding the peer-to-peer groups created on
the emulated network can also be seen on this view (group owner
and group members). Finally, the Control View is comprised by a
set of buttons that allow a user to perform a number of tasks on
the interface.

With Termite2 GUI we are able to emulate node movement on
the Network view through two distinct actions. We can simply
drag and drop a node to a new location or move nodes through an
automatic movement event that we call move/movement events.
Movement via drag and drop is the simplest way to emulate node
movement; however, when creating complex tests (with a large
number of nodes moving) this movement method is not ideal (we
can only drag one node at a time) and the user should instead use
move events.

Move events allow users to create automatic movement paths
for each network node with a fixed movement speed that emulates
walking, cycling or driving (see Fig. 4). When nodes move via these
events they automatically create/join peer-to-peer groups when in
range of other nodes (node range is displayed by the red circular
area around each node and emulates WiFi-Direct range). Move
events are started, paused or stopped through the buttons at the
top of the Network View and allow a user to create more natural
and complex movement scenarios that better emulate real world
interactions.

These events are performed on the interface and internally (on
the interface logic) generate a sequence of commands similar to
those that one would have to use to model the same scenario on the
console. When an event is stop/finished the user can then perform a
commit operation (using the commit button that works similarly as
a commit command on the console) that propagates the full event to
the target emulators in order to test the application on the created
scenario. When a commit is performed, a commit message is set

Figure 3: Termite2 GUI views.

Figure 4: Termite2 GUI move events.

via a socket connection to Termite2 Client on localhost:8081.
Messages are received by the Termite2 Client and sent to the target
emulators through the Termite2 Server(s).

4 IMPLEMENTATION
In this Section, we discuss the implementation of Termite2 com-
ponents: Termite2 Server, and Termite2 GUI. We do not dive deep
into the code implementation of each component (as this would be
far too long and unnecessary); instead, we focus on the technolo-
gies used and how the code is structured in other to implement
Termite2.

Figure 5: Simplified UML diagram of Termite2 Server Java
classes.

Termite2 Server was implemented using Java. We use this lan-
guage to guarantee that this component can easily run onWindows,
Mac or Linux and to be consistent with the rest of Termite code
base (which is already in Java). Fig. 5 shows a UML diagram of the
Termite2 Server Java classes (for simplicity we only show the more
relevant classes and no field are presented).

The AVDControllerDriver class contains all the necessary meth-
ods that must be used to interact and configure the emulators. Its



Termite2 - Supporting Scalable and
Usable Encounter-based Apps Termite2, Fernando Moreira, IST

methods leverage the available Android SDK tools and allow for
the creation, deletion, start and stop of new emulators and the in-
stallation/start of applications on them. This class also provides
the necessary methods to detect the online emulators and set the
necessary port redirection rules. The addresses used to set the redi-
rection rules are created and managed by the AddressSet class.
When the redirection rules are set on an emulator, an Emulator
object is created that identifies it.

The ClientReceiverThread class is responsible for continually
listening for Termite2 Client connections on a server socket on port
8085 (on the machine local network where Termite2 Server is run-
ning, as show in Fig. 2 on Section 3). When a connection is received,
the ClientReceiverThread registers the connection and is now ready
to receive the Termite2 Client requests and redirect possible com-
mit messages to the target emulators. Termite2 Client requests
are processed by Command classes that express the operations re-
ceived, for example: sending information about what emulators are
available to be used on the emulated network, redirecting commit
messages to the emulators, or starting a new emulator instance.

Finally, we have the LocalReceiverThread and the ServerReceiver-
Thread classes. These classes are responsible for handling the redi-
rections that happen when an emulator communicates with another
(as shown in Fig. 2 on Section 3 (green arrows)).

The Termite2 GUI is built to run inside Apache Tomcat Server.
The interface logic is done using JavaScript and the emulated net-
work is displayed on a real world map using the Google Maps
API [8]. We choose JavaScript as it allows the interface logic to run
across any modern web browser (Google Chrome, Firefox, Safari,
etc.) and Google Maps API due to its extensive documentation and
features.

As with Termite2 Server, if we consider the whole implementa-
tion of Termite2’s GUI, it is not feasible to present all the code. Most
of the code used translates the already existing command logic on
the Termite console to interactive button clicks and menu choices.
Thus, we will only present the implementation aspects of the new
automatic node movement option that the Termite2 GUI provides
(presented in the previous Section 3.2.2).

The new movement option, allows the user to select a desired
destination for a network node; then, Termite2 creates a route and
draws it on the map displayed in the user user interface in which
the node moves at a fixed speed, chosen by the user; the speed at
which a node moves emulates walking (5m/s), bicycling (10m/s) or
driving (20m/s).

To create the movement route, Termite2 starts by making an
HTTP request to the Google Maps API Directions service using
JavaScript. The request contains the origin coordinates of the se-
lected node, the destination coordinates and the travel mode (the
travel mode can be walking, bicycling or driving, and it indicates
what traffic rules and lanes should be used when creating the route
on the map). The request response returns an array of coordinates
that delineates a path between the origin coordinates and the desti-
nation (we call this array, the route array).

However, the coordinates obtained on the route array are not
equally spaced between each other, i.e., the distances between each
sequential coordinate is not fixed. In fact, the first two coordinates
can be at a distance of 20 meters while the distance between the
next two can be 40meters. This means that the coordinates obtained

Figure 6: Interpolation function.

can not be immediately used to realistically emulate the movement
of the nodes. Note that moving a node one coordinate per second
does not work if the distance between sequential coordinates does
not correspond to a fixed value that emulates walking, bicycle or
driving speed. To solve this problem we interpolate the coordinate
values on the route array and create a new array of interpolated
coordinates that (in sequence) are equally distant from each other.
The distance used is selected (on the configuration menu on the
interface) by the user and is related to the following speeds 5m/s,
10m/s and 20 m/s. Fig. 6 shows the JavaScript function responsible
for performing the interpolations here described (the comments on
the code explain its logic). The interpolated route is then drawn on
to the emulated network and when the user starts the automatic
move event the node moves along the interpolated route one co-
ordinate each second. This emulates the movements previously
presented: walking (5m/s), bicycling (10m/s) or driving (20m/s).

It is important to note that the walking speed of 5m/s is not very
accurate (the average walking speed is around 2m/s). We chose the
5m/s speed value due to the fact that if we try to interpolate the co-
ordinates on the route array (for walking speed) to distance values
smaller than 5 meters, we obtain the same coordinate values as the
origin or the destination of the interpolation. Therefore, 5 meters
is the smallest interpolation distance between two coordinates that
we can perform. Nevertheless, when we consider the automatic
movement option, the speed at which a node moves is merely rep-
resentative; the most important aspect is that the node movement
speed is consistent in order to emulate realistic movement.

Finally, it is important to note that when the nodes move along
the interpolated route they automatically create, join and leave



Termite2, Fernando Moreira, IST

peer-to-peer groups with other nodes. This happens when nodes
get in range of each other.

5 EVALUATION
In this section we present Termite2 evaluation. The tests evaluate
Termite2’s main requirements: usability and scalability. All tests
were performed both on Termite2 and Termite in order to see how
Termite2 succeeds in providing usability and scalability improve-
ments over Termite.

5.1 Usability Tests
To compare Termite2’s system usability against Termite’s is to
compare both system interfaces, as is it through here that all in-
teractions with the system are made. Therefore, to evaluate and
compare the usability of both Termite and Termite2 we developed a
tests guide [15]. The goal is to evaluate how users perform two test
cases. These tests were first done with Termite (using the console
interface) and then with Termite2 (using the new GUI). We started
each test with a brief presentation on how each system works and
what their features are. All tests were performed with one user at
a time and followed a lab testing approach. We chose this form of
testing because it provides in-depth information on how the user
interacts and feels about the system.

All tests were performed on a node using Windows 10, equipped
with an Intel i5 6500 CPU, and 8GB of RAM. The emulator instances
used correspond to a Pixel2 Android phone running Android 5.1
(API 21) with 1GB of RAM. Both Termite, Termite2 and the emu-
lators used, were already installed on the Windows node before
the tests. The users performed the tests remotely from their homes.
To do this, we used Google Chrome Remote Desktop to give users
remote access to the test machine and the systems being tested.

After the tests were concluded we asked each user to answer
a set of questions [15] that allowed us to gather data about their
experiences. With this data we were able to evaluate how each user
experienced both interfaces and allowed us to compare the usability
of Termite2 against Termite.

We performed the tests with five different male users between
the ages of 20 and 25. All users were experienced with software and
had previously used Termite for academic projects. It is important
to note that although five users is a very small sample size for
our usability test, we need to take into consideration that this
project was developed during the COVID-19 pandemic. As such, the
realization of these tests had to be carried out exclusively remotely,
which made it very difficult to gather a large number of users to
perform the tests. Nevertheless, given the profile of the five users
that performed the tests (previous Termite users) we believe that
the results obtained still allow us to take valuable conclusions over
the usability of both systems and their interfaces.

Our usability tests results [15] show that all users prefer the new
graphical interface over Termite console in all aspects. One could
of course argue that with only five users, the results obtained are
not sufficiently conclusive (which is correct). However, we feel that
the visual nature of the new interface clearly presents an evolution
over Termite console drastically improving system usability.

5.2 Scalability Tests
For our project, system scalability is directly related with the num-
ber of emulator instances we can use within the emulated network
running the application we wish to develop and test. Thus, for
Termite2 to be more scalable than Termite, it needs to be able to
properly support a larger number of emulated Android devices.

When using Termite, we need to use Android Studio AVD Man-
ager or user made scripts to create and manage the emulator in-
stances. We also know that due to Android SDK limitations we
can only start a maximum number of 16 emulators instances at the
same time on a single machine. As such, when using Termite we
are only able to create an emulated network with a maximum size
of 16 target emulators. This number assumes that the local machine
has all the resources needed for that purpose.

With Termite2 we can now create and manage all emulator in-
stances from the Termite2 Client itself. This removes the need to
use Android AVD Manager or user made scripts to manage the em-
ulators. Using Termite2 and the new Termite2 Server component
we also provide a solution to the Android SDK limitations on the
maximum number of emulators we can run locally. This is done by
allowing the user to create the emulated network on one machine
and run the emulator instances distributed across other machines,
allowing the user to create much larger emulated networks. Never-
theless, we cannot present these Termite2 features as an immediate
justification for the system improved scalability when compared
to Termite. For Termite2 to be truly scalable it needs to be able to
deploy a large number of emulators within an acceptable period of
time. To evaluate this, we developed two tests (Local Deployment
and Distributed Deployment) to see how long it takes to launch an
increasing numbers of emulators on two different environments.

5.2.1 Local Deployment. This test consisted in deploying an in-
creasing number of emulators (from one to ten emulators4 on a
single machine and measure the time of deployment. We performed
these tests on Termite and Termite2 with all components of both
systems running on a single RNL computer.5 Each RNL machine
runs Ubuntu 18.04, with an Intel Core i5-4460 3.20GHz (Quad-core)
CPU, with 16GB RAM (around 14GB usable) and a network speed
of 80 Mb/s. All the emulators used correspond to a Pixel2 Android
phone running Android 5.1 with API 21. We use this API version
because Termite API was developed for this Android version; so,
for Termite2 we used the same API.

The results obtained for this test are shown in Fig.7 (note that
the Termite results correspond to the values obtained when using
Android Studio AVD Manager for reasons already explained). By
looking at the graph we can clearly see that Termite2 presents a
significant improvement on the time that it takes to launch the em-
ulators, install the applications and start them. The reason for this
improvement is due to the fact that Android Studio AVD Manager
starts the emulator instances in sequence (one after another) while
Termite2 starts all emulator instances at the same time. We can
see this by considering that the time improvement when we use
Termite2 is greater when the number of emulators used increases.

4We chose ten emulators as the maximum number due to memory constrains on the
testing machines.
5RNL machines are computers available at the IST laboratory 13.



Termite2 - Supporting Scalable and
Usable Encounter-based Apps Termite2, Fernando Moreira, IST

Figure 7: LocalDeployment results for Termite andTermite2

Figure 8: Startup time for local and remote emulators using
Termite2

5.2.2 Distributed Deployment. To truly show how Termite2 im-
proves system scalability we developed a test similar to the previous
one but now each emulator instance is deployed on a unique RNL
machine. With only 9 RNL machines available, we were able to
reach a total number of 9 emulators (with one emulator running
per machine), which then allows us to compare these results to
those obtained on the Local Deployment test (with Termite2 on a
single machine).

We perform the same test but this time we deployed 10 emulators
instances per RNL machine. With 9 RNL machines available we
were able to launch a total of 90 emulators, a drastic improvement
over the maximum 16 emulators that one can run when using
Termite.

In Fig.8 we show the values obtained when starting one emulator
across the 9 available RNL machines and compare these values to
those obtained on the Local Deployment test, where we started
the same amount of emulators (using Termite2) on a single RNL
machine. We can see that with the distributed approach the time it
takes to start one emulator on a single machine and starting 9 emu-
lators across 9 different machines is approximately the same. This
happens due to the fact that the Termite2 Client processes/sends
the start commands to the Termite2 Servers on multiple machines
at the same time. Thus, with Termite2 it is possible to explore the
inherent parallelism of a distributed system.

Figure 9: Maximum number of emulators we are able to use
with 9 RNL machines

This parallel processing is again shown on the results obtained
when starting ten emulators across the nine RNL machines (see
Fig.9). As expected, starting 10 emulators on a single machine takes
approximately the same time as starting 90 emulators across 9
different machines (with 10 emulators per machine).

By looking at Fig.9 and comparing the results obtained to those
presented on the Local Deployment test we can also see that starting
90 emulators with Termite2 across 9 machines takes less time than
to start 10 emulators on Termite on a single machine (using Android
Studio AVD Manager, which starts the emulators sequentially).

With these results we can easily conclude that Termite2 is much
more scalable than Termite.

6 CONCLUSION
On one hand, network simulation and emulation tools available
today offer no support to the necessary development and testing of
encounter-based applications. On the other hand, tools specially
designed for such applications development and testing lack the
necessary network layer where tests must be performed. Termite
is still the only available tool capable of providing proper support
in the development and testing of encounter-based applications.
However, Termite does not scale and it does not support a GUI.

To solve the above mentioned problems, we created a new ver-
sion of Termite, called Termite2, with improved usability and scal-
ability. Termite2 presents a new distributed system architecture
where the emulated network and the emulated android devices
used can run on distinct machines. The user is able to create the
emulated network on one machine and offload/distribute the com-
putational load of running a large number of emulators throughout
other machines. This allows the creation of much larger emulated
networks where more complex applications can be developed and
tested.

While Termite only offers support for a network size with a
maximum of 16 emulators, our evaluation (Section 5) shows that
Termite2 allows the creation of networks with 90 emulators (and
possibly even more). Termite2 also presents a new GUI that allows
the user to see, create and model the emulated network (and all
node interactions that happen within) on a real world map through
interactive clicks and menu selections. This is crucial to help de-
velopers create more complex encounter-based applications while



Termite2, Fernando Moreira, IST

helping them better understand the network paradigm they are
working with.

With Termite2’s new system architecture and features, as shown
in our evaluation, Termite2 fulfills our project goals and the system
presents itself as a proper evolution of the Termite system.

REFERENCES
[1] Lokesh Bajaj, Mineo Takai, Rajat Ahuja, Ken Tang, Rajive Bagrodia, and Mario

Gerla. [n. d.]. GloMoSim: A Scalable Network Simulation Environment. ([n. d.]).
[2] May Brian. [n. d.]. sshuttle: where transparent proxy meets VPN meets ssh.

https://sshuttle.readthedocs.io/en/stable/index.html Last accessed November
2020.

[3] Rodrigo Bruno, Nuno Santos, and Paulo Ferreira. 2015. Termite: Emulation
Testbed for Encounter Networks. Mobiquitous 2015 proceddings of the 12th EAI
International Conferance on Mobile and Ubiquitous System: Computing (2015),
31–40.

[4] Gibson Chengetanai and Grant Blaise O’Reilly. 2015. Survey on simulation tools
for wireless mobile Ad Hoc Networks. IEEE International Conference on Electrical,
Computer and Communication Technologies (2015).

[5] Carniani. Enrico and Davoli. Renzo. 2001. The NetWire Emulator: A Tool for
Teaching and Understanding Networks. SIGCSE Bull. 33, 3 (2001), 153–156.

[6] JS Foundation. [n. d.]. Appium automation for apps. http://appium.io Last
accessed December 2020.

[7] Google. [n. d.]. Create P2P connections with Wi-Fi Direct. https://developer.
android.com/training/connect-devices-wirelessly/wifi-direct Last accessed De-
cember 2020.

[8] Google. [n. d.]. Google Maps Platform Documentation. https://developers.
google.com/maps/documentation Last accessed December 2020.

[9] Google. [n. d.]. Monkeyrunner User Guide. https://developer.android.com/
studio/test/monkeyrunner Last accessed December 2020.

[10] S Gunasekaran and V Bargavi. [n. d.]. Survey on automation testing tools for
mobile applications. ([n. d.]).

[11] Muhammad Imran, Abas Md Said, and Halabi Hasbullah. 2010. A Survey of
Simulators, Emulators and Testbeds for Wireless Sensor Networks. International
Symposium on Information Technology (2010).

[12] J-Sim. [n. d.]. J-Sim Network Simulator. http://www.kiv.zcu.cz/j-sim/ Last
accessed December 2020.

[13] Jani Kurhinen, Vesa Korhonen, Mikko Vapa, andMatthieuWeber. 2016. Modelling
Mobile Encounter Networks. 17th International Symposium on Personal, Indoor
and Mobile Radio Communications (2016).

[14] Sujata Mallapur and Siddarama Patil. 2012. Survey on Simulation Tools for Mobile
Ad-Hoc Networks. RACST – International Journal of Computer Networks and
Wireless Communications 2, 2 (2012), 2250–3501.

[15] Fernando Moreira, Rodrigo Bruno, Nuno Santos, and Paulo Ferreira. [n. d.].
Termite2 Source Code. https://github.com/nuno-santos/termite/tree/master/
SourceCode/Termite2 Last accessed December 2020.

[16] NS-2. [n. d.]. The Network Simulator - ns-2. http://nsnam.sourceforge.net/wiki/
index.php/Main_Page Last accessed December 2020.

[17] NS-3. [n. d.]. NS-3 Network Simulator. https://www.nsnam.org Last accessed
December 2020.

[18] OMNeT++. [n. d.]. OMNeT++ Discrete Event Simulator. https://omnetpp.org
Last accessed December 2020.

[19] OPNET Optimum Network Performance. [n. d.]. OPNET NETWORK SIMU-
LATOR. http://opnetprojects.com/opnet-network-simulator/ Last accessed
December 2020.

[20] Nuno Santos, Paulo Ferreira, and Rodrigo Bruno. [n. d.]. Lesson 3 - Simulating de-
vice movement. https://nuno-santos.github.io/termite/index.html Last accessed
December 2020.

[21] Open Source. [n. d.]. Expresso framwork. https://developer.android.com/
training/testing/espresso Last accessed December 2020.

[22] Open Source. [n. d.]. Robotium User scenario testing for Android. https:
//github.com/RobotiumTech/robotium Last accessed December 2020.

[23] David Wetherall. [n. d.]. Otcl - MIT Object Tcl. http://otcl-tclcl.sourceforge.net/
otcl/ Last accessed December 2020.

https://sshuttle.readthedocs.io/en/stable/index.html
http://appium.io
https://developer.android.com/training/connect-devices-wirelessly/wifi-direct
https://developer.android.com/training/connect-devices-wirelessly/wifi-direct
https://developers.google.com/maps/documentation
https://developers.google.com/maps/documentation
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner
http://www.kiv.zcu.cz/j-sim/
https://github.com/nuno-santos/termite/tree/master/SourceCode/Termite2
https://github.com/nuno-santos/termite/tree/master/SourceCode/Termite2
http://nsnam.sourceforge.net/wiki/index.php/Main_Page
http://nsnam.sourceforge.net/wiki/index.php/Main_Page
https://www.nsnam.org
https://omnetpp.org
http://opnetprojects.com/opnet-network-simulator/
https://nuno-santos.github.io/termite/index.html
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://github.com/RobotiumTech/robotium
https://github.com/RobotiumTech/robotium
http://otcl-tclcl.sourceforge.net/otcl/
http://otcl-tclcl.sourceforge.net/otcl/

	Abstract
	1 Introduction
	2 Related work
	2.1 Network Simulation
	2.2 Network Emulation
	2.3 Test Frameworks
	2.4 Termite

	3 Solution
	3.1 Termite Background
	3.2 Termite2

	4 Implementation
	5 Evaluation
	5.1 Usability Tests
	5.2 Scalability Tests

	6 Conclusion
	References

