
Onboard Flight Dynamic Route Optimization

João Portugal
joao.portugal@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

Janeiro 2021

Abstract

Nowadays the flight management systems (FMS) of an airplane can fly it autonomously from takeoff
to landing with little intervention from the pilots assuming there are no anomalous events. However,
some events require a diversion and subsequent route replanning. This replan is non-trivial, subject to a
restricted criteria and takes attention away from the pilots and from air traffic controllers, attention that
could be spent monitoring other flight systems. Route planning involves finding a new efficient route,
communicate it to ATC, receive approval and reprogram the flight computer to follow the new path. Our
work presents a module capable of finding a feasible flight path while complying with all the existing
restrictions whether they are space restrictions such as weather events or no fly zones, or the airplane
movement restrictions, removing the need of pilot intervention in this area lightening up their work as well
as the air controller’s work. We model the problem as an extension to the knapsack model and we then
utilize a modified labeling algorithm created to solve the bicriteria 0-1 knapsack problem and efficiently
recalculate the routes while taking into account all existing restrictions. The evaluation made was focused
on both the accuracy of the route calculated and the time it took to recalculate the route and present the
final result.
Keywords:Multi-objective problem, route planning, FMS, knapsack model, Flight routes

1. Introduction
Aviation is growing every year and is expected to
double over the next 20 years [6] and more and
more challenges surrounding airplanes such as
safety, eco-friendliness and increasing air traffic
become more and more discussed.

Airplanes are capable of flying autonomously
from take-off to landing when considering standard
normal operations but when trouble arises, pilot in-
tervention is often needed [1]. Some of these is-
sues require the pilots to adjust the route, some-
times the adjustment ending in a completely new
destination.

The issues can be categorized into two different
types: internal and external. Internal issues are
problems the airplane might be having internally
such as engine failure or a medical emergency. Ex-
ternal issues are problems outside of the airplane
such as weather storms or heavy traffic that might
pose danger to the aircraft.

Some of the possible routes are already prede-
termined by the pilots prior to departure but some-
times a deviation is needed and when that happens
the new route found may not be optimal. When
considering what is optimal, there is a plethora of
possible restrictions and criteria to follow but air-
craft safety, fuel efficiency are usually the ones that

matter the most.
Flight planning is the process of producing a

flight plan that describes a trajectory to be taken
from a start point to an end point. It involves calcu-
lating how much fuel is needed, the route that takes
us to the arrival point safely while complying with
ATC regulations and safety rules. Flight planning
depends on a lot of factors. Depends on the dis-
tance, the weather conditions and the aircraft used.
Companies are always required to take a surplus of
fuel for safety reasons. This planning is not trivial
and is never a one-time process. Varying weather
conditions such as tail wind might increase or de-
crease the fuel needed. Weather storms might
block some waypoints requiring the plane to take
one another. It is important to note that an airplane
has restrictions on its own movement, subject to
its own flight dynamic restrictions, meaning that for
example it can not change altitude instantaneously
or change its course suddenly without affecting ei-
ther passenger comfort or even the safety of the
aircraft itself. This also has to be taken into ac-
count in flight planning.

There are already several flight planners able of
generating routes, however when the aircraft is al-
ready airborne, it becomes dependent on the pilots
manually adjusting the course of the route through

1



ATC advice. And this is something that can be
theoretically fixed with an efficient on-board flight-
planner that can receive input to changing condi-
tions that might require route adjustments and au-
tomatically adjust it without taking away attention
from the pilots, letting them monitor flight systems
more closely.

We propose a flight-planner that can efficiently
recalculate a route in the presence of adversarial
conditions and automatically adjust the trajectory
of the route while maintaining optimality, safety and
being compliant with the restrictions imposed.

The rest of this chapter defines the objectives of
this thesis,the solution proposed, and the outline of
the thesis.

2. State of the Art
Pathfinding has been a problem studied throughout
the years. It can be considered as the process of
finding the shortest path between two nodes with
or without obstacles in between. Djikstra’s algo-
rithm invented in 1956 [5] is the simplest form of
pathfinding in a weighted graph. Since then, a mul-
titude of pathfinding algorithms has been invented
and improved on: A* [11] is an improvement on Di-
jkstra’s algorithm where instead of just using the
real costs per node, the search is now conduted
based on heuristics. Ford-Fulkerson [8] is an al-
gorithm that computes the maximum flow of a flow
network, where we can find optimal paths in arcs
that can have at max x flow. All this research has
led to each situation requiring a specific algorithm
and this algorithm could be adapted into different
situations. For example, Bellman-Ford [8] can be
used with or without a node queue and could be
parallelized if some conditions are verified.

2.1. Pathfinding in transportation
In transportation, pathfinding has always been a
problem. Everyone wants to get to their destina-
tion in the best way possible, but sometimes what
is best is subjective. While some prefer to pay tolls
to save time, others would rather go through toll-
free roads and save money instead of time.

In 1931, the Zermelo’s Navigation Problem [12]
was the first posed optimal control problem. The
problem consisted in finding an optimal path for a
boat stuck in water with water currents and wind.
If we do not consider the presence of these ob-
stacles, the optimal path is a straight line from
start to finish relating to the shortest path. How-
ever, when considering these obstacles, the opti-
mal path is usually not a straight line. The same
analogy can be used in aviation, obstacles can rep-
resent weather conditions or restricted airspace for
example, leading to a path that is not a direct line
from starting point to end point. Route planning
has always been target of research and so there

an uncountable number of thesis and works that
describe multiple ways of finding the optimal path.
We will describe some that pertains to our work the
most.

The main goal of guidance applied to navigation
is to provide a reference velocity, a path angle and
a heading to enable the aircraft to follow waypoints
P0, P1, ..., PN (Fig ). However, there are multiple
ways of finding these parameters. The FMS is al-
ready programmed so that if provided a waypoint,
it can automatically give a path angle and heading
into that location. The 3D path planning problem
has been shown to be NP hard [3] but many solu-
tions have been already presented.

In 2003 Myungsoo Jun et al. proposed a method
of path planning using a map of thread probabili-
ties made using surveillance data and from there
create the optimal route [9]. It starts by deter-
mining occupancy values based on sensor read-
ings and then applying the conditional probability
of occupancy using Bayes’ rule. Then, they gen-
erate a digraph from the probability map in order
to convert the model to a shortest path problem.
To find the optimal path, the authors chose to use
Bellman-Ford algorithm [2] because of the flexi-
bility it provides, since changes in the probability
map are probable and would change the route and
so they could update link lengths without having
to stop and restart the algorithm. They also were
able to make the Bellman-Ford asynchronous and
distributed further improving efficiency. The results
showed that the algorithm could generate paths al-
though sometimes it was the safest path and not
the optimal one. The main advantage of this solu-
tion is that it is very fast in computing a path and is
compatible with distributed computation. However,
things like frequent acceleration and deaccelera-
tion were not considered, which would need to be
improved on, since this changes fuel consumption
potentially leading to a sub-optimal path in the end.

In 2006 Igor Alonso-Portillo et al. proposed an
adaptive trajectory planner capable of adjusting its
world model and re-computing feasible flight tra-
jectories in response to adversarial changes [1].
The module proposed was to be included into the
FMS and it could transmit information that is not
currently being transmitted such as engine failure,
control surface jams, anything that could cause
flight dynamics to vary and therefore modify the
aircraft perfomance. The proposed module was
not to be seen as a replacement of the FMS but
as improvement to the system robustness. The
module when detecting a failure updates the flight
dynamic model accordingly, generates a footprint
and starts a search for a suitable landing site. This
landing site is chosen from an existing database of
airports that contains information such as airport

2



location, runway specifications amongst other rel-
evant information. The footprint generated allows
to find reachable airports. After this, the module
performs a constraint analysis to select minimally
safe airports and the constraints are repeatedly re-
laxed until at least one solution is found. Then an
utility function is applied based on the airport char-
acteristics to find the most suitable airport for an
emergency landing. Finally, a trajectory to that air-
port is created utilizing existing tools on the FMS.
Results showed that the module provided robust-
ness to the FMS to different failure modes although
more work on the generation of the trajectory was
needed including taking into account wind and cur-
rent weather.

In 2013, Nourelhouda Dougui et al. proposed
the light propagation algorithm, an algorithm capa-
ble of generating sets of conflict-free 4D trajecto-
ries [6]. The algorithm is based on Fermat’s prin-
ciple of least action: The path of a light ray con-
necting two points is the one for which the time of
transit, not the length, is a minimum. It finds an op-
timal path by computing smooth geodesic trajecto-
ries in environments with obstacles. Light tends
to travel in low index areas where light rays are
slowed down. Having this in mind, the algorithm
programs obstacles as high-index areas, thus mim-
icking the light propagation behaviour. They were
able to successfully apply on three different air traf-
fic management problems. However, the authors
noted that the algorithm still needed and could be
optimized by computing the cluster resolutions in
parallel and that the algorithm needs further im-
provements in more general restrictions, since it
only accounted for temporal congestion and mov-
ing weather.

2.2. Knapsack Problem

2.2.1 Introduction

The knapsack problem is a combinatorial optimiza-
tion problem and it talks about the common prob-
lem of packing the most valuable things without
overloading the luggage. Formally, it seeks to se-
lect from a finite set of items, the subset that maxi-
mizes the linear function of the items chosen, sub-
ject to constraints [4].

A knapsack model can modeled into a pathfind-
ing problem [4] thus an optimal trajectory can be
found using this model. Indeed, we can choose as
objectives what we want to maximize or minimize
in our set, such as fuel costs or travel time and set
the restrictions as to things like ETOPS rules, ATC
rules, passenger comfort, ..., etc.

2.2.2 Solutions

In 2003, M. Eugenia Captivo et al. proposed a
method in Solving bi-criteria 0–1 knapsack prob-
lems using a labeling algorithm [4] where we can
formulate the knapsack problem as a shortest path
problem [10] by transforming the multiple criteria
knapsack problem into a multiple criteria shortest
path problem over an acyclic network and then pro-
ceed to label it. It first converts a knapsack model
to an acyclic network model.

The network generated by this algorithm has
no cycles, every feasible solution of the knapsack
problem has a corresponding path in the network
generated from starting node s to end node t and
the shortest path from s to t represents the opti-
mal solution for the knapsack model and the value
is the negative cost of the shortest path in the net-
work.

This transformation is only for a single criterion
but the generalization is very easy to do. Instead of
just assigning one cost per arc, we assign a vector
of costs per arc, each cost corresponding to one
different criterion.

After converting it, to label it, they order it lexico-
graphically but adding an additional property that
other labeling algorithms do not have: the values
concerning the first criterion are placed in non-
decreasing order, while the values of the second
one are placed in non-increasing order. So, to see
if a new given label is dominated or not, it is only
necessary to compare this new label with the last
non-dominated label determined. For more than
two criteria the new label must be compared with
all the labels already determined.

3. Solution Proposal
All the previous work, while achieving relevant re-
sults to their own studies, none presented a clear
module that worked efficiently that could be used
online in an autonomous non-tripulated vehicle
considering a wide number of restrictions. While
some proposed a module for an emergency land-
ing [7], it would be limited to certain types of aircraft
(CS23). Others, do not consider wind variations or
another type of restrictions in their planning.

Overall, the solutions proposed were designed
for efficacy and not efficiency. Even if some fac-
tors such as wind or other factors were not con-
sidered in the solution, the main problem resides
in that it would take too long for the current pro-
posed flight-planners to find a feasible path for an
on-going flight. The objective of this work would
be to correct this issue that most flight-planners
have while adding the dynamism that most flight-
planners lack.

Our module receives as input the current trajec-
tory in the form of: current position, optionally the

3



waypoints that must be followed after and the des-
tination point. These positions are represented in
the form of Latitude Longitude Altitude. In addition
to the trajectory, we receive a series of restrictions
as well.

These restrictions are split in two big groups:
Aircraft restrictions and route restrictions. Aircraft
restrictions are constraints that the aircraft has
such as speed, turns and fuel consumption. These
restrictions are variable and depend on which
aircraft model is being used. The route restrictions
can be divided into two sets: dynamic and static.
The static restrictions are set restrictions by the
ATC known prior to departure to the pilots such as
restricted airspace, also known as no-fly zones,
or zones with limited speeds. Dynamic restric-
tions are restrictions that occur when the aircraft
is already airborne. Weather storms, medical
emergencies, all of these constitute dynamic
restrictions.

As output our module returns the replanned
route in the form of a start point, waypoints to be
followed and the destination point. Each waypoint
is represented as in the input.

In terms of space search, we decided that a
straight line could be followed from point A to point
B as long as the segment line formed by these
points didn’t break any of the restrictions imposed.

We reached the conclusion to use Captivo et al.
labeling algorithm [4]. This algorithm is simple to
use and is by itself very time efficient despite po-
tentially using a large portion of space and ready
to make updates in real time if adversarial changes
happen.

Our module will only act if conditions change,
meaning that only if we receive a signal that a con-
dition has changed, only then we would verify the
current route and changed it if needed be.

3.1. System Overview
Our system can be subdivided into 3 big phases:
the input phase, the algorithm phase and the out-
put generation where we run a backtracking tech-
nique to find the waypoints that lead to the solution
found by the labeling algorithm.

The input phase consists in how we process the
data that we will need later on to run the algorithm,
initializing the data structures where we store the
data, calculating the first part of the objective func-
tion and where we process the restriction set.

In the algorithm phase, we run all the necessary
data through the algorithm in order to search for a
feasible and optimal solution that complies with all
the restrictions given.

The output generation consists in picking one so-
lution from the optimal set and running a backtrack-

ing technique to find the set of waypoints that lead
to the labels obtained by the labeling algorithm,
these waypoints being the solution to the problem
and then returning them.

3.2. Input

The input starts by receiving a starting point, then
a number that represents the number of optional
waypoints to be passed, the corresponding num-
ber of waypoints, and the destination point. This
destination point is saved as the last member of
the list of all waypoints that could be chosen in the
solution path;

After, we receive another number that contains
the number of restrictions we will receive, the re-
strictions and in the end, a few aircraft parameters
such as speed, fuel and weight.

The restrictions are set by a type and then the
corresponding parameters. A type 0 restriction ex-
pects a sphere, so the 4 following values will be the
center of the sphere in form of latitude longitude,
altitude and then its radius in kilometers.

The set of all existing waypoints is expected to
exist prior to run-time and is loaded when the algo-
rithm begins.

3.3. Objective function estimation

For this problem, we decided that having two
objective-functions was enough to reach optimal
solutions. The first one is to minimize the time
needed to reach our destination and the second
one is to minimize fuel consumption.

In order to find the first objective-function, we de-
fined a line segment between our starting point and
our destination point and the distance between the
selected waypoint and the line segment - which
forms a perpendicular line to the initial segment -
is used to calculate the value. The farther the dis-
tance of the waypoint to the line segment, the lower
the value as shown in Figure 4.1, where s and t are
our start and end points respectively and A and B
are waypoints. Therefore, the value of B will be
higher because it is closer to the line segment than
A.

To calculate the second-objective function, we
could not immediately calculate the value of a
waypoint because it depends on where the plane
comes from. Figure 4.3 exemplifies this problem.
We can not set the value of waypoint A or way-
point B because it depends on where it comes from
and where it goes to. For example, if waypoint A
goes to waypoint B it requires one amount of fuel
but if it goes to waypoint C it requires a different
amount. We then decided to leave this determina-
tion to when we run the labeling algorithm.

4



3.4. Restrictions
For the restrictions, there are two types of restric-
tions: the space restrictions and the airplane re-
strictions.

Space restrictions were defined as spheres that
could be placed anywhere.

They have a radius and a center with coordinates
in latitude, longitude and altitude. It becomes easy
then to calculate if the arc formed by the waypoints
intersects with a sphere. Figure 4.4 represents a
no-fly zone issued around the house of at the time
president-elect of the USA, Joe Biden, 7th Novem-
ber 2020.

But, in terms of relating these restrictions in func-
tion of the waypoints, to put them as weight re-
strictions in the knapsack model, it was impossible
to do that because for each new restriction added
as a knapsack weight restriction, the labeling algo-
rithm would need to be adapted, so that it ensured
all the weights were being respected and also be-
cause the weight of each waypoint depended on
where it came from. So we decided to create
only one restriction function that would serve as
a weight limit to the functions and the rest to be
accounted for in run-time of the labeling algorithm.

The restriction we decided to use in the knap-
sack model was the maximum of fuel reserves that
the airplane had baring 30 minutes of fuel and the
problem here was the same to the problem we
faced in the objective function calculation where
we couldn’t calculate the fuel consumption solely
based on a waypoint, only on a set of waypoints.
And so what we ensured was that the sum of all
waypoints considered could not be higher than the
fuel capacity of the airplane defined above.

3.5. Data Structures
Data structures are particularly important in our
problem since we require that operations need to
be as fast as possible. This includes finding S(ja),
the restrictions set and the waypoints in an efficient
way. To do this, we chose different implementa-
tions for each type, that would fit best or at least
not compromise the running time of the algorithm.

3.5.1 Waypoints

Since waypoints are always directly accessed, we
have them stored in an array. Before running the
algorithm, we run a merge-sort algorithm to or-
der them based on distance to the starting point.
In all three cases (worst,average,best), merge-sort
has a time complexity of O(n log n). Since we ac-
cess directly the waypoints, then the time complex-
ity here is simply O(1) for each access, and in the
end, since we will consider all the waypoints for the
solution we have the final time complexity of O(n).

3.5.2 Data structure S

We denominate S as the data structure repre-
sented in the labeling algorithm that will always be
accessed through indexes. We always know its
key, for example in S(ja) the key will be ja, which
is unique for each node. So, we decided to model
S as an hash table. Collisions in this hashtable are
solved using linear probing. If the number of ele-
ments present in the hashtable is half of the max-
imum number of elements allowed in the hash ta-
ble, we rehash the old table into a new one with
double the size. This further prevents collisions.
The amortized cost of inserting an element into an
hashtable, even considering the eventual rehash is
O(1).

3.5.3 Restrictions

The restrictions are saved using a linked list and
for each arc AB, we see if it breaks any of the re-
strictions stored in the linked list. Since we have to
verify them all and considering we have r restric-
tions then the cost of this operation will be O(r).
Although we do not expect a high number of re-
strictions, this is something we have to take in mind
in testing and if needed further improving since it
could bottleneck our module.

4. Labeling Algorithm
In this chapter, we explain how the base label-
ing algorithm works, what modifications we made
to making it capable of handling our problem and
what optimizations we made in order to increase
its efficiency and efficacy. Section 5.1 describes
the base labeling algorithm, section 5.2 the mod-
ifications we made to the algorithm. Section 5.3
makes a summary of this chapter.

4.1. The base algorithm
The base algorithm, proposed by Captivo et al. [4]
intends to maximize N objective functions subject
to one restriction with a maximum capacity.

It starts by initializing S, where S(ja) is the
set of non-dominated labels concerning the set
of all paths from s to ja, setting S(10) with la-
bel (0, 0, ..., 0) and S(1w1 with label (−v11 , ...,−v1r)
where r is the number of items. It also creates two
lists, T and V , where V starts out empty and T
with two values, 0 and w1, the weight value of item
1. These two sets contain all the labels of layer 1.

Then, for the remaining layers j (j = 2, ..., n), the
set S(ja), where a ∈ 0, ...,W is built as the follow-
ing:

1. If ja has only one arc incoming then consider
two different cases:

(a) if the arc ((j − 1)a, ja) belong to T but
a−wj does not, then S(ja) = S((j− 1)a)

5



(b) if the arc ((j − 1)a−wj ja exists, i.e a does
not belong to T but a − wj does then la-
bels in S(ja) can be defined by summing
(−v1j , ...,−vrj ) and S(j − 1)a−wj

2. If two incoming arcs, a and a− wj then the la-
bels in S(ja) by choosing the non-dominated
labels simultaneously from the labels in S((j−
1)a), and from the labels obtained by sum-
ming (−v1j , ...,−vrj ) to each of the labels in set
S((j − 1))a−wj

The problem solutions, S(t) can be given as the
set of non dominated labels of

⋃W
a=0 S(n

a) and the
items chosen can be found by using a backtracking
technique.

Since we are in a multi-objective problem, there
can be more than one solution to pick-up from.
We arbitrarily decided to choose the one that mini-
mizes flight-time.

Backtracking is an algorithmic technique to solve
a problem by recursively try to build a solution in-
crementally, one piece at a time, removing pieces
that fail to satisfy the constraints given at any point
in time. In this case, we have two objective func-
tions and so we could backtrace both functions to
find the items that satisfy both conditions. Since
recursive calls are computionally expensive, what
we do is to find all solutions that satisfy the first
objective function, save the indexes of the items
that lead to the solution and then run a loop where
we try to satisfy the second objective by calculating
f2(y) with the items we considered.

4.2. Modifications to the base algorithm
The base algorithm was made with a very specific
problem in mind, the knapsack problem. However,
since our problem is not directly related to knap-
sack, we need to adapt it in order to function with
our problem.

The algorithm is made considering only one sin-
gle capacity restriction and not multiple restrictions
that could hinder movement, like no fly zones, but
that are in no way related to the item set and still af-
fect the order in which items are selected. We thus
decided that the capacity restriction, W , should be
the fuel the airplane was carrying, leaving the rest
of the restrictions to run-time verification.

Since we have more than one restriction in our
problem, we had to change the algorithm.

We start by running merge-sort on the way-
points, ordering them by distance to starting point
S.

As referenced in chapter 4, it’s impossible to es-
timate a weight cost of an item, solely based on it.
It has to take into account where it comes from.
We then added the change, that every time we

change the value being assessed a, we recalcu-
late all the values that wj can become because we
know where it comes from if S(j − 1)a is defined.
We add a last item parameter to every S(j)a, refer-
encing the last item added to the set at that point.
For example, if j is added to the possible solution
set, then the last item parameter of S(j)a is j. If
j is not added to the solution set but S(j)a exists,
then the last item in S(j)a is equal to the last item
contained in S(j− 1)a. The last item in S(10) is the
starting point s and the last item in S(1w1) is 1.

Since the weight of an item can then assume
multiple values,we calculate all those values and
introduce a new third loop, where we iterate
through all the possible weights of this item.

Every time we consider adding an item to the
solution set, we have to consider all the existing
restrictions and if they’re broken if we add this item.
Since the restrictions rely on knowing where the
plane is coming from, we fetch the last item where
the plane was headed from S(j − 1)a.

The first situation in the algorithm where we cre-
ate S(ja) is if only a ∈ T . We then verify if the
restrictions are broke from S(j − 1)a to S(ja). If
not, we copy the labels from S(j − 1)a to S(ja).

The second situation is if a− wj ∈ T and a /∈ T .
Then, we have to verify if going from the last item in
S(j − 1)a−wj to j results in breaking a restriction. If
it does, we discard the arc and nothing is created.
If not, we add the labels in S(j − 1)a−wj plus the
values of flying from the last item to that item.

The third situation is if both a − wj ∈ T and a ∈
T . We separately verify if j is achievable by both
S(j − 1)a and S(j − 1)a−wj Then we proceed as
follows:

1. If only S(j − 1)a complies with the restriction
set, we proceed as if we were in the first situ-
ation.

2. If only S(j − 1)a−wj complies with the restric-
tion set, we proceed as if we were in the sec-
ond situation.

3. If both cases comply with the restriction set,
we then choose the non-dominated labels
from both S(j − 1)a and S(j − 1)a−wj plus the
sum of the values of flying from the last item to
the new item.

4. If no case complies with the restriction set, we
discard the arc and continue.

For simplicity we consider that only sphere re-
strictions are possible in the set of space of restric-
tions, and since we have two waypoints (origin and
destination) we can calculate if the arc composed
by those two points intersects any of the existing
space restrictions.

6



To do this, we introduce a change in the base
algorithm, where if the condition a−wj was verified,
meaning that an arc where the item was included,
we first confirm that this item can be added to the
item set considering where it came from S(j − 1)a.

4.2.1 Restriction verification

When running the algorithm, restrictions need to
be verified in case a trajectory is not possible. The
plane does not travel through a flat surface, it trav-
els in arc around Earth, which can be either con-
sidered an ellipsoid or a sphere. For this work, we
considered it a sphere, though it is trivial to convert
the calculations into an ellipsoid which is adding a
second radius.

To see if the arc that forms the path from A to B,
and considering C as the center of the sphere that
represents the restriction we do the following:

1. convert A, B, and C coordinates to Cartesian
coordinates. Note that, when converting to
Cartesian coordinates, R will be the radius of
the earth and we will have to sum the altitude
of the waypoint considered.

2. A, B and O, where O is the center of the
Earth define a plane that contains arc AB. We
calculate the normal vector normalized to this
plane, that is given by (A × B)/N(c) where ×
represents the cross product and N(c) is the
norm of the cross product between A and B.

3. With the norm, we can now calculate the dis-
tance from C to the plane given by C ·n where
· represents the dot product.

4. Now we can compare the distance obtained
with the radius of the sphere. If this distance
is smaller or equal to the radius, then the arc
intersects the sphere. If the distance is bigger,
then the arc does not intersect the sphere.

For the aircraft restrictions, a very simple model
was created in which we set the max bank angle
as 30º, which will affect the turn time, and the max-
imum vertical rate of the plane was 3000 feet per
minute. This is trivial to calculate, all we have to
do is to see if the time it will take to change alti-
tude at the maximum rate surpasses the time it will
take to travel from point to point and if it does then
the airplane would need a higher rate which is not
possible.

4.3. Output
The labeling algorithm outputs a set of solutions
which is a Pareto front, or none if no path to t is
feasible. Considering that a set of solutions ex-
isted, we needed to pick a solution from this set.

We arbitrarily chose to pick the one that minimized
time spent.

From there, we can then run a backtracking
technique to find all the solutions for objective-
function 1. The backtracking technique consists
in a dynamic-based approach where we check if
it’s possible to reach the solution from the current
element. Fundamentally, this consists in the well-
known subset-sum problem in which the target is
the first-objective and the set, the first objective
function. The dynamic approach to the subset sum
problem is made over a integer set. We multiplied
our value function by 10 and discarded the rest of
the decimal part to convert it from a real set to a
integer set.

If a solution set is found, it verifies if that set of
waypoints chosen complies with objective-function
2 and if it does, we have found the solution. If not, it
continues to exhaust every option until it finds one.

After all this, we can now produce the final out-
put. This final output consists in the list of way-
points that forms the optimal path from s to t in the
form of latitude longitude altitude, that begins with
the starting point, the waypoints to be followed and
the destination point.

The dynamic programming implementation of
the backtracking technique has a O(n ∗ target)
exploration time complexity and up to O(2n) time
complexity for the recursive calls to find the solu-
tion set.

5. Experimental evaluation
In this chapter, we define what we are looking for
when testing the module, the setting where we
tested and how our tests were generated. We also
present and discuss the results obtained.

5.1. Setting and objectives
For this study, we consider that the space was re-
stricted to the Iberian Peninsula and that the al-
titudes could vary randomly between 0 feet and
30000 feet.

The experiments were led on a i5-8400 running
at 3.8GHz with 8GB RAM available. The whole
module was written in C language (C11) and both
the input and the waypoint database were ran-
domly created using a python script using the ran-
dom.py library.

The objectives for these experiments were to find
if the algorithm could find solutions in efficient time
when varying the number of waypoints, the number
of restrictions and the capacity, these three factors
being the main sources of time consumption in the
labeling algorithm. Memory usage by the labeling
algorithm was also measured.

The restrictions were generated using a maxi-
mum altitude change rate of 3000 feet and with
each circle having a random number between 0.5

7



WP Res Cap Time Mem
100 30000 100 0.020 2.5
200 30000 100 0.074 2.5
500 30000 100 0.120 5.7

1000 30000 100 0.194 17.4
2000 30000 100 0.213 64.2
5000 30000 100 0.392 384.1
10000 30000 100 1.120 1529.6

100 30000 500 0.014 2.4
200 30000 500 0.017 2.9
500 30000 500 0.032 5.6

1000 30000 500 0.058 17.5
2000 30000 500 0.112 63.3
5000 30000 500 0.385 384.4
10000 30000 500 1.013 1529.7

100 30000 1000 0.012 2.5
200 30000 1000 0.017 2.5
500 30000 1000 0.033 5.7

1000 30000 1000 0.055 16.8
2000 30000 1000 0.115 63.4
5000 30000 1000 0.381 384.5
10000 30000 1000 1.035 1529.5

100 50000 100 0.046 2.6
200 50000 100 0.064 2.6
500 50000 100 0.072 5.6

1000 50000 100 0.150 17.6
2000 50000 100 0.265 63.4
5000 50000 100 0.554 384.1
10000 50000 100 1.306 1530.1

100 50000 500 0.025 2.4
200 50000 500 0.028 2.9
500 50000 500 0.042 5.6

1000 50000 500 0.103 17.4
2000 50000 500 0.184 63.4
5000 50000 500 0.520 384.6
10000 50000 500 1.286 1529.3

100 50000 1000 0.025 2.6
200 50000 1000 0.040 2.7
500 50000 1000 0.055 5.6

1000 50000 1000 0.098 17.2
2000 50000 1000 0.193 63.4
5000 50000 1000 0.504 384.3
10000 50000 1000 1.310 1529.7

Table 1: Execution time of the labeling algorithm.

and 5 kilometers.

5.2. Results

0 0.2 0.4 0.6 0.8 1 1.2

·104

0

0.5

1

1.5

Waypoints

Ti
m

e
[s

ec
on

ds
]

Execution time

Capacity = 30000
Capacity = 50000

´
0 0.2 0.4 0.6 0.8 1 1.2

·104

0

500

1,000

1,500

2,000

Waypoints

M
em

or
y

us
ed

[M
eg

ab
yt

es
]

Memory usage

Capacity = 30000
Capacity = 50000

5.3. Discussion
5.3.1 Labeling Algorithm

The labeling algorithm executes in a very fast time,
yielding promising results even in the highest num-
bers tested. In terms of real time efficiency, 1 sec-
ond for the labeling algorithm considering a plane
at 400 knots, consists in approximately 200 me-
ters, which is a very small change causing little to
no change if the algorithm was reran at that point.

Despite, the number of restrictions rising from
100 to 1000, little change was verified. This is due
to the fact that, while in the worst case scenario the
time could go substantially up, in average, the re-
strictions limit the number of labels being created,
thus severely limiting the third loop.

The capacities tested can be considered for low
flight fuel in the form of 5000, a flight fuel that could
be considered for a plane to be in mid-flight with
30000 fuel left and a flight fuel that could exist in
the departure stage of the travel in 50000. Notice-
ably, the capacity is the most impactful factor since
when it changes, it usually changes in the order of
tens of thousands, from 50000 to 60000. If we con-
sider a Boeing 747-400, it can take up to 216,840
litres of fuel, a big change from the 50000 maxi-
mum considered.

The number of waypoints influence the time as
well despite not so much, the highest number,
10000, being a obscene number of waypoints,
tested just to prove that the algorithm could han-
dle such a number.

In terms of space, the algorithm requires a lot of
space, especially if the number of restrictions are
not suited. For example, if the restrictions are all
set in America and the waypoints are all set in Eu-
rope, the algorithm will generate every single pos-
sible combination of waypoints granted the capac-
ity allows it. So, if both conditions are true, we
then have a O(

∑n
j=1 j!) of nodes, which is a insur-

mountable number. Since our tests were randomly
generated, some of them were bound to fail, since

8



this possibility existed.
In terms of efficacy, a small number of tests was

made to ensure the results were right. But even so,
no real input was introduced and compared with
real cases. So, in the long range, some problems
might arise that the solution is not optimal.

Further testing should be made using real world
cases, where waypoints have a very limited num-
ber of waypoints they can go to, the other part be-
ing limited by the restriction set, making the space
limit as low as possible. If the number of restric-
tions is low and the restriction dimension is low so
that it covers a low area, a lower number of way-
points should be considered to ensure that the al-
gorithm does not run out of memory.

5.3.2 Backtracking technique

For the backtracking technique, up to 5000 way-
points were tested. The results were good, in the
highest number of waypoints, the total time was
11.164, which considering a plane at 400 knots it
is about 2.2 kilometers.

For a short to mid-haul flight, a very low num-
ber of waypoints in 2000 can be considered, mak-
ing the time around the 5 second mark. The long
haul can take more than 5000, although in the time
it would take to calculate it, the conditions would
change, so the alternative could be to search the
solution space from the current point, to a point
where pilots know they will cross.

In this algorithm, we intend to minimize the
objective-functions and so, the sum the backtrack-
ing technique will be searching for, will be as low as
possible, making it as efficient as it can be, both in
terms of search time and search space. This prob-
lem is an on-going investigation and if found that
the classical problem can be solved in polynomial
time, that P = NP, then this part should be updated
so that it can solve the problem faster.

6. Conclusion
Flight planning is becoming more and more de-
manding in terms of time efficiency since airspace
is becoming more and more overcrowded. While
the effects of the on-going COVID19 pandemic will
certainly make its mark in the aviation world, avia-
tion was expected to double over the next 20 years.
Pilots need to rely less on air traffic tower and be
able to quickly re-plan their route if an issue arises.

The current system for pilots to change the cur-
rent flight path is to search where the adversarial
condition is when informed by the air traffic con-
troller and check which viable waypoints are closer
to that point so that they can travel to that instead.
After that, they still have to inform ATC about the
new route they intend to take and await confirma-
tion. This process is not trivial and takes a lot of

time both from the pilots and from the air traffic
controller, time that could be well spent doing other
tasks.

We propose a flight planner that is efficient and
effective in finding a route while avoiding restric-
tions, which can replace the process mentioned
above. The algorithm used can work with any type
of restrictions since it does not depend on them. It
also can take any number of value functions mak-
ing it desirable for companies that want to maxi-
mize the value of a route, to their own standards
of value and spending. Whether they wish to min-
imize fuel consumption or flight time or passenger
comfort, all they have to do is create a mathemati-
cal function for that function, and run the algorithm
over it.

The algorithm used consisted in an adaptation
from the labeling algorithm proposed in 2001 by
Captivo et al. [4]. This base algorithm worked by
modeling a knapsack model into a shortest path
problem, by layering the items and creating two
arcs between them if possible, one when the item
was added into the solution set and one where the
item was not in the final solution set.

The modifications made were designed so that
multiple restrictions could be fitted and still re-
spected, since the base algorithm only supported
one restriction at a time. The algorithm verifies if
all the restrictions are not broken, and if they are
not, then the corresponding arc can be created.
The main factors influencing the execution time are
the number of waypoints, the current fuel of the air-
plane and the restriction set.

The labeling algorithm returns the set of non-
dominated labels from the starting point to the des-
tination point. In this work, we arbitrarily chose
one, since they are all optimal. From there, a
backtracking technique using dynamic program-
ming was used to find the waypoints, the first value
of the label corresponded to. Then, we calculated
if the second value corresponding to the value in
the second-objective function. If it did, the final so-
lution was found. If not, the backtracking technique
would continue until it found the solution set. The fi-
nal output consisted in the starting point, waypoints
to follow and the destination point.

The results of running tests over the labeling al-
gorithm and the backtracking technique were good
where the times were not big enough so that the
distance flown by the airplane while the result was
being generated created enough change for the re-
sult to be different if calculated again at that point in
time. Results showed that it is possible for an on-
board flight-planner to exist and dynamically adjust
flight routes if initial conditions change.

9



7. Future Work
Despite good initial results, several improvements
can be made and should be explored. Initially, it
would be very beneficial to have feedback from
flight-planning specialists. This would allow the val-
idation of the current system in place, and further
improvement could be made over it.

As mentioned before, the algorithm can take up
to a lot of space, especially when the number of
waypoints is high and the number of restrictions is
low, since a very high number of labels will be cre-
ated. A potential solution to this problem would be
the longest common sub-sequence in which only
states near the optimum would be created. This
could reduce the number of labels created and
massively improve the space usage of the algo-
rithm.

The algorithm was setup by always having 2 ob-
jective functions. It would be interesting to explore
the cost of having 3 or more objective functions
which would lead to a maximization of profit by
companies that want it. However, for more than
two criteria, it is important that it is not enough to
compare the new label with the last label added
and instead compare it to all others added to the
node, which is a very time consuming operation.

When choosing a solution from the solution set,
in this work we arbitrarily did so. It would be a
good change to explore ways of picking a solu-
tion, whether is using an algorithm that finds the
knee point in the Pareto front or creating a frame-
work where the user can express their preference
for which objective to prioritize.

Although the results did not suggest the restric-
tions were causing a huge time factor in the sys-
tem, the current method in place is not the most
efficient one. Even if the waypoints being analyzed
are not close to a space restriction, they can even
be on one side of the map and the restriction on
the other, the restriction will still be checked. Im-
plementations of new data structures that can ef-
ficiently obtain which restrictions are close to the
waypoints should be researched and explored.

Currently, despite the algorithm being able to re-
ceive any type of restrictions, the restrictions them-
selves are currently just the spheres and the alti-
tude rate change . It would be interesting to modify
those to more different types of, to really cement
the model as a very adaptive module.

In this work, a very simple airplane model was
used. Better flight dynamics should be considered
and implemented, despite the labeling algorithm
being independent from this. The cost-functions
are simple and do not require a lot of operations.
If a lot of trigonometry is needed, this could impact
the execution time, so this should be taken into ac-
count

When obligatory waypoints exist, concurrent pro-
gramming could improve the running time by run-
ning two or more algorithms concurrently between
this waypoints to reach a faster solution.

Turn time and speed variation were not consid-
ered in this work which could change the solution in
some cases, making the solution less optimal that
what it should be. Frequent altitude changes were
also not considered for the second objective which
can greatly influence the fuel consumption.

Testing should be made using real world cases
and real world restrictions. For this to happen, a
rigorous flight dynamic model should be in place,
to ensure the solution set found by the labeling al-
gorithm is the right one. These tests will serve to
confirm and ensure the efficacy of the algorithm.

References
[1] I. Alonso-Portillo and E. M. Atkins. Adap-

tive Trajectory Planning for Flight Manage-
ment Systems. Technical report, University of
Maryland, Maryland, 2006.

[2] R. Bellman. On a routing problem. Quarterly
of Applied Mathematics, 16(1):87–90, 1958.

[3] J. Canny and J. Reif. New Lower Bound Tech-
niques for Robot Motion Planning Problems.
Annual Symposium on Foundations of Com-
puter Science (Proceedings), pages 49–60,
1987.

[4] M. E. Captivo, J. Clı́maco, J. Figueira, E. Mar-
tins, and J. L. Santos. Solving bicriteria 0-
1 knapsack problems using a labeling algo-
rithm. Computers and Operations Research,
30(12):1865–1886, 2003.

[5] E. W. Dijkstra. A note on two problems in con-
nexion with graphs. Numerische Mathematik,
1(1):269–271, 1959.

[6] N. Dougui, D. Delahaye, S. Puechmorel, and
M. Mongeau. A light-propagation model for
aircraft trajectory planning. Journal of Global
Optimization, 56(3):873–895, 2013.

[7] A. Fallast and B. Messnarz. Automated tra-
jectory generation and airport selection for an
emergency landing procedure of a CS23 air-
craft. CEAS Aeronautical Journal, 8(3):481–
492, 2017.

[8] L. Ford and D. Fulkerson. Maximal Flow
Through a Network.

[9] M. Jun and R. D’Andrea. Path Planning for
Unmanned Aerial Vehicles in Uncertain and
Adversarial Environments. pages 95–110,
2003.

10



[10] J. B. Orlin. Ahuja, Magnanti, Orlin - Net-
work flows Theory, algorithms and applictions.
1993.

[11] B. R. Peter E. Hart, Nils J. Nilsson. A Formal
Basis for the Heuristic Determination of Mini-
mum Path Costs, 1968.

[12] E. Zermelo. ber die Navigation in der Luft als
Problem der Variationsrechnung. 1930.

11


