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Abstract— This Master thesis describes the development 

of a technology independent, highly customizable topology 

selection methodology compatible with AIDA-C. Topology 

synthesis is an essential step in circuit design, majorly 

dependent on the knowledge of experienced designers. 

Producing an EDA tool in this task of a circuit’s design flow 

would drastically improve its time-to-market, since many 

other elements in this flow are already automated. The 

method chosen uses the information of past sizing 

optimizations, combining them with MCDM algorithms to get 

the most apt topology. It does so if there exists an optimized 

circuit able to reach the desired performances, or otherwise.  

The topology selection method was implemented as the 

AIDA-TOP program. It was tested using AIDA-C 

optimizations of four distinct topologies, belonging to the 

CMOS OTA family. The program was verified to progress as 

expected with diverse input examples. The tool used 40 test 

optimizations with multiple simulated circuits each to arrive 

at an overall accuracy rate of 76,41%. 

Keywords— Analog circuit design; Topology Synthesis; 

Electronic Design Automation; Topology Selection; Multi-

objective optimization; Multi-criteria decision analysis. 

I. INTRODUCTION  

With the invention of the transistor, and the ability to 
integrate it in large numbers into a semiconductor made 
integrated chip (IC) electronic circuits adoption became 
mainstream. To understand the magnitude of their 
expansion, the semiconductor market worth grew from $20 
billion to $480 billion [1], [2] (approximately), from 1986 
to 2018.  

Despite the relatively small proportion of analog circuits 
in electronic devices, their design is more resource intensive 
than the digital counterpart. This complexity stems intricate 
relations between devices, and performance goals and 
specifications being continuous.[3] The present difficulty in 
the development of Analog and Mixed-Signal (AMS) 
circuits, is a threat to product life cycles due to the 
increasing time-to-market-constraints. Because of the 
continuous nature of the “real world”, AMS circuits emerge 
as a necessity to interface with digital systems. This 
connection links the successes of IC and semiconductor 
market, with the ability to produce this category of circuits. 

In comparison to other device types within the 
semiconductor industry, analog ones are forecasted to have 
second largest rate of growth until 2023 (7.4%) [4]. The 
future interest in this type of circuits, and existing 
limitations to their conception, justify the importance of 
improving AMS IC design.  

The set of actions that start with the concept for a circuit 
and end with the delivery of a physical circuit is its design 
flow. [5] When one examines the topological side of one of 
the design stages named “Cell design” one confronts a task 

that still relies on graphical schematic entry tools, a manual 
chore relying on the expertise and time of highly trained 
analog designers. In view of this handicap, the current work 
proposes a methodology to improve it.  

Upon this task’s conclusion, the range of achievable 
performance specifications is much narrower. For this 
reason, it is paramount, that an adequate topology is chosen, 
as a failure to do so limits the potential of a circuit.  

A wealth of ways to approach this problem have been 
attempted, some deficient due to excessive computational 
requirements, others due to the restrictive library, or due to 
the time necessary to compose a model.  

To fill the breach in contemporary IC design, it is offered 
a methodology enabling the creation of a knowledge 
database (library), that can be customized with the most 
useful solutions for multiple sectors and uses. Multi Criteria 
Decision Makers (MCDM) are adopted, summarizing the 
optimizations, into a smaller set of points that can describe 
them and be used to choose topologies competently. The 
methodology is implemented into a tool named AIDA-TOP 
which is also used to test the methodology. 

This document is organized as follows. To start, Section 
II has a literature review. On Section III the architecture of 
the methodology is approached. Section IV has the 
preparations done to validate the methodology through the 
creation of a tool. Section V shows results achieved from 
using said tool.  Finally, in Section VI the conclusions are 
addressed. 

II. PREVIOUS WORKS 

A. Introduction 

In this section works that introduced paradigms that 
were important for solving the problem of topology creation 
are seen chronologically, describing the evolution set 
forward by them. 

B. Literature Review 

Typically works can be distinguished into two disjunct 
categories: The process of selecting the most appropriate 
topology amongst known ones, is named Topology 
Selection; the other way is to construct one or more 
topologies, combining components or blocks of 
components, called Topology Generation.   

In the first notable work, multiple different schematics 
were available to be picked by the user. Consequently, the 
process of selection can be labeled as manual. IDAC [6] 
performed sizing and topology selection separately, so it can 
be categorized as independent topology design. It saved 
time by having an incorporated library with useful solutions, 
ready to be used. However, in this first approach, the 
selection relied on the user to choose the relevant topologies 
and interpret the results of the sizing tool.  



Harjani et al. [7] developed a new system, OASYS, that 
subdivided a cell into reusable sub-cell abstracts blocks (e.g. 
current mirror), sub-blocks originating the hierarchical 
perspective. This permitted the usage of the same blocks in 
different contexts, setting them up only once. This 
representation did remove the ability to employ design 
“tricks”, that affect multiple blocks, which are only 
accessible when single devices are exposed and 
independently mutable.  

This tool applied methods that reduced computation, 
while still providing the best or at least a good option. The 
authors instilled subject specific information, to be used for 
synthesis. This information had to be manually modeled and 
introduced into the tool, making it a manually 
compounded knowledge-based tool.  

Contrary to IDAC, in OASYS its design flow did not 
demarcate the topology design part from other tasks, being 
a joint topology creation tool.  

In OPASYN [8] after selection, the topology was 
forwarded to the sizing module where the parameters were 
tuned, maximizing a design cost function, calculated as a 
weighted sum of the performance in each parameter. This 
method of evaluating the success of a circuit departs from 
the previous works that focused solely in attaining the 
constraints presented. It was an overall performance 
objective, contrary to the previously seen focus on 
constraints achievement.  

Maulik et al. [9], realized Cell design could be posed 
Nonlinear Programming problem. KVL and KCL equations 
to be solved were extracted resorting to an external 
algorithm, initiating the notion of automatic compounded 
knowledge-based tools, even if used only for a portion of 
knowledge.  

The objective function used here was centered on 
minimizing the area of the circuit, the fixed single objective 
of this optimization solution, continuing the search for 
designs that perform better in this sole objective even after 
ensuring the minimum acceptable area. The set of all 
solutions where the entirety of constraints is guaranteed is 
the feasible region (with feasible solutions in it), within 
which an optimum is sought.  

Lohn and Colombano [10] opted to use an Evolutionary 
Genetic Algorithm (GA) for the task of defining a 
topology. A GA belongs to the field of evolutionary 
computation which bases itself on the Darwinian concept of 
survival of the fittest. In this version, the individuals that 
integrated the population were the circuits.  

The initial creation of the population, as well as 
subsequent generations, have the potential to originate 
unseen circuits, revealing the first topology generation 
tool. This work gave the user the ability to select the 
specification considered a priority thus having a mutable 
single objective. 

Until this work, the way to evaluate the performance of 
a circuit, had been through numerical analysis of the 
circuits. The analysis was performed on circuit models, 
requiring previous set-up of equations that described them. 
This technique is equation-based evaluation. Lohn and 
Columbano [10], however, used the Simulation Program 
with Integrated Circuit Emphasis (SPICE) tool for accurate 
electrical simulation. It is thus possible to categorize the 

evaluation of circuits produced as simulation-based. This 
latter method is more accurate yet more computationally 
demanding. 

Sripramong et al. [11] pointed out shortcomings 
displayed by the previously overviewed GA, which it 
vowed to improve using Genetic Programming (GP). Its 
schematics were represented in tree-form, conforming to the 
standard GP representation.  

A multi-objective evolutionary algorithm (MOEA) 
joins Multi-Objective perspective and an EA one first 
exemplified by MOJITO [12], which was published in 2011 
and uses the NSGA-II algorithm [13].  

A multi-objective optimization (MOO) problem is one 
that, contains more than one objective function. The concept 
of feasible region is also applicable in MOO. The challenge 
of finding an optimal analog circuit, can be seen as such, 
since designers usually have multiple criteria they wish to 
optimize e.g. minimize area and maximize gain.  

One concept unique to MOO is a MCDM (multi-criteria 
decision maker), Pareto-Optimality. Choosing any two 
solutions, it can be noted that one is superior (dominating) 
to the other in all objectives (dominated). Solutions are non-
dominated when they are not worse than any solution in all 
objectives. The curve obtained from line-connecting these 
solutions, is the pareto-optimal front (PoF) and the group of 
all solutions the Pareto Set. In Fig.  1. there is an example of 
a pareto front and dominated points that are excluded from 
it. In this case the axes evolve in decreasing preference, so 
the preferred points are the minima. 

 
Fig.  1. Pareto Front Example.   

 
Li et al. presented in 2018 InnovA [14], a cognitive 

architecture applied to analog circuit design. Artificial 
cognitive systems look to incorporate cognitive 
neuroscience and developmental psychology to replace the 
manual or algorithmic methods of knowledge acquisition 
and once used.  

This work, tries to decompose circuits, understand the 
cause for the existence of its parts, and integrate these skills 
with the ability of learning to learn. The use of cause and 
effect for synthesis and learning introduces causal 
synthesis. 

This recent tool resorts firstly to selection of topologies, 
generating multiple circuits only upon failure to encounter a 
job fulfilling circuit. For its use of both strategies it can be 
categorized as a hybrid solution regarding the discovery 
process. 
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C. Categorization of solutions 

The categories presented throughout the historical 
perspective were used to classify notable works. 
Additionally, two quantitative metrics are included, to give 
a perception of the variety of topologies and real-world 
usage of the tools. 

D. Work Proposal 

It is proposed a topology selection methodology, with 
flat hierarchy, using previous AIDA-C optimizations to 
improve multiple objectives simultaneously, and its 
execution independent from other design flow stages. A tool 
is developed to be used to complement AIDA-C, which 
implements the methodology developed. 

Concerning the main algorithm employed, it can be 
defined as knowledge-based, relying on stored 
optimizations to, from the results of their objectives, supply 
which topologies are more appropriate to perform as 
requested. This approach allows for the tool to provide a lot 
of flexibility, permitting each user to store and search only 
optimizations of circuits, technologies and measurements 
that it considers valuable. Furthermore, there is no need for 
intricate models that require a large time investment to 
incorporate, nor does it need long execution times to select 
a topology since the data it requires was previously saved 
and the algorithms used are simple. 

III. SYSTEM ARCHITECTURE 

A. Introduction 

A methodology was created to recommend the most 
likely, from a set of topologies, to succeed in behaving 
within the desired parameters.  

To arrive at this ranking of topologies, a series of 
modules were designed. A set of AIDA-C optimizations 
with the netlists and technology files it used, also have to be 
available (library), and the user must provide which are the 
relevant metrics and respective values desired (objectives). 
This architecture can be seen in Fig.  2.  

The user inputs and library data go through the modules 
in the sequence detailed in Fig.  3. to deliver the output 
rankings. This sequence starts by firstly filtering the 

optimizations’ data in the library to remove parameters not 
regarded as objectives and circuits that do not contain data 
for all the objective metrics (Data Filtering module). Then, 
it encounters the Feasible Solution Finder, where there is a 
search to get points complying with objectives’ 
specifications. If solutions are found, then only those are 
considered in the remaining modules, otherwise all library 
solutions are used. 

The program resumes, moving to the Pareto 
Reformation module, getting the topologies optimizations’ 
results to pareto front form. From there, each topology it is 
found its extreme and compromise points through the 
application of Technique For Order of Preference by 
Similarity to Ideal Solution (TOPSIS). There are then two 
Topology Distance Calculators. The Closest and the 
Farthest Topology Distance Calculator.  

The first is used when there are no feasible solutions, the 
Farthest if there are any. In the Closest Distance Calculator, 
line segments between the TOPSIS module points are 
created. The distance from the goal to all line segments is 
computed. Each topology’s closest point, from those that 
that existed in the reformed pareto, is kept, associating to it 
the line segment distance value. Then the points are sorted 
from closest to farthest. In the latter calculator the process 
of adding line segments is not done, only computing and 
storing every topology’s farthest point sorted by decreasing 
distance. 

The reason for having opposite criteria in these 
calculators is that if the search for feasible solutions was 
successful, the goal is to deliver topologies sorted by their 
ease in reaching the objectives, represented by larger 
distances to them. The topology pertaining to the farthest 
point from the objective is output first, and for all elements 
the respective distance and simulation number are provided 
as well. On the other occasion, the aim is to suggest, from 
the library, the list of topologies starting with most suited to 
be optimized or tweaked to fulfill all goals, ending with the 
least likely. The closest topology is then hypothesized as 
most suitable, because it will require less improvement. In 
this case the order is reversed, also indicating the 
configuration that is more prone to achieve the intended 
results.   

Fig.  2 Topology Selection Methodology Architecture. 
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B. Library 

Two components are required in a library element: 

• Definition of a topology. 

• Results from the topology’s optimizations.  

The topological definition must contain information of 
what devices are used, their connections, and their 
technology. When it comes to the results from the 
optimizations, they are made up of several simulations. For 
each of them, the performance of chosen objectives is 
recorded together with the sizing of electrical components 
that led to them. 

The sizing and topological definition are necessary for 
recreating, as well as altering the selected solutions, making 
it possible to take advantage of the output provided.      

C. Modules 

1) Relevant Data Filter 
Should there be any optimizations in the library that 

contain all goal parameters asked, then the execution 
continues, excluding the topologies that do not, and keeping 
the ones that do, limiting them to have only the input 
parameters. Otherwise, there is no useful information in the 
library and the methodology terminates. 

2) Feasible Solution Finder 
This part of the method goes through all simulations 

within the optimizations, comparing the simulation values 
to the objectives’. If a simulation is better in all the objective 
metrics it is deemed a feasible solution and it is stored, if it 
is not, it is discarded.  

3) Pareto Reformation 
The removal of irrelevant measurements that took place 

previously, may have left some dominated points. In this 
module, the data is restructured so that each topology 
contains only a pareto set. To identify from the non-
dominated points, Algorithm 1 is used. It obtains non-
dominated set 𝑃′ from set 𝑃, which has 𝑁 elements. This 
algorithm considers all elements of 𝑃 as non-dominated at 

the start, copying them to the non-dominated set 𝑃′. It then 
iterates through all the points 𝑖 in 𝑃. If 𝑃𝑖  is still present in 
the non-dominated set 𝑃′, it must be compared with all the 
points that succeed it in 𝑃 (represented by 𝑗), to confirm its 
non-domination. In this comparison, should either of the 
points reveal itself as dominated (𝑖 or 𝑗), then it is removed 
from 𝑃′, continuing to the next element of 𝑃. In the end 𝑃′ 
contains a POF. This algorithm is very similar to the second 
approach shown in the chapter from the book by Deb et al 
[15]. 

4) TOPSIS  
TOPSIS is a MCDM method by Yoon and Hwang[16]. 

It uses as criteria the distance to an ideal solution to find a 
compromise point. An ideal point is one that combines the 
best performing elements in each of the existing 
dimensions. An ideal point can be defined as: 

𝑖  as the solution 𝑥  number from 𝑁  available. Opposite to 
this the negative ideal point is:  

with the same variables as before. In these points from 
𝑀 total criteria there is: 

𝐽∗ = {𝑗 = 1,2, …  𝑠| 𝑗 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎} 

𝐽− = {𝑗 = 1,2, …  𝑡 | 𝑗 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑐𝑜𝑠𝑡𝑠 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎} 

  

𝐴∗ 

= {(𝑚𝑎𝑥
𝑖

𝑥𝑖𝑗 |𝑗 ∈ 𝐽∗ ) , (𝑚𝑖𝑛
𝑖

𝑥𝑖𝑗 |𝑗 ∈ 𝐽− )  | 𝑖 =

1,2, … 𝑁 }  

(1) 

𝐴− 

= {(𝑚𝑖𝑛
𝑖

𝑥𝑖𝑗 |𝑗 ∈ 𝐽∗ ) , (𝑚𝑎𝑥
𝑖

𝑥𝑖𝑗 |𝑗 ∈ 𝐽− )  | 𝑖 =

1,2, … 𝑁 }  

  (2) 

Fig.  3. Module sequence in Topology Selection Methodology. 
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Algorithm 1 –Pareto Reformation Algorithm. 

𝑷′ = 𝑷, Copy all solution set 𝑃 to set 𝑃′ 

𝒊 = 𝟏 

Until 𝒊 ≤ 𝑵, While there are solution points to be 

evaluated 

 If 𝑷𝒊 ∈ 𝑷′, If solution 𝑖 of 𝑃 still exists in the 𝑃′ set 

  𝒋 = 𝒊 + 𝟏, Set solution iterator 𝑗 for the point 

following 𝑖 in set 𝑃 

   

Until 𝒋 ≤ 𝑵, While solution hasn’t been 

compared to all following ones in 𝑃 

   If 𝑷𝒊 dominates 𝑷𝒋, 𝑃𝑗 worse in all 

components 

    𝑷′ =  𝑷′\{𝑷𝒋}, Remove 𝑗 solution from 𝑃′ 

 

    𝒋 = 𝒋 + 𝟏, Compare 𝑃𝑖  with solution 

following 𝑃𝑗 

   Else if 𝑷𝒋 dominates 𝑷𝒊, 𝑃𝑖  worse in all 

components 

    𝑷′ =  𝑷′\{𝑷𝒊}, Remove solution 𝑖 from 𝑃′ 

 

    𝒊 = 𝒊 + 𝟏, Check next solution of 𝑃 is 

nondominated 

 

    𝒋 = 𝑵 + 𝟏, No need to compare with 

further elements since it is removed 

 Else, 𝑃𝑖  had been excluded from 𝑃′ for being 

dominated 

  𝒊 = 𝒊 + 𝟏,  

𝑷′ now only has Non-dominated solutions 

In this algorithm the choice is made considering the 
distance from each solution to both these points, using 
closeness metric: 

 

𝐶𝑖 =
𝑑𝑖𝐴−

𝑑𝑖𝐴− + 𝑑𝑖𝐴∗
, 𝑖 = 1,2, … , 𝑁 (3) 

Where 𝑑  stands for the Euclidean distance. The point 
with largest closeness factor is the compromise point. 

Due to the potential discrepancy in orders of magnitude 
on the criterions used, the distances require normalization. 
Normalization is applied to the initial solutions 𝑝𝑖  from 
pareto 𝑃  by dividing all elements’ components 𝑗  by the 
respective sum square roots across all 𝑝𝑖  solutions. 

 
𝑥𝑖𝑗 =

𝑝𝑖𝑗

√∑ 𝑝𝑖𝑗
𝑁
𝑖=1

 
(4) 

The solution with maximum closeness (compromise) is 
saved, additionally storing the extremes, which are the 
points who best perform in a single objective.  

The steps to arrive at these ultimate sets are described in 
Algorithm 2 creating the TOPSIS algorithm. This is applied 
to all 𝐾 topologies from the ones left. To start, the points 
that have the best performance in the 𝑗 th objective (𝑗 =
1,2, … 𝑀) are saved into reduced set 𝑅, at the same time 
calculating the 𝑗th coordinate of ideal and anti-ideal points 
𝐴𝑗

∗ / 𝐴𝑗
− , and this coordinate’s normalization factor 

𝑛𝑜𝑟𝑚𝐹𝑎𝑐𝑡𝑗. Upon conclusion, this normalization factor is 

applied iteratively to 𝑗 th coordinate of the anti-ideal and 
ideal-points, and to all 𝑁  pareto points 𝑝𝑖 . Having all 
normalized elements, the distances from 𝑖th point to ideal 
and anti-ideal points are calculated, as is the respective 
closeness factor. Finally, the point with the compromise 𝐶𝑖, 
maximum closeness, is saved into reduced set 𝑅 . The 
complexity per topology of this algorithm for the is 𝑂(𝑀𝑁). 

5) Closest Topology Calculator 
This module is used for the getting the closest topology 

in the event of not having found any feasible solutions. To 
obtain the preferred solutions, a metric based on the 
Euclidean distance to line segments (created by connecting 
the dimensional optima to the compromise point), is used. 
The line segments represent a linear approximation of the 
performance that a topology can realize.  

If the best point was not in the reformed pareto (𝑃’), it is 
an added point. In such case, the closest pre-existing point 
must be indicated as a solution. These additional points only 
serve to supply a more useful distance metric, not having 
associated any actual replicable device sizing. Due to this, 
the distance to this added point is registered (if best), as the 
distance to the topology itself, yet the simulation that the 
program outputs has to contain a specification, allowing the 
user to work from it. Therefore, the distance value to all 
topologies is sorted using both added points and simulation-
based ones (𝑃′  points), but once the topology ordering is 
achieved, the topologies’ nearest simulated point is singled 
out, to be displayed in the output. 

The distance used was said to be Euclidian distance 
based, but it requires a modification. Since this module 
mirrors the improvements needed so that all objectives are 
compliant, if in some of the metrics the performance is 
already adequate, no effort is required in those metrics. So, 
the modification is that only the distances of the non-
attaining objectives matter, contributing to the overall 
distance, since the other components are already ensured. It 
is the one with smaller cumulative distance in normalized 
non-conforming specifications that needs to be improved 
less than the others. 

This module provides an inexpensive linear 
approximation of the circuits’ performance and then finally 
calculates and sorts the best topologies, that will be output 
to the user. 

6) Farthest Topology Calculator 
When one stands before a feasible solution, the one that 

is overall farthest is said best. It is assumed to allow more 
changes in all specifications than the rest of the points.  

The distance used is also the Euclidean. Nevertheless, in 
this module no points are added, instead directly calculating 
the distance from the target point to the reduced pareto 
resultant from TOPSIS. After obtaining the distances to 
these points, feasible solutions are sorted by descending 
distance, opposite to the other calculator.   



Algorithm 2 – TOPSIS Algorithm. 

Until 𝒋 ≤ 𝑴, Until there are no more dimensions 

 𝑹 = 𝑹 ∪ {𝒂𝒓𝒈 𝐛𝐞𝐬𝐭
𝒊

𝒑𝒊𝒋}, Add dimensional bests to 

reduced set 

 

 𝑨𝒋
∗ =  (𝒎𝒂𝒙

𝒊
𝒑𝒊𝒋 |𝒋 ∈ 𝑱∗ ) , (𝒎𝒊𝒏

𝒊
𝒑𝒊𝒋 |𝒋 ∈ 𝑱− ), Ideal 

point 

 

 𝑨𝒋
− =  (𝒎𝒊𝒏

𝒊
𝒙𝒊𝒋 |𝒋 ∈ 𝑱∗ ) , (𝒎𝒂𝒙

𝒊
𝒙𝒊𝒋 |𝒋 ∈ 𝑱− ), 

Negative ideal point 

 

 𝒏𝒐𝒓𝒎𝑭𝒂𝒄𝒕𝒋 = root_square_sum(𝑝𝑖𝑗), 

normalization factor 

  

𝒋 = 𝒋 + 𝟏, Next dimension 

Until 𝒋 ≤ 𝑴, Until there are no more dimensions 

 𝑨𝒋
∗ = 𝑨𝒋

∗ 𝒏𝒐𝒓𝒎𝑭𝒂𝒄𝒕𝒋⁄ , Normalization of ideal point 

 

 𝑨𝒋
− = 𝑨𝒋

− 𝒏𝒐𝒓𝒎𝑭𝒂𝒄𝒕𝒋⁄ , Normalization of negative 

ideal point 

 

 𝒋 = 𝒋 + 𝟏,  Next dimension 

 

 Until 𝒊 ≤ 𝑵, Until all points have been considered 

  𝒙𝒊𝒋 = 𝒑𝒊𝒋 𝒏𝒐𝒓𝒎𝑭𝒂𝒄𝒕𝒋⁄ , normalization of paretos 

points 

Until 𝒊 ≤ 𝑵, Until all points have been considered 

 𝒅𝒊𝑨∗ = euclidian_distance(𝑥𝑖 , 𝐴∗), 
Calculate Euclidean distances 𝑑𝑖𝐴∗  

 

 𝒅𝒊𝑨− = euclidian_distance(𝑥𝑖 , 𝐴−), 
Calculate Euclidean distances 𝑑𝑖𝐴− 

 

 𝑪𝒊 = closeness(𝐴∗, 𝐴−), Get the closeness 𝐶𝑖 

 𝒊 = 𝒊 + 𝟏, Next point 

𝑹 ∪ {𝒂𝒓𝒈 𝐦𝐚𝐱
𝒊

𝑪𝒊}, Add point with maximum 𝐶𝑖 to 𝑅 

IV. TEST LIBRARY 

A. Introduction 

A set of circuits, constraints, and objective 
specifications needed to be chosen, to optimize and get data 
for assessing the method’s success. In this section it is 
overviewed the elements chosen.  Then the implementation 
of the library follows, consisting on how its elements were 
encoded. Then, the optimization process and output format 
is explained. The optimizations performed are described, 
stating the motivations behind them and the resulting data. 
After this, all that was required to run the implementation of 
the method and its validation program was ready. 

The family of circuits chosen were OTAs, whose 
configuration largely resembles the one in OpAmps, the 
latter being a popular class, deeply linked with the 
appearance of ICs. OTA’s are often less intricate, 

simplifying the simulation process. [17] The OTAs were 
implemented with CMOS technology. 

Related to the choice of circuits, is the choice of what 
measures to use. Metrics should not be too similar in all 
topologies and should also be representative parameters that 
are used frequently. Furthermore, parameters must not all be 
simultaneously improved,  rather expressing of the trade-
offs for which MOO was created for. [18] 

B. Measures 

For testing, 4 metrics were chosen: Voltage Gain, 
Figure-Of-Merit (FOM), Offset Voltage (VOS) and Output 
Swing Voltage (OS). These metrics are briefly explained in 
the following paragraphs. 

1) Voltage Gain 

The voltage gain is defined as the ratio between the input 
voltage 𝑣𝑖  and the output voltage 𝑣𝑜 which will be delivered 
to the load. 

 
𝐴𝑣 =

𝑣𝑜

𝑣𝑖
[V/V or dB] (5) 

2) Figure-Of-Merit 

The Figure-Of-Merit term is used as a number that 
characterizes the performance of circuits in the context of 
the energy-efficiency and is commonly used in the literature 
of this sort of topologies.  

  
𝐺𝐵𝑊 = {𝑓 ∈ ℝ|𝐴(𝑓) = 1 𝑑𝐵} [Hz] (6) 

 
𝐹𝑂𝑀 =

𝐺𝐵𝑊 × 𝐶𝑙

𝐼𝐷𝐷

 [
𝑀𝐻𝑧 × 𝑝𝐹

𝑚𝐴
] (7) 

3) Offset Voltage 

The offset voltage 𝑉𝑂𝑆, is defined, in this work, as the 
difference between the actual DC voltage that is applied at 
the output by the amplifier, and the value that would be 
achieved in an ideal situation (ideal amplifier), which would 
be half of the positive supply voltage 𝑉𝐷𝐷.  

 
𝑉𝑂𝑆 =  𝑉𝑜 −

𝑉𝐷𝐷

2
 [𝑉] (8) 

4) Output Swing Voltage 

The output swing voltage is defined as the maximum 
swing of the output node without generating a defined 
amount of harmonic distortion. In practice, the OS is 
determined by the difference between the positive supply 
and the negative supply voltages or ground minus the 
overdrive voltages of the transistors that drive the output 
node, i.e., transistors that form the output branches of the 
amplifier.  

 
𝑂𝑆 = 2 × (𝑉𝑜 − ∑ 𝑉𝐷𝑆𝐴𝑇

𝑖

𝑛

𝑖=1

) [𝑉] (9) 
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Fig.  4. Symmetrical Amplifier 

C. Circuits 

For the purposes of this work, four topologies are 
considered for proof-of-concept: the Symmetrical CMOS 
OTA, the Telescopic-Cascode OTA, the Folded-Cascode 
OTA and the Mirrored-Cascode OTA.  

The Symmetrical CMOS OTA, shown in Fig.  4., is the 
most suitable circuit if a high output swing is desired.  

The Telescopic-Cascode amplifier (TCA), shown in Fig.  
5., often has a gain higher than the Symmetrical CMOS 
OTA and provides, in general, a good tradeoff between gain, 
power consumption and speed, but the output swing of this 
architecture is limited.  
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Fig.  5. Telescopic-Cascode Amplifier 
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Fig.  6. Mirrored-Cascode Amplifier. 

 

The mirrored cascode amplifier (MCA), shown in Fig.  
6. improves gain and the output swing of the amplifier is 
also improved when compared to the telescopic approach. 
The major drawback of this topology, when compared to the 
Telescopic-Cascode amplifier is the power consumption 
which is higher. 

The Folded-Cascode ,Fig.  7., can provide greater OS 
than the Telescopic-Cascode and increases the common-
node input range. However, GBW can be lower. 
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Fig.  7. Folded-Cascode Amplifier 

  



D. Library Implementation 

The execution of AIDA-C outputs an XML file, 
containing a pareto of circuit solutions. Each solution is 
made-up by the objective metrics’ simulation values and the 
dimensions of transistors the simulation based itself to 
obtain them. These dimensions are named in this file 
according to the netlist of the optimized circuit, thus 
requiring it for re-creating a fully sized version of the circuit. 
Furthermore, the netlist of the setup for electrical testing 
(test bench), must also be provided, so that it is possible to 
know how the performance metrics were measured. All 
netlists were created to be used with the Eldo® simulator 
employed within the AIDA-C program, to assess circuit 
performance. There are also library technology files, which 
hold the transistors’ mathematical model for accurate 
transistor behavior simulation. The AIDA-C XML files, 
Eldo® compatible circuit and test bench netlists, and 
technology files make-up each library item. 

E. Optimizations 

1) Search Space and Constraints 
The search space, since AIDA-C is a sizing tool, has as 

variables the measurements of the transistors that integrate 
a circuit 

When it comes to constraints there were also set 
minimum values for important specifications to which these 
circuits generally must assure: (1) Power Consumption, (2) 
VOS, (3) Gain, (4) GBW, (5) Phase Margin, (6) FOM. 
These constraints were set to the same value in all design 
files, varying only which of them were defined as 
objectives. 

Finally, there are two biasing voltages that each 
transistor must comply with: delta voltages and overdrive 
voltages, to maintain the transistors in the desired operating 
region (saturation). 

2) Library Paretos 
Within AIDA-C program the objectives to optimize 

were set to cover all the metric options presented. selecting 
the population size (128 individuals) and performing four 
1000 generation iterations making for a total of 4 thousand 
generations per circuit. The constraints and genetic 
algorithm configurations conform to those in state-of-the-
art optimizations for the same technology and topologies. 
The option to arrest optimization at 4000 generation was 
based on three factors: (1) design experience, (2) by visually 
observing the progression of an AIDA-C plot indicating the 
algorithm’s progress, (3) the stability of the paretos also 
plotted in AIDA-C optimizations. [19][20][21] 

V. TESTS AND RESULTS 

The modules, their sequence for the topology selection 
and for testing were programed into MATLAB®.  

 

Fig.  8. Two objective optimization for Gain and FOM side-by-side with 

view of four objective pareto reformed into the same two objectives. The 
thicker dotted lines are plots of the four objective paretos, while the full 

lines are the two objective results. 

 

A. Test Set 

The test set had a similar setup as the library set. It was 
equal regarding circuits, metrics, netlists, input files, and 
GA parameters used. The optimizations were, performed for 
only two objectives at a time (1) Gain and FOM, (2) OS and 
VOS. These pairs were nominated due to the trade-off 
characteristic between them, competing with each other. 
They were arrested when there was convergence or when 
the population reached 6000 generations. These 
optimizations were performed 5 times for each objective 
pair, guaranteeing a greater level of statistical confidence.  

In Fig.  8. and Fig.  9. the test set is represented side by 
side with their library equivalents. From these plots it is 
possible to see the curve similarities for each pair of 
objectives in the test set (the full lines), to the library 
optimizations, that were first subject to the Data Filtering 
and Pareto Reformation modules for the same two pairs 
(thicker, dotted lines). In Fig.  8. and Fig.  9. it is visible that 
the Gain and FOM, and OS and VOS results are as expected. 
This points towards the utility of the modules used. 

 

Fig.  9. Two objective optimization for OS and VOS side-by-side with view 

of four objective pareto reformed into the same two objectives. The thicker 
dotted lines are plots of the four objective paretos, while the full lines are 

the two objective results. 

 

 

 

 



 

Fig.  10. 4 objective library reforned pareto for OS and VOS objectives. 

 
Due to some data overlapping in Fig.  9. Two objective 

optimization for OS and VOS side-by-side with view of four 
objective pareto reformed into the same two objectives. The 
thicker dotted lines are plots of the four objective paretos, 
while the full lines are the two objective results. another plot 
is given with Fig.  10 that shows the library reformed pareto 
for the OS and VOS pair. 

B. Model validation 

To prove the idea of relationship between optimizations 
referred in the throughout this work, a quantitative analysis 
was performed. Essentially this program sums up the library 
to paretos, adds the line segments’ closest points, and 
computes and sorts the distances. 

A MATLAB® script was developed to iterate over all 
optimizations, and the simulations’ output in them, entering 
them as input to the test program.  

1) Closest topology 
This approach relies exclusively on what was found to 

be the nearest library topology to the test individual by using 
as input (desired specifications), in the test program. If the 
selected topology matches that of the analyzed instance, 
then the similarity is verified. For each topology the success 
is measured through the rate of topology matching. 
Considering all the points the overall rate was: 

𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑡𝑐ℎ 𝑟𝑎𝑡𝑒 = 76.46 % 

The rate by objective pairs is displayed on Fig.  11. 

 

 

Fig.  11. Rate on the two objective pairs available (1) Gain/Fom and, (2) 

OS, VOS. 
 

Portraying the significant difference in between the 
Gain/FOM and OS/VOS objective, with much higher 
proportion of test points that are closer to the same topology 
in the library. In Fig.  12. it is further detailed by topology 
per pair of objectives. 

The low percentage values in the OS/VOS pair is a 
reflection of the similar performance of the Symmetric, 
Mirrored and Folded topologies, different from the 
Telescopic. 

This was an indication that solely giving the closest 
topology was insufficient. Therefore, the average 
normalized distance to all library paretos was calculated. 

 

Fig.  12. Matching percentage in both objective pairs, per topology. 

 

2) Average distance 
The analysis  of the average distance for VOS/OS 

provides valuable information, seen on Fig.  13., where it is 
made evident the similarities and differences just 
mentioned. This led to the inclusion of the normalized 
distances in the output of the program. In the case of the 
Folded, Mirrored and Symmetric topologies, if further 
optimizing the first ranked topology is not sufficient, 
attempting the other two is much more likely to result in a 
wanted outcome than trying the Telescopic-Cascode circuit. 

Fig.  13. Average distance grouped by topology of test points to library 

topologies for VOS/OS objective pair. 
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VI. CONCLUSIONS 

A methodology for selection of best topologies for input 
goals, in both the cases of having and lacking feasible 
solutions was developed and implemented in a tool, as well 
as a library to integrate it. A test set to investigate the tool’s 
efficacy was created and applied to it, analyzing the results. 

It is possible to declare that the work was successful, 
delivering results that allow moderate optimism in 
considering the possibility of using the methods described 
as an electronic circuit assistant. This initial investigation 
into such tool requires further testing and adaptations to its 
in-market use.  
A. Future work 

This work introduces a method for topology selection 
that departs significantly from previous ones, and the tests 
that were done to it are also the initial trials into its accuracy. 
Thus, it would be beneficial to further introduce topologies 
and performance metrics that could further assess the 
capabilities and pitfalls of the tool’s current form. When it 
comes to the measurements, commonly used and important 
ones like Area and Noise would be important to test for. As 
for the circuits, to widen the library to consider families of 
circuits such as, OpAmps, low-noise amplifiers and 
comparators could help confirm the tool’s capacity to 
incorporate a wide variety of topologies.  

This tool could also be added to the existing family of 
AIDA software, placing it as an optional feature before 
proceeding into sizing circuits. Furthermore, this tool could 
be integrated in a way that would take advantage of all the 
optimizations for which AIDA is used for, automatically 
storing everything required into the library. This could 
facilitate the acquisition of great amounts of information to 
not only create a complete library, but to also use this 
information to improve the selection tool. To prevent the 
tool from storing redundant circuits, an isomorphism 
algorithm could be added, such as the one seen in FEATS 
[22], which as the name indicates detects equal circuits or 
equivalent circuits. 

Given that the pareto reformation module always stores 
the same information whenever a topology is deemed as 
non-feasible, which is represented by the index of the 
corresponding non-dominated solutions, then saving this 
information could save on the tool’s computation time for a 
lot of cases, while occupying a small amount of memory. 
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