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Multiple basis choices can be made when writing the Lagrangian for a multi-Higgs extension of
the Standard Model, each obtained by unitary transformations among scalar fields with the same
quantum numbers. However, the number of physical parameters of the theory cannot depend on
this arbitrary choice. To classify the possible discrete or continuous symmetries that one can impose
on the fields, it is necessary to take into account all possible basis changes. By taking this approach,
we obtain basis-independent constraints on the parameters of the potential that signify the presence
of an unbroken or softly-broken Z2 symmetry, for the Two Higgs Doublet Model (2HDM). We also
arrive at the constraints that identify spontaneous CP-violation. We then consider the alternative
method of starting with a complete set of independent basis invariants. The necessary and sufficient
conditions for all possible unbroken symmetries in the 2HDM are then obtained as simple relations
between invariants. In doing so, we identify two algebraically distinct ways of how symmetries
manifest themselves: either, basis invariant objects can be non-trivially related, or, basis covariant
objects can vanish. This analysis represents a systematic method of analyzing symmetries in other
models that have unphysical freedom of reparametrization; most of which impossible with current
techniques. The remainder of this thesis pioneers a study of the implications of Higgs data on a
Three Higgs Doublet Model (3HDM) that respects a Z3 symmetry. The work produced for this
thesis resulted in the papers [1, 2], with a third in preparation [3].

I. INTRODUCTION

There are some phenomena that cannot be explained
within the framework of the SM alone. Possible ex-
planations are obtained when considering N Higgs dou-
blet models [4–7]. However, the most general scalar po-
tentials and Higgs-fermion Yukawa couplings generically
yield flavor-changing neutral currents (FCNCs) at tree
level in conflict with experimental observations. A com-
mon method to have FCNCs sufficiently suppressed is to
impose symmetries on the Lagrangian.

When writing the Lagrangian for such models, the ba-
sis of Higgs fields is entirely arbitrary. Thus, it is neces-
sary to consider the unitary transformations that relate
the possible choices, in order to determine the number
of independent parameters. The symmetries can also be
written in different bases, further concealing the phys-
ical consequences of a model. A convenient solution is
the use of a basis-independent formalism in which the
relevant parameters are basis invariant quantities.

The first approach to basis-independent methods con-
sidered was developed in Refs. [8] and [9]. In the U(2)-
covariant formulation of the 2HDM scalar potential [10],
the tensors introduced exhibit clear transformation prop-
erties with respect to the global transformations in the
Higgs flavor space. Those can then be used to rewrite
the scalar potential in terms of a set of manifestly basis-
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invariant fields. However, the amount of independent
invariants to look for is an issue that is only addressed in
a model-by-model basis.

This particular issue is resolved when considering ba-
sis invariants as part of a ring, in the algebraic sense,
and employing related techniques involving the Hilbert-
Poincaré series (HS) and the Plethystic logarithm (PL).
These techniques developed by Hanany and collaborators
[11, 12] were used recently [13] in order to determine the
number of independent basis invariants, a generating set
of basis invariants, and the structure of relations between
basis invariants (the so-called syzygies) in the general
2HDM. We will use the basis invariants found in order to
obtain the relations in the general theory that define each
of the physically distinct symmetry-constrained models.
These are commonly denoted [14] as Z2, U(1), and SU(2)
(HF symmetries) as well as CP1, CP2, CP3 (GCP sym-
metries), and they are schematically related [15, 16]

CP1 ⊂ Z2 ⊂
{

U(1)
CP2

}
⊂ CP3 ⊂ SU(2) . (1)

In Section II, we introduce the 2HDM tensor notation.
The analysis begins in Section III with obtaining expres-
sions for the charged and neutral Higgs mass-eigenstate
fields in terms of invariant fields. The possible types of
Higgs-fermion interactions are discussed in Section IV.

In Section V, a basis-independent treatment of the
(softly broken) Z2 symmetry is presented. Formal basis-
independent expressions were originally given in Ref. [8],
and explicit results in the case of the CP-conserving
2HDM in Ref. [17]. We provide the corresponding re-
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sults that are applicable if CP violation is present in the
2HDM, with an analysis of all possible special cases.

In Section VII, we switch gears and move to describing
all symmetry-constrained 2HDM models using the ring
of basis invariants of [13]. We construct the ”Symmetry
Map” for the 2HDM, shown in Figure 1, pointing out
there are two algebraically different ways to move along
this map and the connection with the existence of sub-
rings of invariants.

In Section VIII, we study the impact of Higgs data on
a Three Higgs Doublet Model (3HDM) that respects a
Z3 symmetry and presents Type-Z Yukawa couplings.

We briefly summarize our conclusions in Section IX.

II. THE SCALAR POTENTIAL

The fields of the two-Higgs-doublet model (2HDM)
consist of two SU(2)L doublet scalar fields Φa(x) ≡
(Φ+

a (x) , Φ0
a(x)), where the “Higgs flavor” index a = 1, 2

labels the two Higgs doublet fields. The most gen-
eral potential obeying the requirements of hermiticity,
SU(2)L×U(1)Y gauge symmetry and renormalizability
can be written as,

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − [m2
12Φ†1Φ2 + h.c.]

+ 1
2λ1(Φ†1Φ1)2 + 1

2λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2)

+λ4(Φ†1Φ2)(Φ†2Φ1) +
{

1
2λ5(Φ†1Φ2)2 +

[
λ6(Φ†1Φ1)

+λ7(Φ†2Φ2)
]
Φ†1Φ2 + h.c.

}
, (2)

where m2
11, m2

22, and λ1→4 are real parameters and m2
12,

λ5→7 are potentially complex parameters. An alternative
notation, in [10], is,

V = Φ†aY
a
b Φb + Φ†aΦ†bZ

ab
cdΦcΦd, Zabcd = Zbadc , (3)

where a, b, c, d = 1, 2 are indices in the SU(2) space of
Higgs-flavor. Upper and lower indices are used to distin-
guish fields transforming as 222 and 222 under basis changes

Φa → UabΦb, U =

(
cosβ e−iξ sinβ

−ei(ξ+η) sinβ eiη cosβ

)
, (4)

where a, b = 1, 2 enumerate the doublets. The parame-
ters appearing in (2) depend on a particular basis choice
of the two scalar fields. In an arbitrary scalar basis, a Φ
basis, the vacuum expectations values (vev) of the dou-
blets, Φ1 and Φ2, can be written as

〈Φa〉 =
v√
2

 0

v̂a

 , v̂ = (v̂1, v̂2) ; (5)

Once the scalar potential minimum is determined, by
eq. (5), one can define the Higgs basis,

H1 ≡ v̂∗aΦa , H2 ≡ ŵaΦa , (6)

where the unit vector ŵ is introduced as ŵb = v̂∗aε
ab. H1

and H2 are defined such that

〈H0
1 〉 =

v√
2
, 〈H0

2 〉 = 0 ; (7)

Using eq. (5) we have that the field H1 is basis-
independent, whereas H2 has the transformation prop-
erty H2 → (detU)H2. We have a class of Higgs bases
due to the freedom in rephasing H2. One can introduce
invariant Higgs basis fields [1] by re-defining

H1 ≡ H1 , H2 ≡ e iηH2 , (8)

where e iη is also a pseudo-invariant quantity, transform-
ing as e iη → (det U)−1e iη . In terms of invariant fields
the scalar potential can be written in the form

V = Y1H†1H1 + Y2H†2H2 + [Y3e
−iηH†1H2 + h.c.]

+ 1
2Z1(H†1H1)2 + 1

2Z2(H†2H2)2 + Z3(H†1H1)(H†2H2)

+Z4(H†1H2)(H†2H1) +
{

1
2Z5e

−2iη(H†1H2)2+[
Z6e

−iη(H†1H1) + Z7e
−iη(H†2H2)

]
H†1H2 + h.c.

}
(9)

In this Higgs basis the vacuum imposes

Y1 = −Z1v
2/2 and Y3 = −Z6v

2/2 ; (10)

III. MASS EIGENSTATES

The fundamental particles that we observe in nature
have a well-defined mass value. Therefore, the physi-
cal observables that come out of any model should be
computed for the mass matrix eigenstates. We start by
parameterizing H1 and H2 as,

H1 =

(
G+

1√
2

(
v + ϕ0

1 + iG0
) ) , H2 =

(
H+

1√
2

(
ϕ0

2 + ia0
) ) ,

(11)
where G+, G− are the charged Goldstone bosons and G0

is the neutral Goldstone boson. The three remaining neu-
tral fields mix, and the resulting neutral Higgs squared-
mass matrix in the ϕ0

1–ϕ0
2–a0 basis is real symmetric;

hence it can be diagonalized by a special real orthogonal
transformation

RM2RT =M2
D ≡ diag (m2

1 , m
2
2 , m

2
3) , (12)

where R is a real matrix such that RRT = I, detR = 1
and the m2

i are the eigenvalues of M2. A convenient
form for R is:
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R = R12R13R23 =

 c12 −s12 0
s12 c12 0
0 0 1

 c13 0 −s13

0 1 0
s13 0 c13

 1 0 0
0 c23 −s23

0 s23 c23

 (13)

where cij ≡ cos θij and sij ≡ sin θij . The angles θ12, θ13

and θ̄23 defined above are all invariant quantities since
they are obtained by diagonalizingM2 whose matrix el-
ements are manifestly basis invariant.

The neutral physical Higgs mass eigenstates are de-
noted by h1, h2 and h3, h1

h2

h3

 = R

 ϕ0
1

ϕ0
2

a0

 = RW

 √2 Re H0
1 − v

H0
2

H0 †
2

 , (14)

which defines the unitary matrix W . A straightforward
calculation yields [18]

RW =


q11

1√
2
q∗12 e

iθ̄23 1√
2
q12 e

−iθ̄23

q21
1√
2
q∗22 e

iθ̄23 1√
2
q22 e

−iθ̄23

q31
1√
2
q∗32 e

iθ̄23 1√
2
q32 e

−iθ̄23

 ,

(15)
where the qk` are listed in Table I.

k qk1 qk2
0 i 0
1 c12c13 −s12 − ic12s13
2 s12c13 c12 − is12s13
3 s13 ic13

TABLE I: The U(2)-invariant quantities qk` are functions
of the neutral Higgs mixing angles θ12 and θ13, where
cij ≡ cos θij and sij ≡ sin θij . The neutral Goldstone
boson corresponds to k = 0.

Employing eqs. (6), (8) and (14), it follows that

hk =
1√
2

[
Φ0 †
ā (qk1v̂a + qk2ŵae

−iθ23)+

(q∗k1v̂
∗
ā + q∗k2ŵ

∗
āe
iθ23)Φ0

a

]
, (16)

for k = 1, 2, 3, where the shifted neutral fields are de-
fined by Φ0

a ≡ Φ0
a − vv̂a/

√
2. We have introduced the

pseudoinvariant quantity,

θ23 ≡ θ̄23 + η ; (17)

that transforms as

e−iθ23 → (det U)e−iθ23 , (18)

under a U(2) basis transformation, Φa → Uab̄Φb.

Finally, one can invert eq. (16) and include the charged
scalars to obtain,

Φa =


G+v̂a +H+e−iθ23ŵa

v√
2
v̂a +

1√
2

3∑
k=0

(
qk1v̂a + qk2e

−iθ23ŵa
)
hk

 (19)

Although θ̄23 is an invariant parameter, it has no phys-
ical significance, since it only appears in eq. (19) in
the combination defined in eq. (17). Indeed, inserting
eq. (19) into the scalar potential given in eq. (2) to de-
rive the bosonic couplings of the 2HDM, one sees that
θ̄23 never appears explicitly in any observable. Conse-
quently, one can simply set θ̄23 = 0 without loss of gener-
ality, which would identify η = θ23 as the pseudoinvariant
phase angle that specifies the choice of Higgs basis.

IV. HIGGS-FERMION YUKAWA
INTERACTIONS

The Higgs boson couplings to the fermions arise from
the Yukawa Lagrangian. We slightly tweak the results
that were initially presented in Ref. [18]. In terms of the
quark mass-eigenstate fields, the Yukawa Lagrangian in
the Φ basis is given by

−LY = ULΦ0 ∗
ā hUa UR −DLK

†Φ−ā h
U
a UR +

ULKΦ+
a h

D †
ā DR +DLΦ0

ah
D †
ā DR + h.c. , (20)

where QR,L ≡ PR,LQ, with the projectors defined as
PR,L ≡ 1

2 (1± γ5) [for Q = U,D], K is the CKM mixing

matrix, and the hU,D are 3× 3 general complex Yukawa
coupling matrices. We can construct invariant matrix
Yukawa couplings κQ and ρQ by defining,

κQ ≡ v̂∗āhQa , ρQ ≡ eiθ23ŵ∗āhQa . (21)

Inverting these equations and inserting into eq. (20), it
can be seen that κU and κD are proportional to the di-
agonal quark mass matrices MU and MD, respectively,

MU =
v√
2
κU = diag(mu , mc , mt) ,

MD =
v√
2
κD † = diag(md , ms , mb) . (22)

FCNCs are present at tree level in cases where the ρQ

are not flavor diagonal. The simplest way to avoid them
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is to require a Yukawa Lagrangian where fermions of a
given electric charge couple to only one Higgs doublet.

The four (five) types of Yukawa couplings in models
with two (more than two) doublets that fit this require-
ment are introduced in [19] and given a notation in [20].

We now start with the most common method of impos-
ing a Z2 symmetry on the 2HDM Lagrangian specified
by eqs. (3) and (20). Using eqs. (21) and (22), the basis-
independent conditions in ref. [18] can be written as

Type Ia: ρU =
ei(ξ+θ23)

√
2MU cotβ

v
, ρD =

ei(ξ+θ23)
√

2MD cotβ

v
, (23)

Type Ib: ρU = −e
i(ξ+θ23)

√
2MU tanβ

v
, ρD = −e

i(ξ+θ23)
√

2MD tanβ

v
, (24)

Type IIa: ρU =
ei(ξ+θ23)

√
2MU cotβ

v
, ρD = −e

i(ξ+θ23)
√

2MD tanβ

v
, (25)

Type IIb: ρU = −e
i(ξ+θ23)

√
2MU tanβ

v
, ρD =

ei(ξ+θ23)
√

2MD cotβ

v
, (26)

Indeed ρU and ρD are proportional to the diagonal
quark matrices MU and MD, respectively, indicating
that the tree-level Higgs-quark couplings are flavor di-
agonal. Since the ρQ are basis invariants, the quantity,
ei(ξ+θ23) tanβ, is a physical parameter in the 2HDM with
Type-I or Type-II Yukawa couplings. Once a specific dis-
crete symmetry is chosen, tanβ is promoted to a physical
parameter of the model. It then follows that ei(ξ+θ23) is
also physical. However, the parameters ξ and θ23 sepa-
rately retain their basis-dependent nature.

In Section VIII, we impose the Type-Z through a Z3

symmetry on the Yukawa Lagrangian. There are multi-
ple assignments that differ on which of the scalars gives
mass to each type of fermion. We follow the choice made
in [21]. The scalar doublets φ1 and φ2 transform non-
trivially as:

φ1 → ωφ1 , φ2 → ω2φ2, (27)

where ω = e2π i/3. For the fermionic fields,

dR → ωdR , lR → ω2 lR, (28)

while the rest of the fields remain unaffected. It follows
that the Yukawa coupling matrices are now restricted.
Consequently, φ1 only has interaction terms with the
charged leptons, giving them mass. In addition, φ3 and
φ2 are responsible for masses of the up and down type
quarks respectively.

V. BASIS-INDEPENDENT TREATMENT OF
THE Z2 SYMMETRY

The Z2 symmetry of the 2HDM is manifestly realized
in a scalar field basis where m2

12 = λ6 = λ7 = 0, and is
softly broken if m2

12 6= 0 in a basis where λ6 = λ7 = 0.
The quadratic term that softly breaks the symmetry does
not yield interactions, consequently, it does not lead to
FCNC. In this section, a basis-independent description

of the Z2 symmetry is explored, where the symmetry is
either exact or softly broken. Our analysis generalizes
results previously obtained in Refs. [17, 22, 23].

A. A softly broken Z2 symmetry

It is assumed that the Z2 symmetry of the dimension-
four terms of the scalar potential is realized in a basis
that is not the Higgs basis. In this basis, denoted as the
Z2 basis, the conditions λ6 = λ7 = 0 must occur.

Taking into account how a generic U(2) transforma-
tion, eq. (4), affects the coefficients of the potential, it is
possible to express the m2

ij and λi in terms of the Yi and
Zi. It follows that the Z2 basis exists if and only if,

1
2s2β (Z1 − Z2) + c2βRe

(
Z67e

iξ
)

+ iIm
(
Z67e

iξ
)

= 0, (29)

1
2s2βc2β

[
Z1 + Z2 − 2Z34 − 2Re(Z5e

2iξ)
]
− is2βIm(Z5e

2iξ)

+c4βRe
[
(Z6 − Z7)eiξ

]
+ ic2βIm

[
(Z6 − Z7)eiξ

]
= 0 , (30)

where Z34 ≡ Z3 + Z4 and Z67 ≡ Z6 + Z7.
The Z2 basis is not unique. Starting from a Φ basis

in which λ6 = λ7 = 0 is verified, it is still possible to
transform to a new Φ′ basis while maintaining the Z2

condition. The relation found between the 2 basis is of
the form Φ′a = Uab̄Φb, where

U =

(
0 e−iξ

eiζ 0

)
. (31)

Taking the imaginary part of eq. (29),

Im(Z67e
iξ) = 0 . (32)

Assuming that Z67 6= 0, we shall denote,

Z67 = |Z67|eiθ67 . (33)

Then, eq. (32) implies that

eiξ = ±e−iθ67 . (34)
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The two possible sign choices correspond to the Φ and
Φ′ basis choices. Assuming Z1 6= Z2, eq. (29) yields,

ei(ξ+θ23) = ± |Z67|
Z67e−iθ23

=

(
Z2 − Z1

2Z67e−iθ23

)
s2β

c2β
. (35)

We can also arrive at a single complex equation,

(Z1 − Z2)
[
Z34Z

∗
67 − Z1Z

∗
7 − Z2Z

∗
6 + Z∗5Z67

]
−

2Z∗67

(
|Z6|2 − |Z7|2

)
= 0 . (36)

We then analyze the other cases and conclude that
eq. (36) is a necessary condition for the presence of a
softly broken Z2 symmetry. It is also a sufficient condi-
tion in all cases with one exception. Namely, if Z1 = Z2,
Z5 6= 0 and Z67 6= 0, then the additional constraint of
Im(Z∗5Z

2
67) = 0 must be added.

B. Softly broken Z2 symmetry and spontaneously
broken CP symmetry

We now suppose that a Z2 basis exists in which λ6 =
λ7 = 0. If in addition,

Im
(
λ∗5[m2

12]2
)

= 0 , (37)

then one can rephase one of the scalar fields such that
m2

12 and λ5 are simultaneously real. In this case, the
scalar potential is explicitly CP invariant. In addition, if
there is an unremovable complex phase in the vevs,

Im(v∗1v2) = 1
2v

2s2β sin ξ 6= 0 , (38)

then the CP symmetry is spontaneously broken.
Starting from expressions that give m2

12 and λ5 in
terms of the Yi and Zi, eq. (37) can be written, for the
case of Z1 6= Z2 and Z67 6= 0, in the form,

Im
(
λ∗5[m2

12]2
)

=
∓v4f3F

16f2
1 (Z1 − Z2)

√
(Z2 − Z1)2 + 4f1

, (39)

where the function F is given by,1

F = f2
1

[
16(Z1 − Z2)

(
Y2

v2

)2

+ 16 [f2 + (Z1 − Z2)Z34](
Y2

v2

)
+ 4f2(Z1 + Z2)− (Z2

1 − Z2
2 )(Z1 + Z2 − 4Z34)

]
−(f2

2 + 4f2
3 )(Z1 − Z2)3 − 2f1f2(Z1 − Z2)2(Z1 + Z2

−2Z34) + 4f1(f2
2 − 4f2

3 )(Z1 − Z2) . (40)

1 An expression for F was first derived in Ref. [22], although his
eq. (22) contains a misprint in which the factor of f2 in the
coefficient of (Z1−Z2)2(Z1+Z2−2Z34) in eq. (40) was dropped.

f1 ≡ |Z67|2 , f2 ≡ |Z7|2 − |Z6|2 , f3 ≡ Im(Z6Z
∗
7 ) . (41)

The condition Im
(
λ∗5[m2

12]2
)

= 0 in eq. (37) can be sat-
isfied for: f3 = 0 and/or F = 0. If f3 = 0, then it
follows that all the coefficients of the scalar potential in
the Higgs basis and the corresponding vevs are real. The
case of f3 6= 0 and F = 0 is a basis-independent signal of
spontaneous CP violation.

The analysis is completed in the thesis, by addressing
the special cases in which either Z1 = Z2 and/or Z67 = 0.
Different conditions are obtained starting from eq. (37).

C. Imposing the convention of non-negative real
vevs in the Z2 basis

In some applications, it is convenient to adopt a con-
vention in which ξ = 0 in the basis where λ6 = λ7 = 0.

Consider the case of Z67 6= 0. By virtue of eq. (29),
it follows that the pseudoinvariant quantity Z67 is real.
This condition fixes the Higgs basis up to a twofold ambi-
guity that depends on the sign of Z67, due to the freedom
to change from the Φ basis to the Φ′ basis. Likewise,
the pseudoinvariant quantity eiθ23 is determined up to a
twofold ambiguity, as its sign can be flipped by trans-
forming from the Φ basis to the Φ′ basis.

One can obtain an explicit expression for eiθ23 in terms
of pseudoinvariant quantities by setting ξ = 0 in eq. (35),

eiθ23 =

(
Z2 − Z1

2Z67e−iθ23

)
s2β

c2β
. (42)

Under Φ1 ↔ Φ2, c2β changes sign, and we conclude that
θ23 is determined modulo π. The other cases and more
practical expressions are obtained in the thesis. The con-
clusion is that in a convention in which ξ = 0, once a spe-
cific Z2 discrete symmetry is chosen, both tanβ and θ23

are promoted to physical parameters of the model. This
was understood for the first time in our paper [1], and
it explains the seemingly different number of degrees of
freedom appearing when different authors parameterize
the mixing matrix R appearing in eq. (12).

D. An exact Z2 symmetry

If the Z2 basis also satisfies m2
12 = 0, then the scalar

potential possesses an exact Z2 symmetry. In this case,
since m2

12 = λ6 = λ7 = 0, the only potentially complex
scalar potential parameter is λ5, whose phase can be re-
moved by an appropriate rephasing of the Higgs fields.
It follows that both the scalar potential and vacuum are
CP conserving. For the case of Z1 6= Z2 and Z67 6= 0,
the condition m2

12 = 0 can be written as

(Y2 − Y1)Z67 − Y3(Z2 − Z1) = 0 . (43)

By considering the other cases, we conclude that
eqs. (36) and (43) are necessary conditions for the pres-
ence of an exact Z2 symmetry. These are also sufficient
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conditions in all cases with two exceptions. If Z1 = Z2,
Z67 6= 0 and Z5 6= 0, then eq. (36) must be supplemented
with the additional constraint of Im(Z∗5Z

2
67) = 0 . In

addition, if Z1 = Z2, Z67 = 0, Y1 6= Y2 and Z6 6= 0, then
eq. (43) must be supplemented by

(Y1 − Y2)

[
|Z6|2

(
Z34 +

2Y2

v2

)
+ Z∗5Z

2
6

]
+ 2|Z6|4v2 = 0 .

(44)

VI. BASIS INVARIANTS AND “DEGENERATE
REGIONS” OF PARAMETER SPACE

The systematic construction of a complete set of basis
invariants can be done with the method in [13].

First, one finds linear combinations of the entries of
the tensors Y and Z which transform in irreducible rep-
resentations of the SU(2) group of basis changes in Higgs
flavour space. These form the three building blocks used
to construct non-linear higher-order basis invariants,

Y3 ≡ Y, Z3 ≡ T, and Z5 ≡ Q . (45)

These transform in the triplet (Y3 and Z3) and quintu-
plet (Z5) representation under SU(2) basis changes. For
general explicit expressions for these we refer to Ref. [13,
Eqs. (3.25),(B.2)]. We follow [13] and denote invariants
by

Ia,b,c for inv. with powers Z⊗a5 ⊗ Y ⊗b3 ⊗ Z⊗c3 (46)

of the building blocks. A possible choice for a set of
algebraically independent invariants is

I2,0,0 , I0,2,0, I0,0,2, I0,1,1, I3,0,0,

I1,2,0 , I1,0,2, and I2,1,1 . (47)

Beyond this chosen set of algebraically independent in-
variants, there is the set of eleven additional invariants
that cannot be written as a polynomial of other,

I1,1,1, I2,2,0, I2,0,2, J1,2,1, J1,1,2, J2,2,1, J2,1,2,

J3,3,0, J3,0,3, J3,2,1, and J3,1,2 . (48)

The structure of the 2HDM ring is only described by
eqs. (47) and (48) if indeed all of the non-trivial build-
ing blocks, Q, Y, and T are non-vanishing, and covariant
building blocks transforming in the same irreducible rep-
resentation (here Y and T) are not aligned. If any of
the building blocks vanishes, or if identically transform-
ing covariants Y and T are aligned, then the ring changes
its structure and, in principle, a different (smaller) ring
should be discussed. In a fully basis invariant language,
these regions in parameter space are given by

(I) Q = 0 , (II) Y = 0 , (III) T = 0 , (IV) (YT)
2

= Y2T2 .
(49)

We find that there are, in general, two different ways how
to move in the “space” of potential symmetries:

1. One can impose relations amongst certain (pri-
mary) basis invariants, or

2. One can impose the vanishing of certain building
blocks of basis invariants.

While the first possibility operates within a given ring
and leaves the ring “intact”, the second possibility “col-
lapses” the ring to a (potentially much) smaller ring, and
the discussion of further symmetries then must be based
on this smaller ring. We illustrate these possibilities in
the form of a “symmetry map” of the 2HDM in Figure 1.

VII. THE SIX CLASSES OF SYMMETRIES IN
A BASIS INVARIANT FORMALISM

A. U(2) Higgs flavor symmetry

The potential is automatically invariant under the
overall U(1) factor in U(2) ∼= SU(2) × U(1). Requir-
ing that the potential is invariant under a SU(2) trans-
formation implies that all components of the non-trivial
building blocks Y3, Z3 and Z5 are vanishing. The set of
algebraically independent invariants is then reduced to
only the three singlets.

B. CP3 and CP2 symmetry

The necessary and sufficient conditions for the symme-
tries are the vanishing of all non-trivial basis invariants
besides I2,0,0 and I3,0,0. We find that the only difference
between CP2 and CP3 is the (non-)fulfillment of,

I2
3,0,0 =

(
1
3 I2,0,0

)3
. (50)

C. CP1 symmetry

The necessary and sufficient conditions for CP conser-
vation consist of the vanishing of the four invariants

J1,2,1 = J1,1,2 = 0 , J3,3,0 = J3,0,3 = 0 . (51)

A direct translation between this set of invariants and
the ones from [24] has been shown in [13]. Using relations
between these dependent invariants, we are able to also
state necessary and sufficient conditions for CP1 solely
in terms of CP-even invariants

As the number of independent parameters in the CP1
case is reduced only by two, one may wonder why the nec-
essary and sufficient conditions for CP1 consists of four
instead of two relations. This has been shown previously
as arising from the fact that there can be “special” or
“degenerate” regions of parameter space where some of
the invariants in (51) vanish by themselves even though
CP is not conserved. These special regions of parame-
ter space correspond to specific reductions in the size of
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no symmetry
(52)

(54)
//

Q=0

%%

CP1
Y 2, T 2, Y T ,

Q2, QY T , Q2Y T

(59)&(60)

(58)/(57)
//

Y = T = 0

##

Q=0 & (59)

''
Z2

Y 2, T 2,

Q2, Q2Y T

(61)

(62)
//

Y = T = 0

��

U(1)
Y 2, T 2,

Q2

Y = T = 0

��

Q=Y=T=0

��

no symmetry Y = T = 0 // CP2
Q2, Q3 (50) //

Q = 0

""

CP3
Q2

Q = 0

��

no symmetry
Y=T=Q=0 // SU(2)

FIG. 1: The “Symmetry Map” of the parameter space of the 2HDM. We list the classes of symmetries together
with our choice of primary invariants corresponding to the number of independent parameters and the respective

steps for symmetry enhancements. We do not include the three trivial singlet invariants shown in [13]. The equation
numbers above horizontal arrows refer to sufficient relations between invariants for the non-degenerate case, while

equation numbers below the arrows refer to sufficient relations for the degenerate cases (II), (III) and (IV).

the full ring of 2HDM basis invariants. If the ring that
actually needs to be discussed is known with certainty,
then we find that the number of required relations is al-
ways in a one-to-one correspondence with the number
of eliminated parameters. On the other hand, if one is
not strictly sure about which ring one is in, more general
conditions, such as (51), have to be stated.

The degenerate region (I) is trivial, in the sense that
no CP violation can take place whatsoever (all CP1 in-
variants are built with Q).

1. Necessary and sufficient conditions for CP1 with no
degeneracies

Only if there are no parameter degeneracies, i.e. if none
of the relations in eq. (49) is realized, then the full 2HDM
ring has to be discussed. In this case, requiring CP1
reduces the number of independent parameters by two,
from nine to eleven. The two necessary and sufficient
conditions for CP1 are

J1,2,1 = 0 = J1,1,2 . (52)

2. Necessary and sufficient conditions for CP1 if
Y = 0 or T = 0 or Y2T2 = (YT)2

Once condition (II), or (III), or (IV) is imposed, the
number of independent parameters in the 2HDM ring re-

duces from eleven to eight, or eight, or nine, respectively,
without enhancing the symmetry.

In general, one can show that the YT-alignment con-
dition implies

I2
0,1,1 = I0,2,0 I0,0,2 =⇒ J1,2,1 = 0 = J1,1,2 . (53)

Hence, we find that in regions (II)-(IV) the condition (52)
is automatically fulfilled.

For regions (II) and (III) where either Y = 0 or T =
0, clearly, all invariants containing them vanish. Hence,
the sole necessary and sufficient condition for CP1 is the
vanishing of the respective “opposite” CP-odd invariant:

(II) :J3,0,3 = 0, or (III) :J3,3,0 = 0 . (54)

This is one necessary and sufficient condition for CP1
each, corresponding to the reduction of one parameter
(from eight to seven).

For region (IV), by contrast, one can use the align-
ment condition together with many syzygies to show the
relation

J 2
3,3,0 I3

0,0,2 = J 2
3,0,3 I3

0,2,0 . (55)

This relation is non-trivial only in region (IV) and not for
(II) or (III). Without loss of generality one can, hence,
pick one of them to vanish as necessary and sufficient
condition for CP1. Imposing this condition reduces the
parameter by one from nine to eight.
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D. Z2 symmetry, and ascending from CP1 to Z2

Starting from CP1, a set of necessary and sufficient
conditions to obtain Z2 symmetry without any further
assumptions, is given by

I2
0,1,1 = I0,2,0 I0,0,2 , (56)

3 I2
1,2,0 = 2 I2,0,0 I2

0,2,0 − I2,2,0 I0,2,0 , (57)

3 I2
1,0,2 = 2 I2,0,0 I2

0,0,2 − I2,0,2 I0,0,2 . (58)

Non-degenerate case.— We find two conditions that
are necessary and sufficient for Z2 on top of CP1:

I2
0,1,1 = I0,2,0 I0,0,2 , (59)

3 I2
1,1,1 = 2 I2,0,0 I2

0,1,1 − I2,1,1 I0,1,1 . (60)

These two conditions are one-to-one with exactly two
eliminated parameters.

Special parameter region (I).— Q = 0 together with
YT-alignment suffices to fulfill the conditions for U(1).
Hence, Z2 is not realizable in this parameter region.

Special parameter regions (II) or (III).— In cases
(II) or (III) of degenerate parameter regions either Y
or T vanishes. The corresponding necessary and suffi-
cient condition for Z2 symmetry (on top of CP1) is equa-
tion (58) or (57), respectively.

1. From Z2 to U(1)

For the non-degenerate case, the necessary and suffi-
cient condition to ascend from Z2 to U(1) are given by

I2,1,1 = − 2 I2,0,0 I0,1,1 . (61)

This can be confirmed by a straightforward algebraic
computation, which shows that (61) together with the Z2

conditions indeed implies all U(1) necessary conditions.
For the Y = 0 or T = 0 degenerate cases the primary

invariants at the level of Z2 are I2,0,0, I0,2,0, and I2,2,0 (or
their respective Y ↔ T conjugated versions). Hence, the
completely analogous necessary and sufficient conditions
to ascend to U(1) from Z2 are, respectively,

I2,0,2 = −2 I2,0,0 I0,0,2 , or I2,2,0 = −2 I2,0,0 I0,2,0 , (62)

E. U(1) symmetry

The complete necessary and sufficient conditions for
U(1) in the non-degenerate case are

I2
3,0,0 =

(
1
3 I2,0,0

)3
, (63)

I2
0,1,1 = I0,2,0 I0,0,2 , (64)

I2,1,1 = − 2 I2,0,0 I0,1,1 , (65)

I2,0,0 I1,1,1 = − 6 I3,0,0 I0,1,1 . (66)

For the degenerate case with Q = 0 already the YT-
alignment condition itself is necessary and sufficient for
U(1). For the degenerate cases with Y = 0 or T = 0 one
needs three conditions, namely (63) together with

I2,2,0 = − 2 I2,0,0 I0,2,0 , (67)

I2,0,0 I1,2,0 = − 6 I3,0,0 I0,2,0 , (68)

or their respective Y ↔ T conjugate versions.

1. From U(1) to CP3: setting I0,0,2 and I0,2,0 to zero

The difference between U(1) and CP3 lays exclusively
in the (non-)vanishing of the triplet building blocks.

VIII. TYPE-Z 3HDM

In this section our goal is to study, in phenomenological
detail, a model that is able to yield a Type-Z Yukawa
coupling. The choice made is a real 3HDM that respects
a Z3 symmetry [25], including softly-breaking terms.

A. Stationary conditions and Mass eigenstates

By taking into account the stationary conditions and
identifying the mass eigenstates for the scalars of the the-
ory, relations with the physical parameters can be found.

The three doublets can be parametrized as:

φi =

(
w†k

(vi + hi + i zi)/
√

2

)
, (i = 1, 2, 3) (69)

The minimization conditions can be obtained and used
to trade m2

11 m
2
22 and m2

33 for the three real vk.
We then define orthogonal matrices which diagonalize

the squared-mass matrices present in the CP-even scalar,
CP-odd scalar and Charged scalar sectors. These are the
transformations that take us to the physical basis, with
states with well-defined mass. We follow the procedure
of Ref. [21] to obtain relations between the set

{v1, v2, v3,mh,mH1 ,mH2 ,mA1,mA2,

mC1,mC2, , α1, α2, α3, γ1, γ2} (70)

and the parameters of the potential with symmetry
breaking. Setting the soft-breaking terms m2

12, m2
13 and

m2
23 to zero, we reproduce the results of Ref. [21].

B. Decays in the 3HDM

For comparison with experiment, we consider, for each
decay needed to run HiggsBounds-5 [26], only the con-
tributions of the lowest order in perturbation theory. We
also want the decays to allow for off-shell bosons [27].
The needed decays that require one-loop calculations are:
hj → γγ, hj → Zγ and hj → gg. The final formulas for
these widths can be adapted from Ref. [28].
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C. Simulation procedure

To explore the model chosen in detail, the process be-
gins with fixing mh = 125 GeV and v = 246 GeV. Ran-
dom points are then generated for the other physical pa-
rameters, in eq. (70), in the ranges:

α1, α2, α3, γ1, γ2 ∈
[
−π

2
,
π

2

]
;

tanβ1, tanβ2 ∈ [0, 10] (71)

mH1 , mH2 ∈ [125, 800] GeV;

mA1 , mA2 mC1 , mC2 ∈ [100, 800] GeV .

The coupling modifiers can then be calculated directly
from the angles generated and constrained to be within
2σ of the most recent ATLAS fit results, [29, Table 10].

We then require that each parameter point satisfies
unitarity [30] and agrees with the STU electroweak pa-
rameters [31, 32]. We also derive and implement sufficient
conditions along the neutral direction that guarantee the
Higgs potential to be bounded from below (BFB). All
relevant couplings and cross sections are then calculated
and given as an input to HiggsBounds-5 [26]. If all the
tests implemented are met, the points are then used to
numerically calculate all the relevant combined produc-
tion and decay channels, pp→ h→ f .

The SM cross section for the gluon fusion process is
calculated using HIGLU [33], and for the other produc-
tion mechanisms we use the results of Ref. [34]. Each
of the 3HDM processes is obtained by rescaling the SM
cross sections by the relevant relative couplings. As for
the decay channels, we calculated the branching rations
for final states f = W W, Z Z, b b, γ γ and τ+τ−.

Finally, we require that the cross section ratios µhif for
each initial × final state combination are consistent with
the best-fit results of the ATLAS experiment [29, Fig. 5].

D. Results

FIG. 2: The points in blue include the addition of the
softly-breaking terms, m2

12, m2
13 and m2

23. Both only
satisfy the requirements of BFB, unitarity and STU.

As shown in Fig. 2, the allowed max values for the
masses of the pseudoscalars increase by adding m2

12, m2
13

and m2
23. This is a reflection of the fact that including

the soft-breaking terms the theory exhibits a decoupling
limit, which is absent when the symmetry is exact [35].

The contribution from the two charged scalars to the
h→ γγ, in Fig. 3, has two interesting regimes. To the left
(right) of the vertical line at coordinate zero, the charged
Higgs conspire to decrease (increase) the branching ratio
into γγ. We have also confirmed the existence of al-
lowed results where the destructive interference between
the two charged Higgs leads to a null XH , occurring when
λhjC1C1

and λhjC2C2
have opposite signs.

FIG. 3: Effect of the charged Higgs on the h→ γγ decay,
with the definitions of [28, eq.(D.2)]. The points in red
have the bounds at 2σ on the coupling modifiers in [29,
Table 10], in blue are also compatible with HiggsBounds-
5 [26] and the ones in green are also 2σ consistent with
the most recent cross section from ATLAS [29, Fig. 5].

IX. CONCLUSIONS

We derive the constraints on the invariant Higgs basis
parameters due to the presence of a softly broken Z2

symmetry. We consider the symmetry of the dimension-
four terms to be realized in a basis that is not the Higgs
basis, and then the effect of basis transformations is taken
into account. Our results are consistent with the more
formal results of Ref. [8], and a recent computation of
Ref. [36] that was carried out in a convention of real
vevs in the Z2 basis. Additionally, we show that in this
convention of real vevs, in which ξ = 0, once a specific
Z2 symmetry is chosen, both tanβ and θ23 (the latter
is our new result) are promoted to physical parameters.
We have also provided the corresponding constraints for
an exact Z2 symmetry.

We have derived necessary and sufficient conditions
for all realizable global symmetries of the most general
2HDM in terms of relations between basis invariants.
Furthermore, we have clarified how one can ascend or
descend between the different classes of symmetries and
this is summarized in the “Symmetry Map” of the model,
Figure 1. We make the important distinction between
symmetries that can be reached by the interrelation of
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basis invariants and symmetries that can only be reached
if certain building blocks are forced to be absent, leading
to the vanishing of all invariants containing them.

If no assumption is made about the exact structure of
the ring of invariants (i.e. if one wishes to allow for the
vanishing of some building block) then the number of
necessary and sufficient conditions for a given symmetry
is typically greater than the number of eliminated pa-
rameters. For the 2HDM this was known to be the case
for CP1 symmetry, and we have shown that it is also true
for Z2 and U(1) symmetries.

On more general grounds, we have seen that on a
purely algebraic level there is an exchange “symmetry”
among identically transforming basis covariant building
blocks and their constructed invariants (here Z3 ↔ Y3).

Starting from a ring of systematically constructed ba-
sis invariant quantities, we built a conceptually unprece-
dented method of analyzing how global symmetries are
related to the algebraic structure of a potential.

In Section VIII, we present our study on the con-
straints on a real Z3 symmetric 3HDM from the most
recent Higgs data, which has to the best of our knowl-
edge never been made. We use the parameterization in-
troduced in [21] with the addition of soft-breaking terms,
that allow for heavier mass values for the pseudoscalars
and charged scalars. We then calculated all the decays
at lowest order in perturbation theory that are required
to run the HiggsBounds-5 [26] and impose the bounds
coming from the most recent ATLAS data [29].
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