
Microservices Architecture for Gaming Industry
Companies

Sofia Estrela
Instituto Superior Técnico

Universidade de Lisboa
sofia.estrela@tecnico.ulisboa.pt

Abstract—The video gaming industry has seen fast growth
since its emergence in the 1960s. The surge has been accompa-
nied by numerous technical challenges for both developers and
administrators. It is an industry characterised by an increasingly
demanding target audience, requesting high availability and
frequent software updates. Thus, a company’s infrastructure can
play an essential role in the performance of their products and the
productivity of their developers. In the recent years, the concept
of microservices has reshaped the architectural field, with their
modularised and distributed approach, having been successfully
applied to massive multiplayer games. Nevertheless, more often
than not, companies offer multiple games, meaning that microser-
vices can have more to offer if the architecture is designed with a
company-wide view. In this research, Microservices Architecture
for Gaming Industry Companies (MAGIC) is proposed as an
answer for businesses wanting to escape their limiting monolithic
infrastructures and benefit from microservices to successfully
impact both Quality of Service (QoS) for players, and the
development and deployment cycles for the employees. One of
the key concepts of MAGIC is the centralisation of common
components across video games like player management, leader-
boards and others. Another crucial feature in this proposed
architecture is its ability to scale the most resource-intensive tasks
to the cloud. By using a hybrid approach, companies can get the
best of both worlds – potential infinite scaling while efficiently
using the already existing company resources.

Index Terms—video gaming industry; system architecture;
microservices; scaling; hybrid cloud

I. INTRODUCTION

In the 1960s, the gaming industry witnessed the boom of
pinball arcade games. Since then, this industry has incurred
numerous changes and enormous growth. From arcades to
video games, to the more recent dedicated consoles and mobile
games, evolution has been a constant – facing new challenges
and opportunities, as the hardware evolves [1].

This rise in the number of players and platforms has created
a number of challenges for the development and maintenance
of online games, among which:

• Scalability – As the user base grows, the system has
to scale accordingly, increasing the resources available
to tasks that are having issues to perform correctly and
timely. Moreover, games often have high peak times,
where a high level of responsiveness is still expected to
be maintained [2].

• High availability – Users expect to be able to play at any
time, with minimal delay. When latency and jitter are an
issue, users rapidly lose interest in the game [3].

Due to these challenges, companies are required to rethink
their infrastructures to ensure that they can always offer the
best possible experience to their users.

The study here presented is conducted in collaboration
with Chilltime, a Portuguese game development company,
that like many game development companies, started to have
performance issues, with the growth of the offered games and
rise in the number of players, due to the current structure
being inadequate for the demand, especially in peak times.
Moreover, no developer had a complete understanding of the
system, due to its size and unstructured design, which in turn
made work less efficient and of inferior quality. Concerns also
arose as to fault-tolerance, which, in their initial infrastructure,
was mostly done manually.

In this study, Microservices Architecture for Gaming Indus-
try Companies (MAGIC) is presented and its implementation
exemplified. It offers a distributed approach, using the concept
of microservices to provide a modular and loosely coupled
system, that can be effortlessly extended and updated, as well
as easy to scale and distribute when needed. This architecture
also helps the company deal with peaks in its load: offloading
the exceeding requests to the cloud has become a possibility.

To effectively apply microservices, the current monolithic
system needs to be broken down into several smaller services.
This decomposition cannot be copied from other companies
– it is profoundly related to the industry and business model.
Moreover, other support systems need to be ensured to im-
prove the security, observability, and fault-tolerance on the
overall architecture.

This report is organised as follows: In Sec. II are another
research works done in related areas. In Sec. III the context,
objectives and requirements of Chilltime are presented. In
Sec. IV is shown the architecture of MAGIC and in Sec. V
its implementation. Finally in Sec. VI an evaluations of the
requirements is done based on the architecture and implemen-
tation choices, with Sec. VII concluding this report.

II. STATE OF THE ART AND RELATED WORK

Research efforts regarding software architecture have pro-
vided solutions for processing, object modulation, data distri-
bution, caching and other techniques to deal with the number
of concurrent players and heavy processing [4]–[6]. These
techniques are fundamental for efficient processing, however,

mailto:sofia.estrela@tecnico.ulisboa.pt


they mainly focus on a monolithic architecture (with all the
disadvantages associated) and on-premise implementations.

Regarding the usage of microservices in video games, there
is research done about the integration of game engines as
microservices in the mobile cloud [7] as well as back-end
architectures for scalability gains and for Massive Multiplayer
Online Role-Playing Games (MMORPG) [8], [9].

While the last research topic referred is significantly related
to the research done in this report, the scope is very different
as this work focuses on a company-wide architecture, rather
than just one product. This is important to consider as many
gaming companies offer more than one game and therefore,
an aggregated architecture that centralises similar components
will enable a more straightforward development, maintenance
and even expansion. Moreover, this research work also dis-
cusses the usage of cloud providers to offload requests in a
hybrid cloud environment for better resource management.

III. CONTEXT, OBJECTIVES AND REQUIREMENTS

A. Context

As it was previously stated, this research work was done in
collaboration with Chilltime. Over the years, the company’s
user base has grown, and the services provided have outgrown
the initial expectation. Chilltime has three main games: World
War Online (Real Time Strategy (RTS) on browser), Marble
Adventures (mobile puzzle) and Soccer Avatars (mobile quiz).

World War Online has the biggest user base and suffers the
most from the architecture’s limitation. Players battle against
each other with the goal of building the biggest empire. There
is a singleplayer version and a multiplayer version of these
battles. The battle itself is a turn-based event, that when
triggered for singleplayer is immediately processed. In the case
of multiplayer, once the battle is triggered, it is only scheduled
for processing two minutes later, giving the opportunity for the
player in defence to change the positioning of their units to
better protect the area.

Players can also interact between each other in cooperative
relationships, by participating in squads, that collectively try
to help each other defeating other players and squads.

Chilltime also interact with their players via email and app
notifications to both mobile phones and desktops.

The original architecture in the organisation was monolithic.
As such, in the office there were a few servers available for
building and testing purposes. Additionally, the company had
four production servers in a data centre running LAMP (Linux,
Apache, MySQL and PHP) servers. This infrastructure posed
some challenges for Chilltime. The majority of these produc-
tion servers are not new, requiring updates – a challenging
task to execute without making the services unavailable in the
given architecture. Secondly, there were also no redundancy,
failure recovery or backup mechanisms, which would result in
very convoluted situation in case of a server failure.

As a result of the company’s growth, some efficiency prob-
lems appeared, making the games slower for users and harder
to update or extend for developers. Scaling this system was
a complex affair, as buying a bigger and newer machine was

beyond possibility considering financial constraints. Players
would use the delays to their advantage, cheating to achieve
higher scores. Difficulties in updating the operating systems
also led to security vulnerabilities. In addition, as the code
base of the provided services increased, no one in the company
could understand it completely, making changes to the existing
code more challenging.

B. Objectives

Facing these challenges, Chilltime decided to update its in-
frastructure to a more modularised and flexible one, that could
accommodate the services’ needs and the company’s business
growth. Based on this information, the main objectives for the
new architectur eare to:

• Ensure high availability of the services;
• Ensure no unnecessary delays;
• Ensure that even in peak times the performance is

smooth;
• Quickly recover in case of a server or service failure;
• Make it easier to maintain the servers and software;
• Make it easier to maintain and extend the code base;
• Have no significant upfront costs either in the new

architecture or in the modernisation process.
• Have an architecture that is easy to extend by developers,

without needing to hire a system administrator or other
additional expertise.

C. Requirements

A set of requirements is being defined for the system, based
on the previous discussion. As such, the requirements are:

• The system should guarantee isolation;
• The components must auto-recover from failure;
• The system should not have internal polling requests;
• The components should be deployable off-site;
• The battle system should auto-scale off-site;
• The battle system should scale up to 500 simultaneous

requests without degrading its performance
• The system should host multiple games simultaneously
• The system must have monitoring and logging services
• The system must increase testability and observability
• The system must be able to send messages to players via

the adequate channel
• The communication system must be able to incorporate

new channels

IV. ARCHITECTURE

MAGIC is based on Microservices, so this section starts
with a brief introduction of this concept and its most relevant
patterns. A microservice is an autonomously developed and
independently deployable component that implements useful
functionality and has a bounded context with a very clear
usage API and supports interoperability through message-
based communication [10], [11]. Microservices ensures two
key concepts: Loose coupling and high cohesion [12]. The
first ensures a degree of isolation between services and the
second ensures that everything similar or related is positioned



together, the rest being in a separate environment. The benefits
of microservices include:

• An effective way of scaling, as the separation of concerns
enables scaling only what is needed.

• Improved resilience, as the loose coupling of services
limits errors’ area of impact. [13].

• Autonomous teams, by minimising the cross collabora-
tion, as services are very independent. This enhances the
teams’ efficiency [10].

• Technology heterogeneity and optimisation for replace-
ability, as changes involves less risk and effort, facilitating
the exploration new software and language and eliminat-
ing technology lock-in [12].

• Composability by ensuring the reduction of development
time through increased opportunities for reusability [10].

• Ease of deployment as there is no need to test the whole
system for every modification made, only the service that
has been changed [12].

• Increased agility as it is easier for companies to adapt to
changes and try new paths and features [10].

• Less complexity in the code as services become more
independent and smaller in size, helping developers to
work quicker [10].

To implement microservices there are some pattern of
utilisation that should be explored and adopted where ben-
eficial. The first is related to communication which can be
synchronous or asynchronous. In the first, the client waits for
the server to give a response, blocking until received, being
Representational State Transfer (REST) the main implementa-
tion pattern. The asynchronous communication does not expect
an answer, the main example being messaging. Synchronous
communication is easier to implement but asynchronous com-
munication decreases the runtime coupling between services,
enhancing the benefits of microservices.

Regarding data, both read and write operations can be
analysed. Making queries can be done by either composing
API requests or using an event sourcing approach, which
consists in having services publishing their changes to the
network and having services subscribing to these streams.
Command Query Responsibility Segregation (CQRS) can be
used on top, to have a ”rolling snapshot” of the state of a value,
based on the event source stream received, which requires
a more complex implementation that API composition but
ensures decoupling.

Regarding data transaction, as they are distributed, the most
common pattern in microservices are sagas [11] which define
a sequence of local transaction that guarantee eventual con-
sistency. Sagas can be either choreographed or orchestrated,
the first having each node connecting to the next, while
in the second there is an orchestrator agent that manages
the transaction [12], requiring a more complex (although
centralised) implementation.

MAGIC aims to create a company-wide structure that
complies with the objectives and requirements while having
in consideration the business functionalities required. Since
the majority of the components are believed to be essential

to many gaming companies, any company in the industry can
use this infrastructure as a starting point to define their own
structure. In the case eventual adaptations need to be done,
they should be simple to add on account of the modularity
and loose coupling obtained by the use of a microservice
approach, creating an easily extensible design. To ensure a
good understanding of the system and its advantages, the C4
model is being used to provide graphical support on explaining
the service [14].

A. First Layer – Context

This layer of the C4 model defines the context of the
application. The diagram for the first layer is presented in
Fig. 1.

MAGIC

anonymous

player

admin

Email Service
Notification

Service

Auth Service

Offloading
Service

Fig. 1. Context Abstraction Layer

Starting by the leftmost components – the users – there
exists three main types: anonymous that do not have an
account in the company, players that can play the games and
administrators that have unrestricted access to the services.

Referring again to Fig. 1, these users communicate with
the central component – MAGIC. This component represents
the companies’ infrastructure, including the game engines, the
web-pages, Application Program Interface (API) and back-
office support services.

The registered users are also able to communicate with the
Auth Service – the authentication and authorisation service.
This service manages the user’s authentications and access
roles and, therefore, should ensure that the users are not
impersonating someone else, accessing exclusively to what
their roles permit. The authentication and authorisation service
also needs to communicate with the companies’ system to
ensure the service provided.

It was also included in this diagram two external services for
the system to communicate with the users: email service and
app notification service. Both these services receive requests
from MAGIC and will then interact with the users, provided
they possess an account in the company.

Lastly, there is the offloading service, which is supplied by
cloud providers and refers to the API requests sent by MAGIC
in order to dispatch the exceeding load to run on the cloud
environment, in a hybrid cloud approach.



B. Second Layer – Containers

This layer will focus on MAGIC main components. The
diagram for the second layer is presented in Fig. 2.

Business
Functionality

A
B

C

1

G

3

5

6 7

K

12

anonym

player

admin

Auth
Service

Email
Service

Notification
Service

Offloading
Service

API
Gateway

User
Manager

Web Pages

Back-office Monitoring
Service

Logging
Service

Alerting ServiceCommunication
Service

2

6 7

5

4

89
12

11 10

JI

F

E D

H

Fig. 2. Container Abstraction Layer

Regarding the internal components, they’re as follows:

• API Gateway – Conjugated with the Auth Service, it
provides the first barrier of any API request to the system,
also having a service discovery mechanism to route the
requests to the correct service before sending the answer
to the client.

• Web Pages – It contains all web services which are
accessible by the users.

• Communication Services – It contains an interface that
trigger the sending of email/notifications to the correct
users.

• User Manager – It connects the user’s information, with
the access tokens and identifier from the Auth Service.

• Business Functionality – It contains all services regarding
the specific functionality of the company which, in this
case, is related to gaming.

• Back-office – It represents a set of web pages and
respective backend functions with the authorisation to
perform special queries and perform actions related to
the administration and management of the products.

• Logging – Mechanisms to retrieve logs from the services
and storing them in a way that is easy to filter and analyse.

• Monitoring – Mechanisms that verify if the services are
online and healthy, by collecting metrics and performing
health checks.

• Alerting – It analyses the the logging and monitoring
output and triggers alarms when certain errors happen or
thresholds are surpassed.

All these components relate to each other and to external
services. In Fig. 2, internal relationships are marked with a
number and external interactions with capital letters.

The API Gateway component receives requests from the
users (A, B and C), which are then identified/validated in the
User Manager (1) and sent to the service with the answer
inside the Business Functionality (2). The users also connect
with the Web Pages (D, E and F).

The User Manager service receives identification and val-
idation requests by the API Gateway and information from
the external Auth Service. This user identification is attributed
to the whole company, independently of the game they are
connecting to. The relationship between users and games is
only analysed inside the Business Functionality component,
hence the connection between these services (3).

The admin user can also access the Back-Office system (H)
directly. This service provides a visualisation platform of the
Logging and Monitoring system (4 and 5) but can also receive
administrator’s requests from the API Gateway (6) to retrieve
restricted information or to trigger protected administrator
actions by accessing to the Business Functionality (7). If these
requests involve communicating with the client, the service can
solicit that request to the Communication Service (8).

The Business Functionality receives requests from the API
Gateway (2), User Manager (3) and Back-Office (7). These
requests are directly related to the data and action from games.
Most of these requests will be executed inside the component,
and the ones that require a response are then sent back from
the path where they were received. Some might need to be
forwarded to the Communication Service (9), to ensure the
user is notified of a certain event.

The Communication Service sends the formatted messages
to the specific communication channels chosen – in this
architecture either email or notification (I and J, respectively).
The Business Functionality component might also request
services from a cloud provider, if it decides that the existing
local resources are not enough to ensure timely execution of
the tasks, being sent to the Offloading Service (K).

The Alerting Service analyses the data in the Monitoring
and Logging services (10 and 11, respectively) and, if deemed
necessary, an email can be sent to the appropriate person, by
sending a request to the Communication Service (12).

On a last note, although it is not represented in Fig. 2 as
to produce a more understandable image, the Logging and
Monitoring services are connected to every service represented
in the diagram to retrieve the logs and metrics.

C. Third Layer – Components

The third layer focuses on the components that allow the
containers presented in the second layer to perform as desired.
Regarding the Business Functionality components, the layer
three diagram of this container is presented in Fig. 3.

It is possible to divide the Business Functionality into two
layers: the data layer (represented by the green components)
and the engine layer (represented by the orange components).

One important aspect to notice in the figure, is that each
green manager is responsible for an aspect of gaming for all
games produced in the company. The concept of player (with
nickname, avatar, scores) is present in any of these games, and



Player
Manager

Game
Manager

Leader-board
Manager

Offloading
Manger

Match
Executer

User
Manager

API
Gateway

Back-office

Offloading
Service

Communication
Service

Logging
Service

Monitoring
Service

Fig. 3. Components Abstraction Layer – Business Functionality

therefore, by having these components centralised in a Player
Manager, it is possible to centralise much of the services to be
able perform all similar requests like changing the nickname or
increasing the score after a game. The same can be said to the
Leader-board Manager, whose implementation mechanisms
are very similar in every game.

Moving on to the Game Manager, this service includes
all information about past and ongoing matches, indexed by
the specific game being played. This service also comprises
information about maps and digital worlds in the game (if
applicable). This component is the only one that can connect
to the orange engine layer components.

Regarding the engine layer, these are responsible for pro-
cessing the moves requested by players and returning the result
of the turn or the match to the Game Manager. If a match
ends, the scores are updated in the Player and Leader-board
Managers. The existence of two types of workers in the engine
layers lies with the possibility of task offloading in the cloud.
This means that the Game Manager will consider the current
state of the system to determine if the requested move can
be processed locally (in the Match Executor) or if it has to
be directed to the Offloading Manager to be processed in the
cloud.

Focusing on the relationships with external components,
the User Manager may interact with the Player Manager, to
understand what games does a user has access, for example.
Both the API Gateway and the Back-office Services can
connect to any of the three data layer managers to retrieve
and update information or submit a move request by a user.

Regarding the Communication Services, it can accept re-
quests from any component inside this diagram to, for exam-
ple, send a notification to a player when he changes the rank
on a leader-board. Logging and monitoring can also interact
with any of the blocks, to collect the activity performed by
the services and workers and to ensure they are performing as
expected.

V. IMPLEMENTATION

Changing the infrastructure of an existing company is a
complex project. Several tasks are involved in successfully
breaking down the monolith, with some authors referring that
it is a never ending evolution, which keeps changing in order

to adapt to the company’s current needs [10]. The reason
for its complexity revolves around having employees to learn
new technologies and software and time to refactor code.
Current internal processes – from testing to monitoring – are
reformulated, in a company-wide effort that requires careful
coordination between teams.

The keys to a successful adaptation are planning and oppor-
tunity: choosing the right time to separate services from the
monolithic application. Usually, it can be done when these
services are raising problems or need functional updates. The
creation of new features also generates great opportunities to
continue evolving the system.

Regarding Chilltime’s implementation process, it was no
different. Not all elements have been migrated to the new
infrastructure, due to the constraints referred to previously.

A. Technology Stack

1) Docker: Docker [15] offers the first mature implementa-
tion of container management promising significant productiv-
ity gains in the DevOps area due to the Infrastructure as Code
(IaC) approach, and an easy management and adaptability of
the deployment environment, which was not possible with
Virtual Machines (VM).

Docker works by having a daemon on the server that man-
ages the container instances in the host, but also the networks
and volumes, even doing monitoring – by doing periodic
health check requests to the various instances. On top of the
Docker, Docker Compose can be used in order to configure
services [16], by grouping the configurations on the various
containers that constitute that service, and being able to control
these groups of containers as a whole. Docker Compose facil-
itate the scaling process of certain workers, as the number of
instances can be easily changed with the docker-compose
command. Finally, Docker Compose has restart policy op-
tions – it can be set to no, always, on-failure and
unleass-stopped – helping with fault-tolerance.

2) Kubernetes: When a system has Docker installed on
more that one server, an orchestrator can be used to configure
and determine the desired state of the system and implement
more robust fault tolerance mechanisms, by managing collec-
tively the various hosts with Docker.

One of the most popular orchestrators for containerised
applications is Kubernetes [17]. It supplies software that
successfully builds and deploys distributed systems. It also
ensures high reliability, even when part of the system crashes.
It guarantees high availability, even during software rollouts
and maintenance. And, finally, it ensures scalability, by effi-
ciently using the existing resources – all this with straightfor-
ward configurations. This is possible because Kubernetes offer
several key features. The first is the immutable infrastructure
from containers, meaning that the structure does not evolve
gradually but rather is defined in a configuration file. The
second is about declarative configuration, which extends the
immutability concept to the Kubernetes configuration. Rather
than configuring the steps to create the architecture, Kuber-
netes requests only a declarative description of the desired



state of the system. Kubernetes will employ all mechanisms
to ensure that the state is kept as requested. The final feature
is about self-healing systems because, since Kubernetes un-
derstand the desired outcome, it can continuously adapt the
system – regarding the runtime variables, errors that occur,
or even when a container needs to be replaced for a newer
version without downtime.

3) RabbitMQ: As for message brokers, the chosen was
RabbitMQ – an open-source, lightweight yet extremely pow-
erful and versatile message broker [18]. RabbitMQ is platform
and vendor neutral, has client libraries in most languages,
and holds some layers of security. Therefore, RabbitMQ
has become a prevalent choice for companies that require
this service. RabbitMQ is based on AMQP, which defines
three abstract components that create the message routing
behaviour: exchanges – routes messages to queues; queues –
data structure that stores messages; bindings – routing rules for
exchanges. The configuration of these parameters can create
several types of communication paradigms between services,
making RabbitMQ a very flexible tool, ideal for the Chilltime
infrastructure.

4) Traefik: Traefik is an open-source edge router that
receives requests on behalf of the system, distributing (and
load balancing) them over the correct components [19]. This
edge router is capable of two types of routing: Layer 4 (TCP
– based on the IP address and ports) or Layer 7 (HTTP –
based on the hostname and path). It integrates natively with
several technologies like Docker and Kubernetes, enabling
service discovery options and also providing an easy setup
and configuration.

5) Elastic Stack: There are several open-source tools de-
signed for observability tasks, but Elastic Stack (formerly
known as ELK Stack) stands out. As defined by Pravah
Shukla and Sharath Kumar [20], “Elasticsearch is a realtime,
distributed search and analytics engine that is horizontally
scalable and capable of solving a wide variety of use cases.
At the heart of Elastic Stack, it centrally stores your data so
you can discover the expected and uncover the unexpected.”.

To deploy an Elastic Stack, there are three main compo-
nents. Logstash centralises the collection and transformation
of data, supporting many different types of inputs, including
Docker and RabbitMQ. Logstash outputs the received data
to the next component: Elasticsearch. This component stores
all data collected in Logstash, providing search and analytic
capabilities in a scalable way. Finally, Kibana corresponds to
the visualisation tool of Elasticsearch. There are several types
of graphs that may be built and interacted with in the interest of
aiding the visualisation of patterns and relationships between
data, being provided to the user in a website. The biggest
advantages of Elastic Stack are being schemeless, document-
oriented, easy to operate and scale as well as being resilient.
There are also several client libraries which are essential to
easily add new sources of logging and monitoring.

6) Node.js: Based on JavaScript, Node.js is an event-
driven language that can produce highly scalable servers using
an event loop software architecture [21]. This architecture

also reduces the complexity of writing code for concurrent
programming, while still offering an excellent performance. To
top the event-driven approach, Node.js also provides several
non-blocking clients and libraries, making it ideal for connect-
ing to external services as well.

7) Jenkins: Jenkins is a tool that can construct deployment
pipelines that is able to build, test and deploy the company’s
software [22]. It can easily be integrated with Kubernetes to
automatically deploy the new versions on the system, being a
very interesting option to automate the deployment cycle for
the company.

B. Environment Setup

The starting point was doing a software update on one of the
company’s servers. The update caused the server to be more
secure, therefore being able to install the most recent versions
of any software desired. This server was cleared, all services
installed where deployed in Docker containers. In an initial
approach, it was not used any container orchestrator, due to
the system being only in this single physical server.

Additionally, a message broker – RabbitMQ – for asyn-
chronous communication was installed, due to asynchronous
messaging being generally a better option to ensure less
coupling between services and enabling one-to-many commu-
nication. Thus, in cases where there are clear benefits from
using messaging, this should be the chosen option.

C. API Gateway

The API Gateway was implemented right after due to
representing the entry point of the system. For this, Traefik
was installed, adding services such service discovery, routing
and load balancing to the system.

D. Communication Services

The communication service was adopted when Chilltime
changed their email sender provider to one more suitable
for their needs: Mailjet [23]. The necessity to create this
new feature provided the perfect opportunity to migrate. The
app notification service immediately followed using Firebase
Cloud Messaging as its external service provider [24]. In
Fig. 4 the implementation of the communication services are
presented.

When the service sends an HTTP request to the correct
hostname, Traefik will direct the message to the correct
endpoint based on its hostname and path, forwarding it to the
correct communication container. The first containers reached
are the relay services that simply change the communication
from synchronous to asynchronous. There is relay service one
per communication channel, both written using Node.js.

These relay services also provide an extra layer of security
using Hash-based Message Authentication Code (HMAC) as
it provides a way to verify the integrity of the information
transmitted based on a secret key shared between server and
client. This mechanism proves to be appropriate since the only
ones authorised to use this communication services are other
internal servers.



email

Traefik

Email Relay

Notification 
Relay notification

Mailjet
Worker

Mailjet
Worker

Firebase
Worker

Firebase
Worker

RabbitMQ
player

...

...

Fig. 4. Implementation of the Communication Services

The message broker is configured to have two exchanges
– email and notifications – directly bound to queues with the
same name. When a message is received by the queue, it is
later consumed by one of the active workers – also written in
Node.js with the email/notification client libraries installed.

E. Logging, Monitoring, Alerting and Back-office

Observability is an essential trait in microservices, therefore,
Elastic Stack was implemented to ensure the observability
components of MAGIC – the Back-Office, Monitoring, Log-
ging and Alerting Services. With this, it was possible to better
understand how the containers were performing and to more
easily debug issues. In Fig. 5, the implementation is presented.

Logstack ElasticSearch

KibanaDocker
Events

RabbitMQ

logs*

NoSQL

Docker
Daemon

container #1

container #N

admin

Discord
Webhook

...

Fig. 5. Back-office, Logging, Monitoring and Alerting – Implementation

The most important logs to collect are about the requests
received and the processing information on each container,
which can be very useful for debugging and to derive patterns
of utilisation. To do this, the concept of event sourcing was
applied – the container publish events to the network, and
the interested parties are able to subscribe to access the
information. In this case, by using RabbitMQ queues for
services to publish logs, it was possible to have the Logstash to
subscribe to those queues. These logs are modified to aid with
filtering and sent to Elasticseach. From there on, admin users
have access to Kibana to visualise, filter and analyse them.

These logs have implement distributed tracking of requests,
to further help debugging, as logs are given a request ID that
makes it feasible to track requests over containers.

Regarding health checks, it is possible to achieve through
Docker deamon, who does these requests to the containers and
monitoring the responses, emitting an event in case a service
starts, stops or becomes unhealthy and redirecting them to
Logstash, it becomes possible to retrieve the aforementioned
metrics. This way, it is possible to monitor the containers’
behaviour. As for the alerting capabilities, they are imple-
mented by having the Logstash sending a message to a Discord
webhook – the internal messaging system in the team – in case
docker event warns about a stopped or an unhealthy container.

F. Game Manager, Match Executor, Offloading Manager –
World War Online

These services were implemented for World War Online –
the most played game at Chilltime – since the battle engine had
to be updated. The match processing unit is usually a resource
intensive task. The former version of the battle mechanism
had performance issues in peak times, with players using the
delays to gain an advantage over other users. Therefore, one
of the main goals with the new architecture was to ensure
more potential scaling for this service. This can be achieved
by having a hybrid cloud system, as it can be seen on Fig. 6,
where the system for the battles is presented.

AWS Lambda
Dispatcher

AWS Lambda
API

AWS
Lambda

AWS
Lambda

RabbitMQplayer

Traefik

Battle
Engine
Relay

be_pre2

be

be_dlx

m
ul

tip
la

ye
r

si
ng

le
pl

ay
er

Battle
Engine
Worker

Battle
Engine
Worker

...

...

Fig. 6. World War Online Battle Engine – Implementation

When choosing the cloud solution, a serverless solution was
preferred due to not having to deal with any management of
the underlying infrastructure as opposed to Infrastrcture as a
Service (IaaS), Container as a Service (CaaS) or Platform as a
Service (PaaS) solutions. this lead to choosing AWS Lambda
(and S3 for uploading purposes) for the job [25].

As for RabbitMQ, Dead Letter Exchange (DLX) and mes-
sages Time-To-Live (TTL) were added to the configuration.
DLX is an attribute of a queue that ensures rejected messages
are routed to another exchange. One of the reasons for a
message to be rejected is by surpassing its TTL, which causes
the redirection of the message to the DLX for another service
to consume. By using message ackowleges and adjusting the
prefect consumer value – the number of simultaneous requests
a consumer can handle –, it is possible for the message to



be redirected to the DLX instantaneously if not consumer is
available – with prefetch as one and the message TTL as zero.

When the player triggers a battle, it is then directed to
Traefik which routes the request to the relay. In case of
a singleplayer match, it is processed directly after the user
triggers the battle. Focusing on singleplayer, messages are
sent with TTL as zero, to the be queue. If they can be
consumed immediately, they run locally. Otherwise, they are
sent to the DLX, which places the message in the be_dlx
queue. This queue has a consumer service that connects to the
AWS’s API to launch a Lambda function. The battle engine is
then processed in the cloud. Since multiplayer waits for two
minutes before processing the battle, it has an extra step. The
relay service will place the message in the be_pre2 queue
with the TTL of two minutes. As the queue has no consumers,
the messages expire, being redirected to the DLX queue – the
be queue for singleplayer battles.

Regarding the containers themselves, all services use
Node.js, the relay service having HMAC protection on the
exposed API and the AWS Lambda dispatcher having the AWS
client library. Within the Lamba functions, there is a simple
python code that battle processing files.

G. Future Implementations Plan

The several microservices implemented are part of a work
in progress that will include all other functionalities, products
and services provided by the company. The first steps is to
update the other three servers in order to ensure their security
and Docker support. After, an orchestrator like Kubernetes can
be used to manage containers across different hosts.

Regarding the decomposition of the monolith, in a first
stage, the database can be shared among services. This should
be temporary as it highly increases the coupling between ser-
vices. Data transactions are crucial and for that goal, sagas are
an option, existing as choreographed and orchestrated. Chore-
ographed sagas are the most appropriate approach regarding
the size of Chilltime. Moreover, the orchestrator service would
need to be designed and maintained by the company. As
for making queries, the API composition approach should be
used when it is sufficient, as long as having to deal with
runtime coupling is not a problem for the users or devel-
opers. Furthermore, as Traefik ensures the integration with
Kubernetes and has a service discovery system, it can forward
the requests in the infrastructure, regardless of the efficiency
and fault-tolerance mechanisms implemented. In some cases,
event sourcing and CQRS are worth considering. However,
as it requires a more complex implementation, it should only
be applied if there is a clear need or the implementation is
simplified due to the nature of the task, like log collection.

Finally, regarding DevOps, developing building pipelines
can also be beneficial to accelerate the deployment process
and facilitate the employees work: using the already existing
Jenkins server in Chilltime office.

VI. EVALUATION

A. Chilltime’s Objectives Evaluation

Microservices play an essential role to ensure the company
moves in the right direction regarding the pre-established
objectives. In respect of obtaining high availability, their
modularity allows the organisation to modify each service
without worrying about impacting others, which results in
easier updates with minimal downtime. Docker and Docker
Compose simplify the process of starting and stopping these
containers, and Kubernetes promises to automatically update
any component without downtime.

Regarding delay minimisation, with the correct implemen-
tation plan microservices can be helpful. It is important that
the migration to microservices should only be as complex as
necessary to ensure the services can surpass the monolithic
design’s limitations, without introducing new constraints.

AS for ensuring a smooth performance in peak times. This
was achieved by integrating cloud services in Chilltime’s
workflow and implementing a hybrid approach on the most
resource-intensive tasks.

Fault-recovery was another concern but having Docker
Compose, the reset options offered may help containers re-
cover from errors. However, it is Kubernetes that ensures the
most impactful mechanisms to deal with faults in the servers.

Additionally, Chilltime wanted to simplify software and
server maintenance, which is enhanced by the microservices
isonaltion of components. This modularisation helps to easily
modify or replace components withou impacting the adjacent
ones. This characteristic also eases code maintenance and
extension, since similar features are centralised.

As for cost management, it depends on the software chosen.
In this implementation, all tools and frameworks used are
open-source or free. The only exception is the cloud services,
but those are paid per usage. The alternative would be buying
more physical servers, which also implies high upfront costs.

Finally, the company does not have a system administrator
and, therefore, the new tools and processes should be maintain-
able by developers. Docker and Docker Compose help ensure
this, and, since the chosen cloud services are serverless, no
administration is required for the underlying structure.

B. Requirements Evaluation

1) The system should guarantee isolation: In terms of
architecture, the microservices approach can be an enormous
advantage due to the system’s loose coupling. By diminishing
the point of contact between components, and have them well
defined, it is much easier to code around the interaction with
interfaces in order to prevent errors from having a bigger
impact. By using containers and Docker in the implementation,
the concept of isolation goes even further – by providing a
virtualised environment for each service –, thus, an error in
a component is even prevented from affecting other environ-
ments deployed in the same machine.



C. The components must auto-recover from failure
To have auto recovery abilities, the system should be able

to detect it is down and recover. To this end, the architecture
contains a metrics service that receives notification of possible
problems in the infrastructure. With this information, the sys-
tem can effortlessly implement the necessary mechanisms in
order to rectify the problem, including alerting the appropriate
person. With the Docker Compose feature, it is possible to
specify the behaviour of the system in case the container
stops by, for example, configuring it to automatically restart
the container every time it is down. Moreover, there is also
a health check API request to verify if the component is
working well, and the metrics system also receives a message
if the component becomes unhealthy. The current action of a
stopped/unhealthy container is to both restart unless stopped
and to notify the developer team through the internal messag-
ing system each time it happens. Once Kubernetes is installed,
more auto-recovery options become available.

1) The system should not have internal polling requests:
For every task that is scheduled, there are polling systems
based on cronjobs, that periodically check the database for
tasks to process. Polling creates unnecessary load on databases
and the usage of asynchronous messages that is typical from
microservices, enables the creation of an alternative. In the
implementation made, there is one example of a polling system
that was removed – the World War Online battle engine. As
the processing of multiplayer requests is only done after a
couple of minutes, the usage of RabbitMQ messages TTL
and DLX has enabled the configuration of a way to start the
processing on time, without having to query the database every
15 seconds, as it was being done before. Additional systems
that use scheduling and polling can use the same approach to
enhance performance.

2) The components should be deployable off-site: A mi-
croservice can be complex but its scope of action should be
very well defined. Due to their smaller size and very defined
interface, the migration process to the cloud is much easier
to accomplish. Regarding the implementation on Chilltime,
the usage of container and Docker is a major advantage
in the process of migrating a service to the cloud, due to
the Container as a Service (CaaS) options and orchestration
services supplied by cloud providers.

3) The battle system should auto-scale off-site: The match
processing units are by nature one of the most resource-
intensive tasks. In order to achieve this, the architecture has an
offloading manager that is able to send requests to the cloud.
Chilltime implemented a hybrid cloud system with AWS.
Using RabbitMQ, it was possible to distribute the requests
between the various local workers before sending them to the
cloud if none were available. The number of workers is easily
adjusted, ensuring that the system can have an efficient use of
the local resources before sending requests to the cloud.

4) The battle system should scale up to 500 simultane-
ous requests without degrading its performance: One of the
biggest benefits in having microservices is the possibility of
having a more refined scalability. In this case, to scale up

to 500 simultaneous games, the system only needs to scale
the number of local workers (up to the resources available
in the system), and possibly the offloading managers and
game manager (although these require a very small processing
time when compared to the workers). In terms of the current
implementation, when using Docker and Traefik it is extremely
simple to increase the number of any component (relay,
workers and AWS Lambda dispatcher).With Kubernetes, there
are auto-scalling options available that can act by analysing
the Central Processing Unit (CPU) consumption, for example.
Regarding the cloud itself, as AWS Lambda is a serverless
service, it is not possible to monitor or manage the underly-
ing infrastructure, however the AWS states that up to 1000
instances of Lambda functions can run concurrently [26] –
enough to ensure the 500 requested.

5) The system should host multiple games simultaneously:
Gaming companies have various games. Instead of having their
architecture separating each game as a different infrastructure,
in this architecture, there is the possibility to have services
taking care of similar services between different games. This
enables the creation of infrastructures that host multiple games
efficiently, grouping similar tasks so they only need to be
coded and maintained once and in one place.

6) The system must have monitoring and logging services:
Logging and monitoring are two crucial services in microser-
vices that help developers perform efficiently. The architecture
designed had both monitoring and logging services connected
to every other service, as well as an alerting service and a
back-office system for an easier access to the information.
The Elastic Stack has enabled the implementation of all these
services in a very efficient way, as well as extra features to
facilitate the filtering and visualisation of the data.

7) The system must increase testability and observability:
Testability becomes an easier using a microservices approach:
as the systems are loosely coupled and isolated, it is much
easier to test each feature separately without having to test
the whole system every time. Testing can be done in an
incrementally bigger scope and in an automatic way. Ob-
servability is powered not only by having the logging and
monitoring systems but also by the alerting and a back-office
services that can make special requests to better understand
the services’ state. Regarding the testing implementation, it
was possible to use the combination of small scripts to trigger
each feature implemented by simply making HTTP requests to
the appropriate API endpoint (with the correct authentication
and information to perform the task), as well as looking at the
output in the logs to understand if the system was performing
as expected. This can be even more automated, once the
company explores Jenkins and its possibilities for building
pipelines. Moreover, in terms of observability, a distributed
tracking system was also implemented, that can be explored
by administrators in Kibana’s interface.

8) The system must be able to send messages to players via
the adequate channel: In this architecture, it was added the
email and the app notification system. These services do not
depend on a specific email provider or notification provider,



enabling the company to choose the more appropriate one and
change it when needed. In the implementation, Chilltime chose
to use Mailjet and Firebase Cloud Messaging.

9) The communication system must be able to incorporate
new channels: Even though the company uses the email and
app notification only, it is expected that the notification chan-
nels evolve over time. Therefore, the architecture needed to be
able to expand its functionality. In that regard, a microservice
architecture can really help with extensibility, by creating a
new service with the new functionality and simply exposing
the API for other services to connect with.

VII. CONCLUSION

As it can be seen in this report, MAGIC provides a solid
foundation for the implementation of a system that is capable
of meeting the given requirements. MAGIC is able to scale
without performance reduction, moving to the cloud when nec-
essary, while being able to ensure all functional requirements
as well and facilitating the work of employees. Thus, the main
goal of this project is considered to be achieved.

There is still much work left to do for the company to have
the complete implementation of the architecture. For the ele-
ments that Chilltime needs to enforce later, an implementation
plan was designed with tool suggestions and an analysis of the
critical factors to help with the decisions.

While this architecture was implemented for the Portuguese
business, it is important to state that this work was reflected
with other gaming companies in mind as well, since the
problems faced by Chilltime – performance issues due to
scaling and difficulty in being more agile – also concern other
companies in the same field. As such, this work is perfectly
suitable for others to use and adapt the implementation to
their specific needs. However, the size of the company can be
particularly important when determining if this architecture is
a good fit: a smaller company, with fewer users or games,
might not benefit from a large number of microservices, as
they might be bringing complexity and delays that do not solve
any real issue. Similarly, bigger companies with millions of
users should probably divide even more the resources and ser-
vices needed in their infrastructure, for example, considering
sharding the databases based on the locations of their users.

A. Future Work

Regarding the future work, there are many interesting
projects that can be tackled. The first would be to explore
the possible changes in the implementation for a much bigger
user base with millions of active players.

Another interesting topic is the exploration of other cloud
services that a gaming company can benefit from, as in this
work they are only being used for extending the computing
power. There are various data, security, monitoring and ma-
chine learning API that can provide further functionality.

Finally, there are some game types with unique characteris-
tics that might need special treatment, such as MMORPG that
have huge persistent open worlds which can be explored by
users and interact in real-time. These types of games require

an efficient use of databases to manage the state of the world.
On the other hand, First Person Shooter games’s network
management – such as the number of messages sent or the
number of hops between microservices – can certainly be
impactful due to these games being real-time with a high
rate of updates. As future work, it would be interesting to
understand if these game specifications can be efficiently
performed based on this architecture or how it would need
to change in order to adapt to these games.

REFERENCES

[1] J. Jörnmark, A.-S. Axelsson, and M. Ernkvist, “Wherever Hardware,
There’ll be Games: The Evolution of Hardware and Shifting Industrial
Leadership in the Gaming Industry,” in Proceedings of the Digital Games
Research Association International Conference (DiGRA), 2005, p. 13.

[2] S. Ferretti and G. D’Angelo, “Online Gaming Scalability,” Encyclopedia
of Computer Graphics and Games, pp. 1–3, 2018.

[3] K. T. Chen, P. Huang, and C. L. Lei, “How sensitive are online gamers
to network quality?” Communications of the ACM, vol. 49, no. 11, pp.
34–38, 2006.

[4] M. Doherty, “A Software Architecture for Games,” University of the
Pacific Department of Computer Science Research and Project Journal
(RAPJ), vol. 1, no. 1, 2003.

[5] S. Caltagirone, B. Schlief, M. Keys, and M. J. Willshire, “Architecture
for a Massively Multiplayer Online Role Playing Game Engine,” Journal
of Computing Sciences in Colleges, vol. 18, no. 2, pp. 105–116, 2002.

[6] S. Bogojevic, S. Bogojevic, M. K. September, and M. K. September,
“The Architecture of Massive Multiplayer Online Games,” Computer,
2003.

[7] Q. Liu, “Integrating Game Engines into the Mobile Cloud as Micro-
Services,” Ph.D. dissertation, University of Saskatchewan, 2018.

[8] C. Cardin, “Design of a horizontally scalable backend application for
online games,” Ph.D. dissertation, Aalto University, 2016.

[9] M. Vähä, “Applying microservice architecture pattern to a design of an
MMORPG backend,” Ph.D. dissertation, University of Oulu, 2017.

[10] I. Nadareshivili, R. Mitra, M. McLarty, and M. Amundsen, Microser-
vice Architecture: Aligning Principles, Practices, and Culture, 1st ed.,
B. MacDonals and H. Bauer, Eds. Sebastopol: O’Reilly Media, 2016.

[11] C. Richardson, Microservices Patterns, M. Michaels, C. Mennerich, and
L. Weidert, Eds. Shelter Island: Manning Publications Co., 2019.

[12] S. Newman, Building Microservices Designing Fine-Grained Systems,
1st ed., B. MacDonald and M. Loukides, Eds. O’Reilly Media, 2015.

[13] J. Nemer. (2019) Advantages and Disadvan-
tages of Microservices Architecture. Accessed: 2020-
11-20. [Online]. Available: https://cloudacademy.com/blog/
microservices-architecture-challenge-advantage-drawback/

[14] S. Brown. (2019) C4 Model. Accessed: 2020-12-06. [Online]. Available:
https://c4model.com

[15] K. Matthias and S. P. Kane, Docker Up & Running, 2nd ed. O’Reilly
Media, Inc., 2018.

[16] Overview of Docker Compose. Accessed: 2020-12-25. [Online].
Available: https://docs.docker.com/compose/

[17] B. Burns, J. Beda, and K. Hightower, Kubernetes Up & Running, 2nd ed.
O’Reilly Media, Inc., 2019.

[18] G. M. Roy, RabbitMQ in depth. Manning Publications Co., 2018.
[19] Traefik Documentation. Accessed: 2020-12-10. [Online]. Available:

https://doc.traefik.io/traefik/
[20] P. Shukla and S. Kumar M N, Learning Elastic Stack 6.0. Packt

Publishing Ltd., 2017, vol. 53, no. 9.
[21] T. Hughes-Croucher and M. Wilson, Node Up and Running, 1st ed.

O’Reilly Media, Inc., 2012, vol. 53, no. 9.
[22] B. Laster, Jenkins 2 Up and Running. O’Reilly Media, Inc., 2018.
[23] Mailjet Main Page. Accessed: 2020-12-10. [Online]. Available:

https://www.mailjet.com/
[24] Firebase Cloud Messaging. Accessed: 2020-12-10. [Online]. Available:

https://firebase.google.com/products/cloud-messaging
[25] P. Sbarski, Serverless architectures on AWS. Manning Publications Co.,

2017.
[26] AWS Lambda Quotas. Accessed: 2020-12-17. [Online]. Available:

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://c4model.com
https://docs.docker.com/compose/
https://doc.traefik.io/traefik/
https://www.mailjet.com/
https://firebase.google.com/products/cloud-messaging
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

	Introduction
	State of the Art and Related Work
	Context, Objectives and Requirements
	Context
	Objectives
	Requirements

	Architecture
	First Layer – Context
	Second Layer – Containers
	Third Layer – Components

	Implementation
	Technology Stack
	Docker
	Kubernetes
	RabbitMQ
	Traefik
	Elastic Stack
	Node.js
	Jenkins

	Environment Setup
	API Gateway
	Communication Services
	Logging, Monitoring, Alerting and Back-office
	Game Manager, Match Executor, Offloading Manager – World War Online
	Future Implementations Plan

	Evaluation
	Chilltime's Objectives Evaluation
	Requirements Evaluation
	The system should guarantee isolation

	The components must auto-recover from failure
	The system should not have internal polling requests
	The components should be deployable off-site
	The battle system should auto-scale off-site
	The battle system should scale up to 500 simultaneous requests without degrading its performance
	The system should host multiple games simultaneously
	The system must have monitoring and logging services
	The system must increase testability and observability
	The system must be able to send messages to players via the adequate channel
	The communication system must be able to incorporate new channels


	Conclusion
	Future Work

	References

