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Abstract

The video gaming industry has seen fast growth since its emergence in the 1960s. The surge has been

accompanied by numerous technical challenges for both developers and administrators. It is an industry

characterised by an increasingly demanding target audience, requesting high availability and frequent

software updates. Thus, a company’s infrastructure can play an essential role in the performance of

their products and the productivity of their developers. In the recent years, the concept of microser-

vices has reshaped the architectural field, with their modularised and distributed approach, having been

successfully applied to massive multiplayer games. Nevertheless, more often than not, companies of-

fer multiple games, meaning that microservices can have more to offer if the architecture is designed

with a company-wide view. In this research, Microservices Architecture for Gaming Industry Companies

(MAGIC) is proposed as an answer for businesses wanting to escape their limiting monolithic infrastruc-

tures and benefit from microservices to successfully impact both Quality of Service (QoS) for players,

and the development and deployment cycles for the employees. One of the key concepts of MAGIC is

the centralisation of common components across video games like player management, leader-boards

and others. Another crucial feature in this proposed architecture is its ability to scale the most resource-

intensive tasks to the cloud. By using a hybrid approach, companies can get the best of both worlds –

potential infinite scaling while efficiently using the already existing company resources.
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Resumo

A indústria dos videojogos tem apresentado um rápido crescimento desde que surgiu na década de

1960. Este aumento tem sido acompanhado por variados desafios técnicos tanto para programadores

como para administradores. Esta indústria tem um público-alvo extremamente exigente que requer alta

disponibilidade dos serviços e atualizações recorrentes de software. Assim, a infraestrutura de uma

empresa pode ter um papel fundamental na performance dos seus produtos e produtividades dos seus

programadores. Nos últimos anos, os microsserviços têm revolucionado a área de arquitetura de sis-

temas, com a sua abordagem modularizada e distribuı́da, tendo sido utilizada com sucesso em jogos

multijogadores massivos. No entanto, é comum as empresas disponibilizarem múltiplos jogos, o que

significa que os microsserviços têm ainda mais para oferecer se a arquitetura for desenhada para a em-

presa enquanto um todo. Nesta trabalho de pesquisa, MAGIC (Microservices Architecture for Gaming

Industry Companies) é proposta como uma solução para empresas que procuram ultrapassar os limites

das suas infraestruturas monolı́ticas e de beneficiar dos microsserviços para impactar tanto a qualidade

de serviços para os seus utilizadores como os ciclos de desenvolvimento e distribuição para os seus

empregados. Um dos conceitos principais da MAGIC é a centralização de componentes comuns aos

vários jogos, tais como a gestão de jogadores e tabelas de pontuações. Outra caracterı́stica crucial

é a possibilidade de escalar as tarefas computacionalmente exigentes para a nuvem. Utilizando uma

abordagem hı́brida, as empresas obtêm o melhor dos dois mundos – potencial infinito de escalabilidade

e uma utilização eficiente dos recursos existentes.

Palavras Chave

Industria de Videojogos; Arquitetura de Sistemas; Microserviços; Escalabilidade; Nuvem Hı́brida
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1.1 Introduction and Motivation

In the 1960s, the gaming industry witnessed the boom of pinball arcade games. Since then, this industry

has incurred numerous changes and enormous growth. From arcades to video games, to the more

recent dedicated consoles and mobile games, evolution has been a constant – facing new challenges

and opportunities, as the hardware evolves [1].

Multiplayer games date back to when users would take turns playing on the same physical machine.

In 1993, with the Internet and the World Wide Web phenomenon, the gaming industry increased its

growth rate again with the appearance of a new type of video games: networked gaming. Soon, online

multiplayer games became very popular, enticing players to compete or collaborate, now in different

physical devices [2, 3]. Nowadays, in a hyper-connected world where constant availability has become

the new normal, mobile games have initiated a ’New Era’ of gaming. A new class of hyper-casual-

gamers emerged from the non-gamer population, playing video games on their smartphones [4] and

thus drastically increasing the size of the video gaming market.

This rise in the number of players and platforms has created a number of challenges for the devel-

opment and maintenance of online games, among which:

• Scalability – As games have an increasing number of users, the system needs to scale accordingly,

increasing the resources available to tasks that, due to the load on the server, are having issues

to perform correctly and timely. Moreover, games often have high peak times, where a high level

of responsiveness is still expected to be maintained [5].

• High availability – Users expect to be able to play at any time of the day, with minimal delay. When

latency and jitter are an issue, users rapidly lose interest in the game [6].

Due to these challenges, companies are required to rethink their infrastructures to ensure that they

can always offer the best possible experience to their users.

The study here presented is conducted in collaboration with Chilltime, a Portuguese game develop-

ment company also developing apps for other companies. Their biggest product is World War Online an

online real-time strategy game that can be played both in the browser and smartphones (Android and

iOS).

Like many game development companies, with the growth of the offered games and rise in the num-

ber of players, some performance issues surfaced, as the current structure revealed to be inadequate

for the demand, especially in peak times. Moreover, no developer had a complete understanding of the

system, due to its size and unstructured design, which, in turn, made work less efficient and of inferior

quality. Concerns also arose as to fault tolerance, which, in their initial infrastructure, was mostly done

manually.
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At the commencement of this study, Chilltime had a few servers available for production purposes

in a data centre. The company also had several servers in their offices, used to aid the team building

and testing software updates. Their production structure was centralised and consisted of a monolithic

infrastructure running on top of Linux servers, using Apache and MySQL.

In this study, Microservice Architecture for Gaming Industry Companies (MAGIC) – a distributed

architecture which can be used to overcome the current challenges associated with online multiplayer

games – is presented and its implementation exemplified.

The architecture proposed in this study offers a more distributed approach, using the concept of

microservices to provide a modular and loosely coupled system, that can be effortlessly extended and

updated, as well as easy to scale and distribute when needed. This architecture also helps companies

deal with peaks in its load: offloading the exceeding requests to the cloud has become a possibility. Each

service has a clear interface, which other services can interact with, as well as a clear objective/set of

data that becomes that service’s only concern.

To effectively apply microservices, the current monolithic system needs to be broken down into sev-

eral smaller services. This decomposition cannot be copied from other companies – it is profoundly

related to the industry and business model. Moreover, other support systems need to be ensured to

improve the security, observability, and fault tolerance on the overall architecture.

Thus, in the present research, the chosen architecture – MAGIC – is being presented, as well as

being explained how it follows the company’s business model and how it was implemented to solve

the issues from the previous infrastructure. Chilltime is now able to have a more flexible and scalable

system, without the performance and resilience issues that were driving users away.

1.2 Organisation of the Document

In Chapter 2, it is explored the background theory around the gaming industry as well as the current

architecture paradigms used – monolithic and microservices – along with their patterns of implementa-

tion, and respective challenges and countermeasures. On top, cloud services and providers are also

analysed to deal with auto-scaling.

In Chapter 3, the requirements and objectives of Chilltime will be presented, drawing the foundations

to Chapter 4 where the proposed architecture is explained using the C4 model approach. Throughout

Chapter 5, the details of implementations are revealed and justified, as well as the next steps for the

company. They are then evaluated in Chapter 6 to understand how they contribute to the objectives and

requirements of Chapter 3.

Finally, Chapter 7 outlines and discusses the conclusions drawn from this research project.
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In this chapter, the relevant background information for this report is presented. It begins with the

evolution of video games and the types of games that exist currently, to set context and introduce the

specific constraints of the industry. It is followed by an in-depth exploration of the current architecture

paradigms, focusing on the existing microservices patterns. Finally, this chapter finishes with a brief

overview of the cloud services possibilities, advantages, as well as its disadvantages.

2.1 The Gaming Industry

2.1.1 Video Games Evolution

To better comprehend how games work today, it is essential to understand their origins. According to [2]

and [3], throughout the history, there have been a few distinctive phases that have shaped this industry:

• 1958 – To make a tour to a laboratory less boring, the first video game was created using oscil-

loscopes and potentiometers to make tennis for two. Other similar games appeared around the

same time, where the hardware itself was the game.

• 1961 – Spacewar was developed in a PDP-1 minicomputer and it’s considered to be the first

programmed video game.

• 1972 – Atari launched the first coin-operated machines with the game Pong, creating the first

commercial video game.

• 1972 – The first home console was launched – Magnavox Odyssey – by a TV manufacturer.

• 1970s – Often designated as the video game’s golden age, the 70s enabled the fast growth of the

video gaming industry, with more consoles, hundreds of games and coin-operated machines.

• 1977 – Apple launched the first home computer, with a BASIC interpreter, opening the way for

game development in non-dedicated devices.

• 1980 – Nintendo’s Game & Watch was the first commercial hit with handheld devices. The com-

bination of being small, cheap and portable promoted the beginning of the mobile video games

revolution.

• 1980s – Emergence of the first networked multiplayer games, played in university networks or

modem-vs-modem;

• Early 1990s – With the appearance of internal filesystems, it was then possible to reuse code

and better organise the chaos of game developing. This encouraged a revolution in terms of how
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game development was done, with the introduction of several data formats and behaviour systems.

Promptly, generic game systems were created and the first game engines developed.

• 1990s – Due to the World Wide Web phenomenon, multiplayer games saw massive adoption. By

adding other players to the game, many users found them more rewarding than their singleplayer

counterparts.

• 2000 – With the appearance of the first cell phones with Java, opportunities for game development

emerged. But the real advantage of mobile phones is that they are communication devices, which

encouraged more online and multiplayer games development.

As it can be inferred, the three main business models in the gaming industry are: coin-operated

machines in a paid-per-play model; dedicated consoles that after having the games purchased, could

be played repeatedly; and personal, non-dedicated devices that could also run purchased games con-

tinually. The last two models remain until today while coin-operated machines have entered in decline.

For this research work, the most relevant types of games are the networked ones. In [7] and [3], it is

presented a more in-depth history of this type of games:

• Multi-User Dungeon (MUD) games – MUD games are text-based multiplayer games in a persistent

world. Players could interact with the world using some text actions such as ”move north” or

”pick/drop object”, as well as interact with other players in the same network. These games were

implemented using a client-server architecture, where the client was a simple telnet session.

• First Person Shooters (FPS) games – FPS games like DOOM were played modem-to-modem.

Players could connect and play real-time against each other in a non-persistent world. Originally,

the implementation of these games was accomplished with a peer-to-peer topology using Ethernet

broadcast (and thus affecting non-playing devices in the same network).

• Real Time Strategy (RTS) games – When Kali Inc. released software that enabled users to play

games across the Internet allowing distant friends to play together, RTS games gained popularity

with their intuitive interface, alongside a good AI and good network support to ensure that players

are engaged in the game.

• Massive Multiplayer Online Role-Playing Game (MMORPG) – These games are very similar to

MUD games, yet with graphics and much more functionality. They can be very network intensive

and complex in code and architecture.

2.1.2 Types of Video Games

According to [8], the most popular way to classify video games is using genres. Genre classification is

based on user observation of objective characteristics. It can be extremely useful in assisting users to

8



find similar games and helps advertising products more clearly. Some examples of genre classifications

are Sandbox, Action-Adventure, First Person Shooter, Massive Online Multiplayer Role-Playing Games,

Real-Time Strategy Games.

As reported by [9], the problem with game genres is the lack of mutual exclusivity or joint exhaustivity

(to make sure there is one and only one classification for each game). Moreover, while the games’ genre

classification can be useful to aid the users in understanding the purpose of the game, it is usually not

adequate to classify games regarding the technology running behind, making this classification not ideal

for this research. The solution is, then, to present and define the most relevant characteristics of games

in the context of this project and use their combination to classify the constraints referred.

Local and Networked Games

Networked games (or online games) can be defined as games that connect to another player’s device

or a central server [3]. Currently, most games are played online, even if singleplayer, with a connection

to a server (if only to provide backup). A local game, on the other hand, is a game that can be played

without connection to remote devices. Some examples are simple mobile games that can be played

without Internet or video games in portable handheld consoles.

Singleplayer and Multiplayer Games

Singleplayer refers to games that are not influenced by other players’ performances. Multiplayer refer

to games where the other player’s performance influences your own performance, for example, when

playing a car’s race against a friend. A game is also considered multiplayer when there are features

like leader-boards, even if players do not play directly or simultaneously against each other, since these

features enhance the competitiveness spirit in players and can therefore influence other users invested

time in playing the game.

One common misconception is that multiplayer games are all networked games. In reality, multiplayer

games also encompass having two input devices in a split-screen or having users playing in turns [3].

Mobile Games

Mobile games generally refer to the games that are played in smartphones, but the concept can be

extended to other portable consoles.

World Persistency

As reported by [10], game world persistence exists when the virtual world created in the game exists

without users needing to be present. In opposition, a virtual world is non-persistent when users need to

be present for it to keep developing. Note that this definition is separated from data persistence, which

refers to having the state of the world maintained even when servers crash.
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2.1.3 State of the Art and Related Work

In this section, the related work done for architectural design in gaming companies is being analysed.

In terms of architecture, there is relevant research done in the context of MMORPG or FPS games,

due to their number of concurrent players and network sensitivity. Solutions were created to send a

reduced number of messages while still being able to synchronise the users in real-time, providing a

seeming infinity world. Their infrastructure is defined by being Peer-to-Peer (P2P) or client/server.

Leaning to a P2P approach, there is the Mercury model [11] that designed a scalable and efficient

event communication system, Colyseus [12] with a distributed architecture for a better user experience

and Hydra [13] with an efficient network architecture with fault tolerance. While P2P had the potential

to be less costly and quicker in terms of network latency it had disadvantages: challenging to control

cheating; scalability issues with a large user base; unstable environment due to the lack of control over

the client’s latency and hardware resources, that required several complex fault tolerance mechanisms.

With these problems in mind, research was done regarding hybrid architectures: using both P2P and

client/server, trying to collect the benefits of both approaches for the case of MMORPG [14].

The architecture presented by this research does not have elements of P2P – with the growth in

network speeds and computing power, a client/server architecture is considered to be more secure,

easier to code, and more flexible in terms of included functionalities. Architectural patterns such as

microservices and the increasing adoption of cloud providers features, have enabled companies to scale

more quickly and offload tasks to computing nodes closer to their end-users for an improved network

latency.

On the other hand, research efforts regarding software architecture have provided solutions for pro-

cessing, object modulation, data distribution, caching and other techniques to deal with the number of

concurrent players and heavy processing [15–17]. These techniques are fundamental for efficient pro-

cessing. However, they mainly focus on a monolithic architecture (with all the disadvantages associated)

and on-premise implementations.

Regarding the usage of microservices in video games, there is research concluded in respect to the

integration of game engines as microservices in the mobile cloud [18] as well as back-end architectures

based on microservices for scalability gains and MMORPG games [19,20].

While the last research topic referred is significantly related to the research done here, the scope

is very different, as this work focuses on a company-wide architecture, rather than just one product.

This is important to consider as many gaming companies offer more than one game and therefore, an

aggregated architecture that centralises similar components will enable a more straightforward devel-

opment, maintenance and even expansion. Moreover, this research work also discusses the usage of

cloud providers to offload requests in a hybrid cloud environment for better resource management.
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2.2 Microservices

When dealing with the creation of a project, the software has both functional requirements – related to

the specific behaviour of the system – and quality attributes – describing performance attributes of a

system [21]. While any architecture can be used to satisfy functional requirements, when it comes to the

quality requirements, it is the architecture that can make a considerable difference [22].

Before proceeding any further, it is essential to introduce the concept of patterns. Patterns consist

of four elements: a specific name, a common and generic problem, a description of a reusable solution,

and the trade-offs and consequences of that solution. These patterns reveal proven strategies to solve

common problems with well-known drawbacks [23].

In this section, the concept of a microservice architecture is being presented, starting by its definition

and advantages/disadvantages, followed by the overall process of designing a microservice infrastruc-

ture. After, the most relevant microservice patterns are being introduced, regarding challenges related

to communications, data handling, development cycle and ensuring a production-ready deployment.

2.2.1 Origin and Overview of Microservices

The microservice architecture surged as a natural response to the problems faced by growing companies

with monolithic infrastructures. In essence, as described by Irakli Nadareshivili [24] it is about “building

solutions with speed and safety at scale”.

Monolithic Architecture

Monolithic architecture refers to the traditional way of serving software applications by encapsulating

all functionality in one application [25]. This approach has been used by many companies worldwide

including Netflix and Amazon, and it has several advantages – at least in elementary applications –

like being simple to develop, easy to change, and straightforward to test and deploy [26]. Nonetheless,

problems start to surge as companies expand, the most common being [22,27]:

• With the codebase growth, it becomes increasingly difficult and time-consuming to perform changes

(such as fixing bugs and implementing new features) as the code and features become progres-

sively more dispersed throughout the existing code.

• Applications become too complex and too large for a single developer to fully understand, resulting

in inferior code quality, which will in turn contribute to make later changes even more complicated.

This may also increase the support that new developers need until they become mature members.

• Since a single change can influence other non-related features, the deployment cycles will take

progressively a longer time due to the extended testing scope, more probability of bugs to fix and,

consequently, difficulties in ensuring Continuous Delivery (CD) and a truly agile process.
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• To scale a monolithic application, a Load Balancer (LB) is used to distribute traffic between several

instances, scaling the system as a whole. This means that even if there is only one specific feature

that requires more capacity, the entire system is replicated.

• Nowadays, it is crucial for companies to update and experiment with new technologies. This

process can be complex, time-consuming and involve high risk which increases the probability of

dealing with an increasingly obsolete technology stack.

• Reliability is difficult to guarantee since the whole system is affected should something happen to

a part of a software or the server.

Service-Oriented Architecture (SOA)

The microservices architectural pattern appeared as a natural response to these problems – companies

pursued more goal-oriented structures rather than solely a solution for a specific issue. The first concept

that appeared (and deeply influenced microservices) was SOA [27]. SOA promotes the separation of

features in small services, loosely coupled to each other, using network messages to communicate

between them. This approach can deal with some of the problems of the monolithic infrastructure and

promotes the reusability of software as well as easier maintenance and easier replaceability of services.

The problem with SOA is the lack of clear direction on what is the best way to implement this architecture.

Contrarily, the microservices architecture emerged from real-world usage and scenarios, creating a more

refined approach on SOA’s fundamental principles.

Microservices Architecture

A microservice is an autonomously developed and independently deployable component that imple-

ments useful functionality and has a bounded context with a very clear usage Application Program

Interface (API) and supports interoperability through message-based communication [22,24]. Microser-

vices ensures two key concepts: Loose coupling and high cohesion [27]. The first ensures a degree of

isolation between services, meaning that when updating or fixing a service, it is not required to change

any other service. The second ensures that everything similar or related is positioned together, the rest

being in a completely separate environment.

The benefits of microservices include:

• An effective way of scaling – Other than the horizontal scaling (by cloning) [28] there can be

separation of work by responsibility and/or requesters. This separation of work is achieved by

microservices and enables the optimal scaling process by scaling only what is needed. This incurs

in reduced both infrastructure costs and the risk of capacity-related service outages.

• Improved fault isolation (Resilience) – Due to the modularity and loose coupling of services, the

fault’s area of impact can be contained as opposed to the monolithic application [29].
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• Autonomous teams – Different teams can have specific specialisations, minimising the collabora-

tion between teams, as services are very independent. This enhances the teams’ efficiency and

minimises scheduled system-wide downtime, which in turn ensures better availability [24].

• Technology heterogeneity and optimisation for replaceability – Since making changes is more

effortless and involves less risk (due to the bounded scope of each service), companies have the

opportunity to explore new software and languages, eliminating technology lock-in. This enables

choosing the right tools for the right job, as well as readjust more efficiently to changes [27].

• Composability – ensure the reduction of development time through increased opportunities for

reusability over time [24].

• Ease of deployment – since there is no need to test the whole system for every modification made,

only the service that has been changed – this ensures that the company can take advantage of

Continuous Development/Continuous Integration (CD/CI) [27].

• Increased Agility – with the ease of deployment and replaceability, it is easier for companies to

adapt to changes and try new paths and features [24].

• Less complexity in the code – with more independent services that are smaller in size, it is easier

for developers to work with the code, fixing bugs and extending/adding functionalities quicker [24].

However, microservices are no “silver bullet” and are accompanied by some disadvantages and

real challenges in its implementation or migration from monolithic infrastructures. Some of the most

substantial disadvantages of microservices are:

• A microservice architecture adds a lot of complexity to the infrastructure when compared to mono-

lithic systems [26], creating challenges in terms of monitoring, testing, debugging flows as well as

on the implementation of some of the microservices key features like distributed transactions and

inter-service communication that can be challenging to both plan and execute.

• The increased number of services and the addition of a communication layer between them, will

further add new sources of failure for the system that need to be dealt with [27].

• Migrating a system from monolithic to microservices may be a very time-consuming process, that

requires the involvement of every team in its planning and execution [26]. It may also involve code

refactoring for each service. It can take several years for the migration to be done as it is an

incremental process, done in the addiction of the work that happens day-to-day.

• While unit testing (separated service testing) is easier to implement and automate, global testing

can be more complicated to coordinate than as a monolithic infrastructure [29].
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2.2.2 Decomposing an application in microservices

As explained by Chris Richardson in his book [22], defining an architecture is not a process to be followed

mechanically, as it involves some creative thinking. Chris Richardson suggests the following three steps

to decompose the application:

1. Start by defining all key requests done to the whole system, both commands to trigger actions and

requests for information.

2. With the requests, decompose the architecture by routing the requests to different components.

3. Finally, determine each service’s API in order to fulfil all the key requests of the first step.

While doing the division, it is also advised to follow the Single Responsibility Rule and Common

Closure Principle (both rules borrowed from Object Oriented Programming (OOP) principles [30]). The

main obstacles performing the decomposition are the number of calls (as too many requests can com-

promise the network latency), the choice of communication paradigms and finally how to maintain data

consistency, issues that will be addressed later in this chapter.

2.2.3 Inter-Process Communication

As opposed to a monolithic infrastructure where components are invoked via function calls, microser-

vices uses Inter-Process Communication (IPC) to interact [31]. Ensuring reliable and efficient commu-

nication is a crucial step in the planning process, impacting the availability and network latency of the

services provided. There are two main paradigms to consider: synchronous and asynchronous.

In this section, both paradigms are presented along with their patterns for implementation. Finally,

their advantages and disadvantages are compared to understand better when each should be used.

Synchronous Communication

This type of communication is defined by having the client making a call to a remote server and then

blocking until the operation is completed. This is the easiest way to think and plan communication

systems and it is greatly related with the one-to-one request/reply communication paradigm (where the

client initiates the requests and waits for the server response). It expects a timely response from the

service (as it is not ideal to have a blocked client for an extended period of time), so this approach

is very sensitive to network conditions. In less ideal network situations, the blocking time can lead to

unresponsive client applications [27].

For microservices, REpresentational State Transfer (REST) is the most relevant synchronous com-

munication pattern. It is an architectural style for networked applications and when a service is based

on REST it is considered a RESTful service. To ensure a RESTful service, the next six key constraints
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should be respected [32]: client-Server architecture; uniformed interface; layered system; cache; state-

less; (optional) code-on-demand.

With these characteristics REST enables loosely coupled applications that can effortlessly scale and

work with internet intermediaries (like cache, proxies and load balancers) to ensure efficient use of the

Internet [22,33]. The payload of the request and responses can be sent in various formats. Due to these

advantages and simple usage and configuration (it does not demand any message broker service),

REST has had a massive adoption on the Web.

On the other hand, the most significant constraints of REST applications are the requirement for

stateless communications and usage of restrictive interface names; being only capable of request/reply

communication; having only one-way communication (from client to server) that can lead to polling; the

client needs to know the locations of the resources, meaning that some mechanism of service discovery

needs to be implemented to ensure scalability and fault tolerance and, finally, being complicated to fetch

multiple resources in a single request.

Asynchronous Communication

In this type of communication, the caller does not wait for the server to complete. This approach is

aligned with event-based communication (where the client does not expect a response) [27].

Asynchronous communication is also capable of doing one-to-many communications like publish/-

subscribe, which is a one-to-many version of the event-based notification, and publish/asynchronous

response, where there is a limited waiting time for interested services to show interest by sending an

asynchronous message back to the sender [31].

The most relevant asynchronous communication pattern is messaging [34]. In this paradigm, the

sender writes the message to a channel and the receiver reads that message from the same channel.

The message itself includes headers with metadata as well as a body with content and is sent to the

sending port (open in a message broker) and, inside, directed to a channel. The consumer is connected

to a receiving interface in the broker and receives the messages. The channel can be either point-to-

point or publish/subscribe [35].

The benefits of messaging include loose runtime coupling (as opposed to synchronous communica-

tion); improved availability (due to the existence of a message broker); several communication paradigms

supported (such as request/reply, notifications, publish/subscribe and more) [22]; reduced unnecessary

network traffic between application such as REST polling calls [33]; no need to implement a service

discovery mechanism when using a message broker and, finally, better option for long-running jobs and

in low latency networks, as it does not block the client’s application.

Regarding the drawbacks, they are: request/reply is more complex to implement than in a syn-

chronised communication along with the additional complexity in the infrastructure due to the message

brokers which might need additional expertise and resources [27].
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2.2.4 Data Distribution, Consistency and Queries

In monolithic applications, databases and transactions are ensured to have Atomicity, Consistency, Iso-

lation and Durability (ACID) properties, but this is not possible when considering distributed applications

as the transactions may be done between databases across different services. As such, according to

the CAP theorem – which states that from consistency, availability and network partition tolerance, only

two can be assured [36] – consistency tends to be sacrificed and, therefore, it is not possible to ensure

ACID transactions.

When it comes to data in distributed systems, each service should ideally have its own database

(which can differ in type). Transactions can be ACID inside each service, but, when data transac-

tions cross boundaries, isolation cannot be guaranteed unless the database is shared between services

(which will tighten the coupling between the services) [33]. The solution is replacing ACID properties by

Basically Available, Soft state, Eventual consistency (BASE).

Data Transactions

There are two main options when dealing with data transactions: Two-Phase Commit (2PC) [37] – which

ensures ACID – and sagas [38] – which only ensure BASE.

2PC has a first step where every node in the transaction votes whether to commit or to abort. In

the second step, each vote is counted and if all were in favour of committing, a message is sent to the

participating nodes to commit, while if there is at least one abort, the message requests for the nodes

to abort [37]. This warrants that every database in the transaction either commit or rollback. There are

two main problems with 2PC: it is not supported by NoSQL databases, it is complex to implement using

message brokers and the usage of synchronised calls can impact the availability and scalability of the

services. As a result, when the complexity of the system requires, architects turn to sagas [38].

A saga is composed of various local transactions in sequence. When a distributed transaction starts,

the first local transaction updates the database and triggers an event to the next local transaction in

line. In case a local transaction fails, then the saga begins the execution of new local transactions that

compensate/undo the previous local transaction performed in the saga [22].

There are two main saga patterns: Choreographed sagas and Orchestrated sagas. In chore-

ographed sagas, each node of the transaction connects to the next node. In contrast, in orchestrated

sagas there is the orchestrator concept, a centralised supervisor node that will notify each local trans-

action on what to do and manage the outcomes [27].

This pattern only ensures ”eventual consistency”. But sagas benefit from a higher scaling potential

due to the services becoming less coupled during runtime, improving both availability and scalability

that would be lost with a 2PC approach. On the other hand, sagas are considerably more complex to

implement, being considered one of the most challenging aspects of the microservices migration [22].
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Regarding the orchestration saga, companies using this should be mindful as to prevent the orches-

tration node from becoming a central logic point. Instead, using a choreographed approach can be more

decoupled. The orchestration, however, facilitates the job of monitoring, logging and debugging [27].

Making Queries

Traditional data persistence use database’s tables to map info and current state. The most limiting factor

of this approach is the lack of history on the state changes, which has to be done in separate tables and

is generally not ”rollback-friendly” [22].

Event sourcing is an alternative approach that, instead of storing the structure’s state, it stores the

events that lead to the current state [39]. For performance purposes, a rolling snapshot (a state pro-

jection) can be maintained. There are various benefits to this approach: data is immutable and should

there be an error, it is easier to issue a compensating change instead of trying to rollback the latest

alteration, there is full auditability, and there is the possibility of calculating state projection at any given

point in time, without special coding [24].

However, event sourcing alone is not be enough to solve the problem of ensuring data persistence,

avoiding database sharing (and tight coupling) and ensuring data isolation and encapsulation. When

dealing with requests that require data that is spanned across multiple services/databases, they can

become quite complex using the traditional approach – API composition pattern [40]. With API compo-

sition, the requester sends messages to the service’s APIs endpoints to ask for the needed information.

With the response, it can combine the data received to get the final required information. While this ap-

proach is rather elementary in terms of understanding and implementation, if applied in more extensive

queries, it may become inefficient in terms of memory [22].

Alternatively, there is the Command Query Responsibility Segregation (CQRS) pattern [41], which

defends that requests and updates should be dealt separately. When using CQRS, one service can

subscribe to the events of other services and, with an event sourcing approach, it will be able to maintain

a rolling snapshot of all relevant information. This way, when interested services request that distributed

information, it can query only one service, using the rolling snapshot to directly retrieve the response.

This enables the complete separation of the data models on each service, keeping them independent

and loosely coupled. The biggest downside is the complexity involved (both in event sourcing and

CQRS), and for that reason, they should only be implemented in the presence of clear benefits [27].

2.2.5 Impact on the Development Cycle

CD/CI in microservices can be more easily achieved, which in turn reduces the time needed to deploy

changes. However, for these advantages to be possible, there needs to be some automation involved,

as well as operational maturity.
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The following principles are essential to guarantee the correct deployment cycle in microservices [33]:

continuous integration, continuous testing, continuous delivery and continuous monitoring.

Continuous integration implies that developers should commit their work frequently to the main

branch. The most significant advantage is that errors can be detected earlier. Also, by having fre-

quent integrations, the number of changes per integration is small. The sooner errors are detected and

the smaller the changes involved, the easier and less costly for the company to find and fix them.

Continuous (automated) testing is beneficial due to being able to avoid unexpected disruption of

business, ensuring more reliable applications, as well as being also very effective in creating proactive

problem prevention.

As for continuous delivery – performing small releases frequently –, most of the advantages are

related to the existence of building pipelines which automate the process of deploying the developer’s

code to production, executing the several phases of testing and ensuring the new release is production-

ready before deployment [27]. These pipelines in microservices should be simple to use and available

on-demand for teams.

Finally, the continuous monitoring principle ensures that the services are functioning optimally after

the releases. Moreover, it enables using real-time reports to find bottlenecks and the most impactful

optimisations. With the correct automation, thresholds can be established for the number reported, that

once exceeded, can notify the company about the existing problems.

Testing

Testing is a crucial feature in a microservices architecture, that enable fast and continuous delivery in

addition to increased agility and quicker reaction to changes. Microservices bring more flexibility and

opportunities when designing the testing process when compared to monolithic. There are different

types of testing differing in the scope of the analysis done [22]:

• Unit tests -— includes testing to classes and its functionality;

• Integration tests -— comprises testing to verify the service integration with other infrastructure;

• Component tests —- includes testing for an individual service or feature.

• End-to-end tests —- Acceptance tests for the entire application. If end-to-end testing goes smoothly,

the service can be deployed to a production environment.

The bigger the scope of the tests, the longer they run, and the slower they reveal their results. Be-

cause of this, testing should be done in phases and in an iterative manner, starting from the smaller

scoped testing until end-to-end validation. By having different phases, the errors can be spotted quicker

than in a monolithic application where testing is usually done mostly on the biggest scope of the appli-

cation. Due to gradual increase in the scope, it can be easier to find the error when it is detected.
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Before closing this section, it is worth mentioning that testing is a highly context-dependent feature of

microservices and thus, the systems should be built regarding the company, customer and how teams

and developers work. Furthermore, testing can be a highly Central Processing Unit (CPU) intensive

task, so these systems should be designed with the appropriate cautions [33].

Building Pipelines

Building pipelines allows for continuous testing and deployment process, by automating and chaining

together the different phases of testing, and ensuring developers’ changes are deployed to production.

While it may not be possible to provide fully automated pipelines in every situation, it is essential to take

into consideration that the more automated they are, the quicker is the release of new features.

In monolithic infrastructures, new releases tend to be a joint effort from several teams, that can take

days to be tested and ensured it is production-ready. With microservices and this approach to testing,

pipelines mechanisms should be accessible by teams directly, that can launch releases independently,

without fear of breaking the application.

Deployment

Microservices are independently deployable, allowing the partial scaling of only the services in need,

contrarily to a monolithic infrastructure where the application is scaled as a whole [22]. This operational

flexibility can open up deployment options, profoundly affecting the scaling costs and efficiency.

Cloud providers also play a role. If a service is deployed on-premise, scaling hardware can be

extremely costly due to the upfront costs of physical servers. It also need to be available before it is

needed, running the risk of having idle hardware for too long and, consequently, not being worth the

investment. Another option, with less up-front costs, is deploying the services in the cloud [24].

Nowadays, there are many deployment platforms available. In the next paragraphs, the most com-

mon ways of deployment are being presented and compared.

The first deployment being explored is using a language-specific packaging format in a physical

server [42]. To deploy a language-specific package (like Java ARchive (JAR) for Java applications),

the server needs to be configured, the packages copied and the service started. These steps can be

automated in a deployment pipeline that previously builds, tests and invokes the production environment

management service to deploy the newest version. Although this approach is fast to deploy and can

ensure an efficient resource utilisation, there is no ability to control the resources used by the application

on the server, no isolation between instances, no encapsulation of the language used and the production

environment management service can be complex to implement [22].

A more advanced deployment option are Virtual Machines (VMs) [43]. They offer the emulation of

a computer system and there can be several virtualised environments in the same server, but from the

perspective of the processes running inside, it is as if they are running alone on a physical server. To
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deploy services as VMs, the package is copied to an Operating System (OS) image, creating a new

image that can efficiently run in various VM managers of different servers. This approach offers the

encapsulation and isolation that was lacking in the previous one. Moreover, this can be deployed in the

cloud with Infrastructure as a Service (IaaS). However, VM can be worse regarding resource utilisation

and the process of creating an image can be slow, impacting the deployment process duration [22].

Another deployment strategy is the usage of containers [44]. Containerisation is a deployment tech-

nology which is more recent and lightweight. Just as VMs, containers are virtualised environments

that encapsulate and isolate the services, having their own root filesystem and networks ports. How-

ever, due to its virtualisation mechanism, it does not suffer from the slow OS boot time at the launch of

the container instance. Comparing to VM they are significantly fast at creating images and distributing

them, by storing in registries. The biggest drawback of containers is that the company using them is still

responsible for their administration unless they use cloud Container as a Service (CaaS) solutions [22].

It is worth mentioning the existence of container orchestration software [45], that treat physical ma-

chines as pools of resources and can run the needed instances of each service on top. The orchestrator

is in charge of all resource management, scheduling – selecting where is the best place to run the ser-

vice – and service management. It also ensures that both instances and servers are healthy, providing

fault tolerance mechanisms. Another benefit is their ability to perform updates on services with zero

downtime, by creating new instances of updated containers and only stopping the older version when

the new ones are considered healthy. In case of problems, a rollback can easily be done.

Finally, the last deployment platform explored are serverless solutions [46]. Every deployment plat-

form that has been described previously requires some system administration knowledge. Moreover,

even when using the cloud provided implementations, the company needs to pay for VMs and contain-

ers running even if they are idle. Serverless is a deployment pattern that consists of using public cloud

serverless deployment mechanisms. Benefits include the easy integration of these services with other

cloud providers’ services, the elimination of many infrastructure administration tasks, and a more flexible

approach with a usage-based pricing. However, there are some drawbacks: there can be high-latency in

the response due to the time taken by cloud providers setting up the application to start, and the limited

application for long-running services and asynchronous messaging [22].

2.2.6 Production Environment Considerations

One pattern that is commonly observed in the majority of microservices’ implementation is the API

Gateway [47]. This service is generally observed in the edge of the microservice infrastructure and

represents the overall interface that users can access. This node is essential to provide security (as

it is the first node accessed by users) and should be able to route requests to the according services,

therefore having some type of service discovery mechanism [24].
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In terms of security, even public APIs must have protection mechanisms in place. As for routing,

API gateways need to be able to send requests to the right node. Even with all dynamic address

attribution features in the microservices implementation for scaling and fault tolerance, there needs to

be a discovery mechanism that will allow to find the services and route the requests correctly.

Other than API Gateway, for an application to be production-ready, there are some additional features

that need to be taken into consideration: security and observability [22].

Security

The three most important security features are authentication, authorisation and auditing. Authentica-

tion defines the ability to identify a user, while authorisation referes to making sure a user can access

requested information or has the authority to ask for a specific task. Finally, auditing is about tracking

the users’ action inside the app to detect security issues and help with customer support.

To authenticate a user, the application typically verifies the user’s credentials. To implement autho-

risations, implementations usually use role-based security mechanisms to aggregate similar users and

create Access Control List (ACL) in order to grant these roles access to the needed resources. A critical

pattern that is adopted in microservices implementation is Access Token pattern where the API Gateway

that authenticates the user will add a header to the requests with the access token of the client, through

which it is possible to identify the user and its roles [48].

Observability

There are several ways of analysing what is happening – as well as what has happened – inside the

services. Due to the distributed architecture, logs and metrics are distributed as well, and it may be

challenging to have a system-wide perspective. This feature is essential if the company wants to be able

to debug the errors that will inevitably occur in the production system and might span across various

services [22]. In microservices, observability is ensured by having centralised services that receive this

information from services, to store and even to react to the data collected [27].

The first pattern is the log aggregation [49]. It is a centralised node that collects logs generated by

every service. Usually, this can be done by implementing an event sourcing mechanism that will publish

logs to the logging service, manage them and, possibly, add searching and filtering mechanisms on top,

for easier comprehension. When certain events are received, this service can also send an alert.

Another observability pattern is the health check API service [50].In order to detect cases where the

service becomes unhealthy (for example, the server is working, but the application has stopped) the

health check API can help as it does periodic checks on the system’s services health. To do so, every

service must implement a GET /health API endpoint, returning if the service is healthy.

Additionally, the Application Metrics services pattern [51] is another observability pattern that collects

metrics from each service, providing aggregation, visualisation and alerting. Like the logging services,
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an event sourcing approach can be used to send metrics to this service, which will then be parsed and

put in graphics. The visualisation can help with problem detection as well as analysing the current state

of the system and finding patterns and bottlenecks, facilitating profiling and debugging.

Finally, distributed tracing is a pattern that allows debugging request flows [52]. As requests may

travel thought various services, it can make its debug complicated in case of errors. To trace requests,

each request should be given a unique ID and the information on its flow needs to be collected in a

centralised node that provides filtering and visualisation, helping to understand the requests’ flow.

2.3 Using Cloud Providers

Cloud services are considered to be the next stage in the evolution of the Internet. Throughout the next

chapter, its impact will be evident and the different cloud services available will be presented.

2.3.1 Cloud Services

Despite the name, the cloud itself is composed of interconnected data centres, spanned across the

globe, with networks, storage, several services and many interfaces that have enabled the creation of a

new business model: to sell computing as a service, much like water and electricity utilities [53]. There is

a lot of variety in cloud services and their most significant advantages lie in offering services and servers

at scale that are highly available, with ingrained fault tolerance and infinite potential scalability, while

being able to deploy those around the world. If a company wants to achieve these capabilities, there is a

lot of infrastructure and management involved, and consequently, it would be a serious investment. But

with cloud systems, the price paid by the companies is related only to what is consumed by them.

Cloud can be divided into public and private cloud. Public cloud is provided by cloud providers like

Microsoft, Google or Amazon. In contrast, private cloud is the adaptation of the ”resource pool” point

of view that is characteristic of cloud services through platforms like OpenStack [54]. There is also the

concept of hybrid cloud solutions, where companies use their on-premise resources but expand them to

the cloud to extend functionality or to have infinite scale potential.

Public cloud runs in a multi-tenant environment (servers are shared between clients) and end-users

do not control where and how exactly their services are being run on the provider’s data centre, as

a result of the abstraction layers built-in these services. An exposed API can be used to access the

resources and run commands. Other than the potential infinite scaling and utility pricing, with the public

cloud the user can also ”outsource” infrastructure expertise and focus on the core competencies of their

own businesses. Although, as microservices, cloud computing in no “silver bullet” and these benefits

come with a cost: the loss of control on part of the users regarding the way their services are deployed,

secured and available [55].
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2.3.2 Cloud Computing

One of the most important cloud service provided is cloud computing, which offers deployment platforms

for companies substituting on-premise data centre servers. There are different cloud computing options,

providing different layers of abstraction on the underlying system.

Infrastructure as a Service (IaaS)

This service provides the thinnest layer of abstraction. As all physical management is hidden, compa-

nies use APIs to interact with their outsourced system. IaaS provides VMs and, therefore, administration

expertise is still needed to install, manage and patch solutions on the system [55]. IaaS support addi-

tional features like having a LB routing traffic between VMs instances as well as auto-scaling options.

Payment is related to the type of resources available in the VMs allocated (such as CPU, memory, disk

space) as well as how much time instances are kept online.

Platform as a Service (PaaS)

On the next level of abstraction is PaaS, which abstracts the OS layer, removing the system administrator

role [55]. PaaS is directed for developers, hiding all hard labour regarding servers, networks, operating

system, storage and even more complex solutions like logging, monitoring, caching, email and similar

tasks. This way, the developer only has to focus on the business logic. PaaS users have less control

on the application environment and developers are confined to the languages and libraries supported

by the service. On the other hand, the cloud vendor will provide a highly available, fault-tolerant and

scalable application without hassle for the company.

Container as a Service (CaaS)

CaaS [56] is a newer solution that stands in the middle of IaaS and PaaS . Due to being a virutalisa-

tion mechanism, much like VMs, the proximity to IaaS is trivial to explain. But containers can also be

considered for its positive impact on both development and deployment aspects, focusing on a more

CD/CI-based approach. Their lightweight images represent the concept of Infrastructure as Code (IaC),

which results in a deployment option that shares many similarities with PaaS but without the constraints

of needing the cloud provider to support specific languages or frameworks [57].

Function as a Service (FaaS)

FaaS refers to cloud services that run code but without the developer needing to deploy the server appli-

cation [58]. As a trigger is sent to the cloud provider, the function will start performing and the payment

is calculated based on trigger and computing resources used while processing. Benefits of FaaS in-

clude diminishing the time spent on deployment, easy usage, low cost, potential infinite scaling and no
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infrastructure maintenance. However, there are drawbacks when using this approach: no control over

the infrastructure; not designed for long-running processes; complex to develop for statefull function-

ality; possible start-up time to consider when triggering a function which is not ideal for time-sensitive

tasks. On a final note, when considering a cloud provider for FaaS, it is critical not only to consider the

languages and platforms offered but also the triggers supported by each vendor.

Serverless

Serverless computing is a deployment platform where the user does not manage any underlying infras-

tructures, as if there were no servers involved [58]. All infrastructural choices are hidden under a layer

of abstraction. The concept of serverless is significantly related to FaaS, sometimes the terms even be-

ing used interchangeably. However the distinction is essential, as recently there have appeared certain

serverless services that run on containers, offering the same abstraction layer but for container images

instead of actual code, such as Amazon Web Services (AWS) Fargate [59].

2.3.3 Cloud Storage

There are various solutions in the cloud to store data. To choose the right service, the characteristics of

the data (such as performance, volume, retention period) need to be taken into consideration. There are

two main types of Databases (DBs) to consider [55]: relational DBs and non-relational (or NoSQL) DBs.

Relational DB are the most familiar choice of DBs for most developers. Cloud Services offer the

exact same capabilities as the local versions: ensuring ACID transactions and Create Read Update and

Delete (CRUD) querying. As for NoSQL DB, only BASE transactions are ensured but they are more

easily scalable than relational DBs. NoSQL DBs have various implementations suitable for different

tasks, such as Key-Value Store, Column Store, Document Store and Graphs.

Inserting data in the cloud should be a pondered decision due to security. Ultimately, it is a decision

that boils down to the confidence that a company deposits in the cloud providers. The vendor lock-in

is also a significant factor to consider as while uploading data is free, the download/migration of high

volumes of data is a very costly process, making it difficult to change the provider.

2.3.4 Other Services

Apart from computing power and data, cloud providers offer various services regarding three main ar-

eas: security (such as API Gateways, Access Control and Single Sing On solutions); monitoring (which

includes logging and metrics systems as well as container orchestrators); and AI (which incorporates

Translators and Text-to-speech APIs). New functionalities are added every year by providers, allowing

companies to outsource several areas of their work and allowing them more availability to focus on

prospering their businesses.
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As it was previously stated, this research work was done in collaboration with Chilltime. This chap-

ter is introduced by an analysis of the initial situation of the company, followed by the obstacles faced

that cause the company to seek change. Afterwards, the main objectives for the architecture reformu-

lation are presented, and from there the requirements and constraints to be considered when making

architectural decisions are derived.

3.1 Objectives

Chilltime is a game development company based in Portugal. As briefly mentioned in Chapter 1, they

offer several games that are available on different platforms (browser, mobile and desktop). Moreover,

they also develop other products in areas unrelated to gaming for other companies. Over the years, the

company’s user base has grown, and the services provided have outgrown the initial expectation.

Chilltime has three main games: World War Online (RTS browser game), Marble Adventures (mobile

puzzle game) and Soccer Avatars (mobile quiz game).

The first is the oldest game of the company, has the biggest user base and suffers the most from

the limitations of Chilltime’s architecture. In World War Online, players battle against each other with the

goal of building the biggest empire. An example of a battle can be seen in Figure 3.1.

Figure 3.1: Example of a match in World War Online

There is a singleplayer version and a multiplayer version of these battles. The battle itself is a

turn-based event, that when triggered for singleplayer – which is played against an artificial player – is

immediately processed. In the case of multiplayer, once the battle is triggered, it is only scheduled for

processing two minutes later, giving the opportunity for the player in defence to change the positioning

of their units to better protect the area. This match processing mechanism was initially developed in
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PHP, on the backend, but was recently renovated to a Unity server. Unity [60] is a professional game

engine used for developing games that is able to target several platforms (such as Linux servers) and

easily integrate with 3D models, animations and physics. Figure 3.1 corresponds to this newest version

of the battle engine.

Players can also interact between each other in cooperative relationships, by participating in squads,

that collectively try to help each other defeating other players and squads. These alliances are one of

the most significant features that keep players engaged in the game.

Chilltime also interacts with their players via email and app notifications to both mobile phones and

desktops. These communication channels are essential to keep players updated and engaged.

The original architecture for Chilltime’s products was monolithic. As such, in the office there were a

few servers available for building and testing purposes. Additionally, the company had four production

servers in a data centre:

• One running a webserver, with the multiple web applications and API available;

• Another running the database service;

• Other with the pre-production environment for testing, as well as some cronjobs monitoring;

• An idle one.

This infrastructure posed some challenges for Chilltime. The majority of these production servers are

not new, requiring updates – a challenging task to execute without making the services unavailable in the

given architecture. Secondly, there were also no redundancy, failure recovery or backup mechanisms,

which would result in very convoluted situation in case of a server failure.

As a result of the company’s growth, some efficiency problems appeared due to the increased load

on the servers. As a consequence, the games were slower to respond to users and it was harder to

update or create new features – in fear of increasing the load on the servers further. Scaling this system

was a hard process, as buying a bigger and newer machine was beyond possibility considering financial

constraints. Players would use the delays to their advantage, cheating to achieve higher scores.

Difficulties in updating the operating systems (and consequently third party applications) also led to

security vulnerabilities in the servers, as they become outdated. In addition, as the code base of the

provided services increased, no one in the company could understand it completely, making changes to

the existing code or databases a complicated affair for the developers, especially the new ones.

Lastly, although many games in Chilltime have similar structures, many were not being recycled in

terms of code (users and logins, for example) culminating in distinctive implementations, which was not

efficient for developers to work with.

Facing these challenges, Chilltime decided to update its infrastructure to a more modularised and

flexible one, that could accommodate the services’ needs and the company’s business growth.
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Before defining the objectives for this reformulation, it is also worth analysing the types of customers

that Chilltime (and the gaming industry in general) has, in order to make sure the architecture can take

care of their demands. Some interesting facts about gamers’ behaviours are:

• When users experience delays in a website, they are less likely to return. It also impacts negatively

on the user’s opinion about the company and its security [61];

• The time users spend inside a game is strongly influenced by factors such as delay and jitter on

the server’s responses to submitted requests and actions [6].

• Some users cheat, taking advantage of existing limitations of the services to have an edge over

other players and situations. Cheating can have several negative impacts for the company such as

a decrease in sales and revenue and a loss of non-cheating players due to the unfair advantage

that cheaters have [62].

Quality of Service (QoS) is, therefore, a significant concern to keep users engaged and to ensure their

return in the future. Another conclusion is the importance of ensuring that the services work correctly

when under load, protecting data inconsistencies during data transactions, in order to avoid weak points

that might be manipulated for cheating purposes.

Based on this information, it is now possible to determine that the main objectives for the new archi-

tecture of Chilltime are to:

• Ensure high availability of the services;

• Ensure no unnecessary delays;

• Ensure that even in peak times the performance is smooth;

• Quickly recover in case of a server or service failure;

• Make it easier to maintain the servers and software;

• Make it easier to maintain and extend the code base;

• Have no significant upfront costs either in the new architecture or in the modernisation process.

• Have an architecture that is easy to extend by developers, without needing to hire a system ad-

ministrator or other additional expertise.
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3.2 Requirements

In Section 3.1, the problems faced by Chilltime were presented and, from there, the goals for the new

architecture were derived. In this section, a set of requirements is being defined for the system, based

on the previous discussion. As such, the requirements are:

R1 – The system should guarantee isolation between components

This requirement exists to contain the impact of an error. This implies that when an error occurs, it

should not crash other adjacent services, diminishing the effect of the error in the users.

R2 – The system components must auto recover in case of failure

This requirement is to ensure high availability of the services. Services and servers are bound to fail,

and this should be expected, not fixed upon occurrence. The system needs to detect the error and take

the appropriate measures to correctly restart in a consistent state.

R3 – The system should not have internal polling requests

Polling request is the act of periodically asking a service if there are new tasks. This method introduces

delays that may be prolonged up to the total time period between the pooling requests, and may congest

the network and/or databases unnecessarily.

R4 – The components should be deployable off-site

In case a server stops working, the components should be able to be deployed in the cloud, not needing

to wait for the arrival of a new server to recover from the problem.

R5 – The battle system should be able to auto-scale off-site

During peak times, the request load might surpass the threshold of what the servers on-premise are

able to handle. In this case, match processing – a very processing-intensive services – should run

in the cloud instead, in an hybrid system, to avoid the degradation of the experience provided to the

users. Other than worse user experience, the increasing load has the probability to create errors and

inconsistencies that can open doors for cheating in the game.

R6 – The battle system should scale up to 500 simultaneous requests without degrading its

performance

Considering the rate of battles in Chilltime’s games, in order to have five hundred simultaneous matches

the company needs an enormous active user base. Therefore, if the battle engine mechanism is able

to handle this number without the significant downgrades in the battles performance, the company is

confident that the system is robust and reliable.
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R7 – The system should host multiple games simultaneously

As many gaming companies, Chilltime offers several games and the system should be designed with

that in mind. For example, this suggests that there may be services inside each game offering similar

capabilities as in others, such as users, logins, leaderboards and send emails and other types of no-

tifications. In Chilltime these services were being implemented separately in every project, making its

maintenance a hindrance for developers. As such, the new architecture should be designed to identify

and group all identical services in a single one to ensure easier maintenance.

R8 – The system must have monitoring and logging services

This requirement’s objective is to ensure that problems are detected early, as well as to ensure an

easier time debugging. Furthermore, monitoring may also aid in finding the bottlenecks of the system

and helping developers direct their efforts to the most impactful place while ensuring better performance

for users.

R9 – The system must increase testability and observability

One problem of monolithic infrastructures is its difficulty to test it in a modular way, and the new architec-

ture should not only make sure that there can be unit testing but also that it can be done automatically.

Moreover, there should be systems that can help retrieve information on what is happening inside in

order to facilitate development and debugging.

R10 – The system must be able to send messages to players via the adequate channel

The system must incorporate a communication service that is able to send messages back to the player

in the most adequate channel – for Chilltime it means email and app notifications.

R11 – The communication system must be able to incorporate new channels

The communication system should be extensible if the company wants to adhere to new communications

channels. The processes of adding a channel should be simple and quick to setup.

31



32



4
Architecture

Contents

4.1 First Layer – Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Second Layer – Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Third Layer – Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Business Functionality API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

33



34



In this chapter, the developed architecture – MAGIC – is being presented. This architecture aims

to create a company-wide structure that complies with the objectives and requirements described in

Chapter 3 while having in consideration the business functionalities required by Chilltime. Since the

majority of the components are believed to be essential to many gaming companies, any company in

the industry can use this infrastructure as a starting point to define their own structure. In the case

eventual adaptations need to be done, they should be simple to add on account of the modularity and

loose coupling obtained by the use of a microservice approach, creating an easily extensible design.

To ensure a good understanding of the system and its advantages, the C4 model is being used to

provide graphical support on explaining the service. As presented by Simon Brown [63], this model aims

to present software systems in four different views, that offer distinct perspectives on the system, with

a simple and flexible notation. Although this system was created to present software architecture, it is

easily extensible to the explanation of a system architecture. The C4 model is comprised of four layers

of abstraction [64]:

• context layer – It aims to frame the system in the context of its users and its interaction with external

services. The focus is to provide a high-level view of the target system, presenting the interactions

with the outside.

• container layer – It focuses on the main components/services offered by the system. The internal

relationships and interactions with external components are also explained.

• component layer – It is represented by several diagrams that offer a more detailed view on each

of the containers defined in the second layer and focuses on the components that ensure the

provided functionality works correctly as well as their relationships with each other.

• code layer – It is where the implementation details are presented. Originally, as this model was

designed for software architecture, the fourth layer was the Unified Modeling Language (UML)

of each component. For this report, this layer presents the technology stack used, containers

distribution, and communication patterns chosen. These diagrams are analysed in Chapter 5.

4.1 First Layer – Context

As mentioned, this layer defines the context of the application. The diagram for the first layer is presented

in Figure 4.1.

Starting by the leftmost components – the users – there exists three main types:

• Anonymous - These users do not have an account in the company, although they are able to

access some public web pages to perform certain tasks, for instance, to create an account or get

more information about the company.
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Figure 4.1: Context Abstraction Layer

• Players - These users have an account in the company and are authorised to access the games

web pages and APIs.

• Administrator - These users work for the company and have a more unrestricted access to the

APIs, the game’s web pages and support web pages – to access monitoring and logging informa-

tion or to access internal data or tools in order to, for example, solve customer issues.

Referring again to Figure 4.1, these users communicate with the central component – MAGIC. This

component represents the companies’ infrastructure, including the game engines, the web-pages, APIs

and back-office support services.

The users (in specific the ones registered in the company) are also able to communicate with the Auth

Service – the authentication and authorisation service. This service manages the user’s authentications

and access roles and, therefore, should ensure that the users are not impersonating someone else,

accessing exclusively to what their roles permit. The authentication and authorisation service also needs

to communicate with the companies’ system to ensure the service provided.

It was also included in this diagram two external services for the system to communicate with the

users: email service and app notification service. Both these services receive requests from MAGIC

and will then interact with the users, provided they possess an account in the company.

Lastly, there is the offloading service. This service is supplied by cloud providers and refers to the

API requests sent by MAGIC in order to dispatch the exceeding load to run on the cloud environment, in

a hybrid cloud approach.
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4.2 Second Layer – Containers

This layer will focus on MAGIC main components that interact with the outside services and provide the

company’s functionalities. The diagram for the second layer is presented in Figure 4.2.
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Figure 4.2: Container Abstraction Layer

The external components were those presented in the previous section. Regarding the internal

components, they’re as follows:

• API Gateway – Conjugated with the Auth Service, this service should provide the first barrier of

any API request to the system. It should have a service discovery mechanism that it can use to

route the requests to the correct service before sending the answer back to the client.

• Web Pages – This component contains all web services provided by the company which are ac-

cessible by the users.

• Communication Services – This component contains interfaces that can be accessed by the other
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components in the company, which hide the implementation behind the connections to the external

email/notification service and trigger the sending of these types of messages to the correct users.

• User Manager – This component aims to connect the information concerning the users (for exam-

ple, email, address, ID) with the information on access tokens and identifier from the external Auth

Service.

• Business Functionality – This component contains all services regarding the specific functionality

of the company which, in this case, is related to gaming. All game-related data and functions are

inside this component.

• Back-office – This component represents a set of web pages and respective backend functions

with the authorisation to perform special queries on the data in the business functionality services.

This way, the administrators can access monitoring and logging information and perform actions

related to the administration and management of the products.

• Logging – This component includes the mechanisms to retrieve logs from the services in the

company and storing them in a way that is easy to filter and analyse.

• Monitoring – This component includes the mechanism that verifies if the services in the company

are online, healthy and functioning properly, by collecting metrics and performing health checks.

• Alerting – This component analyses the output from the logging and monitoring and triggers alarms

when certain errors happen or thresholds are surpassed.

All these components relate to each other and to external services. In Figure 4.2, internal relation-

ships are blue and marked with a number and external interactions are black with capital letters.

Starting with the API Gateway component, it receives requests from the users (A, B and C). These

requests are then identified/validated in the User Manager (1) and then sent to the specific service that

will provide the answer inside the Business Functionality (2). The users also connect with the Web

Pages component (D, E and F), that provide the websites and the list of API requests to fetch the

dynamic information.

Moving on to the User Manager service, it receives identification and validation requests by the API

Gateway. It also receives information from the external Auth Service, defining the relationship between

the access token provided in the external service and the user identifier inside the company infrastruc-

ture. It is worth mentioning that this user identification is made in relationship to the whole company,

independently of the game they are connecting to. The relationship between the users and the games

is only analysed inside the Business Functionality component, hence the connection between these two

services (3).
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The administrator user, benefiting from more unrestricted access to the system, can also access

the Back-Office system (H) directly. This service provides a visualisation platform of the Logging and

Monitoring system (4 and 5) but can also receive administrator’s requests from the API Gateway (6) to

retrieve restricted information or to trigger protected administrator actions by sending the appropriate

messages to the Business Functionality component (7). If these restricted requests involve sending

some message to the client, the service can solicit that request to the Communication Service (8).

It is also worth analysing the Business Functionality component. As it has been discussed, this

component receives requests from the API Gateway (2), from the User Manager (3) and the Back-Office

(7). These requests are directly related to the data and action from games that can be played in the

company. Most of these requests will be executed inside the component, and the ones that require a

response are then sent back from the path where they were received. But some need to be forwarded

to the Communication Service (9), to ensure the user is notified of a certain event.

The Communication Service will then send the formatted messages to the specific communication

channels chosen – in this architecture either email or notification (I and J, respectively). Other than

the communication channel, the Business Functionality component might also need to request services

from a cloud provider, if it decides that the existing local resources are not enough to ensure timely

execution of the tasks. In this case, some requests are sent to the Offloading Service for processing (K).

Finally, there is the Alerting Service. This component analyses the data received in the Monitoring

and Logging components (10 and 11, respectively) and, in case anything happens that is worth men-

tioning to the administrators (such as an unhealthy service), an email can be sent to the appropriate

person, by having the Alerting Service send a request to the Communication Service (12).

On a last note, although it is not represented in the Figure 4.2 in order to produce a more understand-

able image, there is one last set of communication between components that is not represented. The

Logging and Monitoring services are connected and receive information from every service represented

in the diagram. The messages received contain information on the actions performed by the system as

well as a way to understand if every service is online and healthy.

4.3 Third Layer – Components

The third layer focuses on the components that allow the containers presented in the second layer to

perform as desired. This means that each component of Figure 4.2 has a respective diagram of layer

three, in the C4 model. Since all components except the Business Functionality are considered to be

implemented using a standard or one block approach, it is not worth creating the diagram or doing a

more in-depth explanation of the services. Regarding the Business Functionality components, the layer

three diagram of this container is presented in Figure 4.3.
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Figure 4.3: Components Abstraction Layer – Business Functionality

It is possible to divide the Business Functionality into two layers: the data layer (represented by the

green components) and the engine layer (represented by the orange components).

One important aspect to notice in the figure, is that each green manager is responsible for an aspect

of gaming for all games produced in the company. The concept of player (with nickname, avatar, scores)

is present in any of these games, and therefore, by having these components centralised in a Player

Manager, it is possible to centralise much of the services to be able perform all similar requests like

changing the nickname or increasing the score after a game. The same can be said to the Leader-board

Manager, whose implementation mechanisms are very similar in every game.

Moving on to the Game Manager, this service includes all information about past and ongoing

matches, indexed by the specific game being played. This service also comprises information about

maps and digital worlds in the game (if applicable). This component is the only one that can connect to

the orange engine layer components.

Regarding the engine layer, these are responsible for processing the moves requested by players

and returning the result of the turn or the match to the Game Manager. If a match ends, the scores

are updated in the Player and Leader-board Managers. The existence of two types of workers in the

engine layers lies with the possibility of task offloading in the cloud. This means that the Game Manager

will consider the current state of the system by analysing metrics – such as the number of matches

being processed, CPU usage percentage or the results of load prediction mechanisms – to determine

if the requested move can be processed locally (in the Match Executor) or if it has to be directed to the

Offloading Manager to be processed in the cloud.
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Focusing on the relationships with external components, the User Manager may interact with the

Player Manager, to understand what games does a user has access, for example. Both the API Gateway

and the Back-office Services can connect to any of the three data layer managers to retrieve and update

information or submit a move request by a user.

Regarding the Communication Services, it can accept requests from any component inside this

diagram to, for example, send a notification to a player when he changes the rank on a leader-board.

Logging and monitoring can also interact with any of the blocks, to collect the activity performed by the

services and workers and to ensure they are performing as expected. These relationships were omitted

from the diagram, to ensure it remained comprehensible.

4.4 Business Functionality API

To finalise the presentation of this infrastructure, the last thing left to explain is the main service API. By

presenting the API, it is easier to understand what capabilities are incorporated in this architecture, as

well as to understand the flow of the requests in the service. This API is exported by the API Gateway,

having the requests then sent to the appropriate Business Functionality component.

It is worth noticing that, although the presentation of this API uses an HyperText Transfer Proto-

col (HTTP) REST formulation, it can be implemented in any format desired. Also, even though only

the Business Functionality API is being presented, all services in the second layer (represented in Fig-

ure 4.2) have their own interfaces. However, since their functionality is standard, it is not being explored

in this chapter. Moreover, request options like output pagination and filtering may be implemented on

top of this API, but are not referred throughout this report.

Finally, the presented API is to be considered generic. It will not incorporate exactly all resources

included in the responses or requests, since many of these values depend on the game itself. The score

value is a good example, as it comprises the player’s virtual possessions and punctuation displayed in

the leader-boards. In World War Online, for example, the score is made of the user’s rank, the number

of iron and units in the player’s possession. Regarding the Marble Adventures, the score is the number

of stars archived in each puzzle level and the number of lives left to play the game.

The API is divided in two: the players API and the admin API, each related to the requests made by

their respective users’ type.

4.4.1 Player API

These users are characterised by having full access and control over information requests and action

triggers on their own accounts, but limited access to other user’s information. Moreover, all the requests
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referred in this section should be developed with the appropriate formatting, filtering and pagination

techniques in order to be suited for the web pages or mobile applications needs.

• /player/me

– GET – retrieves information about the requesting user from Player Manager.

– PUT – updates a value in the profile on Player Manager.

– DELETE – removes the user’s account, the request being forwarded to to the Player, Game

and Leader-board Manager.

• /player/:player id

– GET – requests the Player Manager fir information on another user, with a more limited output

than GET /players/me.

• /player/me/invites

– textttGET – Player Manager returns all friendship requests either sent or received.

• /player/me/invites/:invite id

– GET – obtains further information on the invite from the Player Manager.

– DELETE – rejects or cancels an invite from the Player Manager.

– PUT – a previously received request or update a sent one from the Player Manager.

• /player/:player id/invites

– POST – request sends an invite to a player, in the Player Manager.

• /players/me/friendships/

– GET – etrieves a list with all the user’s friendships, from the Player Manager.

• /players/me/friendships/:friendship id

– GET – fetches more information on a friendship, in the Player Manager.

– PUT request modifies a parameter in the friendship, in the Player Manager.

– DELETE – removes the relationship between the players, in the Player Manager.

• /games/:game id/matches

– GET – lists all invited matches from the Game Manager.
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– POST – creates a new match of the defined game in the Game Manager. May required con-

nection to the Player Manager if the game supports inviting friends to play.

• /games/:game id/matches/:match id

– GET – receives the current state of the match from the Game Manager.

• /players/me/games/:game id/matches

– GET – requests list of the user’s matches, by composing information from Player Manager and

Game Manager.

• games/:game id/matches/:match id/players/me

– DELETE – removes a player from a game in the Game Manager.

– POST – post a new move on the game in the Game Manager, being then sent to the Match

Executor or Offloading Manager for processing. Afterwards, the new state of the game is

updated in the Game Manager and, if the game finishes, the score is updated in both the

Player and Leader-board Manager.

• /leaderboards/game/:game id

– GET – presents the leader-boards’ list of the game referred, from the Leader-board Manager.

• /leaderboards/:leaderboard id

– GET – provides the list of player and respective positions on a certain leader-board, from the

Leader-Board Manager.

• /players/me/game/:game id/leaderboards

– GET – retrieves the information about all positions of a player in all leader-boards of the se-

lected game from the Leader-board Manager.

4.4.2 Administrator API

The admin user differs from the player user by not having access to playing the actual game. But it

can meddle with other player’s games and profiles, as well as retrieve any kind of information, with

unrestricted access.

• /players/games/:game id

– GET – retrieves the list of all players in the game from the Player Manager.
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– POST – creates a new user in the Player Manager, collaborating with the external User Man-

ager, Player Manager, Game Manager and Leader-board Manager.

• /players/:player id

– GET – retrieves the player’s information from the Player Manager.

– PUT – changes a player’s profile, in the Player Manager.

• /invites

– GET – sends the current invitations list of the users, from the Player Manager.

• /invites/:invite id

– GET – retrieves the information on the invite from the Player Manager.

– textttPUT – changes some information on the invitation, in the Player Manager.

– DELETE – cancels the invite in the Player Manager.

– textttPOST – either accepts or rejects an invitation in the Player Manager.

• /players/:player id/invites

– GET – returns a list of a user’s invites from the Player Manager.

• /players/:player id/friendships

– GET – returns the list of friendships of a specific player from the Player Manager service.

• /friendships

– GET – returns all friendships, handled by the Player Manager.

• /friendships/friendship id

– GET – requests more information on a friendship from Player Manager.

– DELETE – blocks a friendship in the Player Manager.

– PUT – requests to change any friendship information from the Player Manager.

• /games/:game id/matches

– GET – gives a list of all the matches available in a game from the Game Manager.

• /players/:player id/matches/

– GET – retrieves information on the matches of a player from the Game Manager.
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• /players/:player id/match invites

– GET – from the Game Manager, retrieves all invitations for matches the player received.

• /players/:player/games/:game id/matches/:match id

– DELETE – enables an admin to remove a player from a match in the Game Manager.

• /games/:game id/matches/:match id

– GET – retrieves the current game state, from the Game Manager.

– DELETE – cancels and closes the game, in the Game Manager.

• /leaderboards/:leaderboard id

– GET – retrieves the players’ ranking in a leader-board from the Leader-board Manager.

– POST – recalculates the leader-board positions on the Leader-board Manager.

• /leaderboards/games/:game id

– GET – outputs all leader-boards of a game from the Leader-board Manager.

• /leaderboards/:leaderboard id/players/:player id

– GET – asks the Leader-board Manager for the position of a player in a leader-board.

• /leaderboard/games/:game id/players/:player id

– GET – retrieves all positions of a player in all leader-boards of a game, from the Leader-board

Manager.
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In this chapter, the implementation of the proposed architecture is being explained.

It is a complex process to change the infrastructure of an existing company. Several tasks are

involved in successfully breaking down the monolith, with some authors referring that it is a never ending

evolution, which keeps changing in order to adapt to the company’s current needs [24]. The reason for

its complexity revolves around having employees to learn new technologies and software and time to

refactor code. Current internal processes – from testing to monitoring – are reformulated, in a company-

wide effort that requires careful coordination between teams.

Chris Richardson presents a pattern for an incremental conversion called strangler application [22],

which consists in having a new microservice application developed around the legacy monolithic one by

progressively absorb features from it, until it disappears.

The keys to a successful adaptation are planning and opportunity: choosing the right time to separate

services from the monolithic application. Usually, it can be done when these services are raising prob-

lems or need functional updates. The establishment of new features also generates great opportunities

to continue evolving the system.

Regarding Chilltime’s implementation process, it was no different. There has been considerable

progress, always very depended on the company’s circumstances. It is worth noticing that during the

period of this research, not all elements have been migrated to the new infrastructure, due to the con-

straints referred to previously. So, in this section, it will be discussed the process of implementation of

the services done to date, as well as an implementation plan for the services further on.

5.1 Technology Stack

In this section, the language and software packages chosen for the implementation of MAGIC on Chill-

time are being presented.

Docker

Docker was introduced by 2013 and quickly gained track on the open source community [65]. It offered

the first mature implementation of container management, claiming the benefits referred in Chapter 2

and more: significant productivity gains in the DevOps area due to the IaC approach, and an easy

management and adaptability of the deployment environment, which was not possible with VMs.

Docker works by having a daemon on the server that manages not only the container instances in

the host, but also the networks and volumes, even doing monitoring – by doing periodic health check

requests to the various instances. On top of the Docker, Docker Compose can be used in order to

configure services [66], by grouping the configurations on the various containers that constitute that

service, and being able to control these groups of containers as a whole. Docker Compose also facilitate
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the scaling process of certain workers, as the number of instances can be easily changed with the

docker-compose command. Finally, one last advantage is the restart policy options, that determine

what happens when there is a problem in a container – it can be set to no, always, on-failure and

unleass-stopped – helping with fault-tolerance.

Kubernetes

When a system has Docker installed on more that one server, an orchestrator can be used to configure

and determine the desired state of the system and implement more robust fault tolerance mechanisms,

by managing collectively the various hosts with Docker.

One of the most popular orchestrators for containerised applications is Kubernetes [45]. It supplies

software that successfully builds and deploys distributed systems. It also ensures high reliability, even

when part of the system crashes. It guarantees high availability, even during software rollouts and

maintenance. And, finally, it ensures scalability, by efficiently using the existing resources – all this

with straightforward configurations. This is possible because Kubernetes offer several key features.

The first is the immutable infrastructure from containers, meaning that the structure does not evolve

gradually but rather is defined in a configuration file. The second is about declarative configuration,

which extends the immutability concept to the Kubernetes configuration. Rather than configuring the

steps to create the architecture, Kubernetes requests only a declarative description of the desired state

of the system. Kubernetes will employ all mechanisms to ensure that the state is kept as requested. The

final feature is about self-healing systems because, since Kubernetes understand the desired outcome,

it can continuously adapt the system – regarding the runtime variables, errors that occur, or even when

a container needs to be replaced for a newer version without downtime.

RabbitMQ

As for message brokers, the chosen was RabbitMQ – an open-source, lightweight yet extremely powerful

and versatile message broker [67]. RabbitMQ is platform and vendor neutral, has client libraries in

most languages, and holds some layers of security. Therefore, RabbitMQ has become a prevalent

choice for companies that require this service. RabbitMQ is based on Advanced Message Queuing

Protocol (AMQP), which defines three abstract components that create the message routing behaviour:

• exchanges – routes messages to queues;

• queues – data structure that stores messages;

• bindings – routing rules for exchanges.

As it will be seen in this chapter, the configuration of these parameters can create several types of

communication paradigms between services, making RabbitMQ a very flexible tool, ideal for the Chilltime

infrastructure.
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Traefik

Traefik is an open-source edge router that receives requests on behalf of the system, distributing (and

load balancing) them over the correct components [68]. This edge router is capable of two types of

routing: Layer 4 (Transmission Control Protocol (TCP) – based on the Internet Protocol (IP) address

and ports) or Layer 7 (HTTP – based on the hostname and path). It integrates natively with several

technologies like Docker and Kubernetes, enabling service discovery options and also providing an

easy setup and configuration.

Elastic Stack

There are several open-source tools designed for observability tasks, but Elastic Stack (formerly known

as ELK Stack) stands out. As defined by Pravah Shukla and Sharath Kumar [69], “Elasticsearch is a

realtime, distributed search and analytics engine that is horizontally scalable and capable of solving a

wide variety of use cases. At the heart of Elastic Stack, it centrally stores your data so you can discover

the expected and uncover the unexpected.”.

To deploy an Elastic Stack, there are three main components. Logstash centralises the collection

and transformation of data, supporting many different types of inputs, including Docker and RabbitMQ.

Logstash outputs the received data to the next component: Elasticsearch. This component stores all

data collected in Logstash, providing search and analytic capabilities in a scalable way. Finally, Kibana

corresponds to the visualisation tool of Elasticsearch. There are several types of graphs that may be built

and interacted with in the interest of aiding the visualisation of patterns and relationships between data,

being provided to the user in a website. The biggest advantages of Elastic Stack are being schemeless,

document-oriented, easy to operate and scale as well as being resilient. There are also several client

libraries which are essential to easily add new sources of logging and monitoring.

Node.js

Based on JavaScript, Node.js is an event-driven language that can produce highly scalable servers

using an event loop software architecture [70]. This architecture also reduces the complexity of writing

code for concurrent programming, while still offering an excellent performance. To top the event-driven

approach, Node.js also provides several non-blocking clients and libraries, making it ideal for connecting

to external services as well.

Jenkins

Jenkins is a tool that can construct deployment pipelines that is able to build, test and deploy the com-

pany’s software [71]. It can easily be integrated with Kubernetes to automatically deploy the new versions

on the system, being an extremely interesting option to automate the deployment cycle for the company.
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5.2 Implementation to Date

In the next section, the implementation steps for MAGIC in Chilltime are explored in more detail. As

referred, not all the products and services have been migrated to the new infrastructure. In Figure 5.1

it can be observed the architectural diagrams from the second layer of the C4model, in which the blue

services have been completely implemented while the yellow components have been only partially done.
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Figure 5.1: Implementation State of the Container Layer (Second Layer)

Regarding the Business Functionality, the implementation state of the third layer of components can

be seen in Figure 5.2 where, again, the blue components have been totally implemented while the

yellow ones have only been partially covered. Moreover, as it will be explored in more detailed later, the

services implemented in this diagram, have only been for the World War online game, as it was the one

having updates done – as the battle engine migration to Unity referred in Chapter 3 – which created the

perfect opportunity for this feature’s migration.
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Figure 5.2: Implementation State of the Business Functionality Components Layer (Third Layer)

5.2.1 Environment Setup

The starting point of the Chilltime’s implementation of this architecture, was doing a software update on

one of the company’s servers. The update caused the server to be more secure, therefore being able

to install the most recent versions of any software desired. This server was cleared, and new services

that run inside were all installed on top of Docker containers. In an initial approach, it was not used any

container orchestrator, due to the system being only in this single physical server.

After configuring the server and installing Docker, there is one last step before starting the imple-

mentation of the services: having a message broker for asynchronous communication. The reason

behind having this type of communication is that, as it has been explored in Chapter 2, asynchronous

messaging is generally a better option to ensure less coupling between services while making one-to-

many communication possible. Thus, in cases where there are clear benefits from using messaging,

this should be the chosen option. As explored in Section 5.1, the software adopted was RabbitMQ.

5.2.2 API Gateway

The first implementation step was the creation of the API Gateway, as it represents the company’s inter-

face with external users and the entry point of the system. This service can be observed in Figure 5.1.

To create this service, the Traefik project was installed. API Gateways, however, can provide more fea-

tures. Service discovery, routing and load balancing were considered the most necessary ones for the

company, hence its expeditious implementation.

53



5.2.3 Communication Services

Following the API Gateway, the next step was the creation of the communication services. This ser-

vice was adopted when Chilltime changed their email sender provider to one more suitable for their

needs: Mailjet [72]. The necessity to create this new feature provided the perfect opportunity to focus

on developing the first set of functional microservices. Due to their similarity, the app notification service

immediately followed using Firebase Cloud Messaging as its external service provider [73].
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Figure 5.3: Implementation of the Communication Services

When the service sends an HTTP request to the correct hostname, Traefik will direct the message to

the correct endpoint based on its path, forwarding it to the correct communication service.

The first containers reached are the relay services that simply translate HTTP requests to AMQP

messages, changing the communication from synchronous to asynchronous. There are two relay ser-

vices, one per communication channel, written using Node.js.

These relay services also provide an extra layer of security using Hash-based Message Authenti-

cation Code (HMAC), an encryption mechanism for message authentication using cryptographic hash

functions. It provides a way to verify the integrity of the information transmitted based on a secret

key shared between server and client. This mechanism proves to be appropriate since the only ones

authorised to use this communication services are other internal servers. It may be argued that this

intermediate relay is not necessary, as servers can put requests directly on RabbitMQ, however some

services in the company do not offer the possibility of installing RabbitMQ client libraries – yet – due to

language or software being outdated.

The message broker is configured to have two exchanges – email and notifications – directly bound

to queues with the same name. When a message is received by the queue, it is later consumed by

one of the active workers – also written in Node.js with the email/notification client libraries installed. So
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far, only one worker has been used per communication channel, as it is sufficient for the load. But the

system is prepared to have more instances of these workers, consuming from the same queues, if the

service needs scaling.

5.2.4 Logging, Monitoring, Alerting and Back-office

As discussed in Chapter 2, observability is an essential trait in microservices. Therefore, when designing

other services for the company, the Elastic Stack was implemented to ensure the observability compo-

nents of MAGIC – the Back-Office, Monitoring, Logging and Alerting Services from Figure 5.1. With

this, it was possible to better understand how the containers were performing and to more easily debug

issues. In Figure 5.4, the implementation is presented.
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Figure 5.4: Back-office, Logging, Monitoring and Alerting – Implementation

The most important logs to collect are about the requests and processing information on each con-

tainer, which can be very useful for debugging and to derive patterns of utilisation. To do this, the concept

of event sourcing was applied – the microservices publish events to the network, and the interested par-

ties are able to subscribe to access the information. In this case, by using RabbitMQ queues for services

to publish logs, it was possible to have the Logstash to subscribe to those queues and retrieve that infor-

mation. These logs are then slightly modified (to aid with filtering) and sent to Elasticseach. From there

on, admin users have access to Kibana to visualise, filter and analyse them.

These logs have also been modified to have distributed tracking of requests, to further help debug-

ging. Log messages were given a request ID that makes it feasible to track requests over containers.

As discussed in Chapter 2, another interesting metric to observe is the health of the services, and
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this is possible to achieve through health check API calls to the microservices. Docker deamon does

the monitoring of these requests according to the configuration setup by the images, emitting an event

in case a service becomes unhealthy. By requesting the docker events from Docker daemon and then

directing the output to the Logstash, it becomes possible to retrieve the aforementioned metrics. This

way, it is possible to monitor the containers’ behaviour – such as starting, stopping and heath state.

Lastly, there are the alerting capabilities of the system. These were also implemented using the

Elastic Stack, by having the Logstash send a message to a Discord webhook – the internal messaging

system in the team. These alerts are only sent in case the events received from docker event warning

about a stopped or an unhealthy container.

5.2.5 Game Manager, Match Executor, Offloading Manager – World War Online

In Figure 5.2, it is possible to analyse the inside of the Business Functionality. Some of these services

were implemented for World War Online – the most played game at Chilltime – since it was being

modified to start running on Unity instead of PHP, as previously explained in Chapter 3.

The match processing unit is usually a resource intensive task. The former version of the battle

mechanism had performance issues in peak times, with players using the delays to gain an advantage

over other users. Therefore, one of the main goals with the new architecture was to ensure more

potential scaling for this service. This can be achieved by having a hybrid cloud system, as it can be

seen on Figure 5.5, where the system for the battles is presented.
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As it has been explained in Chapter 3, this battle engine is prepared for two types of matches:

singleplayer and multiplayer. The singleplayer is processed directly after the user triggers the battle,

while the multiplayer waits for two minutes before processing, so the attacked player can react and

change its defence.

The first step of implementation involved choosing the correct cloud solution, which amounted to

either be CaaS or serverless. To make the system easier to manage, the focus was on finding a simple

serverless solution, in which it was possible to run the Unity application while being easy to upgrade

as changes were made. After comparing the various systems available, the services used were the

Lambda and S3 (for storing the Unity binaries) [74].

The next step was the configuration of RabbitMQ. In this case, the approach was modified by adding

Dead Letter Exchange (DLX) and messages Time-to-Live (TTL). The DLX is an attribute of a queue

that ensures rejected messages are routed to another exchange. One of the reasons for a message

to be rejected is by surpassing its TTL, meaning that it has expired. This causes the redirection of a

message that has waited too long in a queue to another queue, where another service can consume it.

By using message Acknowledgess (ACKs) and adjusting the prefect consumer value – the number of

simultaneous requests that a consumer can handle –, it is possible for the message to be redirected to

the DLX instantaneously – using consumers with prefetch value as one and the message TTL to zero.

As it can be seen in this image, when the player triggers a battle, it is then directed to Traefik which

routes the request to the relay. Focusing on the singleplayer, messages are sent with TTL as zero, to

the be queue. If they can be consumed immediately by one of the registered consumers (which have the

prefetch parameter set as one), they run locally. Otherwise, they are sent to the DLX, which will place

the message in the be dlx queue. This queue has a consumer service that connects to the AWS’s API

to launch a Lambda function. The battle engine is then processed in the cloud.

In the case of multiplayer, there is one extra step. The relay service will place the message in the

be pre2 queue with the TTL of two minutes. As the queue has no consumers, the messages expire two

minutes later, being consequently directed to the DLX queue – the be queue for singleplayer battles.

Regarding the containers themselves, the relay service is very similar to the other relay explained

before: using Node.js with HMAC protection on the exposed API. The local workers are also imple-

mented with Node.js, that run the binary file. The AWS Lambda dispatcher is also written in Node.js,

with the AWS package for easy access to the AWS functionality. Within the Lamba functions, there is a

simple python code that runs the binary file, which is added as a layer to the function. To upload a new

version of the Battle Engine binary file, a .zip folder is uploaded to an S3 bucket. Then, the layer can

be updated to a new version by uploading the file from the S3.
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5.3 Future Implementations Plan

The several microservices implemented are part of a work in progress that will include all other func-

tionalities, products and services provided by the company. A great part of the migration to the new

architecture involves refactoring the existing functions of the monolithic application into smaller microser-

vices, and that process alone may take years. In this section, the next steps of the implementation for

Chilltime are explained in more detail, to ensure a better understanding of the final picture and how this

architecture can really impact the company in the following years.

One of the first steps is to update the other three servers in order to ensure their security and Docker

support. After, an orchestrator like Kubernetes can be used to manage containers across different hosts.

Regarding the Business Functionality from 5.2, the decomposition of the monolith is the next step.

First, the API endpoints need to be adapted to the specific game terminology – for example, in World War

Online, friendships are comparable to the squad concept in the game. In a first stage, the database can

be shared among services. This should be temporary (or only done in a very small set of microservices)

as it highly increases the coupling between service. Distribution of databases can be a daunting problem,

that needs careful planning in order to created a flexible and efficient distributed database.

Data transactions are crucial for this infrastructure. An example is when a user is deleted – all Busi-

ness Functionality services need to be updated to remove the player from their databases. As explored

in Chapter 2, sagas are an option, existing as choreographed and orchestrated. Choreographed sagas

are the most appropriate approach regarding the size of Chilltime. Moreover, the orchestrator service

would need to be designed and maintained by the company.

As for making queries, the API composition approach should be used when it is sufficient, as long as

having to deal with runtime coupling is not a problem for the users or developers. Moreover, as Traefik

ensures the integration with Kubernetes and has a service discovery system, it can forward the requests

in the infrastructure, regardless of the efficiency and fault tolerance mechanisms implemented.

In some cases, event sourcing and CQRS are worth considering. However, as it requires a more

complex implementation, it should only be applied if there is a clear need or the implementation is

simplified due to the nature of the task, like log collection. A possible implementation of a system using

CQRS is the Leader-board Service, that subscribes to the updates on the score parameters of the

games and calculate a new rolling snapshot of the current state, when necessary.

Finally, regarding DevOps, developing building pipelines can also be beneficial to accelerate the

deployment process and facilitate the employees work: using the already existing Jenkins server in

Chilltime office.

58



6
Evaluation

Contents

6.1 Chilltime’s Objectives Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Requirements Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

59



60



In this chapter, the analysis of the results from this architecture and implementation are derived. This

chapter is written based on the objectives and requirements defined in Chapter 3.

6.1 Chilltime’s Objectives Evaluation

In Chapter 3, Chilltime’s objectives with this architecture were stated and explained. In this section,

MAGIC’s improvements towards these goals are analysed.

Microservices play an essential role to ensure the company moves in the right direction regarding

the pre-established objectives. In respect of obtaining high availability, their modularity allows the organ-

isation to modify each service without worrying about impacting others, which results in easier updates

with minimal downtime. Docker and Docker Compose simplify the process of starting and stopping these

containers, and Kubernetes promises to automatically update any component without downtime. The

isolation between components guaranteed by microservices and delivered through Docker also ensures

that the adjacent services are not affected in case of failure.

Regarding delay minimisation, microservices might seem counter-intuitive due to the added com-

munication overhead, but it all boils down to a correct implementation plan. However, the migration to

microservices should only be as complex as necessary to ensure the services can surpass the mono-

lithic design’s limitations, without introducing new constraints to the system. It is essential to keep this

balance in mind for the next steps of implementation in Chilltime.

Another objective was related to having a smooth performance in peak times. This was achieved

by integrating cloud services in Chilltime’s workflow and implementing a hybrid approach on the most

resource-intensive tasks.

Fault recovery was another major concern for the company. In this implementation, Docker Compose

offers reset options that help containers recover from errors. However, it is Kubernetes that ensures the

most impactful mechanisms to deal with faults in the servers.

Additionally, Chilltime wanted to simplify software and server maintenance, which is enhanced by

microservices as they ensure isolation between components due to their loose coupling. This modular-

isation helps to easily modify components in the system when updating them to a more recent version

or replacing them with more adequate software. This characteristic also eases code maintenance and

extension, since similar features are centralised (as opposed to being scattered around the monolithic

application) and different features are isolated from each other, which makes them easier to change

without worrying about impacting the others.

As for cost management, it depends on the software chosen. In this implementation, all tools and

frameworks used are open-source or free. The only exception is the cloud services, but those are paid

per usage. The alternative would be buying more physical servers, which also implies high upfront costs.
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Finally, the company does not have a system administrator and, therefore, the new tools and pro-

cesses should be maintainable by developers. Docker and Docker Compose help ensure this, and, since

the chosen cloud services are serverless, no administration is required for the underlying structure.

6.2 Requirements Evaluation

In chapter 3, the company’s requirements were determined based on the objectives set. In this section,

an evaluation of how MAGIC and its implementation in the company have impacted each requirement is

done, ensuring they are met. In relevant cases, simulations were done for demonstration purposes.

The system should guarantee isolation between components

The first requirement is about isolation. This means that when a component has a problem, it should

not affect other adjacent components. In terms of architecture, the microservices approach can be an

enormous advantage due to the system’s loose coupling. By diminishing the point of contact between

components, and have them well defined, it is much easier to code around the interaction with interfaces

in order to prevent errors from having a bigger impact.

By using containers and Docker in the implementation, the concept of isolation goes even further – by

providing a virtualised environment for each service –, thus, an error in a component is even prevented

from affecting other environments deployed in the same machine.

As an example, if the email relay service becomes unavailable, the company will not be able to send

emails until the service becomes healthy again. In this case, if a service requests for an email, it will

receive an answer saying that it is not possible to perform that request. The service requesting will then

be able to take the most fitting approach to this error based on the context, without becoming blocked.

The system components must auto recover in case of failure

To have auto recovery abilities, the system should be able to detect it is down and recover. To this

end, the architecture contains a metrics service that receives notification of possible problems in the

infrastructure. With this information, the system can effortlessly implement the necessary mechanisms

in order to rectify the problem, including alerting the appropriate person using the Alerting service.

As explained in Chapter 5, in Chilltime’s implementation it was used Docker. With the Docker Com-

pose feature, it is possible to specify the behaviour of the system in case the container stops by, for

example, configuring it to automatically restart the container every time it is down. Moreover, there is

also a health check API request to verify if the component is working well, and the metrics system also

receives a message if the component becomes unhealthy. The current action of a stopped/unhealthy

container is to both restart unless stopped and to notify the developer team through the internal mes-

saging system each time it happens. Once Kubernetes is installed, more auto-recovery options become
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available. As an example, services can be rolled back to a previous stable version and in case the

hardware itself becomes unavailable, it is possible for the services to be deployed in another host.

As a case in point, the firebase worker was used to test this requirement. In this test, the Node.js

code was slightly changed to run process.exit(1); upon receiving a message from RabbitMQ. This

caused the application and docker to crash, as it can be seen in Figure 6.1. As the service stopped

working, a message was sent to the appropriate team via Discord, as it can be seen in Figure 6.2. Then,

due to the restart option on the docker-compose file that was set to unless-stopped, the container was

immediately restarted as it can be seen from Figure 6.3.

Figure 6.1: Application exiting with an error

Figure 6.2: Alerting message on internal channel

Figure 6.3: Docker event logs
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The system should not have internal polling requests

For every task that is scheduled, there are polling systems based on cronjobs, that periodically check the

database for tasks to process. Polling creates unnecessary load on databases and one of the require-

ments was to remove this load. The usage of asynchronous messages that is typical from microservices,

enables the creation of alternatives to deal with polling.

In the implementation made, there is one example of a polling system that was removed – the World

War Online battle engine. As the processing of multiplayer requests is only done after a couple of

minutes, the usage of RabbitMQ messages TTL and DLX has enabled the configuration of a way to

start the processing on time, without having to query the database every 15 seconds, as it was being

done before. Additional systems that use scheduling and polling can use the same approach to enhance

performance.

The components should be deployable off-site

A microservice can be complex but its scope of action should be very well defined. Due to their smaller

size and very defined interface, the migration process to the cloud is much easier to accomplish.

Regarding the implementation on Chilltime, the usage of container and Docker is a major advantage

in the process of migrating a service to the cloud, due to the CaaS and orchestration services supplied

by cloud providers. This means that, to migrate a service, the images and volumes need to be updated

in the cloud and then, with little configuration, they run without having to change anything inside these

containers.

The battle system should be able to auto-scaling off-site

The match processing units are by nature one of the most resource-intensive tasks. This requirement

ensures that the functionality of the game is not affected by peaks in the load. In order to achieve this,

the architecture has an offloading manager in Figure 4.3 that is able to send requests to the cloud.

Chilltime implemented a hybrid cloud system with AWS. Using RabbitMQ, it was possible to distribute

the requests between the various local workers before sending them to the cloud if none were available.

The number of workers is fairly easily adjusted, ensuring that the system can have an efficient use of

the local resources before sending requests to the cloud.

By way of example, it was developed a script that sent eight battle requests with the same board to

process. As the local implementation had five active workers for this game, three requests were sent

to the cloud. In Figure 6.4 it is possible to observe the logs taken from our logging system, showing

that eight requests were received in the relay, then five were received in the workers and three in the

dispatcher (offloading manager). In Figure 6.5 it is displayed the monitor information from AWS Lambda.

As it can be seen, the first graph describes the number of invocations counting three requests, the
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seconds has the average duration of requests and the last has the error count in the requests, showing

100% of success rate.

Figure 6.4: Logs from test made with eight simultaneous requests

Figure 6.5: AWS Lambda monitoring console for eight simultaneous requests
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The battle system should scale up to 500 simultaneous requests without degrading its perfor-

mance

One of the biggest benefits in having microservices is the possibility of having a more refined scalability.

In this case, to scale up to 500 simultaneous games, the system only needs to scale the number of local

workers (up to the resources available in the system), and possibly the offloading managers and game

manager (although these require a very small processing time when compared to the workers).

In terms of the current implementation, when using Docker and Traefik it is extremely simple to

increase the number of any component (relay, workers and AWS Lambda dispatcher). In the future, as

the company adopts Kubernetes, there are auto-scalling options available that can act by analysing the

CPU consumption, for example. Regarding the cloud itself, as AWS Lambda is a serverless service, it

is not possible to monitor or manage the underlying infrastructure, however the AWS defines that up to

1000 instances of Lambda functions can run concurrently [75] – enough to ensure the 500 requested.

To demonstrate the capabilities of the system, some tests were executed to understand the changes

in performance with the growth on the number of concurrent requests. To do this, the same battle

setup was selected and used throughout this experience. The number of local workers was set to five

instances, meaning that the first five requests are dealt locally and the following are sent to the lambda

dispatcher to be sent to the cloud. In order to monitor the performance of the requests, timestamps

were retrieved at three moments: when the request arrived to the system, before the battle processing

starts and right after the processing finishes. With that information it was possible to retrieve the time

that it took for a request to start processing (network time) and the time taken to process the request

(processing time). This experiment starts with a burst of five requests (that only run locally, as there

were five local workers). Then, it gradually increases until it reaches a 500 burst of requests (5 running

locally and 495 running in the cloud). On each burst, the median of the network time and the median of

the processing time was calculated, the results being presented in Table 6.1.

Table 6.1: Results from burst experiment

Nº Requests Nº Cloud Requests Network Time (ms) Processing Time (s)
5 0 9.4 43.15

100 95 17.8 46.13
200 195 155.6 45.08
300 295 31.5 40.75
400 395 181.9 41.17
500 495 29.0 36.62

From Table 6.1 it is possible to see that the network time changes a great deal between request

numbers, yet these changes are not significant as they are in miliseconds (when compared to the pro-

cessing time, in seconds). To better visualise the changes in the processing time, these are presented

in Figure 6.6.
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Figure 6.6: Processing time variation in the burst experiment

The variation of the processing time is also not significant, decreasing even from the 200 burst for-

ward. It can be concluded that the processing time (and therefore the performance) is not influenced by

the number of requests, and the deviation is probably related to AWS underlying infrastructure optimi-

sation that is done. It is also inferred that the battle system does scale up to 500 simultaneous requests

without degrading its performance, successfully meeting the requirement.

The system should host multiple games simultaneously

Gaming companies have various games. Instead of having their architecture separating each game

as a different infrastructure, in this architecture, there is the possibility to have services taking care of

similar services between different games. This enables the creation of infrastructures that host multiple

games efficiently, grouping similar tasks so they only need to be coded and maintained once and in one

place. Examples of similar tasks that were made centralised services are: log ins, user management,

friendship management, and leader-board management.

The system is designed to have several match processing units available, having different functions

inside, in order to provide all the necessary games. At the moment, Chilltime has only migrated the

World War Online battle engine to the new infrastructure, but more will follow. When adding a new

processing function, there are some steps that should be followed. First, a new relay service is required

for players to be able to trigger battles in the platforms where they are playing. This relay should then

publish a message in an exchange created for this purpose. The configuration should be similar: having

a DLX, sending messages with TTL, configuring local workers with prefetch as one. The local consumers

should then be created, wrapping around the battle processing code (or executable) in an application

that connects to the queue to accept battles. Regarding the offloading manager, it should read from the

DLX end queue and send a message to trigger the correct AWS Lambda function.
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The system must have monitoring and logging services

Logging and monitoring are two crucial services in microservices that help developers perform efficiently.

The architecture designed had both monitoring and logging services connected to every other service,

as well as an alerting service and a back-office system for an easier access to the information.

In Chilltime’s implementation, the Elastic Stack has enabled the creation of all these services in a

very efficient way, as well as extra features to facilitate the filtering and visualisation of the data, making

it easier to understand what is going on inside the system. As an example, in Figure 6.3 it is possible to

see a number of logs retrieved from the system and in Figure 6.7 it can be seen a dashboard with some

graphics rendered to more easily fetch relevant information from the logs and metrics retrieved about

World War Online emails and battle engine usage.

Figure 6.7: Dashboard for World War Online battle engine

The system must increase testability and observability

Testability becomes an easier and more controlled process using a microservices approach: as the

systems are loosely coupled and isolated, it is much easier to test each feature separately without having

to test the whole system. Testing can be done in an incrementally bigger scope and in an automatic way.
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Observability is powered not only by having the logging and monitoring systems but also by the alerting

and a back-office services that can make special requests to better understand the services’ state.

Regarding the testing implementation, it was possible to use the combination of small scripts to

trigger each feature implemented by simply making HTTP requests to the appropriate API endpoint (with

the correct authentication and information to perform the task), as well as looking at the output in the

logs to understand if the system was performing as expected. This can be further automated, once the

company explores Jenkins and its possibilities for building pipelines. Moreover, in terms of observability,

a distributed tracking system was also implemented, that can be explored by administrators in Kibana’s

interface.

Examples of monitoring, logging and alerting have been shown in Figure 6.2, Figure 6.3 and Fig-

ure 6.7. An example of distributed tracking in the email system can be seen in Figure 6.8, where the

same uuid is used in the same request and it can be seen that they are received in the email-relay and

later in email-worker for processing, as expected.

Figure 6.8: Logs for emails with an unique ID (uuid column)

The system must be able to send messages to players via the adequate channel

In this architecture, it was added the email and the app notification system. These services do not

depend on a specific email provider or notification provider, enabling the company to choose the more

appropriate one and alter it in the future without problem.

In the implementation, Chilltime chose to use Mailjet and Firebase Cloud Messaging so it is now

possible for these emails and notifications to be sent. In Figure 6.9 and in Figure 6.10 there is an

example of an email and a notification for the user.

The communication system must be able to incorporate new channels

Even though the company uses the email and app notification only, it is expected that the notification

channels evolve over time. Therefore, the architecture needed to be able to expand its functionality. In
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Figure 6.9: Email example with the email system

Figure 6.10: Notification example with the notification system

that regard, a microservice architecture can really help with extensibility, by creating a new service with

the new functionality and exposing the API for other services to connect with.

Regarding the system’s implementation, the steps would be to create a relay microservice (it should

be very similar to the other communication services’ relay ) and connect it to a new exchange and queue

on RabbitMQ, created specifically for the new channel. A second microservice should also be created,

in a language that supports both RabbitMQ client libraries and connection to the new channels’ API.

Both containers should also send logs (via the log RabbitMQ queue) of the relevant information, with

unique identifiers for distributed tracking.
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This chapter presents the conclusions that can be derived from this research work as well as sug-

gestions for future work based on this report’s findings.

7.1 Conclusion

This report describes the work developed for the Master Thesis in Electrical and Computer Engineering.

It starts with an overview of microservices – a relevant architectural approach designed for scalability and

agility. It is followed by an analysis of the video games industry’s evolution and research on the various

challenges in its implementation for this business field. Moreover, the current cloud options available

are also explored. Next, since the work conducted was accomplished in collaboration with Chilltime,

their objectives and requirements for the new infrastructure are defined, followed by an explanation of

MAGIC – the proposed architecture to provide a solid foundation for the implementation of a system

that is capable of meeting those requirements. As it can be seen from Chapter 6, MAGIC is able to

scale without performance reduction, moving to the cloud when necessary, while being able to ensure

all functional requirements as well. Thus, the main goal of this project can be considered to have been

achieved.

There is still much work left to do in Chilltime for the company to have the complete implementation

of the architecture designed. However, it is not possible to accelerate an architecture migration process,

due to the need of involving every team in the company, therefore requiring careful planning of each

change made. For the elements that Chilltime needs to enforce later, an implementation plan was

designed with tool suggestions and an analysis of the critical factors to help with the decisions.

While this architecture was implemented for the Portuguese business, it is important to state that this

work was done with other gaming companies in mind as well, since the problems faced by Chilltime –

performance issues due to scaling and difficulty in being more agile – also concern other companies in

the same field. As such, this work is perfectly suitable for others to use and adapt the implementation to

their specific needs. However, the size of the company can be particularly important when determining

if this architecture is a good fit: a smaller company, with fewer users or games, might not benefit from

a large number of microservices, as they might be bringing complexity and delays that do not solve

any real issue. Similarly, bigger companies with millions of users should probably divide even more the

resources and services needed in their infrastructure, for example, considering sharding the databases

based on the locations of their users.
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7.2 Future Work

Regarding the future work that can be done on top of this research and architecture, there are many

interesting projects that can be tackled. The first would be to explore the possible changes in the

implementation for a much bigger user base with millions of active players.

Another interesting topic is the exploration of other cloud services that a gaming company can benefit

from, as in this work they are only being used for extending the computing power available for the

company. There are various data, security, monitoring and machine learning APIs that can provide

further functionality for these companies.

Finally, there are some game types with unique characteristics that might need special treatment.

One example are the MMORPG that have huge persistent open worlds which can be explored by users

and interact in real-time. These types of games require an efficient use of databases to manage the state

of the world. Another type are the FPS games where the network management – such as the number

of messages sent or the number of hops between microservices needed to perform the requests – can

be certainly impactful due to these games being real-time, with a high rate of updates. As future work,

it would be interesting to understand if these game specifications can be efficiently performed based on

this architecture or how it would need to change in order to adapt to these games.
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