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Abstract

Wildfires are natural disasters that can be quite unpredictable, burning large areas of forests and
destroying properties. Fire detection and early prevention enable a faster reaction from emergency
teams and to decrease the possibility of fire damage. Therefore, automatic systems capable of detecting
fires are increasingly important. Their development requires a high number of data in order to
guarantee good performances and be reliable in real scenarios. However, the low number and poor
quality of available datasets in the literature, and the lack of annotations hamper the development of
such automatic techniques. The objective of this work, developed in the framework of project Eye
in the Sky (https://adai.pt/eyeinthesky/), is to propose an architecture based on segmentation and
interpretable linguistic models capable of generating wildfire annotations. The proposed approach
takes advantage of rich color features representative of fire in two different stages, segmentation and
classification. The first one is related to generating superpixels and aggregating these into regions
based on the representation of fire colors in the YCbCr color space. Subsequently, the classification
of each region is achieved using interpretable rule-base models based on the HSL and YCbCr color
spaces, which generates a pixel-wise fire segmentation and the semantic annotations of the fire colors.
Furthermore, this method allows certain fine-tunable parameters in order to improve its overall results.
The proposed approach is evaluated in different real contexts using a publicly available database.
Keywords: Fire detection, HSL color space, YCbCr color space, Superpixel, Interpretable Linguistic
Models, Fire Data Annotations

1. Introduction

Natural disasters like floods, earthquakes and wild-
fires have a considerable environmental and eco-
nomic impact. Every year, wildfires destroy
hectares of lands, burning forests and villages, lead-
ing to the loss of material goods and possibly lives.
Over the years, the increased number of wildfires
has raised a need in developing automatic tech-
niques capable of helping in wildfire fighting. Fire
detection approaches able to provide earlier fire
alerts would enable a faster response from emer-
gency teams and reduce the possibility of fire de-
struction in large areas and, potentially, mate-
rial goods.

1.1. Fire detection topic overview

Conventional fire detection approaches are usually
based on data collected from ultraviolet or infrared
fire sensors. In addition, wireless sensor networks
(WSNs) emerge as an alternative to conventional
techniques. These consist on a large number of
cheaper and smaller sensors able to collect different
types of data (e.g., temperature or carbon monox-

ide density) and send an alarm whenever a fire is
detected. However, those sensors are required to
be in close proximity of a fire in order to regis-
ter reliable data, which can be quite expensive in
terms of their deployment and maintenance, spe-
cially in large fields [2]. For fire detection, several
computer vision-based approaches utilize the visual
features encountered in images and videos, specially
color since fires are usually representative of bright
and warm colors. Such approaches are based on
color spaces, which are associated with a crisp rep-
resentation of colors. The most well-known is the
RGB color space, as it is related to how the human
eye perceives color. Moreover, other approaches ex-
ploit the HSV color space [5] or the YCbCr [10].
Several classical computer vision techniques utilize
visual and motion features of fire and smoke ar-
eas to develop better and more reliable classifiers.
However, since classifying a fire pixel in terms of
colors can be a subjective task, these techniques
using rules with fixed fine-tuned values have cer-
tain limitations when applied to different scenar-
ios or datasets. Considering these limitations, the
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scientific community has been applying visual fire
attributes (e.g., color or motion features) with in-
telligent systems methods. Deep learning methods
have been widely used as these are able to han-
dle high-dimensional data like images or videos [6].
Many fire detection techniques are hampered by the
overall quality of datasets and the lack of annota-
tions. These limitations are usually associated with
the low number and poor quality of samples, and
the representation of different contexts than nature
scenery, e.g., fires in buildings or indoor. More-
over, several images come from videos, increasing
the number of samples but not its significance as
these are very similar to each other. Finally, the
lack of annotations can be a hindrance for a better
comprehension of the existent models.

1.2. Proposed approach

To address such limitations, this work tackles the
development of a method for fire data annotations
through semantic segmentation, instead of the more
common fire detection approaches. In fact, the
proposed approach presents a method to generate
fire segmentations and labels describing fire col-
ors, which can then be validated by experts re-
lated to wildfires to create reliable ground truth
data. At a first stage, the proposed architecture
relies on the rich color features representative of
fire, namely in the HSL and YCbCr color spaces,
which allow an insightful interpretation that, in re-
turn, enables the color-based superpixel segmenta-
tion. Afterwards, interpretable rule-based linguistic
models are employed to classify superpixels in terms
of their color attributes to infer which correspond
to the fire or non-fire classes. Moreover, these mod-
els allow to generate semantic labels describing the
fire colors present in the image [8]. The proposed
approach is evaluated against a subset of the Cor-
sican Fire Database, demonstrating excellent seg-
mentation results and their ability to handle a vari-
ety of real-contexts, e.g., with fire at long-distances,
with firefighters or firetrucks, and in smoke situa-
tions. Finally, we demonstrate the different limi-
tations that the several proposed models face and
this approach’s ability to allow experts to intuitively
fine-tune the model output or adjust some param-
eters, e.g., threshold, in order to improve the final
segmentation and ensure the expert confidence dur-
ing the annotation process.

2. Background
2.1. Color Spaces

As humans and computers have different percep-
tions of color, color spaces allow the latter to rep-
resent colors in different geometric representations.
There are many different color spaces defined in Rc,
where c represents the number of channels and its
usually three. The two color spaces used through-

out this work are the HSL and YCbCr color spaces.
The HSL color space represents colors in terms of
hue (H), saturation (S) and lightness (L), which al-
lows an easier interpretation in describing colors.
The YCbCr color space is characterized by the lu-
minance (Y) and the chrominances blue (Cb) and
red (Cr), and enables the separation between the
luminosity (luminance) and the color information
(chrominances).

2.2. Superpixels
Superpixel algorithms are considered an image seg-
mentation technique as their objective is to group
pixels together based on their characteristics, thus
resulting in an image oversegmentation. This tech-
nique is quite interesting as superpixels allows to
decrease the difficulty in later operations. In addi-
tion, it also reduces the processing time since the
number of superpixels is much lower than the num-
ber of pixels.

2.2.1 Simple Linear Iterative Clustering

The simple linear iterative clustering (SLIC) [1]
is a segmentation algorithm based on K-means
clustering that creates superpixels within a five-
dimensional [labxy] space defined by the L, a, b val-
ues of CIELAB color space and the x, y pixel coor-
dinates. In essence, the superpixels are created by
grouping pixels that are similar in color and fairly
close to each other.

We chose this segmentation algorithm because it
is relatively fast to compute, memory efficient and
simple to use when compared to other methods [1].

Algorithm description. This approach can be
divided into four steps: initialization, assignment,
update and post-processing. The algorithm begins
by initializing K cluster centers that are spaced S
pixels apart, where K is the desired number of su-
perpixels and S the distance between each cluster
center. The clusters centers are then moved to the
lowest gradient position in a 3x3 area to prevent cre-
ating a center on an image boundary and decrease
the chances of choosing a pixel with noise.

In the assignment step, each pixel is linked to the
closest cluster center in a search region of 2Sx2S.
In other words, it calculates the distances between
a pixel and every cluster center in a 2Sx2S area, as
supposed to the entire image, assigning the pixel to
the nearest cluster center. In fact, this means that
the number of distance calculations is substantially
lower when compared to conventional k-means clus-
tering where a pixel is compared to all cluster cen-
ters within the image, which results in a faster algo-
rithm. For these reasons, this approach requires a
distance measure, D, to calculate the closest cluster
center for each pixel.
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Considering an image with N pixels, each super-
pixel size is approximately N/K pixels. In order to
create fairly identical superpixels, each cluster cen-

ter is defined at S =
√

N
K . The euclidean distance

can not be used within pixels represented in the 5-
D [labxy] as it would be dependent on the number
of superpixels. A lower number results in larger
superpixels where the distance between their cen-
ters would outweigh their color similarity, resulting
in superpixels that do not retain the image bound-
aries. Therefore, [1] use a new distance measure D
(equation (3)) to allow a nearly equal weigh between
the color similarity and distance proximity.

This distance D combines both the color distance
(lab) and the spatial distance (xy), where Nlab and
Nxy are their maximum distances in a cluster, re-
spectively, thus resulting in:

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2

dxy =
√

(xk − xi)2 + (yk − yi)2

D′ =

√(
dlab
Nlab

)2

+

(
dxy
Nxy

)2

(1)

where [li, ai, bi, xi, yi]
> is the pixel i represented

in the 5-D space and Ck = [lk, ak, bk, xk, yk]> the
cluster center.

Then, the maximum spatial distance in a cluster
Nxy is considered equal to S, resulting in Nxy =√
N/K and, to simplify the process as color dis-

tances can be very diverse, Nlab is considered equal
to a constant m, resulting in the following equation:

D′ =

√(
dlab
m

)2

+

(
dxy
S

)2

(2)

Finally, the distance measure D is defined as:

D =

√
dlab

2 +

(
dxy
S

)2

m2 (3)

This variable m allows us to control the compact-
ness of a superpixel, i.e., control the weigh between
color similarity and spatial proximity. For a large
m value, spatial proximity outweighs color similar-
ity, where the superpixel is more regularly shaped.
This variable may take values in the range [1, 20].

After all pixels have been assigned to a cluster
center, the update step allocates the mean value
of all pixels within a cluster to its center. Finally,
the assignment and update steps are repeated iter-
atively until the residual error E stabilizes, where
this error E is associated with the distance between
previous cluster centers and new centers. After the
clustering procedure, some pixels may not belong

to the same superpixel as their cluster center be-
cause this algorithm does not enforce connectivity.
Therefore, a post-processing step enforces connec-
tivity and reassigns those pixels to the nearest clus-
ter center using a connected components algorithm.

2.3. Fuzzy Theory
Fuzzy logic is a soft-computing approach as it allows
to connect the human ability to learn from previous
mistakes with complex computational problems us-
ing mathematical knowledge. In fact, fuzzy mod-
eling is considered interpretable and transparent
when compared to other techniques, as it can often
use natural language to describe the inputs, outputs
and the relationships between them to build fuzzy
models.

2.3.1 Fuzzy logic and Fuzzy Inference

Traditional logic usually states that a variable can
only belong exclusively to one class by either taking
a true (1) or false value (0). In contrast, fuzzy logic
allows variables to have values between 0 and 1 that
represents the degree of membership. A fuzzy in-
ference system can be represented by the procedure
of taking input variables though a fuzzy model and
reaching an output. This process involves member-
ships functions to define the degrees of membership,
If-Then rules to establish relationships between the
inputs and outputs, using fuzzy logic operators.

Fuzzy sets. A fuzzy set is set composed of vari-
ables having a degree of membership that measures
their degree to belonging to a set. As fuzzy sets do
not have well-defined boundaries, they are usually
described using membership functions [3].

Membership functions. A membership func-
tion, as the name implies, is a function that allows
to assign membership values (or degree of member-
ship) between 0 and 1 to each point of the fuzzy
set [3]. Some common types of membership func-
tions (MF) are: Triangular MF, Trapezoidal MF,
Gaussian MF and Sigmoidal MF.

If-Then rules. Fuzzy models use logic rela-
tions and “If-Then” rules to establish relationships
among the variables defined in the model. The fol-
lowing is the general form of a “If-Then” rule:

If antecedent proposition,
then consequent proposition.

Generally, these rules relate linguistic terms of in-
put variables (antecedent proposition) to linguis-
tic terms of output variables (consequent proposi-
tion), where these linguistic terms can be defined
by choosing suitable fuzzy sets [3].
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Logical operators. In fuzzy logic, the result of
the some logical operation is a value between 0 and
1, therefore it is necessary to use functions in order
to maintain the truth table of those logical opera-
tors. The logical operators used are AND, OR and
NOT. In fuzzy logic, the operator AND is repre-
sented using the function min, i.e., A AND B re-
sults in min(A,B). The operator OR is associated
with the function max, where A OR B is equal to
max(A,B). Finally, the operator NOT as in NOT
A becomes 1−A (1 minus A).

2.3.2 Fuzzy Inference System

There can be different fuzzy inference systems de-
pending on the structure of the consequent propo-
sition. The most common ones are the Mam-
dani (Linguistic) fuzzy model, where both the an-
tecedent and consequent are fuzzy linguistic terms,
and the Takagi-Sugeno (TS) fuzzy model, where
the consequent is a polynomial function in re-
spect to the antecedent variables. This work uses
the Mamdani-type fuzzy model as it is generally
more interpretable and well-suited to human in-
put. A fuzzy inference system is comprised of five
parts: fuzzification of the input variables, appli-
cation of the fuzzy operator, implication from an-
tecedent to the consequent, aggregation of the con-
sequents across the rules and defuzzification. An
example called ”Movie Ratings” is create to illus-
trate the different parts of a fuzzy inference system.
The overall procedure is outlined in Fig. 1. This ex-
ample has two inputs, plot and actors, three If-Then
rules and one output, rating.

Figure 1: Visual representation of all the processes
of a Fuzzy Inference System.

Considering the inputs, plot and actors, with val-
ues equal to three and eight, respectively, the fuzzi-
fication of the input variables step takes the numer-
ical values and determines their equivalent degree of

membership using membership functions. The sec-
ond step, application of the fuzzy operators, takes
the two membership values and selects one, depend-
ing on the fuzzy operator. Note that the first and
third rule have different fuzzy operators. Subse-
quently, the third step , applying the implication
method, is related to reshaping the output fuzzy
set from the previous step. In this case, the impli-
cation operator min truncates the fuzzy set. The
fourth step is to aggregate all the output fuzzy sets
from the implication method, as it is one fuzzy set
per rule, using the max operator, which results in a
final fuzzy set. Finally, the defuzzification method
transforms the output fuzzy set of the aggreation
method to a single crisp value, using the centroid
method that returns the center of area under the
curve.

3. Database

The creation of a meaningful and relevant dataset
for wildfire detection and segmentation can be quite
the challenge. There are a lot of different real-world
scenarios that need to be considered, and creating
annotations and ground truth data can usually take
long hours. Images with fire and smoke are impor-
tant but do not encompass all the real-world sit-
uations. For a balanced dataset, it is imperative
to include samples with firefighters or firetrucks in
the field of operations, with sunsets or clouds, as
these display similar colors to fire and smoke, and
with areas of interest (flame or smoke) at long dis-
tances. In terms of annotations, there is a signif-
icant value for researchers having further informa-
tion about a sample. Having prior knowledge about
the characteristics of a dataset can help researchers
improve fire detection approaches and embed rele-
vant information. Considering how similar sunsets
and clouds can be to flame and smoke colors, it can
be expected that some algorithms will sometimes
misclassify these situations as fire or smoke, respec-
tively. However, having annotations indicating the
presence of a sunset or clouds can help the user
understand those misclassifications and the reasons
behind it, thus allowing to create a more robust al-
gorithm to succeed in these scenarios.

3.1. Corsican Fire Database

The Corsican Fire Database (CFDB) is an online
database of wildfire images and sequences that al-
lows the evaluation and comparison of computer
vision algorithms related to wildfire detection [9].
This database enables users to upload their own
images and image sequences, that can be catego-
rized with different annotations, in order to create
an evolving dataset. The dataset contains 500 im-
ages in the visible spectrum, 100 pairs of visible and
near infrared images, and 5 multi-modal sequences
in the visible and near infrared areas.
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Fire Image Dataset. The development and test-
ing of the proposed approach was achieved using a
smaller dataset (Fig. 2) of the CFDB. This dataset
is composed of 207 images from the 500 samples in
the visible region. We removed part of the images
due to samples having low resolution or noise, de-
creasing the overall quality of the dataset, or sam-
ples having fires created in controlled environments,
as these do not represent wildfire scenarios (forests).
The performance of the algorithm was fully tested
using the 207 images, whilst the development of
each model was attained using 50 images for an
easier and faster evaluation analysis. Furthermore,
the ground truth data considered for this work is
the ground truth (binary) images available in the
Corsican Fire Database.

Figure 2: Fire Image Dataset. Side-by-side samples
of fire images (colored) and respective ground truths
(binary), including firefighters and firetrucks, and
varying visibility conditions, e.g., day, sunset, night
and with smoke.

4. Methodology
Problem Description. The problem tackled by
the proposed architecture in terms of data annota-
tion can be under a two-stage approach: i) segmen-
tation and ii) classification. The first one is relative
to the segmentation of an image that is partition-
ing into several superpixels and, subsequently, re-
gions (see section 4.2.1). This is achieved using the
SLIC algorithm and taking advantage of the HSL
and YCbCr color features. The second addresses
the classification of the different segmented regions
by assigning different categories accordingly to their
similarity to fire color attributes [8]. In essence, the
objectives of this work are twofold: i) pixel-wise
segmentation of fire and ii) description of the fire
color category.

Consider a preset color space, D, that can be de-
fined as D ∈ Rc, where c represents the number
of channels. A sample image, I, encoded in a D
color space domain, is composed of multiples pixels
with every pixel x also being defined as vectors in

Rc. The first objective addresses the pixel-wise seg-
mentation of the flame in an image by representing
every pixel as part of two different classes, F and
N . Let F represent the set of pixels associated
to the fire class, i.e., pixels exhibiting fire colors,
and N the pixels belonging to the non-fire class,
in other words, pixels that do not display fire col-
ors [8]. Accordingly, the ground truth defines the
expert validated data, where both classes are, in
this case, binary and mutually exclusive, i.e., x ∈ F
or x ∈ N . Furthermore, the second objective tack-
les the description of fire colors where four different
categories, namely red, orange, yellow and other,
were modeled in order to create annotations rel-
atively to both the number of fire pixels and the
number of pixels belonging to each category, en-
abling further improvements in the overall dataset.
Note that only pixels belonging to the fire class,
x ∈ F , are subsequently part of one of the four cat-
egories {Cred, Corange, Cyellow, Cother}. In contrast to
the first objective, defining pixels to a color cate-
gory in a crisp way can be very challenging.

4.1. Seeing Fire across Color Spaces

As the objective is to segment the flame based on
color, choosing relevant color spaces can be very
helpful when defining parameters that correspond
to fire colors, thus, leading to better results. This
is a particularly important step for images with sim-
ilar fire colors in non-fire regions and when there is
smoke over the flame, decreasing the perception of
the fire colors even for human annotation.

For these reasons, the color spaces used are the
HSL and the YCbCr. The HSL color space is easy
to use and works well in scenarios with a high con-
trast between the flame and the background. The
saturation and lightness channels are more intuitive
in defining fire colors and separating them from
dark smoke (high saturation) and clouds (low light-
ness). Moreover, the hue channel makes it easier to
specify the range of colors for the linguistic terms
(e.g., red, orange, yellow). However, this color space
is more challenging when it comes to images with
smoke in the scene or regions with similar colors to
fire colors (Fig. 3). In these situations, the YCbCr
color space allows for an easier flame segmentation
(Fig. 4) because of its ability to separate the colors,
but it is less interpretable than the HSL making
its development more complex. Color-based fea-
tures derived from these datasets are employed in
the two stages of the proposed approach, namely in
the segmentation and classification parts.

4.2. Color-based Superpixel Segmentation

The use of superpixels allows to segment an image
by clustering pixels based on their color and prox-
imity. This technique can be very useful since su-
perpixels adhere better to the image boundaries and
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(a) Original
Image

0 0.2 0.4 0.6 0.8 1

(b) Hue

0 0.2 0.4 0.6 0.8 1

(c) Satura-
tion

0 0.2 0.4 0.6 0.8

(d) Lightness

(e) Original
Image

0 0.2 0.4 0.6 0.8 1

(f) Hue

0 0.2 0.4 0.6 0.8 1

(g) Satura-
tion

0 0.2 0.4 0.6 0.8 1

(h) Lightness

Figure 3: Fire Features in HSL. Visual display of
each HSL color channel for two different images.

(a) Original
Image

16 55.4 94.8 134.2 173.6 213

(b) Lumi-
nance

30 50.4 70.8 91.2 111.6 132

(c) Chromi-
nance Blue

120 141.8 163.6 185.4 207.2 229

(d) Chromi-
nance Red

(e) Original
Image

23 56.6 90.2 123.8 157.4 191

(f) Lumi-
nance

72 86 100 114 128 142

(g) Chromi-
nance Blue

108 124 140 156 172 188

(h) Chromi-
nance Red

Figure 4: Fire Features in YCbCr. Visual display of
each YCbCr color channel for two different images.

reduce the complexity of several image processing
operations [1], thus decreasing processing times.

Superpixel Algorithm. The superpixels are
generated using the simple linear iterative cluster-
ing (SLIC) algorithm (see section 2.2.1) that allows
the specification of both the desired number of su-
perpixels, Nsp, and their compactness, m.
Number of superpixels, Nsp - This number must
ensure that the algorithm can achieve a fine-grained
segmentation, which drives the quality of the seg-
mentation. Since flame shapes are very irregular
and the image data might contain regions of inter-
est captured at long distances, ifNsp is too small the
image partitioning results in larger superpixels that
do not adhere exclusively to the flames. This behav-
ior is illustrated in Fig. 5, where in the lower left
corner of the samples presented we can distinctly
observe that the superpixels can capture the flames
but also aggregate other information nearby. This
would inherently degrade the quality of the segmen-
tation, but more importantly, it could prevent an
accurate semantic segmentation because a mislead-
ing mean color value of the superpixel could result
in its misclassification. However, selecting higher

values of Nsp results in a larger number of increas-
ingly small superpixels, as depicted in Fig. 5, which
are harder to merge using the mean color statistics
as these capture less context information. The value
established by default in our algorithm is 1000 as
it is considered an adequate trade-off between these
factors.

Compactness, m - Since this parameter controls
the shape of the superpixels, it is particularly rel-
evant when segmenting irregular shapes like fire.
The influence of varying this parameter can be ob-
served notably in Fig. 5, by comparing the samples
on the upper right corner of top and bottom row
images. The effect of enforcing a higher compact-
ness (depicted on the bottom row) could result in
less fine-grained semantic segmentation for both fire
and fire colors. For this reason, the value of m was
established as 1, because it is the lowest value pos-
sible, making superpixels adhere better to irregular
boundaries.

Figure 5: Visual comparison between different Nsp

and C. The m in the lower left corner of each image
is 100 and 2000 in the upper right corner. Images
in the top row have a m equal to 1 and images in
the bottom row to 20.

Furthermore, the superpixels are defined as vec-
tors in R3 in both HSL and YCbCr color spaces,
where each entry corresponds to the mean color of
each channel (Hsp

j , Ssp
j , Lsp

j or Y sp
j , Cbspj , Crspj ) of

the superpixel sp, with j ∈ [1, Nsp].

4.2.1 Merging superpixels

This method combines neighboring superpixels that
register a similar color shade. This is performed
using the YCbCr color features as these allow the
separation of fire from other instances like smoke.
Adjacent superpixels, j and i, are compared based
on their mean color (Y sp

j,i , Cbspj,i, Crspj,i) and merged
if each entry of the pairwise difference is lower or
equal to a threshold {0.034, 0.1, 0.03} , as follows:

| Y sp
j − Y sp

i | ≤ 0.034

| Cbspj − Cbspi | ≤ 0.1 (4)

| Crspj − Crspi | ≤ 0.03
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Figure 6 demonstrates how adjacent superpixels
would merge together if all the conditions are met.
Superpixel 16 is compared with superpixels 1 and
27, and, since all the three conditions in 4 are satis-
fied, the three superpixels are merged together cre-
ating region number 1. In the end, this process
results in an image similar to the far right one. The
threshold values used to merge the superpixels were
fine-tuned until the overall flame-only segmentation
was fairly good.

Figure 6: Zoomed area shows how similar superpix-
els 1, 16 and 27 merge, creating region number 1.
Merging process results in a region-defined image.

4.3. Interpretable Rule-based Models

Humans describe colors using linguistic terms like
red, green or pink, but color perception might differ
from person to person [4]. Likewise, image retrieval
for search-based analyses is also based on key cat-
egorical terms, namely color. Considering that rel-
evant fire characteristics are related to their color,
the annotation of these attributes is fundamental
towards creating large-scale datasets with relevant
information that can be used in a wide range of fire
detection scenarios.

This work proposes interpretable linguistic mod-
els designed for fire segmentation and classification
of the regions obtained from the previous step. The
rule-based architecture is built with Mamdani-type
fuzzy inference systems [7] that describe the rules
of the knowledge base with linguistic terms. The
concept of the rules relies on the association of the
linguistic terms between both the modeling of the
color-based features and the categorization of col-
ors, with the underlying range of values. Our ap-
proach leverages two complementary models, de-
veloped for the HSL and YCbCr color spaces and
outlined in Table 1. Both models are defined with
three inputs, corresponding to the mean color of
each channel for every region. The two models out-
put a fire possibility per region, that is leveraged to
perform the classification of the merged superpix-
els and achieve the pixel-wise segmentation of fire
in the images. In addition, the HSL model is able
to describe fire color categories to perform semantic
segmentation of the colors in the image. The pro-
posed architecture may integrate both models in the
data annotation approach combining the HSL and
YCbCr using a weighted average or maximum op-
erators, to generate a segmentation of fire and the
fire color categories [8].

HSL model. The HSL fuzzy model uses lin-
guistic terms to describe levels of hue, satura-
tion and lightness to model the fire possibility as
low or high, and the fire color category, which
classifies a region to a corresponding color subset
{Cred, Corange, Cyellow, Cother}. This model uses nine
If-Then rules to join the inputs variables with the
output variables, which are defined using member-
ship functions (Fig. 7).
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(d) Fire color cat-
egory output
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Figure 7: Visual representation of the membership
functions for the inputs and outputs of the HSL
model.

YCbCr model. The YCbCr fuzzy model em-
ploys terms describing degrees of luminance,
chrominance blue and chrominance red to model
the fire color possibility in terms of low, medium,
medium high and high. Similarly, this model uses
fourteen rules to establish relationships between the
inputs and outputs variables, which are defined us-
ing membership functions (Fig. 8).

5. Results
Considering the objectives of the proposed fire an-
notation approach, the performance analysis focus
in evaluating the developed architecture with sev-
eral baseline techniques. This work presents the as-
sessment and comparison of four different methods
to evaluate the proposed architecture. The first two
techniques are based solely on the HSL and YCbCr
models. Then, the other two combine both models
to achieve a multi-purpose model capable of utiliz-
ing their qualities and complement each other. The
Weighted model is based on a weighted average,
considering several weighted values. Finally, the
Max Value model, as the name implies, selects the
higher output between the HSL and YCbCr models.
All the following results are obtained using this last
model, since it registered the best overall results.

5.1. Performance metrics
The following metrics allow the assessment of the
different models in several important aspects. The

7



Table 1: Description of the interpretable ruled-based linguistic models in terms of inputs, outputs, mem-
bership functions and their respective parameters.

Input Output

Model Variable Linguistic terms Parameters Variable Linguistic terms Output parameters

HSL

Hue

Saturation

Lightness

red1, orange, yellow,

other, red2

low, high

low, medium, high

[0, 0, 0.03, 0.055]; [0.04, 0.09, 0.133]; [0.11, 0.16, 0.2];

[0.17, 0.25, 0.87, 0.96]; [0.9, 0.97, 1, 1];

[0, 0, 0.4, 0.65]; [0.545, 0.75, 1, 1];

[0, 0, 0.23, 0.39]; [0.23, 0.427, 0.85, 0.96]; [0.94, 0.965, 1, 1];

fire possibility

fire color

low, high

red, orange,

yellow, other

[0, 0, 0.3, 0.5]; [0.4, 0.7, 1, 1];

[0.5, 1, 1.75]; [1.25, 2, 2.75];

[2.25, 3, 3.75]; [3.25, 4, 4.5];

YCbCr

Luminance

Chrominance Blue

Chrominance Red

low, medium,

medium high, high

low, medium, high

low, medium, high

[0, 0, 0.365, 0.49]; [0.457, 0.5, 0.548, 0.594];

[0.548, 0.63, 0.72, 0.776]; [0.73, 0.8, 1, 1];

[0, 0, 0.435, 0.56]; [0.47, 0.527, 0.58, 0.6]; [0.446, 0.69, 1, 1];

[0, 0, 0.49, 0.625]; [0.58, 0.647, 0.69, 0.78]; [0.71, 0.826, 1, 1];

fire possibility
low, medium,

medium high, high

[0, 0, 0.23, 0.33]; [0.27, 0.35, 0.53, 0.65];

[0.6, 0.65, 0.75, 0.8]; [0.75, 0.83, 1, 1];
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(a) Luminance input
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(c) Chrominance Red
input
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(d) Fire color possibil-
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Figure 8: Visual representation of the membership
functions for the inputs and outputs of the YCbCr
model.

Table 2: Performance measures for segmentation.

Accuracy IoU Precision Recall

TP+TN
TP+FN+FP+TN

TP
TP+FP+FN

TP
TP+FP

TP
TP+FN

metrics used, outlined in Table 2, are: Accuracy,
Intersection over Union (IoU), Precision and recall.
These are defined based on true positives (TP), true
negatives (TN), false positives (FP) and false neg-
atives (FN). The terms ”true” and ”false” are as-
sociated to whether the prediction model was able
to correctly classify the positives and negatives, re-
spectively. Considering that each proposed model
generates output values for each region that are be-
tween 0 and 1, representative of the degree of mem-
bership. These are then converted to classes by ap-
plying a rounding threshold. To assign each region
to the fire and non-fire classes, the threshold δ use is
0.5 and is later on changed to show the capabilities
of the proposed approach.

5.2. Results evaluation

The pixel-wise segmentation is defined by classify-
ing each region with the fire color possibility output
from the HSL and YCbCr models, which regards
the possibility of a region being fire-colored. The
description of the fire color category is achieved by
assigning different semantic labels to the segmenta-
tion regions belonging to the fire class. The three
samples depicted in Fig. 9 and Fig. 10 represent dif-
ferent scenarios that the Fire Image Dataset (sec-
tion 3.1) encompasses and showcase all the interme-
diate steps of the proposed architecture. In Fig. 9,
the first image represents the original sample in the
common RGB color space. The second one exhibits
the result after merging all the similar superpix-
els together to achieve a separation between the
flame and the surrounding scenery. Subsequently,
the fuzzy models generate the classification of all
regions according to the fire color possibility out-
put (Fig. 9c), with warm colors representing higher
values that will be assigned to the fire class. More-
over, the HSL linguistic model classifies the fire col-
ors according to the color categories (Fig. 9d). As
one can see, the approach is capable of identifying
all fire colors in the first two samples and assigns
the other color label to the remaining colors of the
scene. Finally, Fig. 10c outlines the intersection be-
tween the fire classification (Fig. 10b) and the color
classification (Fig. 9d), which allows to automati-
cally generate fire data annotations close to expert

Table 3: Overall results of all the models.

Model δ Accuracy IoU Precision Recall

HSL HSL model 0.5 93.39 62.49 92.50 65.77

YCbCr YCbCr model 0.5 91.58 56.68 93.50 58.97

Weighted

0.4 HSL + 0.6 YCbCr

0.3 HSL + 0.7 YCbCr

0.2 HSL + 0.8 YCbCr

0.5

0.5

0.5

93.16

93.01

92.81

61.52

61.00

60.13

94.24

94.27

94.62

63.83

63.19

62.32

Max Value max(HSL,YCbCr)
0.5

0.4

93.47

94.04

66.51

73.53

92.74

88.57

71.23

83.14
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annotations.
0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

(a) Original
Image

(b) Final
Merging

0 0.2 0.4 0.6 0.8 1

(c) Fire Pos-
sibility

(d) Fire Col-
ors

Figure 9: Samples representing real-world scenarios
to exemplify the results at each stage of the pro-
posed approach.

(a) Ground truth (b) Binary Out-
put δ = 0.5

(c) Output

Figure 10: Display of the binary output image and
output generated by the Max Value model.

The overall results of all the proposed methods
are outlined in Table 3. Comparing to the other
models, the Max Value model registers the best re-
sults in accuracy, IoU and Recall in both thresh-
olds. The precision metric decreases for a threshold
of 0.4, meaning that the number of false positives
increased.

Limitations. In a relevant and complete fire im-
age database, it is imperative to include scenery
or objects that resemble fire colors as these repre-
sent real-world scenarios. Although the proposed
architecture registers significant results and allows
to create rich annotations, the approach still faces
some limitations especially in situations with simi-
lar fire colors in non-fire regions, e.g., sunsets, fire-
fighters or firetrucks, as outlined in Fig. 11. Such
limitations can be improved by either some type of
expert input or with algorithms able to identify this
kind of scenes and objects.

(a) Original Im-
age

(b) Ground truth (c) Output
δ = 0.5

Figure 11: Samples where the proposed approaches
registers some limitations in the classification.

5.3. Adaptability of the proposed approach

The proposed approach enables easy adjustments
of some key parameters associated with the inter-
mediate steps from the architecture. Several pa-
rameters are the number of superpixels, which can
affect the overall result of merging all the super-
pixels, the threshold, allowing regions with a lower
fire possibility to be included, and the fuzzy model
parameters that represent fire colors in each color
space.

Threshold. The threshold value can change the
overall segmentation. For images with high levels
of smoke, this parameter usually enhances the final
semantic segmentation (Fig. 12b). However, since
these images usually register an overall high satu-
ration, the proposed approach classifies most of the
improvements to the other class (grey color). More-
over, the same observations are registered in regions
similar to fire colors, where using a threshold of 0.4
results in a worse segmented image (Fig. 12e).

6. Conclusions

The two objectives outlined for this work were suc-
cessfully achieved. Regarding the first objective,
the pixel-wise segmentation of the fire can be ob-
tained by specifying a threshold to the image con-
taining the fire color possibilities of each region.
The second objective, description of the fire color
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(a) (b) (c)

(d) Original Im-
age

(e) Output δ =
0.4

(f) Output δ =
0.5

Figure 12: Samples displaying how the threshold
affects the final semantic segmentation.

category, can then be generated by intersecting the
pixel-wise segmentation of the fire with the out-
put fire color category of the HSL fuzzy model.
The proposed method, the Max Value model, gives
the best overall performance of all the baseline ap-
proaches. It can cope with a series of different sce-
narios as it was previously demonstrated. Where
previously baseline models had some step backs, the
Max Value model was able to overcome those by
combining the two fuzzy models. Considering that
the proposed approach detects fire colors, it is to be
expected that in certain situations it would detect
similar fire colors in non-fire objects. However, the
interpretability and adaptability of the proposed ar-
chitecture comes into play, allowing the expert to
adjust some parameters to validate and generate
reliable ground truth data and respective annota-
tions. The most common parameter that can usu-
ally be changed in other fire detection techniques
is the classification threshold. As one could see in
section 5.3, changing the threshold value resulted
in better overall results. This parameter is par-
ticularly interesting in regions where the fire has
smoke over it, since these areas usually output a
lower possibility of being fire-colored as the smoke
decreases the pixel’s saturation. Therefore, decreas-
ing the threshold value enables these regions to be
considered. Another parameter, particular to the
proposed approach, is the number of superpixels.
As it was demonstrated, the number of superpix-
els can sometimes increase or decrease the overall
performance. Finally, the fuzzy model parameters
could also be changed in the situation that the pre-
vious ones mentioned would not increase the results.
However, these are not very straighforward like the
threshold or number of superpixels, since the fuzzy
model parameters are related to how the HSL and
YCbCr color spaces perceive fire colors.

In conclusion, the proposed architecture con-

tributes ot fire detection research, as even though it
is not a fire detection approach, it allows to propose
automatic fire data annotations for expert valida-
tion towards the creation of high-quality large-scale
datasets.
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[10] T. Çelik and H. Demirel. Fire detection in
video sequences using a generic color model.
Fire Safety Journal, 44:147–158, 2009.

10




