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Resumo

Os incêndios florestais são catástrofes naturais bastante imprevisı́veis que conseguem queimar

grandes áreas florestais e destruir propriedades. A sua prevenção e deteção permitem diminuir a possi-

bilidade de danos e a rápida mobilização de equipas de emergência. Deste modo, sistemas automáticos

capazes de detetar fogos são cada vez mais importantes. O desenvolvimento deste tipo de técnicas

necessita de um elevado número de dados de forma a garantirem bons resultados e serem fiáveis em

cenários reais. No entanto, o número reduzido e a má qualidade de bases de dados disponı́veis na

literatura, e a falta de anotações dos mesmos impedem o desenvolvimento de técnicas automáticas.

O objetivo deste trabalho, inserido no projeto Eye in the Sky (https://adai.pt/eyeinthesky/), é propor

uma arquitetura baseada em segmentação e em modelos linguı́sticos interpretáveis capazes de gerar

anotações relacionadas com incêndios florestais. O método tira proveito das caracterı́sticas ricas das

cores do fogo em duas etapas diferentes, segmentação e classificação. A primeira está relacionada

com gerar os superpixels e agregá-los em regiões com base nas cores do fogo no espaço de cores

de YCbCr. Subsequentemente, a classificação de cada região é realizada através de modelos inter-

pretáveis baseados nos espaços de cores HSL e YCbCr, os quais permitem gerar uma segmentação do

fogo e anotações semânticas das cores do fogo. Para além disso, este método permite ajustar certos

parâmetros de forma a melhorar os resultados. A técnica proposta é avaliada em diferentes contextos

reais através de uma base de dados disponı́vel publicamente.

Palavras-chave: deteção de fogo, espaço de cores HSL, espaço de cores YCbCr, su-

perpı́xel, modelos linguı́sticos interpretáveis, anotações de dados de fogo
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Abstract

Wildfires are natural disasters that can be quite unpredictable, burning large areas of forests and de-

stroying properties. Fire detection and early prevention enable a faster reaction from emergency teams

and to decrease the possibility of fire damage. Therefore, automatic systems capable of detecting fires

are increasingly important. Their development requires a high number of data in order to guarantee

good performances and be reliable in real scenarios. However, the low number and poor quality of

available datasets in the literature, and the lack of annotations hamper the development of such au-

tomatic techniques. The objective of this work, developed in the framework of project Eye in the Sky

(https://adai.pt/eyeinthesky/), is to propose an architecture based on segmentation and interpretable lin-

guistic models capable of generating wildfire annotations. The proposed approach takes advantage of

rich color features representative of fire in two different stages, segmentation and classification. The first

one is related to generating superpixels and aggregating these into regions based on the representa-

tion of fire colors in the YCbCr color space. Subsequently, the classification of each region is achieved

using interpretable rule-base models based on the HSL and YCbCr color spaces, which generates a

pixel-wise fire segmentation and the semantic annotations of the fire colors. Furthermore, this method

allows certain fine-tunable parameters in order to improve its overall results. The proposed approach is

evaluated in different real contexts using a publicly available database.

Keywords: fire detection, HSL color space, YCbCr color space, superpixel, interpretable lin-

guistic models, fire data annotations
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Chapter 1

Introduction

Natural disasters like floods, earthquakes and wildfires have a considerable environmental and eco-

nomic impact. Every year, wildfires destroy hectares of lands, burning forests and villages, leading to

the loss of material goods and possibly lives. During the year of 2020, the state of California has reg-

istered a significant increase in wildfires, especially when compared to previous years, reporting almost

1700 kha of burned area and more than 30 deaths [1]. In 2018, the same state registered the Ranch

Fire (Mendocino Complex) reaching almost 200 kha of burned area [2]. In Portugal, wildfires are very

common during the summer and a similar scenario occurred in 2017, where the wildfire of Pedrogão

Grande burned around 53 kha and caused more than 60 deaths and 200 injured [3].

In recent years, climate change has been one of the most discussed topics due to the increase of

its effects having consequences on the planet Earth. The reduction of greenhouse gases is essential to

prevent these consequences. The increase in the average temperature, caused by global warming, can

lead to more frequent heat waves and longer dry periods, increasing the risk of wildfire [4].

This chapter provides an overview of the different fire detection techniques present in the literature,

followed by the proposed approach in section 1.2. Finally, section 1.3 presents the thesis outline with

brief descriptions of the following chapters.

1.1 Fire Detection Topic Overview

Over the years, the increased number of wildfires has raised a need in developing automatic tech-

niques capable of helping in wildfire fighting. Fire detection approaches able to provide earlier fire alerts

would enable a faster response from emergency teams and reduce the possibility of fire destruction in

large areas and, potentially, material goods. Moreover, further knowledge about the fire in terms of its

size and which direction the fire is evolving would reveal to be crucial, specially, in the event of existing

urban buildings since it would allow a faster human reaction. Weather forecast can provide to some

extent information related to large areas having a higher fire hazard which would enable a better de-

ployment of emergency teams. However, not only are wildfires very unpredictable events but also these

weather reports do not give a very precise information about the localization but rather a rough large
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area.

Accordingly, the scientific community has explored and developed automatic fire event detection tech-

niques to enable faster reaction times and reduce fire destruction. Initially, conventional fire detection ap-

proaches were usually based on data collected from ultraviolet or infrared fire sensors. In addition, wire-

less sensor networks (WSNs) emerge as an alternative to conventional techniques [5, 6]. These consist

on a large number of cheaper and smaller sensors able to collect different types of data, e.g., temper-

ature, humidity or carbon monoxide density, and send an alarm whenever a fire is detected. However,

those sensors are required to be in close proximity of a fire in order to register reliable data, which can

be quite expensive in terms of their deployment and maintenance, specially in large fields [7, 8].

The tecnological advances of cameras in terms of processing capabilities and overall quality of im-

ages allowed the progress of computer vision-based techniques. As the name implies, these methods

are related to digital images or videos being processed by a machine and utilizing visual features en-

countered in these type of data, e.g., color, motion or texture, to retrieve important and interesting

information. Considering the topic of fire detection, several computer vision approaches take advantage

of such characteristics, specially color since fires are usually representative of bright and warm colors.

For these reasons, fire detection approaches are built upon color spaces as these are associated with

a crisp representation of colors in different domains. The most well-known one is the RGB color space [9,

10], as it is related to how the human eye perceives color. Chen et al. [9] propose a fire detection

technique capable of classifying flame and smoke pixels using the RGB color space and motion features.

The latter complements the RGB-based model when it detects similar fire and smoke colors in non-fire

objects, which enables the reduction of the number of false alarms. Furthermore, some approaches

exploit other color spaces like the HSV [11, 12], for being more interpretable in describing colors, or

the YCbCr [13, 14], which allows the separation between luminance (luminosity) and chrominances

(color information).

Several classical computer vision techniques utilize visual and motion features of fire and smoke

areas to develop better and more reliable classifiers. However, since classifying a fire pixel in terms of

colors can be a subjective task, these techniques using rules with fixed fine-tuned values have certain

limitations when applied to different scenarios or datasets [15].

Considering the limitations previously outlined with regard to classic computer vision techniques, the

scientific community has been applying visual fire attributes (e.g., color or motion features) with intelligent

systems methods. Accordingly, one might consider the use of machine learning (ML) or deep learning

(DL) techniques, as these have been very recurrent approaches in the last few years [15]. In particular,

deep learning methods have been widely used in various applications since they are able to handle

high-dimensional data like images or videos [16]. Yin et al. [17] propose a smoke detection method that

uses a deep normalization and convolutional neural network (DNCNN) based on ZFNet [18]. The deep

neural network allows to extract features from images and classify the smoke dataset. Furthermore,

they perform data augmentation to increase the overall number of training samples in the dataset and

decrease the possibility of overfitting. In addition to data augmentation techniques, other approaches

also incorporate transfer learning methods [19, 20]. The development of computational resources has
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encouraged the increase in deep learning-based approaches [21]. However, the lack of datasets, not

only in terms of quantity but also quality and how relevant and representative their samples are, results in

certain limitations in their application to different scenarios and may cause deep learning models to over-

fit. Moreover, deep learning models are not very interpretable techniques limiting their understanding in

terms of the reasons that lead to their results.

Additionally, fire detection approaches use other intelligent system techniques like fuzzy model-

ing [22–24]. Fuzzy theory can be quite appealing as it allows humans to represent fire colors in a non-

crisp way. Considering that humans and computers have different ways of representing colors, where

one uses linguistic terms, that are subjective to the person and context, and the other color spaces

(vectors), fuzzy models provide a solution to representing color categories using color spaces [25]. This

is particularly interesting in classification problems as these models assign a degree of membership

instead of the usual binary value, which might enable better interpretations from a user, especially in

cases where the results register false positives or false negatives.

The work of Çelik et al. [22] proposes a fire detection technique based on a fuzzy model developed

for the YCbCr color space. Taking into consideration that a fire pixel can be represented with a high

luminance and chrominance red, and a low chrominance blue, the ability of the YCbCr color space to

separate these three attributes is quite useful when compared to other color spaces. Finally, this fuzzy

model outputs the possibility of a pixel being a fire pixel. Despite this model registering a detection rate

of 99% and a false alarm rate of 4.5%, the available information about the dataset is quite insufficient to

fully understand how diverse it is. In fact, there is no information about the number of non-fire images.

The authors also propose a smoke detection technique but no evaluation analysis was made.

1.2 Proposed Approach

Wildfires are among the most common natural catastrophes around the world, burning huge areas

of land every year and, in the worst case scenario, taking humans lives. Their prevention and early

detection are crucial to minimize fire damage, improve the reaction time of firefighters and empower

better decisions. For these reasons, fire detection techniques have been proposed by the scientific

community as an attempt to create automatic systems.

Many of these fire detection techniques are hampered by the overall quality of datasets and the lack

of annotations. The first is related to various limitations concerning the datasets. These limitations are

usually associated with the insufficient number of samples, where many can even have some sort of

noise, decreasing their overall image quality, or represent different contexts than nature scenery, e.g.,

fires in buildings or indoor. Moreover, several images come from videos that depending on the capturing

rate and the actual video, could be very similar to each other, increasing the number of the dataset

but not its significance. Finally, the lack of dataset annotations, i.e., brief key indications that describe

different real contexts (e.g., images with fire at long-distance, with firetrucks or with sunsets, which

display similar colors to fire) or other valuable features, can be a hindrance for a better comprehension

of the existent models in the scientific community, specially in terms of image characteristics that these
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have been developed and tested on, and in cases of misclassifications.

To address the limitations that datasets face, this work tackles the development of a method for

fire data annotations through semantic segmentation, instead of the more common fire detections ap-

proaches. In fact, the proposed approach presents a method to generate fire segmentations and labels

describing fire colors, which can then be validated by experts related to wildfires to create reliable ground

truth data.

At a first stage, the proposed architecture relies on the rich color features representative of fire,

namely in the HSL and YCbCr color spaces, which allow an insightful interpretation that, in return,

enables the color-based superpixel segmentation. Afterwards, interpretable rule-based linguistic models

are employed to classify superpixels in terms of their color attributes to infer which correspond to the fire

or non-fire classes. Moreover, these models allow to generate semantic labels describing the fire colors

present in the image [26].

The objectives of the proposed fire data annotations approach are:

• Obtain a pixel-wise segmentation of the flame.

• Describe the colors of fire using color categories.

The proposed approach is evaluated against a subset of the Corsican Fire Database, demonstrating

excellent segmentation results and their ability to handle a variety of real-contexts, e.g., with fire at long-

distances, with firefighters or firetrucks, and in smoke situations. Finally, we demonstrate the different

limitations that the several proposed models face and this approach’s ability to allow experts to intuitively

fine-tune the model output or adjust some parameters, e.g., threshold or number of superpixels, in order

to improve the final segmentation and ensure the expert confidence during the annotation process.

The main contributions of the proposed work are:

• Development of a fire data annotation architecture that allows to generate reliable fire segmenta-

tions and semantic labels descriptive of the represented colors.

• Implementation of interpretable linguistic models for flame pixel classification, enabling a better

comprehensibility and transparency.

• Create datasets with high quality and quantity samples with relevant annotations related to fire and

smoke features.

1.3 Thesis Outline

Following this first chapter, this thesis is organized in 6 chapters including the present one that

addresses the motivation and objectives of this work.

Chapter 2 introduces all the theoretical concepts of the techniques applied throughout this work.

First, with a brief explanation about the different color spaces that the proposed approach utilizes to

create the fuzzy models, followed by the superpixels principles and properties, mentioning different

algorithms and describing the SLIC superpixel algorithm used for image segmentation in this thesis.

4



Finally, an explanation of fuzzy logic theory with several examples to demonstrate how fuzzy inference

systems works.

Chapter 3 addresses the importance of databases, namely having descriptive annotations and ground

truth data, and the different databases used to develop and test the proposed approach.

Chapter 4 delves into the methodology applied to develop the proposed technique. Firstly, the rea-

sons behind choosing the HSL and YCbCr color spaces. Secondly, the procedure to generate and

merge the superpixels to reach a close flame-only segmentation, and lastly, the description of the two

fuzzy models created using the HSL and YCbCr color features in terms of memberships functions, pa-

rameters and rules.

Chapter 5 presents the final performance results, demonstrating the capabilities of the developed

method with a set of different examples. Initially, describes the dataset and the performance metrics

used to evaluate all the different models. Then, presents all the results and reasons to develop other

solutions. And lastly, the limitations and adaptability of the best model solution.

Chapter 6 reasserts all the achievements and conclusions, closing with future work ideas.
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Chapter 2

Theoretical Background

This chapter provides the theoretical principles used in the proposed approach. Section 2.1 gives

a brief overview of the color spaces HSL and YCbCr and their features since these are used to create

the color-based fire segmentation and the interpretable rule-based fuzzy models. Section 2.2 explains

the properties and different types of superpixels to then dive into the SLIC superpixel algorithm used

to generate superpixels. Finally, section 2.3 describes the fuzzy logic theory, more specifically, how a

fuzzy inference system takes an input and outputs a value, using fuzzy sets, membership functions and

If-Then rules.

2.1 Color Spaces

As humans and computers have different perceptions of color, color spaces allow the latter to repre-

sent colors in different geometric representations. There are many different color spaces defined in Rc,

where c represents the dimensions, i.e., the number of channels. The most common ones are usually

defined in R3, composed of three channels.

RGB color space

The most common color space is the RGB color space and it is composed of three channels, R (red),

G (green) and B (blue). This color space is very similar to how the human eye perceives color. During

the nineteen century, the works of Young and Helmholtz gave birth to the thrichromacy theory [27, 28].

This hypothesis, also known as the Young–Helmholtz theory, declares that the human eye has three

types of photoreceptors (cone cells) that are sensitive to how the light hits the retina. As the light hits

the retina, the different wavelenghts can be classified into short (blue), middle (green) and long (red).

In essence, this theory assumes that any color can be represented by combining three primary colors:

red, green and blue. Similarly, the RGB color space exhibits any color by joining different amounts of

red, green and blue.

Figure 2.1 outlines the RGB color space, displaying different colors. For instance, the black color

corresponds to the origin (Red = Green = Blue = 0) and the white color to the maximum value for all
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three values (Red = Green = Blue = 255). The range for the RGB color space is [0, 255].

Figure 2.1: RGB color space.1

HSL color space

However, the RGB color space is not very suitable for human perception when compared to other

color spaces, since it is hard to characterize a color pixel in terms of amount of red, green and blue.

Similarly, the HSL color space portrays colors in terms of hue (H), saturation (S) and lightness (L), which

is much more perceptive for Humans to comprehend [29].

Hue is related to the dominant wavelength perceived by an observer. It is the attribute of a color, as

red, yellow, blue, etc., independent of intensity. Its range is [0, 360o] [30]. Saturation is associated to the

colorfulness of an area relative to its own brightness and it ranges from 0 to 100%. Lightness is related

to the brightness of an area relative to the brightness of a similarly illuminated white [30]. For instance,

the color black results from a lightness equal to 0 whilst the color white results from a lightness equal to

1. It has the same range as saturation, [0, 100%].

Figure 2.2 displays cylinder representative of the HSL color space. This figure exhibits how each

channel, hue, saturation and lightness, varies. Note that this color space is used in the proposed ap-

proach because of its simple ability to characterize the different fire colors, specifically, in terms of

lightness and saturation, when compared with similar color spaces, for instance, the HSV color space.

YCbCr color space

The YCbCr color space is characterized by the luminance (Y) and the chrominances blue (Cb) and

red (Cr). Compared to previous color spaces, the YCbCr is particularly interesting as it allows to separate

the luminance (luminosity) from the chrominances (color information) [13]. The luminance is associated

with the brightness of the image, whilst chrominances are related to the difference between the blue or

red component and a reference value [31].
1Image downloaded from wikimedia commons RGB: https://commons.wikimedia.org/wiki/File:RGB_Cube_Show_

lowgamma_cutout_a.png
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Figure 2.2: HSL color space.2

The following equation (2.1) enables the conversion of each color pixel from the RGB color space to

the YCbCr color space [31]. Note that this equation converts the RGB image in the range [0, 1] to the

YCbCr image in the range where Y is [16, 235], and Cb and Cr are both [16, 240]..


Y

Cb

Cr

 =


65.481 128.553 24.966

−37.797 −74.203 112

112 −93.786 −18.214



R

G

B

+


16

128

128

 (2.1)

As there is not a simple image to represent the YCbCr color space like the previous color spaces,

Fig. 2.3 displays a fire image and each channel to demonstrate the variations of this color space. As

expected, the images of chrominances blue (Fig. 2.3c) and red (Fig. 2.3d) exhibit high values in re-

gions in accordance to blue (sky) and red (flame) colors, respectively. In addition, the luminance image

(Fig. 2.3b) depicts high values in areas of great luminosity, white clouds and bright yellow regions in the

flame.

2.2 Superpixels

Image segmentation techniques are related to the partitioning of images into multiple regions which

might enable a more insightful representation analysis depending of the method used. Image segmen-

tation is usually used as an intermediate step in several techniques as these allow improvements in

computer vision-based approaches.

Superpixel algorithms are also considered an image segmentation technique as their objective is

to group pixels together based on their characteristics, thus resulting in an image oversegmentation.

This technique is quite interesting as superpixels allow to decrease the difficulty in later operations [33].

In addition, it also reduces the processing time since the number of superpixels is much lower than

the number of pixels. The superpixel term was first introduced by Ren and Malik [34] by defining the

superpixel map and applying the normalized cuts (NCuts) algorithm [35].

2Image downloaded from wikimedia commons HSL: https://commons.wikimedia.org/wiki/File:HSL_color_solid_

cylinder_saturation_gray.png
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(a) Original Image

16 59.8 103.6 147.4 191.2 235

(b) Luminance

19 56.2 93.4 130.6 167.8 205

(c) Chrominance Blue

83 112.2 141.4 170.6 199.8 229

(d) Chrominance Red

Figure 2.3: Sample to represent each channel from the YCbCr color. Original image from the Corsican
Fire Database [32]

According to Achanta et al. [36], the ideal superpixel approach is usually dependent of a specific

application. In other words, many can be well-suited to certain situations and, at the same time, display

disadvantages in others. Therefore, it can be hard to specify what establishes an ideal method to

generate superpixels. Neverless, the works of Achanta et al. [36] and Wang et al. [37] present the

following properties as the most essential and suitable:

1. superpixels should adhere well to image boundaries;

2. ideally, each superpixel should not overlap with multiple objects and should assign a number to

every pixel within the superpixel;

3. in a pre-processing phase, superpixels should be efficient and simple to use in order to decrease

the need of computational power demand for the overall procedure.

Considering these properties, there are a number of different superpixels algorithms throughout the

literature. Based on the classification employed by Achanta et al. [36], these algorithms can usually be

divided into two groups, depending on their iterative process. Therefore, they classified the techniques

as graph-based or gradient-ascent-based.
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Graph-based algorithms

Graph-based methods [35, 38], as the name implies, assign every pixel to a vertex in a graph and

links these through edges. The weight of each edge is based on how similar neighboring connected

pixels are. The algorithm is optimized by minimizing a cost function concerning the edge weights in

order to merge pixels with similar edge weights, generating superpixels. Some algorithms included in

this category are the Normalized Cuts (NCuts) [35] and Lazy Random Walks Superpixel [38].

Gradient-ascent-based algorithms

Gradient-ascent methods [36, 39–41] optimize the process of joining pixels into clusters until a certain

point where a convergence value is met. Algorithms included in this category are Simple Linear Iterative

Clustering (SLIC) [36], Watershed [39], MeanShift [40] and Linear Spectral Clustering (LSC) [41].

2.2.1 Simple Linear Iterative Clustering

The simple linear iterative clustering (SLIC) [36] is a segmentation algorithm based on K-means

clustering that creates superpixels within a five-dimensional [labxy] space defined by the L, a, b values of

CIELAB color space and the x, y pixel coordinates. In essence, the superpixels are created by grouping

pixels that are similar in color and fairly close to each other.

We chose this segmentation algorithm because it is relatively fast to compute and memory efficient

when compared to other methods [36]. It is quite easy to use as it only needs two mandatory inputs, the

actual image and the number of superpixels to generate. In addition, the SLIC algorithm also allows the

change of the superpixels’ compactness, which is related with the superpixel overall shape (explained

in more detail in chapter 4).

Algorithm description

This approach can be divided into four steps: initialization, assignment, update and post-processing.

The algorithm begins by initializing K cluster centers that are spaced S pixels apart, where K is the

desired number of superpixels and S the distance between each cluster center. The clusters centers

are then moved to the lowest gradient position in a 3x3 area to prevent creating a center on an image

boundary and decrease the chances of choosing a pixel with noise.

In the assignment step, each pixel is linked to the closest cluster center in a search region of 2Sx2S,

as depicted in Fig. 2.4. In other words, it calculates the distances between a pixel and every cluster

center in a 2Sx2S area, as supposed to the entire image, assigning the pixel to the nearest cluster

center. In fact, this means that the number of distance calculations is substantially lower when compared

to conventional k-means clustering where a pixel is compared to all cluster centers within the image,

which results in a faster algorithm. For these reasons, this approach requires a distance measure, D, to

calculate the closest cluster center for each pixel.

11



Considering an image with N pixels, each superpixel size is approximately N/K pixels. In order to

create fairly identical superpixels, each cluster center is defined at S =
√

N
K . The euclidean distance

can not be used within pixels represented in the 5-D [labxy] as it would be dependent on the number

of superpixels. A lower number results in larger superpixels where the distance between their centers

would outweigh their color similarity, resulting in superpixels that do not retain the image boundaries.

Therefore, Achanta et al. [36] use a new distance measure D (equation (2.4)) to allow a nearly equal

weigh between the color similarity and distance proximity.

This distance D combines both the color distance (lab) and the spatial distance (xy), where Nlab and

Nxy are their maximum distances in a cluster, respectively, thus resulting in:

dlab =
√
(lk − li)2 + (ak − ai)2 + (bk − bi)2

dxy =
√
(xk − xi)2 + (yk − yi)2

D′ =

√(
dlab
Nlab

)2

+

(
dxy
Nxy

)2

(2.2)

where [li, ai, bi, xi, yi]
> is the pixel i represented in the 5-D space and Ck = [lk, ak, bk, xk, yk]

> the

cluster center.

Then, the maximum spatial distance in a cluster Nxy is considered equal to S, resulting in Nxy =√
N/K and, to simplify the process as color distances can be very diverse, Nlab is considered equal to

a constant m, resulting in the following equation:

D′ =

√(
dlab
m

)2

+

(
dxy
S

)2

(2.3)

Finally, the distance measure D is defined as:

D =

√
dlab

2 +

(
dxy
S

)2

m2 (2.4)

This variable m allows us to control the compactness of a superpixel, i.e., control the weigh between

color similarity and spatial proximity. For a large m value, spatial proximity outweighs color similarity,

where the superpixel is more regularly shaped. This variable may take values in the range [1, 20].

After all pixels have been assigned to a cluster center, the update step allocates the mean value of

all pixels within a cluster to its center. Finally, the assignment and update steps are repeated iteratively

until the residual error E stabilizes, where this error E is associated with the distance between previous

cluster centers and new centers.

After the clustering procedure, some pixels may not belong to the same superpixel as their cluster

center because this algorithm does not enforce connectivity. Therefore, a post-processing step enforces

connectivity and reassigns those pixels to the nearest cluster center using a connected components
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algorithm.

(a) K-means clustering method searches the
entire image

(b) SLIC method searches a limited region

Figure 2.4: Comparing conventional K-means with SLIC. (a) The K-means method computes distances
from each cluster center to every pixel in the image, whilst, (b) in SLIC, distances are computed from
each cluster center to pixels within a 2Sx2S area. The smaller dashed square, SxS, represents the
expected superpixel size. Images adapted from [36].

2.3 Fuzzy Theory

In everyday life, Humans are faced with situations where the decision-making is very subjective and

susceptible to different interpretations from each person thus making it almost impossible to achieve

a precise solution. Several complex problems can not be represented using traditional methodologies

due to their imprecision, as certain operations can be very ambiguous, and due to the lack of precise

information about the problem, where the use of empirical models can be very restrictive or might not

even encompass all the possibilities [42].

Fuzzy logic is a soft-computing approach as it allows to connect the human ability to learn from

previous mistakes with complex computational problems using mathematical knowledge [43]. In fact,

fuzzy modeling is considered interpretable and transparent when compared to other techniques, as it

can often use natural language to describe the inputs, outputs and the relationships between them to

build fuzzy models.

2.3.1 Fuzzy Logic and Fuzzy Inference

Traditional logic usually states that a variable can only belong exclusively to one class by either taking

a true (1) or false value (0). In contrast, fuzzy logic allows variables to have values between 0 and 1

that represents the degree of membership. Considering a classification problem with two classes, in

traditional logic, a variable can solely belong to one class, whilst in fuzzy logic, this variable can have a

membership value representative of its degree to belonging to that same class.

A fuzzy inference system can be represented by the procedure of taking input variables though a

fuzzy model and reaching an output. This process involves memberships functions to define the degrees

of membership, If-Then rules to establish relationships between the inputs and outputs, using fuzzy logic
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operators.

Fuzzy sets

A fuzzy set is set composed of variables having a degree of membership that measures their degree

to belonging to a set. As fuzzy sets do not have well-defined boundaries, they are usually described

using membership functions [44].

Fig. 2.5 outlines an example of a fuzzy set. This example displays the maximum temperature regis-

tered in a specific day, where a temperature higher than 25 degrees Celsius is defined with full degree of

membership (color black). In this case, a temperature of 30 degrees Celsius completely belongs to the

set, with full degree of membership. A temperature of 10 degrees Celsius does not completely belong

to the set, having a zero degree of membership (color white). And finally, a temperature of 20 degrees

Celsius is fairly close to the criterion, so it has a partial degree of membership (e.g. 0.5), represented

with a color gradient, where this value is decided through a membership function.

Figure 2.5: Representation of a fuzzy set for the temperature example.

Membership functions

A membership function, as the name implies, is a function that allows to assign membership values

(or degree of membership) between 0 and 1 to each point of the fuzzy set [42, 44]. Some common types

of membership functions (MF) are: Triangular MF, Trapezoidal MF, Gaussian MF and Sigmoidal MF.

A general membership function is showed in Fig. 2.6. The horizontal axis represents the input vari-

able x and the vertical axis defines the membership value µ(x). The support of a membership function

corresponds to the interval where x will have non-zero membership value (µ(x) > 0). While the core is

the interval where x will have full degree of membership (µ(x) = 1).

If-Then rules

Fuzzy models use logic relations and “if-then” rules to establish relationships among the variables

defined in the model. The following is the general form of a “if-then” rule:

If antecedent proposition, then consequent proposition.
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Figure 2.6: Standard membership function representation.

Generally, these rules relate linguistic terms of input variables (antecedent proposition) to linguis-

tic terms of output variables (consequent proposition), where these linguistic terms can be defined by

choosing suitable fuzzy sets [42]. In other words, If-Then rules are what allow the linkage between the

qualitative values specified in their fuzzy sets, using membership functions, and the input and output

numerical values.

From the same example and considering the output ”heating” for the consequent proposition, an

“if-then” rule would be:

If temperature is low, then heating is high.

Logical Operators

As previously mentioned, in boolean logic, the result of some logical operation can only be 1 (true) or

0 (false). However, in fuzzy logic, the result of the same operation is a value between 0 and 1, therefore

it is necessary to use functions in order to maintain the truth table of those logical operator [45].

The logical operators used are AND, OR and NOT. In fuzzy logic, the operator AND is represented

using the function min, i.e., A AND B results in min(A,B). The operator OR is associated with the

function max, where A OR B is equal to max(A,B). Finally, the operator NOT as in NOT A becomes

1−A (1 minus A).

2.3.2 Fuzzy Inference Systems

There can be different fuzzy inference systems depending on the structure of the consequent propo-

sition. The most common ones are: Mamdani (Linguistic) fuzzy model and Takagi-Sugeno (TS) fuzzy

model:

• Mamdani fuzzy model [46, 47] - if X is small and Y is cheap, then Z is good

Both the antecedent and consequent are usually fuzzy linguistic terms. These models are gener-

ally more intuitive and well-suited to human input.

• Takagi-Sugeno (TS) fuzzy model [48] - If X is small and Y is cheap, then z = f(x, y)

The consequent is a polynomial function in respect to the antecedent variables. Although these
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models are considered to be more computationally efficient, choosing the parameters for the

polynomial function can be a hard and not very straightforward when compared to the Mamdani

fuzzy model.

A fuzzy inference system is comprised of five parts: fuzzification of the input variables, application

of the fuzzy operator, implication from antecedent to the consequent, aggregation of the consequents

across the rules and defuzzification.

The example, ”Movie Ratings”, is created to illustrate the complete procedure of a fuzzy inference

system. The diagram in Fig. 2.7 outlines the general idea of how the logic behind a fuzzy inference

system works. This example has two inputs, plot and actors, three If-Then rules and one output, rating.

Figure 2.7: Logic diagram of ”Movie Ratings” example.

Fuzzification of the input variables

The first step is to take the numerical values of the input variables and determine the equivalent

degrees of membership using membership functions. The output is a value describing the degree of

membership in the linguistic set between 0 and 1.

The example, ”Movie Ratings”, has three If-Then rules with different fuzzy linguistic sets: plot is

good, plot is average, actors are good, actors are not good, etc.. The input variables, plot and actors,

need to be fuzzified according to these linguistic sets. The following Fig. 2.8 describes the membership

function for the linguistic set ”plot is bad” and shows that, when the input variable plot is equal to three,

the membership value for the fuzzy set ”plot is bad” is µ = 0.55.

Application of the fuzzy operator

Taking into consideration the example, where a fuzzy inference system has more than one input

variable, the antecedent of the first If-then rule is defined with two fuzzy sets, ”plot is bad” and ”actors

are not good”, where a fuzzy operator selects one of the two membership values, representing the result

of the antecedent.

The following Fig. 2.9 exhibits the OR operator evaluating the antecedent of the first rule. The two

statements (plot is bad and actors are not good) of the antecedent have the membership values 0.55

and 0.0, respectively.
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Figure 2.8: Fuzzifying the input variable ”plot” in ”Movie Ratings” example.

Figure 2.9: Applying fuzzy operator in ”Movie Ratings” example.

As mentioned in logical operators section, the logical OR operator can be expressed using the func-

tion max (maximum) and it selects the maximum of the two values, 0.55.

Apply the implication method

The implication method is related to reshaping the consequent fuzzy set based on the result from the

previous step and it is applied to every single rule.

Every rule has a weight (number between 0 and 1) assigned to them, which is related to the impact of

that rule. In other words, having a lower number decreases its impact relatively to the others. Throughout

this work, the weight of every rule is 1, meaning that there is no changes in their impact.

As one can see in Fig. 2.10, the input of the implication method is the number resulted from the

application of the fuzzy operator. The output of the implication method is a fuzzy set. In order to obtain

the final result, it is necessary to truncate the output fuzzy set using the min function. Figure 2.10 is a

visual representation of the implication method, where it shows the min function being implemented.
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Figure 2.10: Applying implication method in ”Movie Ratings” example.

Apply aggregation method

As the implication method results in an output fuzzy set for each rule, the procedure of the aggrega-

tion method is to combine these outputs into a single fuzzy set.

The aggregation operation can be accomplished by applying one of the three functions: max, sum

and probabilistic OR. Usually, the function max is the chosen one since it is more straightforward and

simple to use.

Considering the ”Movie Ratings” example, Fig. 2.11 exhibits all the three fuzzy sets, derived from

applying the implication method to each rule, being aggregated into a single fuzzy set using the function

max. The final fuzzy set represents the output variable ”rating”.

Defuzzification

Finally, the defuzzification method transforms the resulted output fuzzy set from the aggregation

method to a single crisp value. From the available defuzzification methods, the centroid method, which

returns the center of area under the curve, is the most popular and simple, and, therefore, the only

method used in this thesis.

The centroid method can be represented by the following equation:

zCOA =

∫
z
µC(z)zdz∫

z
µC(z)dz

(2.5)

where zCOA is the output variable and µC(z) is the membership function of the aggregated fuzzy

set C.

Fig. 2.12 outlines the result for the given example, ”Movie Ratings”. For the input variables, plot and

actors, equal to three and eight, respectively, the fuzzy system outputs a value of 3.5, which, according

to the output’s membership functions, is considered a low rating.
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Figure 2.11: Applying aggregation method in ”Movie Ratings” example.

Figure 2.12: Applying centroid method for defuzzification in ”Movie Ratings” example.
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Chapter 3

Databases

The following chapter is organized as follows. Section 3.1 begins by presenting in more detail the

limitations in present databases and the difficulties in building one. Then, section 3.2 presents the

Corsican Fire Database and its characteristics as it is the one used for developing and testing the

proposed method. Finally, section 3.3 focuses on the image database being developed between IDMEC

and ADAI, and the different annotations created to categorized such dataset.

3.1 Importance of Databases

The creation of a meaningful and relevant dataset for wildfire detection and segmentation can be

quite the challenge. There are a lot of different real-world scenarios that need to be considered, and

creating annotations and ground truth data can usually take long hours. Images with fire and smoke are

important but do not encompass all the real-world situations. For a balanced dataset, it is imperative to

include samples with firefighters or firetrucks in the field of operations, with sunsets or clouds, as these

display similar colors to fire and smoke, and with areas of interest (flame or smoke) at long distances.

Additionally, image samples with no fire or smoke regions should also be considered to take into account

all the possible real contexts.

In terms of annotations, there is a significant value for researchers having further information beyond

knowing if a sample has fire or smoke. In fact, a deep neural network trained in unbalanced dataset,

where, for example, all image data have an area of interest centered, will originate a model that can not

generalize to other samples where this area of interest is not centered. Therefore, having prior knowl-

edge about the characteristics of a dataset can help researchers improve fire detection approaches.

In essence, data annotations are paramount for improving algorithms and embedding relevant informa-

tion. Taking into consideration how similar sunsets and clouds can be to flame and smoke colors, it

can be expected that some algorithms will sometimes misclassify these situations as fire or smoke, re-

spectively. However, having annotations indicating the presence of a sunset or clouds can help the user

understand those misclassifications and the reasons behind them, thus allowing to create a more robust

algorithm to succeed in these scenarios. For these reasons, some relevant annotations are depicted in
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Table 3.1 which includes, e.g., clouds, sunsets, samples captured from the ground level or at night.

Many of the large-scale datasets that we can encounter throughout the scientific community are

usually the combination of multiple smaller datasets or have samples based on video frames [11, 49].

However, their samples are usually independent of the scenario they were captured on, in other words,

some datasets may include samples with fire or smoke in buildings or in urban contexts (Fig. 3.1a and

Fig. 3.1b), or non-fire objects with similar colors (Fig. 3.1c and Fig. 3.1d), which are not adequate for

wildfire detection. Moreover, datasets heavily based on video frames [23, 50] result in very similar

samples.

(a) Flame (b) Smoke (c) Non-smoke scene (d) Non-fire scene

Figure 3.1: Samples of KMU Fire and Smoke Database [23] to exemplify urban scenarios with fire,
smoke, non-smoke and non-fire regions.

3.2 Corsican Fire Database

The Corsican Fire Database (CFDB) is an online database of wildfire images and sequences that

allows the evaluation and comparison of computer vision algorithms related to wildfire detection [32].

This database enables users to upload their own images and image sequences, that can be categorized

with different annotations, in order to create an evolving dataset. However, as of December of 2020, de-

spite the authors intention, its initial data remains unchanged, attesting the difficulty in developing these

repositories. The dataset contains 500 images in the visible region of the spectrum electromagnetic,

100 pairs of visible and near infrared images, and 5 multi-modal sequences acquired in the visible and

near infrared areas. Note that this database only contains images with fire. Furthermore, every image

is associated with a ground truth (binary) image manually created, where the white pixels indicate the

fire pixels, a semantic label in both english and french indicating the dominant color of the fire (e.g.,

rouge/red), a percentage of fire pixels in the image, a percentage of fire pixels covered by smoke and

the level of texture of the fire area, etc.. For the purpose of this work, the data used herein consists of

samples from the 500 visible subset (Fig. 3.2).

A reduced dataset of the Corsican Fire Database was used for the development and testing of the

proposed algorithm (explained in more detail in section 5.1).
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Figure 3.2: Side-by-side samples of fire images (colored) and respective ground truths (binary) of the
Corsican Fire Database [32].

3.3 Fire and Smoke Dataset

This image dataset is part of a larger evolving image database being developed in ongoing research

between IDMEC and ADAI towards intelligent wildfire detection and monitoring systems, comprising

both thermal and visible range images. For the purposes of this study, the data employed herein con-

cerns only visible range images, which had been gathered and curated prior to this work. The original

image sources were released by the United States Forestry Service and are available under public do-

main. This dataset contains 616 images varying from different real situations to containing different

elements (Fig. 3.3).

Considering the importance of annotations in fire and smoke datasets, all the 616 images were clas-

sified according to different labels in order to improve the relevance of such database. For a simple and

efficient classification, every label presented in Table 3.1 is assigned with a boolean value, depending

Table 3.1: Description of the labels characterizing the Fire and Smoke Dataset. Separated into two
groups, Element, related to the presence of wildland-urban elements, and Context, which considers the
situation a sample was captured. Nsample is the number of images that each label possess.

Element
Label

Nsample

Flame

343

Smoke

524

Firefighters

104

Firetrucks

31

Aerial vehicles

39

Clouds

113

Sun/Sunset

63

Context
Label

Nsample

Ground level Aerial view Long distance

428 188 201

Daylight

576

Night

39
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.3: Samples of fire images of the Fire and Smoke Database displaying its diversity by including
firefighters, firetrucks and other wildland-urban-interface elements, and different conditions, e.g., day,
sunset, night, with smoke or fire at long-distances.

on their context, e.g., sunset, night, with fire at long distance, and presence of wildland-urban elements,

e.g., fire, smoke, firefighters. Each sample in Fig. 3.3 can be characterized by at least one of the follow-

ing labels. Some labels like Flame and Smoke are quite self-explanatory, corresponding to whether an

image has fire (Fig. 3.3a) or smoke (Fig. 3.3b), respectively. Others are associated with the presence

of non-fire elements with similar fire and smoke colors like firefighters (Fig. 3.3c), firetrucks (Fig. 3.3d)

and clouds (Fig. 3.3f). The Sun/Sunset label is associated to images with sunsets (Fig. 3.3g) or similar

fire colors usually created by the different exposures of sunlight (Fig. 3.4). In addition, the label Aerial

vehicles is related to samples with airplanes or helicopters as most of them spray a red flame retar-

dant to contain and control wildfires (Fig. 3.3e). Finally, Aerial view and Ground level labels take into

consideration how the image was captured, either in a watchtower or in an aerial vehicle (Fig. 3.3i), or

at ground level (Fig. 3.3h), respectively. Long distance corresponds to images with a flame or smoke

region really far away (Fig. 3.3j). Lastly, the labels Daylight and Night are related to whether the image

was captured during the day (Fig. 3.3k) or at night (Fig. 3.3l), respectively.

In addition to the information presented in table 3.1, it may be interesting to mention that there are

23 images solely with fire, 204 solely with smoke, 320 with both fire and smoke and 58 with no wildland-

urban elements, that includes fire, smoke, firefighters, firetrucks and aerial vehicles.
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Figure 3.4: Samples with the Sun/Sunset label to exemplify other possible situations.
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Chapter 4

Methodology

The proposed architecture, outlined in Fig. 4.1, is comprised of three core parts: i) Color Feature

Engineering (Section 4.2), ii) Color-based Superpixel Segmentation (Section 4.3), and iii) Interpretable

Rule-base (Section 4.4). The first part converts the image data to the HSL and YCbCr color spaces. The

second part uses a purpose-built segmentation method that generates superpixels and merges them

into regions according to statistical color-based features. Then, the interpretable rule-base employs

linguistic models to classify the merged regions, yielding the pixel-wise segmentation of fire and the

corresponding color labels for each region. Subsequently, the results can be reviewed by experts to

validate and fine-tune new ground truths for fire image data [26].

The following chapter is dedicated to the method developed for the proposed approach. This chapter

starts with section 4.1 outlining the problem description where it defines the two stages the proposed

approach has and their objectives. Section 4.2 explains the reasons to choose the HSL and YCbCr

color spaces for the fire color detection topic. Then, section 4.3 describes the superpixels algorithm and

what parameters were used, and the proposed procedure that merges the superpixels together based

on the YCbCr color features. Finally, section 4.4 explains the interpretable rule-based models used to

classify the different regions according to the possibility of being fire-colored and the semantic color label

representative of that fire color.

4.1 Problem Description

The problem tackled by the proposed architecture can be under a two-stage approach: i) segmen-

tation and ii) classification. The first one is relative to the segmentation of an image that is partitioning

into several superpixels and, subsequently, regions (see section 4.3.2). This is achieved using the SLIC

algorithm and taking advantage of the HSL and YCbCr color features. The second addresses the classi-

fication of the different segmented regions by assigning different categories according to their similarity

to fire color attributes [26]. In essence, the objectives of this work are twofold: i) pixel-wise segmentation

of fire and ii) description of the fire color category.

Consider a preset color space, D, that can be defined as D ∈ Rc, where c represents the number of
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Figure 4.1: Visual representation of Fire Data Annotation approach.

channels. A sample image, I, encoded in a D color space domain, is composed of multiples pixels with

every pixel x also being defined as vectors in Rc.

The first objective addresses the pixel-wise segmentation of the flame in an image by representing

every pixel as part of two different classes, F and N . Let F represent the set of pixels associated

to the fire class, i.e., pixels exhibiting fire colors, and N the pixels belonging to the non-fire class, in

other words, pixels that do not display fire colors [26]. Accordingly, the ground truth defines the expert

validated data, where both classes are, in this case, binary and mutually exclusive, i.e., x ∈ F or x ∈ N .

Furthermore, the second objective tackles the description of fire colors where four different cate-

gories, namely red, orange, yellow and other, were modeled in order to create annotations relatively

to both the number of fire pixels and the number of pixels belonging to each category, enabling further

improvements in the overall dataset. Note that only pixels belonging to the fire class, x ∈ F , are subse-

quently part of one of the four categories {Cred, Corange, Cyellow, Cother}. In contrast to the first objective,

defining pixels to a color category in a crisp way can be very challenging.

4.2 Seeing Fire Across Color Spaces

As the objective is to segment the flame based on color, choosing relevant color spaces can be very

helpful when defining parameters that correspond to fire colors, thus, leading to better results. This is a

particularly important step for images with similar fire colors in non-fire regions and when there is smoke

over the flame, decreasing the perception of the fire colors even for human annotation.

For these reasons, the color spaces used are the HSL and the YCbCr. The HSL color space is easy

to use and works well in scenarios with a high contrast between the flame and the background. The
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saturation and lightness channels are more intuitive in defining fire colors and separating them from

dark smoke (high saturation) and clouds (low lightness). Moreover, the hue channel makes it easier to

specify the range of colors for the linguistic terms (e.g., red, orange, yellow). However, this color space

is more challenging when it comes to images with smoke in the scene or regions with similar colors to

fire colors (Fig. 4.2). In these situations, the YCbCr color space allows for an easier flame segmentation

(Fig. 4.3) because of its ability to separate the colors, but it is less interpretable than the HSL making its

development more complex. Color-based features derived from these datasets are employed in the two

stages of the proposed approach, namely in the segmentation and classification parts.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

(a) Original Image

0 0.2 0.4 0.6 0.8 1

(b) Hue

0 0.2 0.4 0.6 0.8 1

(c) Saturation

0 0.2 0.4 0.6 0.8 1

(d) Lightness

Figure 4.2: Fire Features in HSL. Visual display of each HSL color channel for two different images.

16 55.4 94.8 134.2 173.6 213 30 50.4 70.8 91.2 111.6 132 120 141.8 163.6 185.4 207.2 229

(a) Original Image

23 56.6 90.2 123.8 157.4 191

(b) Luminance

72 86 100 114 128 142

(c) Chrominance Blue

108 124 140 156 172 188

(d) Chrominance Red

Figure 4.3: Fire Features in YCbCr. Visual display of each YCbCr color channel for two different images.

4.3 Color-based Superpixel Segmentation

The use of superpixels allows to segment an image by clustering pixels based on their color and

proximity. This technique can be very useful since superpixels can carry more information than pix-

els [33], adhere better to the image boundaries and reduce the complexity of several image processing
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operations [36], thus decreasing processing times.

4.3.1 Superpixel Algorithm

The superpixels are generated using the simple linear iterative clustering (SLIC) algorithm (see sec-

tion 2.2.1) that allows the specification of both the desired number of superpixels, Nsp, and their com-

pactness, m. The number of superpixels drives the granularity of the image partitioning, being higher

with the increase in Nsp. In turn, the compactness controls the shape of each element, with higher val-

ues creating more regularly shaped superpixels (square like), and lower values creating more irregular

shapes, which adhere better to intricate image boundaries.

Number of superpixels, Nsp - This number must ensure that the algorithm can achieve a fine-grained

segmentation, which drives the quality of the segmentation. Since, by nature, flame shapes are very

irregular and the image data might contain regions of interest that are captured at long distances, if

Nsp is too small the image partitioning results in larger superpixels that do not adhere exclusively to the

flames. This behavior is illustrated in Fig. 4.4, where in the lower left corner of the samples presented we

can distinctly observe that the superpixels can capture the flames but also aggregate other information

nearby. This would inherently degrade the quality of the segmentation, but more importantly, it could

prevent an accurate semantic segmentation because a misleading mean color value of the superpixel

could result in its misclassification. However, selecting higher values of Nsp results in a larger number of

increasingly small superpixels, as depicted in Fig. 4.4, which are harder to merge using the mean color

statistics as these capture less context information. The value established by default in our algorithm is

1000 as it is considered an adequate trade-off between these factors.

Compactness, m - Since this parameter controls the shape of the superpixels, it is particularly relevant

when segmenting irregular shapes like fire. The influence of varying this parameter can be observed no-

tably in Fig. 4.4, by comparing the samples on the upper right corner of top and bottom row images. The

effect of enforcing a higher compactness (depicted on the bottom row) could result in less fine-grained

semantic segmentation for both fire and fire colors. For this reason, the value of m was established as 1,

because it is the lowest value possible, making superpixels adhere better to irregular boundaries.

Furthermore, the superpixels are defined as vectors in R3 in both HSL and YCbCr color spaces,

where each entry corresponds to the mean color of each channel (Hsp
j , Ssp

j , Lsp
j or Y sp

j , Cbspj , Crspj ) of

the superpixel sp, with j ∈ [1, Nsp].

4.3.2 Merging Superpixels

We propose a procedure that merges similar superpixels into regions. This method combines neigh-

boring superpixels that register a similar color shade. This is performed using the YCbCr color features

as these allow the separation of fire from other instances like smoke. Adjacent superpixels, j and i,

are compared based on their mean color (Y sp
j,i , Cbspj,i, Cr

sp
j,i) and merged if each entry of the pairwise
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Figure 4.4: Visual comparison between different Nsp and C. The m in the lower left corner of each
image is 100 and 2000 in the upper right corner. Images in the top row have a m = 1 and images in the
bottom row have m = 20.

difference is lower or equal to a threshold {0.034, 0.1, 0.03} , as follows:

| Y sp
j − Y sp

i | ≤ 0.034

| Cbspj − Cbspi | ≤ 0.1 (4.1)

| Crspj − Crspi | ≤ 0.03

Figure 4.5 demonstrates how adjacent superpixels would merge together if all the conditions are

met. Superpixel 16 is compared with superpixels 1 and 27, and, since all the three conditions in 4.1 are

satisfied, the three superpixels are merged together creating region number 1. In the end, this process

results in an image similar to the far right one (Fig. 4.5b).

The threshold values used to merge the superpixels were fine-tuned until the overall flame seg-

mentation was quite acceptable and no merged fire region was overlapping with non-fire regions. This

procedure was attained by analyzing multiple different scenarios.

Such procedure was implemented in an attempt to achieve the best possible flame-only segmenta-

tion, as depicted in Fig. 4.5b, while maintaining a fast processing time.

(a) Image with superpixels (b) Final result after merging all
superpixels

Figure 4.5: Zoomed area shows how similar superpixels 1, 16 and 27 merge, creating region number 1.
Merging process results in a region-defined image.
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4.4 Interpretable Rule-based Models

Humans describe colors using linguistic terms like red, green or pink, but color perception might differ

from person to person [51]. Likewise, image retrieval for search-based analyses is also based on key

categorical terms, namely color. Considering that relevant fire characteristics are related to their color,

the annotation of these attributes is fundamental towards creating large-scale datasets with relevant

information that can be used in a wide range of fire detection scenarios.

4.4.1 Mamdani-type Fuzzy Inference Systems

In this work, we propose interpretable linguistic models, designed for fire segmentation and classifi-

cation of the regions yielded from the previous step. The rule-based architecture is build with Mamdani-

type fuzzy inference systems [47] that describe the rules of the knowledge base with linguistic terms.

This architecture incorporates uncertainty and is able to bridge the gap between semantic description of

colors and its numerical parametrization.

The concept of the rules relies on the association of the linguistic terms between both the modeling

of the color-based features and the categorization of colors, with the underlying range of values. Our

approach leverages two complementary models, developed for the HSL and YCbCr color spaces and

outlined in Tables 4.1 and 4.2. Both models are defined with three inputs, corresponding to the mean

color of each channel for every region. The two models output a fire possibility per region, that is lever-

aged to perform the classification of the merged superpixels and achieve the pixel-wise segmentation

of fire in the images. In addition, the HSL model is able to describe fire color categories to perform se-

mantic segmentation of the colors in the image. The proposed architecture may integrate both models

in the data annotation approach (Fig.4.1), combining the HSL and YCbCr using a weighted average or

maximum operators, to generate a segmentation of fire. In parallel, the HSL model generates fire color

categories that can achieve the final semantic layers that also describe the color of the fire [26].

HSL model

The HSL fuzzy model uses linguistic terms to describe levels of hue, saturation and lightness to

model the fire possibility as low or high, and the fire color category, which classifies a region to a corre-

sponding color subset {Cred, Corange, Cyellow, Cother}. The diagram in Figure 4.6 displays an overall visual

representation of the respective model.

The interpretable rule-base for the HSL color space is built with simple and intuitive triangular and

trapezoidal parametric functions composed of three and four parameters, respectively. Additionally,

Table 4.1 outlines the different linguistic terms and respective parameters that each membership function

can take. Finally, the inputs and outputs can usually be defined with multiple membership functions as

depicted in Fig. 4.7.

As explained in section 2.3.1, a ”If-Then” rule establishes a relationship between the membership

functions of inputs and outputs, using their respective linguistic terms. The knowledge-base comprises
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Figure 4.6: Diagram of the fuzzy model in HSL color space: a 3 inputs, 2 outputs and 9 rule system.

Table 4.1: Interpretable Linguistic HSL Model. Description of the HSL ruled-based system designed for
fire data annotation. The model has three inputs, hue, saturation and lightness, and two outputs, fire
possibility and fire color category. Each input and output is defined with different linguistic terms and
parameters, forming membership functions.

Input Output

Model Variable Linguistic terms Parameters Variable Linguistic terms Parameters

HSL

Hue

Saturation

Lightness

red1, orange, yellow,

other, red2

low, high

low, medium, high

[0, 0, 0.03, 0.055]; [0.04, 0.09, 0.133]; [0.11, 0.16, 0.2];

[0.17, 0.25, 0.87, 0.96]; [0.9, 0.97, 1, 1];

[0, 0, 0.4, 0.65]; [0.545, 0.75, 1, 1];

[0, 0, 0.23, 0.39]; [0.23, 0.427, 0.85, 0.96]; [0.94, 0.965, 1, 1];

fire possibility

fire color

low, high

red, orange,

yellow, other

[0, 0, 0.3, 0.5]; [0.4, 0.7, 1, 1];

[0.5, 1, 1.75]; [1.25, 2, 2.75];

[2.25, 3, 3.75]; [3.25, 4, 4.5];
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(a) Hue channel input
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(b) Saturation channel input
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(c) Lightness channel input
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(d) Fire color category output
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(e) Fire color possibility output

Figure 4.7: Visual representation of the membership functions for the inputs, hue, saturation and light-
ness, and outputs, fire color category and fire color possibility, for the HSL model.

nine If-Then rules, outlined in Fig 4.8. The nodes (rectangles) represent inputs or outputs, where each

arrow reflects the linguistic terms that each respective node may take. For example, a ”If-Then” rule of

the HSL fuzzy model can be expressed as follows:
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If Lightness = high and Saturation = high, then Fire color = other and Fire possibility = low.

Note that it was not necessary to create a rule for every possible combination as it would induce redun-

dancy.

Fire color = other
Fire possibility = low

Fire color = other
Fire possibility = low

Hue

Fire color = other
Fire possibility = low

Fire color = other
Fire possibility = low

Saturation

Saturation

Saturation

Lightness Fire color = orange
Fire possibility = high

Fire color = yellow
Fire possibility = high

Fire color = red
Fire possibility = high

Fire color = other
Fire possibility = low

high

medium

low

high

low

high

low

low

red

orange

yellow

other

Figure 4.8: Graph representation of the nine If-Then rules for HSL model. Each node (rectangle) repre-
sents an input or output just like each arrow represents the respective value a node may take. For an eas-
ier analysis, the red rectangle indicates the starting point.

YCbCr model

The YCbCr fuzzy model employs terms describing degrees of luminance, chrominance blue and

chrominance red to model the fire color possibility in terms of low, medium, medium high and high. The

diagram depicted in Figure 4.9 displays an overall visual description of the YCbCr model.

Figure 4.9: Diagram of the fuzzy model in YCbCr colour space: a 3 inputs, 1 output, 14 rule system.

Similar to the HSL model, the YCbCr fuzzy model is developed using simple and intuitive triangular

and trapezoidal membership functions composed of three and four parameters, respectively. Addition-

ally, Table 4.2 addresses the different linguistic terms and respective parameters that each membership
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function can take. Finally, the inputs and outputs can usually be defined with multiple membership

functions as demonstrated in Fig. 4.10.

Table 4.2: Interpretable Linguistic YCbCr Model. Description of the YCbCr ruled-based system. The
model has three inputs, luminance, chrominance blue and chrominance red, and, contrarily to the pre-
vious one, only one output, fire possibility. Each input and output is also defined with different linguistic
terms and parameters to form membership functions.

Input Output

Model Variable Linguistic terms Parameters Variable Linguistic terms Parameters

YCbCr

Luminance

Chrominance Blue

Chrominance Red

low, medium,

medium high, high

low, medium, high

low, medium, high

[0, 0, 0.365, 0.49]; [0.457, 0.5, 0.548, 0.594];

[0.548, 0.63, 0.72, 0.776]; [0.73, 0.8, 1, 1];

[0, 0, 0.435, 0.56]; [0.47, 0.527, 0.58, 0.6]; [0.446, 0.69, 1, 1];

[0, 0, 0.49, 0.625]; [0.58, 0.647, 0.69, 0.78]; [0.71, 0.826, 1, 1];

fire possibility
low, medium,

medium high, high

[0, 0, 0.23, 0.33]; [0.27, 0.35, 0.53, 0.65];

[0.6, 0.65, 0.75, 0.8]; [0.75, 0.83, 1, 1];
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(a) Luminance channel input
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(b) Chrominance Blue channel input
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(c) Chrominance Red channel input
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(d) Fire color possibility output

Figure 4.10: Visual representation of the membership functions for the inputs, luminance, chrominance
blue and chrominance red, and outputs, fire color possibility, for the YCbCr model.

This fuzzy model comprises fourteen If-Then rules, outlined in Fig 4.11. Similarly, the nodes (rectan-

gles) correspond to an input or output, where each arrow reflects the linguistic terms that each respective

node may take. For this case, an If-Then rule can expressed as follows:

If Chrominance Blue is low and Luminance is medium and Chrominance Red is high,

then Fire possibility is high.

35



Fire possibility = high

Fire possibility = high

Fire possibility = low

Fire possibility = high

Fire possibility = medium

Fire possibility = low

Chrominance Red

Chrominance Red

Luminance

Chrominance Red

Fire possibility = medium-high

Fire possibility = high Fire possibility = low

Chrominance Blue

Fire possibility = low

Fire possibility = medium

Chrominance Red

Fire possibility = medium

Fire possibility = highFire possibility = low

low

medium

high
high

medium-high

medium
low

high

medium
low

high

medium

low

high

medium

low
high

medium
low

Figure 4.11: Graph representation of the fourteen If-Then rules for YCbCr model. Each node (rectangle)
represents an input or output just like each arrow represents the respective value a node may take.
For an easier analysis, the red rectangle indicates the starting point.
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Chapter 5

Results

The following chapter presents multiple models developed based on the proposed architecture and

their respective results evaluated using performance metrics on a smaller dataset from the Corsican Fire

Database. Section 5.1 outlines the dataset used for evaluating the performance of the baseline methods

and obtain their overall results. Taking into consideration this dataset, 5.2 describes the performance

metrics used to assess and compare the different methods. Finally, section 5.3 explains the different

baseline approaches, analyzing their differences and their limitations. Moreover, it demonstrates differ-

ent situations where changing and adjusting key parameters, e.g., number of superpixels or threshold,

enables the increase or decrease in the overall performance.

5.1 Fire Image Dataset

The development and testing of the proposed approach was achieved using a smaller dataset

(Fig. 5.1) of the Corsican Fire Database (explained in section 3.2). This dataset is composed of 207

images from the 500 samples in the visible region. The reasons behind removing part of the images

was mostly due to samples having low resolution or noise (Fig. 5.2a), decreasing the overall quality

of the dataset and hampering the results. Moreover, samples with fires created in a controlled envi-

ronment (Fig. 5.2b), exhibiting cameras and other objects, were also excluded because these do not

represent a real-world wildfire scenario. In essence, the objective was to create a dataset capable of

representing different wildfire sceneries that emergency teams may encounter.

The performance of the algorithm was fully tested using the 207 images. In an initial stage, the de-

velopment of each fuzzy model, specially the choice and fine-tuning of parameters, were attained using

50 images for an easier and faster evaluation analysis. Furthermore, the ground truth data considered

for this work is the ground truth (binary) images available in the Corsican Fire Database.
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Figure 5.1: Fire Image Dataset. Side-by-side samples of fire images (colored) and respective ground
truths (binary), including firefighters and firetrucks, and varying visibility conditions, e.g., day, sunset,
night and with smoke.

(a) Low quality image (b) Controlled environment

Figure 5.2: Samples of low quality and with fires created in a controlled environment.

5.2 Evaluating the Segmentation Models

Considering the objectives of the proposed fire annotation approach (see section 4.1), the per-

formance analysis focus in evaluating the developed architecture with several baseline techniques.

This work presents the assessment and comparison of four different methods. The first two techniques

are based solely on the HSL and YCbCr models, whilst the others combine both models to incorporate

their features and achieve better results. Their difference relies on how the classification of each region

is obtained, as one uses a weighted average, while the other is based on the max value operator. For

these reasons, it is imperative to use metrics that enable the evaluation of the different segmentation

algorithms and the comparison between the segmented images with the ground truth data.
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5.2.1 Performance Metrics

The following metrics allow the assessment of the different models in several important aspects.

Considering our work is based on a binary classification, the results are often defined based on true

positives (TP), true negatives (TN), false positives (FP) and false negatives (FN). The terms ”true” and

”false” are associated to whether the prediction model was able to correctly classify the positives and

negatives, respectively. In other words, considering a non-fire pixel, a false positive would state that this

pixel is a fire pixel (positive) while, in reality, it is not (false). The performance metrics used are accuracy,

intersection over union (IoU), precision and recall, which are presented below:

• Accuracy evaluates the pixels correctly recognized. It is defined as the ratio between correctly

classified pixels and all the available pixels.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

Note that this metric can sometimes lead to misleading results when the segmentation is small within

the image. As one can see, despite Figure 5.3a registering an accuracy value extremely high, equal to

0.9887, the predicted segmentation (Fig. 5.3b) is not that similar to the ground truth (Fig. 5.3c). This

happens because the accuracy takes into account the non-fire pixels that were correctly classified,

namely, the true negatives. Nevertheless, this metric is still important as it is one of the most used and

versatile metrics in the scientific community, providing an overall result to the dataset and allowing the

comparison of results between different approaches.

(a) Original image (b) Binary Output (c) Ground truth

Figure 5.3: Scenario where accuracy is extremely high even though the binary output it is not very similar
to the ground truth image. Note that the white areas represent the fire-colored pixels, whilst the black
regions the non-fire-colored pixels.

• Intersection over Union (IoU) [52] - also known as the Jaccard similarity coefficient, measures

the overlap between the ground truth segmentation and the predicted segmentation. It is defined

as the ratio between the intersection and reunion of the ground truth and the prediction.

IoU =
Binary Output ∩ Ground truth

Binary Output ∪ Ground truth
=

TP

TP + FP + FN
(5.2)

• Precision measures the pixels that were correctly classified as fire over all the pixels that the
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model classified as fire. Therefore, this metric is defined by the following equation:

Precision =
TP

TP + FP
(5.3)

• Recall measures the fire pixels that were correctly classified as fire over all the pixels that are

indeed fire pixels.

Recall =
TP

TP + FN
(5.4)

5.3 Results Evaluation

The pixel-wise segmentation, stated as the first objective, is defined by classifying each region (su-

perpixels merged together) with the fire color possibility output from the HSL (Fig. 4.7e) and YCbCr

(Fig. 4.10d) models (explained in section 4.4.1). As the name implies, this output specifies the degree

of membership of each region regarding the possibility of being fire-colored. The threshold, represented

as δ, indicates the starting point where each region classification, Rc, is consider mutually exclusive,

i.e., Rc ∈ F or Rc ∈ N . In other words, values higher than the threshold are associated with the fire

class, F , whilst values less or equal are affiliated to the non-fire class, N , which, in the end, results in

the binary image. In an initial stage, the threshold used to obtain the various results was 0.5, which

could be then replaced by other values depending on registering positive changes in the overall results.

Note that, usually, a binary image represents the set of pixels belonging to the fire class as white and

the pixels related to the non-fire class as black.

The following sections represent the different baseline models created to evaluate the performance

of the developed architecture.

5.3.1 HSL Model vs. YCbCr Model

Initially, the first baseline approach created to classify each region with a degree of membership

relatively to the fire color possibility was based on the HSL color space because of its simplicity and eas-

ier interpretability to define the different shades of fire colors. The overall results presented in Table 5.1

demonstrate how, despite registering an extremely high accuracy of 93.39%, the overall predictions were

not quite identical to the expert ground truth data as the intersection over union (IoU) can demonstrate.

On the one hand, a lower recall value, 58.97%, means that the number of false negatives is consider-

able high, i.e., the classification model did not correctly classified a lot of fire pixels. On the other hand,

a higher precision value, 93.50%, conveys that the false positives are low, indicative of the model not

classifying non-fire pixels as fire pixels.

As one can see, Figure 5.4 displays three scenarios where the model using solely the HSL color

space exhibits a poor segmeted image. Considering that the intersection over union executes a pixel-

wise comparison between the segmented image and the ground truth, it is to be expected that this

metric registers very poor results (Fig. 5.4c). Furthermore, one can notice that the HSL model struggles

in classifying regions with high smoke levels above the flame pixels. In fact, this limitation is clearly
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Table 5.1: Overall results of the HSL and YCbCr models.

Model δ Accuracy IoU Precision Recall

HSL HSL model 0.5 93.39 62.49 92.50 65.77

YCbCr YCbCr model 0.5 91.58 56.68 93.50 58.97

demonstrated in the last row sample (Fig. 5.4), as it shows some areas with smoke, which were mis-

classified, and others with a more vivid fire color, correctly classified.

(a) Original Image (b) Ground truth (c) Output - HSL model (d) Output - YCbCr model

Figure 5.4: Samples displaying scenarios with smoke above fire pixels where the HSL model registers
worse results than the YCbCr model.

For these reasons, the YCbCr model was created to mitigate such limitation. Considering its ability to

separate the luminance from the chrominances blue and red, there is a slightly advantage in using this

color space, specially, in high smoke areas, as outlined in Fig. 5.4d. There is a considerably improvement

over the results registered from the HSL model. However, as depicted in Table 5.1, the overall results

from the YCbCr model are outperformed by the HSL model. Figure 5.5 outlines samples where such

observation is confirmed.

As one can see, both models demonstrate different limitations. In areas with high smoke levels

above the fire, it is clear that the YCbCr model registers good results in comparison to the HSL. On the

other hand, in regions with a bright yellow or a slightly white color (high luminance), the latter exhibits
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better results (Fig. 5.5c and Fig. 5.5d). Therefore, the next step is to utilize both models and create a

multi-model able to incorporate their qualities.

(a) Original Image (b) Ground truth (c) Output - HSL model (d) Output - YCbCr model

Figure 5.5: Samples displaying scenarios where the HSL model registers better results than the YCbCr
model.

5.3.2 Combination of Both Models

Considering the previous results, the next baseline approaches are based on combining the HSL

and YCbCr models. Since they have registered opposite limitations, the idea is to achieve a multi-

purpose model capable of utilizing their qualities and complement each other. There are two proposed

approaches with one using a weighted average, with multiple weighted values, and the other selecting

the maximum value between the models.

The Weighted model takes into consideration the output fire color possibility from the YCbCr and HSL

models and combines these using a weighted average. Taking into consideration the previous obser-

vations, we can see that the difference between the results of the HSL and YCbCr models in scenarios

outlined in Fig. 5.4 are much worse in comparison to the results depicted in Fig. 5.5. In other words,

the YCbCr model is more valuable even though it registers a worse overall performance (see Table 5.2).

For these reasons, the weighted model uses a higher weighted value for the YCbCr model. Table 5.2

presents the overall results of all the baseline approaches. Considering the Weighted model, multiple

weighted values were used in order to comprehend the degree of importance of each fuzzy model. Even

though their results are very similar, we can see a slightly decrease in the overall performance as the
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weighted value of the YCbCr increases. In particular, the precision metric actually increases as the

weighting value of the HSL model decreases, meaning a reduction in the false positives number.

Table 5.2: Overall results of all the models.

Model δ Accuracy IoU Precision Recall

HSL HSL model 0.5 93.39 62.49 92.50 65.77

YCbCr YCbCr model 0.5 91.58 56.68 93.50 58.97

Weighted

0.4 HSL + 0.6 YCbCr

0.3 HSL + 0.7 YCbCr

0.2 HSL + 0.8 YCbCr

0.5

0.5

0.5

93.16

93.01

92.81

61.52

61.00

60.13

94.24

94.27

94.62

63.83

63.19

62.32

Max Value max(HSL,YCbCr)
0.5

0.4

93.47

94.04

66.51

73.53

92.74

88.57

71.23

83.14

Despite creating the Weighted model as an alternative to obtain better results when compared to

using solely one model, one can see that such expectation is not achieved. From table 5.2, even the

Weighted model using a weighting of 40% and 60% for the HSL and YCbCr fuzzy models does not

register better results when compared to the HSL, specially in the IoU performance metric.

Consequently, instead of trying to encounter a better weighted values combination for the weighted

average, the next baseline approach uses the maximum output between the HSL and YCbCr models to

classify each region. As we can see from table 5.2, the Max Value model achieves better overall results

than all of the previous ones. Moreover, by changing the threshold value for 0.4, one can observe

slight improvements in this model’s performance. Solely the precision metric registered a lower result

for this threshold. Further explanations and examples about the worth of such parameter are explained

in section 5.3.4. Finally, as the Max Value method registers the best performance, the following analysis

and results are relative to this model.

Max Value model

Considering the second objective, the description of the fire color category is achieved by assigning

different semantic labels to the segmentation regions belonging to the fire class F . The three samples

depicted in Fig. 5.6 and Fig. 5.7 represent different scenarios that the Fire Image Dataset (section 5.1)

encompasses and showcase all the intermediate steps of the proposed architecture. In Figure 5.6,

the first image represents the original sample in the common RGB color space. The second one ex-

hibits the result after merging all the similar superpixels together to achieve a separation between the

flame and the surrounding scenery. Subsequently, the fuzzy models generate the classification of all

regions according to the fire color possibility output, where warm colors represent a higher value and

cold colors a lower value (Fig. 5.6c). Moreover, the HSL linguistic model also classifies the fire colors

as per red, orange, yellow and other, where the latter is represented using the grey color (Fig. 5.6d).

Finally, Figure 5.7c outlines the intersection between the binary output (Fig. 5.7b) and the fire colors

fuzzy output (Fig. 5.6d).
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0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

(a) Original Image (b) Final Merging

0 0.2 0.4 0.6 0.8 1

(c) Fire Color Possibility
fuzzy output

(d) Fire Colors fuzzy output

Figure 5.6: Samples representing real-world scenarios to exemplify the results at each stage of the
proposed approach.

(a) Ground truth (b) Binary Output δ = 0.5 (c) Output

Figure 5.7: Display of the binary output image and output generated by the Max Value model.
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As one can see, the binary output image (Fig. 5.7b) is generated by assigning a threshold to the Fire

color possibility fuzzy output image which allocates each pixel to the respective fire or non-fire class,

thus resulting in a pixel-wise segmentation of the flame. The better the segmentation the closest the

binary output is to the ground truth. Furthermore, the output image, depicted in Fig. 5.7c, enables the

automatic creation of fire data annotations in terms of expert annotated data (ground truths) (Fig. 5.7b)

with information representing the four color categories specific of fire colors (Fig. 5.7c).

5.3.3 Limitations

In a relevant and complete fire image database, it is imperative to include scenery or objects that

resemble fire colors as these represent real-world scenarios. Although the proposed architecture reg-

isters significant results and allows to create rich annotations, the approach still faces some limitations

especially in situations with similar fire colors in non-fire regions, e.g., sunsets, firefighters or firetrucks.

Note that this method is a fire color classifier. In other words, as outlined in Fig. 5.8, it is expected that

this method classifies scenarios and objects with similar fire colors with a high fire color possibility. Such

limitations can be improved by either some type of expert input or with algorithms able to identify this

kind of scenes and objects.

5.3.4 Adaptability of the Proposed Approach

The proposed approach enables easy adjustments of some key parameters associated with the

intermediate steps from the architecture. Several parameters are the number of superpixels, which can

affect the overall result of merging all the superpixels, the threshold, allowing regions with a lower fire

possibility to be included, and the fuzzy model parameters that represent fire colors in each color space.

The latter is not as straightforward as the two previous ones, since fine-tuning these parameters requires

a deeper analysis to understand if the alterations make sense or not.

Number of superpixels

The number of superpixels Nsp can be a decisive parameter as it increases or decreases the allowed

number to generate superpixels, impacting the procedure of merging the superpixels which can improve

or damage the final output. Figure 5.9 demonstrates a situation where increasing the Nsp results in a

better and worse final segmentation, respectively.

Threshold

Similarly, the threshold value can also change the overall segmentation. In images with high lev-

els of smoke, the modification of such parameter usually enhances the final semantic segmentation

(Fig. 5.10c). However, since these images usually register an overall high saturation, the proposed ap-

proach classifies most of the improvements to the other class, represented by the grey color. Moreover,

the same observations are registered in regions similar to fire colors. Note that the Output (Fig. 5.7c) is
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(a) Original Image (b) Ground truth (c) Output - δ = 0.4 (d) Output - δ = 0.5

Figure 5.8: Samples where the proposed approaches registers some limitations in the classification.

(a) Original Image (b) Ground truth (c) Output - Nsp = 1000 (d) Output - Nsp = 2000

Figure 5.9: Samples displaying the number of superpixels influencing the final semantic segmentation.

the intersection between the binary output image (Fig. 5.7b) with the fire colors fuzzy output (Fig. 5.6d).

For that reason, using a threshold of 0.4 results in a worse segmented image (Fig. 5.10g).
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(a) (b) (c) (d)

(e) Original Image (f) Ground truth (g) Output - δ = 0.4 (h) Output - δ = 0.5

Figure 5.10: Samples displaying how the threshold affects the final semantic segmentation.

As one can see, this work proposes a technique that is quite interpretable and transparent, enabling

the fine-tuning of certain parameters to obtain better segmentations. In fact, by being based on inter-

pretable rule-base models, the proposed approach can enable the expert to validate and improve such

results, and generate ground truth data with prominent annotations concerning the fire colors.

5.3.5 Results with the Fire and Smoke Dataset

Even though the Fire and Smoke Dataset (section 3.3) does not provide the ground truth data, this

dataset offers other important scenarios that are interesting to analyze. As outlined in Fig. 5.11, the three

samples are representative of complex scenes fairly common in a wildfire context. Although images in

Fig. 5.11a exhibit similar color shades to the ones displayed in section 5.3.3, these represent different

scenarios, namely, an airplane spraying a red flame retartant and the sun, instead of the usually sunset.

As it was expected, the proposed approach classified non-fire regions with a high fire possibility as

these present similar colors to fire colors. Moreover, changing the threshold value does not improve

whatsoever the final segmentation (Fig. 5.11c and 5.11e). Considering that Figure 5.11f displays a

wildfire in a night setting, one can see that at a lower threshold the classifier assigns non-fire areas to

the fire class F , specially regions close to flame (Fig. 5.11h). In fact, increasing the threshold value, as

depicted in Fig. 5.11j, improves the output segmentation.
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(a) Original Image (b) Binary Output - δ =
0.4

(c) Output - δ = 0.4 (d) Binary Output - δ =
0.5

(e) Output - δ = 0.5

(f) Original Image (g) Binary Output - δ =
0.4

(h) Output - δ = 0.4 (i) Binary Output - δ =
0.5

(j) Output - δ = 0.5

Figure 5.11: Output results for scenarios with fire and non-fire regions from the Fire and Smoke Dataset
(section 3.3).
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Chapter 6

Conclusions

6.1 Achievements

The two objectives outlined for this work were successfully achieved. Regarding the first objective,

the pixel-wise segmentation of the fire can be obtained by specifying a threshold to the image containing

the fire color possibilities of each region. The second objective, description of the fire color category,

can then be generated by intersecting the pixel-wise segmentation of the fire with the output fire color

category of the HSL fuzzy model. The proposed method, the Max Value model, gives the best overall

performance of all the baseline approaches. It can cope with a series of different scenarios as it was

previously demonstrated. Where previously baseline models had some step backs, the Max Value

model was able to overcome those by combining the two fuzzy models. Considering that the proposed

approach detects fire colors, it is to be expected that in certain situations it would detect similar fire colors

in non-fire objects. However, the interpretability and adaptability of the proposed architecture comes

into play, allowing the expert to adjust some parameters to validate and generate reliable ground truth

data and respective annotations. The most common parameter that can usually be changed in other

fire detection techniques is the classification threshold. As one could see in section 5.3.2, changing

the threshold value resulted in better overall results. This parameter is particularly interesting in regions

where the fire has smoke over it, since these areas usually output a lower possibility of being fire-colored

as the smoke decreases the pixel’s saturation. Therefore, decreasing the threshold value enables these

regions to be considered. Another parameter, particular to the proposed approach, is the number of

superpixels. As it was demonstrated, the number of superpixels can sometimes increase or decrease

the overall performance. Finally, the fuzzy model parameters could also be changed in the situation that

the previous ones mentioned would not increase the results. However, these are not very straighforward

like the threshold or number of superpixels, since the fuzzy model parameters are related to how the

HSL and YCbCr color spaces perceive fire colors.

In conclusion, the proposed architecture contributes ot fire detection research, as even though it is

not a fire detection approach, it allows to propose automatic fire data annotations for expert validation

towards the creation of high-quality large-scale datasets.
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The proposed fire data annotation architecture has been submitted to the CVPR conference on the

16th of November 2020 [26].

6.2 Future Work

For future work, at an initial stage, it would be interesting to improve the proposed approach in the

outlined limitations. The use of texture feature would be relevant as fire regions have different textures

than firefighters or firetrucks. Some examples of texture feature extractors would be the local binary

pattern (LBP) or gray level co-occurrence matrices (GLCM). This could be a simple and easy solution

towards images containing objects with similar fire colors. The shape feature could be another interesting

method to help discerning fire from firefighters and firetrucks with similar fire colors, as fire has a very

irregular shape and firefighters and firetrucks usually have a fairly regular shape.

As the next objectives, the development of a similar architecture for smoke colors in order to create

smoke data annotations and provide help and improvements in smoke detection techniques as these

are particularly important to enable faster fire alarms. It would be interesting to experiment other color

spaces to have better a definition of smoke colors and other similar smoke colors in non-smoke objects.
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[13] T. Çelik and H. Demirel. Fire detection in video sequences using a generic color model. Fire Safety

Journal, 44:147–158, 2009. doi: 10.1016/j.firesaf.2008.05.005.

[14] V. Vipin. Image processing based forest fire detection. International Journal of Emerging Technol-

ogy and Advanced Engineering, 2(2):87–95, 2012.

[15] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. V. Hernandez, L. Krpalkova, D. Ri-

ordan, and J. Walsh. Deep learning vs. traditional computer vision. In Science and Information

Conference, pages 128–144, 2019. doi: 10.1007/978-3-030-17795-9 10.

[16] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015. doi:

10.1038/nature14539.

[17] Z. Yin, B. Wan, F. Yuan, X. Xia, and J. Shi. A Deep Normalization and Convolutional Neural Network

for Image Smoke Detection. IEEE Access, 5:18429–18438, 2017. doi: 10.1109/ACCESS.2017.

2747399.

[18] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Computer

Vision – ECCV 2014, pages 818–833. Springer, 2014.

[19] M. J. Sousa, A. Moutinho, and M. Almeida. Wildfire detection using transfer learning on augmented

datasets. Expert Systems with Applications, 142:112975, 2020. doi: 10.1016/j.eswa.2019.112975.

[20] J. Sharma, O.-C. Granmo, M. Goodwin, and J. T. Fidje. Deep convolutional neural networks for

fire detection in images. In Engineering Applications of Neural Networks, pages 183–193. Springer

International Publishing, 2017. doi: 10.1007/978-3-319-65172-9 16.

[21] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi. A survey of the recent architectures of deep

convolutional neural networks. Artificial Intelligence Review, 53(8):5455–5516, 2020.

52
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to State-of-the-Art Superpixel Methods. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 34:2274–2282, 2012. doi: 10.1109/TPAMI.2012.120.

53



[37] M. Wang, X. Liu, Y. Gao, X. Ma, and N. Q. Soomro. Superpixel segmentation: A benchmark. Signal

Processing: Image Communication, 56:28–39, 2017. doi: 10.1016/j.image.2017.04.007.

[38] J. Shen, Y. Du, W. Wang, and X. Li. Lazy random walks for superpixel segmentation. IEEE Trans-

actions on Image Processing, 23:1451–1462, 2014. doi: 10.1109/TIP.2014.2302892.

[39] Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE

Transactions on Pattern Analysis and Machine Intelligence, pages 583–598, 1991. doi: 10.1109/

34.87344.

[40] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24:603–619, 2002. doi: 10.1109/34.

1000236.

[41] Z. Li and J. Chen. Superpixel segmentation using Linear Spectral Clustering. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 1356–1363, 2015. doi:

10.1109/CVPR.2015.7298741.

[42] R. Babuška. Fuzzy Modeling for Control. Springer, 1998.

[43] J.-S. R. Jang, C.-T. Sun, and E. Mizutani. Neuro-Fuzzy and Soft Computing: A Computational

Approach to Learning and Machine Intelligence. Prentice Hall, 1997.

[44] L. A. Zadeh. Fuzzy sets. Information and control, 8:338–353, 1965. doi: 10.1016/S0019-9958(65)

90241-X.

[45] C. Wang. A study of membership functions on mamdani-type fuzzy inference system for industrial

decision-making. Master’s thesis, Lehigh University, 2015.

[46] L. A. Zadeh. Outline of a new approach to the analysis of complex systems and decision processes.

IEEE Transactions on Systems, Man, and Cybernetics, SMC-3:28–44, 1973. doi: 10.1109/TSMC.

1973.5408575.

[47] E. H. Mamdani. Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE

Transactions on Computers, (12):1182–1191, 1977. doi: 10.1109/TC.1977.1674779.

[48] T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to modeling and

control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15:116–132, 1985. doi:

10.1109/TSMC.1985.6313399.

[49] A. J. Dunnings and T. P. Breckon. Experimentally defined convolutional neural network architecture

variants for non-temporal real-time fire detection. In 2018 25th IEEE International Conference on

Image Processing (ICIP), pages 1558–1562, 2018. doi: 10.1109/ICIP.2018.8451657.

[50] C. R. Steffens, R. N. Rodrigues, and S. S. da Costa Botelho. Non-stationary vfd evaluation kit:

Dataset and metrics to fuel video-based fire detection development. In Robotics, pages 135–151.

2016. doi: 10.1007/978-3-319-47247-8 9.

54



[51] J. Chamorro-Martı́nez and J. M. Keller. Granular modelling of fuzzy color categories. IEEE Trans-

actions on Fuzzy Systems, pages 1–1, 2019. doi: 10.1109/tfuzz.2019.2923966.

[52] P. Jaccard. The distribution of the flora in the alpine zone. New phytologist, 11(2):37–50, 1912. doi:

10.1111/j.1469-8137.1912.tb05611.x.

55



56



Appendix A

Publications

The article below is the scientific article that this work led to and it has been submitted on the 16th

of November 2020.

57



Color-based Superpixel Semantic Segmentation for Fire Data Annotation

Pedro Messias1 Maria João Sousa2 Alexandra Moutinho2
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Abstract

Image- based fire detection is a safety- critical task, which
requires high- quality datasets to ensure performance guar-
antees in real scenarios. Automatic fire detection sys-
tems are in ever- increasing demand, but the limited num-
ber and size of open datasets, and lack of annotations, hin-
der model development. Solving this issue requires that
experts dedicate a significant time to classify and segment
fire events in image datasets. Towards building large- scale
curated datasets, this paper presents a data annotation
method that leverages semantic segmentation based on su-
perpixel aggregation and color features. The approach in-
troduces interpretable linguistic models that generate pixel-
wise fire segmentation and annotations, which are explain-
able through simple fine- tunable rules that can support sub-
sequent annotation validation by fire domain experts. The
performance of the proposed algorithm is evaluated for rel-
evant scenarios using a publicly available dataset, namely
through the assessment of the segmentation quality and the
labeling of fire color categories. The outcomes of this ap-
proach pave the way for creating large- scale datasets that
can empower future deployments of learning- based archi-
tectures in fire detection systems.

1. Introduction

The challenges in facing wildfires are increasing the de-
mand for automatic surveillance systems. However, current
systems are typically prone to false alarms in real deploy-
ments, thus unreliable to response teams because even false
positives hinder the confidence in these solutions. Although
several research efforts have attempted to leverage the ad-
vances in deep learning in classification and segmentation
tasks, the performance and evaluation are hampered by the
quality of existing image datasets. Limitations include, e.g.,
the low number of samples and quality of image data, lack
of representativity of real- world situations, or being heav-
ily based on video frames, reducing variability. Moreover,

Figure 1: Overview of the fire data annotation pipeline. Our
approach exploits color- based features across the HSL and YCbCr
color spaces to design statistical variables with significance for fire
detection. Fire data annotation is performed with superpixel seg-
mentation in combination with interpretable linguistic models.

datasets are often missing annotations, limiting both the per-
formance and the information extracted for real operations.

To address this issue, this paper shifts focus from the
usual fire detection architectures, to instead target the devel-
opment of a pipeline for fire data annotation through seman-
tic segmentation. Towards creating large- scale high- quality
annotated datasets, this paper presents a method to gener-
ate fine- grained fire segmentations along with fire color la-
bels, which can subsequently be validated by fire domain
experts to produce reliable ground truth data. The pro-
posed approach, depicted in Fig. 1, leverages the feature
rich representations of fire, namely in the HSL and YCbCr
color spaces, that allow an insightful interpretation that
informs the color- based superpixel segmentation. Subse-
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quently, interpretable rule-based linguistic models are em-
ployed for pixel-wise classification, using statistical color
attributes to infer which superpixels correspond to fire or
not, and generate semantic labels descriptive of the colors
represented. Our approach is evaluated against the Corsi-
can Fire Database, demonstrating excellent results in fine-
grained segmentations. The proposed solution can cope
with a wide array of real-contexts: e.g., with fire at long-
distances, with firefighters in the field of operations, and
in smoke situations. Where the performance might exhibit
some limitations, the interpretability and flexibility of this
approach come into play, allowing the expert to intuitively
fine-tune the model output to improve the segmentation, and
thus guaranteeing the expert confidence in the annotation
process. This novel approach extends the state-of-the-art on
fine-grained fire semantic segmentation for data annotation,
which we believe is an instrumental step towards building
large-scale datasets for safety-critical deployments.

2. Related work
Image-based Fire Detection approaches have widely ex-
plored color-based techniques [6, 14], and recent works
have adopted learning-based methods [3, 9, 13]. Herein,
we concentrate on image data from the visible spectrum be-
cause its widespread availability allows a broader deploy-
ment. Contributions in this domain targeting fire event
detection generally design techniques for either flame or
smoke [17]. Most center on a single application, e.g.,
ground operations, watchtower systems, or aerial surveil-
lance [8]. That means methods are considerably differ-
ent, use distinct types of data sources, thus making these
hard to compare generalization-wise. For learning-based
approaches, the scarce availability of curated datasets cur-
rently presents a significant roadblock for scaling up their
applications [2, 13, 16]. Aiming for better generalization
and broader context applicability, this work pivots the atten-
tion to approaches that enable building large-scale datasets,
focusing on flame detection.

Data annotation is paramount for improving algorithm
performance and embedding relevant information for this
application. However, the tendency in fire detection works
has favored computational efficiency [11], rather than seg-
mentation granularity [14, 7], hence being blindsided to its
key role. In contrast, our objective is to prioritize fine-
grained segmentation to streamline the data annotation pro-
cess. Although state-of-the-art methods can support this
goal, the task of defining ground truths for fire data with
meaningful information involves a high level of complexity
and nuance.

Describing colors of fire in the wild calls for expert knowl-
edge from fire domain specialists because it involves a deep
understanding of the natural and artificial fuels burning [5].

The role of this characterization has utmost importance both
in wildfire science and wildfire operations, e.g., as it re-
lates to fire intensity and severity. However, hand-crafted
pixel-wise annotation is extremely time consuming, there-
fore semantic segmentation tools are crucial to simplify this
procedure and assist experts in developing ground truths.

Model interpretability. Being the experts involved in the
validation of algorithm outputs, the fine-tuning capacity and
interpretability of the models are essential to leveraging
their relevant inputs. For this reason, in this work, we priv-
ilege interpretable ruled-based models that are fine-tunable
if and whenever needed. In this way, these systems provide
higher flexibility in an early stage than black-box models,
which could require extensive manual correction cycles un-
til starting generating high-quality outputs. That problem
could discourage expert commitment in the data curation
process, which is avoided using our explainable and inter-
pretable approach.

3. Dataset
The Corsican Fire Database (CFDB) is a public database
of wildfire images with several labels that allows the eval-
uation and comparison of algorithms related to wildfire de-
tection [15]. As of this writing, despite the authors intention
for an evolving dataset, where users can upload new data for
categorization, it remains composed of initial data, attest-
ing to the difficulty in developing these repositories. The
database comprises 500 images in the visible spectrum, 100
pairs of visible and near-infrared images, and 5 multi-modal
sequences with visible and near-infrared pairs. We bench-
mark our approach using a part of this database.

Fire Image Dataset. A reduced dataset was used with 207
images from the 500 visible subset of the CFDB to create a
representative dataset with different scenarios (Fig. 2).

Figure 2: Side-by-side samples of fire images (colored) and re-
spective ground truths (binary) of the reduced Fire Image Date-
set used, including firefighting and wildland-urban-interface ele-
ments, and varying visibility conditions, e.g., day, sunset, night
and with smoke.
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Figure 3: Fire Data Annotation Pipeline. The proposed architecture is comprised of three core parts: i) Color Feature Engineering (Sec-
tion 4.1), ii) Color-based Superpixel Segmentation (Section 4.2), and iii) Interpretable Rule-base (Section 4.3). The first layer transforms
the image data to the HSL and YCbCr color spaces, better suited for fire instances. The second layer uses a purpose-built segmentation
method that generates superpixels and merges them into regions according to statistical color-based features. Then, the interpretable rule-
base employs linguistic models to classify the merged regions, yielding the pixel-wise segmentation of fire and the corresponding color
labels for each region. Subsequently, the results can be reviewed by experts to validate and fine-tune new ground truths for fire image data.

Samples were excluded due to low resolution, noise or im-
age artifacts, or pixelization that reduced the granularity of
fire features. From these 207 images, 50 were used to de-
velop and test the algorithm while the remaining were used
only for testing. Images without fire were not added since
important real-world contexts, e.g., sunsets, and presence of
firefighting means are already portrayed in this dataset.

4. Fire Data Annotation Pipeline

Data annotation can be addressed using semantic segmen-
tation methods. In this work, we pose this problem under
a two-stage approach: i) segmentation and ii) classification.
The first concerns the segmentation of image data that can
be handled with, e.g., partitioning algorithms. The second
deals with the classification of segmented regions through
assignment to categories according to their attributes. The
objectives of the proposed fire data annotation pipeline out-
lined in Fig. 3 are twofold: i) pixel-wise segmentation of
fire and ii) description of the fire color category.

Problem Formulation: Consider a sample image, I , en-
coded in a preset color space domain defined as D ∈ Rc,
where c represents the number of channels. Let X repre-
sent the space of image pixels and x represent a pixel of the
image, x ∈ X . To address the first objective of performing a
pixel-wise segmentation of fire in an image, let F represent
the set of pixels belonging to the fire class, and N consist of
the pixels that do not depict fire. The ground truth defines
the expert validated data, where both classes are, in this case
binary and mutually exclusive, i.e. x ∈ F or x ∈ N . Re-
garding the second objective of describing the color of fire,
we model four color categories, namely red, orange, yellow
and other. Note that, unlike the first case, sets of pixels be-
longing to a color subset {Cred, Corange, Cyellow, Cother} are
harder to define in a crisp way.

The following sections detail the three layers of the pro-

posed architecture (Section 4.1 - 4.3), and the implementa-
tion details are discussed in Section 4.4.

4.1. Color Feature Engineering

Seeing Fire Across Color Spaces. As the objective is to
segment the flame based on color, choosing relevant color
spaces can be very helpful when defining parameters that
correspond to fire colors, thus, leading to better results.
This is a particularly important step for images with sim-
ilar fire colors in non-fire regions and when there is smoke
over the flame, decreasing the perception of the fire colors
even for human annotation. For these reasons, the color
spaces used are the HSL and the YCbCr. The HSL color
space is easy to use and works well in scenarios with a high
contrast between the flame and the background. The sat-
uration and lightness channels are more intuitive in defin-
ing fire colors and separating them from dark smoke (high
saturation) and clouds (low lightness). Moreover, the hue
channel makes it easier to specify the range of colors for
the linguistic terms (e.g., red, orange, yellow). However,
this color space is more challenging when it comes to im-
ages with smoke in the scene or regions with similar col-
ors to fire colors (Fig. 4). In these situations, the YCbCr
color space allows for an easier flame segmentation (Fig. 5)
because of its ability to separate the colors, but it is less
interpretable than the HSL making its development more
complex. Color-based features derived from these datasets
are employed in the two stages of the proposed pipeline,
namely in the segmentation and classification parts.

4.2. Color-based Superpixel Segmentation

The use of superpixels allows to segment an image by
clustering pixels based on their color and proximity. This
technique can be very useful since superpixels can carry
more information than pixels [12], adhere better to the im-
age boundaries and reduce the complexity of several image
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Figure 4: Fire Features in HSL. Visual display of each HSL color channel for two different images.
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Figure 5: Fire Features in YCbCr. Visual display of each YCbCr color channel for two different images.

processing operations [1], thus decreasing processing times.

Superpixel Algorithm. The superpixels are generated
using the simple linear iterative clustering (SLIC) algo-
rithm [1] that allows the specification of both the desired
number of superpixels, Nsp, and their compactness, C. The
number of superpixels drives the granularity of the image
partitioning, being higher with the increase in Nsp. In
turn, the compactness controls the shape of each element,
with higher values creating more regularly shaped superpix-
els (square like), and lower values creating more irregular
shapes, which adhere better to intricate image boundaries.
Furthermore, the superpixels are defined as vectors in R3 in
both HSL and YCbCr color spaces, where each entry corre-
sponds to the mean color of each channel (Hsp

j , Ssp
j , Lsp

j or
Y sp

j , Cbsp
j , Crsp

j ) of the superpixel sp, with j ∈ [1, Nsp].

Merging Superpixels.We propose a procedure that merges
similar superpixels into regions. This method combines
neighboring superpixels that register a similar color shade.
This is performed using the YCbCr color features as these

allow the separation of fire from other instances like smoke.
Adjacent superpixels, j and i, are compared based on their
mean color (Y sp

j,i , Cbsp
j,i, Crsp

j,i) and merged if each entry
of the pairwise difference is lower or equal to a threshold
{0.034, 0.1, 0.03} , as follows:

| Y sp
j − Y sp

i | ≤ 0.034 (1)

| Cbsp
j − Cbsp

i | ≤ 0.1 (2)

| Crsp
j − Crsp

i | ≤ 0.03 (3)

To exemplify this procedure, Fig 6 illustrates the steps of
the process and the final result of merging the superpixels.
Such operation allows the number of regions to decrease
and, consequently, the processing time, and eliminate cer-
tain superpixels that could be classified as fire colour.

4.3. Interpretable Rule-based Models

Color Perception. Humans describe colors using linguis-
tic terms like red, green or pink, but color perception might

4



Figure 6: Zoomed area shows how similar superpixels 1, 16 and 27 merge, creating region number 1. Merging process results in a
region- defined image.

differ from person to person [4]. Likewise, image retrieval
for search- based analyses is also based on key categorical
terms, namely color. Relevant fire characteristics are re-
lated to their color so the annotation of these attributes is
fundamental towards creating large- scale datasets with rel-
evant information that can be used in a wide range of fire
detection scenarios.

Linguistic Models Architecture. In this work, we propose
interpretable linguistic models, designed for fire segmen-
tation and classification of the superpixel regions yielded
from the previous step. The rule- based architecture is build
with Mamdani- type fuzzy inference systems [10], that de-
scribe the rules of the knowledge base with linguistic terms.
This architecture incorporates uncertainty and is able to
bridge the gap between semantic description of colors and
its numerical parametrization. The concept of the rules re-
lies on the association of the linguistic terms between both
the modeling of the color- based features and the categoriza-
tion of colors, with the underlying range of values. Our ap-
proach leverages two complementary models, developed for
the HSL and YCbCr color spaces and outlined in Table 1.

Both models are defined with three inputs, corresponding to
the mean color of each channel for every region. The two
models output a fire possibility per region, that is leveraged
to perform the classification of the merged superpixels and
achieve the pixel- wise segmentation of fire in the images.
In addition, the HSL model is able to describe fire color
categories to perform semantic segmentation of the colors
in the image. The proposed architecture may integrate both
models in the data annotation pipeline (Fig.3), combining
the HSL and YCbCr using a weighted average or maximum
operators, to generate a segmentation of fire. In parallel, the
HSL model generates fire color categories that can achieve
the final semantic layers that also describe the color of the
fire.

The Interpretable Rule-base is built with simple and in-
tuitive triangular and trapezoidal parametric functions, that
model the corresponding linguistic terms for inputs and out-
puts as follows.
HSL model: uses terms describing levels of hue, saturation
and lightness to model the fire possibility, i.e. low or high,
and the fire color category, which classifies a region to a

Table 1: Interpretable Linguistic Models. Description of the ruled- based systems designed for fire data annotation, using the HSL and
YCbCr color- features. The classification models have three inputs and one common output. Each input/output is defined with differ-
ent linguistic terms and parameters, forming membership functions. There are triangular (3 parameters) and trapezoidal (4 parameters)
membership functions. The HSL model has one additional output, fire color, to generate fire color category.

Input Output

Model Variable Linguistic terms Parameters Variable Linguistic terms Output parameters

HSL

Hue

Saturation

Lightness

red1, orange, yellow,

other, red2

low, high

low, medium, high

[0, 0, 0.03, 0.055]; [0.04, 0.09, 0.133]; [0.11, 0.16, 0.2];

[0.17, 0.25, 0.87, 0.96]; [0.9, 0.97, 1, 1];

[0, 0, 0.4, 0.65]; [0.545, 0.75, 1, 1];

[0, 0, 0.23, 0.39]; [0.23, 0.427, 0.85, 0.96]; [0.94, 0.965, 1, 1];

fire possibility

fire color

low, high

red, orange,

yellow, other

[0, 0, 0.3, 0.5]; [0.4, 0.7, 1, 1];

[0.5, 1, 1.75]; [1.25, 2, 2.75];

[2.25, 3, 3.75]; [3.25, 4, 4.5];

YCbCr

Luminance

Chrominance Blue

Chrominance Red

low, medium,

medium high, high

low, medium, high

low, medium, high

[0, 0, 0.365, 0.49]; [0.457, 0.5, 0.548, 0.594];

[0.548, 0.63, 0.72, 0.776]; [0.73, 0.8, 1, 1];

[0, 0, 0.435, 0.56]; [0.47, 0.527, 0.58, 0.6]; [0.446, 0.69, 1, 1];

[0, 0, 0.49, 0.625]; [0.58, 0.647, 0.69, 0.78]; [0.71, 0.826, 1, 1];

fire possibility
low, medium,

medium high, high

[0, 0, 0.23, 0.33]; [0.27, 0.35, 0.53, 0.65];

[0.6, 0.65, 0.75, 0.8]; [0.75, 0.83, 1, 1];
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corresponding color subset { Cred, Corange, Cyellow, Cother } .

YCbCr model: employs terms describing degrees of lu-
minance, chrominance blue and chrominance red. The
knowledge- base comprises fourteen rules. The outputs of
the rules are combined and transformed to a crisp value rep-
resenting the fire color possibility.

The models generate continuous- valued outputs that are
converted to multi- class labels through the application of
rounding thresholds. For classification of a region as being
fire the decision threshold, δ, is usually applied at 0.5. This
value can be fine- tuned in the validation procedure as will
be discussed further along.

4.4. Implementation details

The proposed algorithm allows the flexible selection of
three parameters. For segmentation (Section 4.2), the num-
ber of superpixels, Nsp, and the compactness, C, which
are defined within the algorithm. For classification (Sec-
tion 4.3), a threshold is applied to the outputs generated in
the semantic classification of fire and the multi- class color
categories. These parameters are established in the algo-
rithm but can be easily fine- tuned by experts upon valida-
tion.

Parameter selection: Concerning the segmentation part,
the selected number of superpixels must ensure that the al-
gorithm can achieve a fine- grained segmentation. The num-
ber of superpixels drives the quality of the segmentation in
this regard. Since, by nature, flame shapes are very irregular
and the image data might contain regions of interest that are
captured at long distances, if Nsp is too small the image par-
titioning results in larger superpixels that do not adhere ex-
clusively to the flames. This behavior is illustrated in Fig. 7,
where in the lower left corner of the samples presented we
can distinctly observe that the superpixels can capture the
flames but also aggregate other information nearby. This
would inherently degrade the quality of the segmentation,
but more importantly, it could prevent an accurate seman-
tic segmentation because a misleading mean color value of
the superpixel could result in its misclassification. How-
ever, selecting higher values of Nsp results in a larger num-
ber of increasingly small superpixels, as depicted in Fig. 7,
which are harder to classify using the mean color statistics
as these capture less context information. The value estab-
lished by default in our algorithm is 1000 as it is considered
an adequate trade- off between these factors. Regarding the
compactness, since it controls the shape of the superpixels,
it is particularly relevant when segmenting irregular shapes
like fire. The influence of varying this parameter can be ob-
served notably in Fig. 7, by comparing the samples on the
upper right corner of left and right side images. The effect
of enforcing a higher compactness (depicted on the right
side) could result in less fine- grained semantic segmentation

for both fire and fire colors. For this reason, the value of C
was established as 1, because it is the lowest value possible,
making superpixels adhere better to irregular boundaries.

Figure 7: Visual comparison between different Nsp and C. The
Nsp in the lower left corner of each image is 100 and 2000 in the
upper right corner. Images on the left have a C equal to 1 and
images on the right to 20.

Considering the proposed pipeline integrates two ruled-
based models, there are two possible values for the clas-
sification of the input in terms of the possibility of corre-
sponding to a color similar to fire colors. The ensemble
classier uses as decision function the weighted average or
maximum operators, being possible to define the weights
and the strategy to apply. The proposed solution is intended
to be fine- tunable, so while a threshold on fire classification
is set typically at 0.5, this can still be adjusted if required.
Our experiments use always a δ = 0.5 threshold for the fire
segmentation, except when specified otherwise.

5. Experiments
5.1. Performance Evaluation

The Fire Image Dataset (Section 3) is a subset of the
Corsican Fire Database (CFDB), which provides pixel- level
segmentations annotated by a single expert as reported
in [15]. While the definition of the regions corresponding
to fire are complex to define and encompass a great degree
of uncertainty, herein we consider this unique source our
ground truth.

Baseline: To evaluate the proposed architecture we assess
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several baseline approaches. The first and simpler ones are
based on the HSL model and the YCbCr model separately.
We test the integrated approach, with the combination of the
two models with a Weighted average ensemble classifier,
considering several weight distributions. Subsequently, we
also present results for the multi- model approach with an
ensemble classification based on the Max Value operator.

Performance Measures: To evaluate the performance of
the segmentation algorithms, we will used a set of different
metrics that enable the comparison with the ground truth
data. Table 2 summarizes their formulas and a visual intu-
ition of each. For model assessment we will focus on three
metrics namely: Accuracy, Intersection over Union (IoU),
and Dice coefficient. The metrics consider: true positives
(TP), true negatives (TN), false positives (FP) and false neg-
atives (FN). The words true and false refer to whether the
positives and negatives were correctly classified. For the
fire data annotation purpose we are interested in obtaining
segmentations with rich information. Considering the out-
puts will be subsequently validated by experts, the overseg-
mentation while not ideal is not such a problem, since these
can be easily corrected through fine- tuning or by specify-
ing which regions of superpixels were misclassified and an-
notating the true label. In the following we evaluate cases
on interests that showcase the capabilities of the proposed
method, along with the identification of the most challeng-
ing scenarios that are likely to require the expert annotation.

5.2. Results Evaluation

To demonstrate the capabilities of the proposed algo-
rithm, a set of representative examples was selected for
analysis. The examples depicted in Fig. 8, showcase the

Table 2: Performance measures for segmentation.

Accuracy IoU Dice

TP+TN
TP+FN+FP+TN

TP
TP+FP+FN

2TP
2TP+FP+FN

performance of the internal steps of the semantic segmen-
tation for three distinct scenarios. The figure represents the
pipeline by the first presenting the original of each image,
followed by the merged superpixel segmentation. This step
already was designed to target the separation from fire from
the surrounding context so it already gives a close and gran-
ular partitioning of the image, capturing the fire instances
even when these are at long distances an covered by smoke.
Next, the ruled- based models generate the classification of
the superpixels according to fire possibility, with higher val-
ues (brighter in the image), representing the superpixels that
will be classified with the fire label. The HSL linguistic
model also classifies the fire colors in the image, which re-
lates to fire intensity and severity. By comparison with the
original image, it can be observed the superpixel approach
combined with the fire color classification is able to iden-
tify all possible colors in the first two sample images, and
correctly attributes the other color label to the remainder of
the scene. By intersecting both the fire classification with
the color classification, we can automatically generate fire
data annotations that closely approximate the expert anno-
tated data, but with richer information concerning the color
characteristics.

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

(a) Original Image (b) Merged (c) Fire Possibility (d) Fire Color (e) Output (f) Ground truth

Figure 8: Examples for each step in real- world scenarios
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Regarding limitations of the color-based approach, as ex-
pected scene objects resembling fire colors are more likely
to be captured by the propose segmentation. However, such
cases as depicted in Fig. 9, like the sunset and firefighting
elements are normally likely to require expert annotation, or
need to be complemented by other algorithms for detection
of other objects in the scene.

(a) Original (b) Output (c) Ground Truth

Figure 9: Examples of limitations in real-world scenes.

5.3. Understanding the Architecture

Fine-tuning: While most parameters in the architecture are
generically preset, the proposed architecture is interpretable
and can be fine-tuned according to the more complex sce-
narios. For instance, for the image represented in Fig. 4 ob-
scured by smoke, the fine-tuning of the classification thresh-
old can improve the final semantic segmentation as is illus-
trated in Fig. 10.

Ablation Study: The design process described throughout
this paper was evaluated with the incremental assembly of

(a) Threshold, δ = 0.5 (b) Threshold, δ = 0.4

Figure 10: Fine-tuning of fire classification threshold for improv-
ing the semantic segmentation.

Table 3: Ablation Study.

Model δ Accuracy IoU Dice

HSL HSL model 0.5 93.39 62.49 73.92

YCbCr YCbCr model 0.5 91.58 56.68 69.82

Weighted

0.4 HSL + 0.6 YCbCr

0.3 HSL + 0.7 YCbCr

0.2 HSL + 0.8 YCbCr

0.5

0.5

0.5

93.16

93.01

92.81

61.52

61.00

60.13

73.66

73.29

72.63

Max Value max(HSL,YCbCr)
0.5

0.4

93.47

94.04

66.51

73.53

77.59

82.63

its building blocks. Table 3 presents the ablation study with
the overall results for each model, including variants of the
pipeline proposed for semantic segmentation of fire.

6. Conclusion

This paper introduces a novel pipeline for fire data an-
notation that enables semantic segmentation of fire and the
pixel-wise annotation of relevant color characteristics. The
architecture proposed leverages a purpose-built algorithm
that combines color-based superpixel segmentation with in-
terpretable rule-based models that allow generating pixel-
wise semantic labels of fire and of fire colors in the im-
ages. We demonstrate that the proposed approach is able
to obtain fine-grained semantic segmentations and discuss
the limitation in challenging real-world scenarios. Our so-
lution has key advantages due to its fine-tuning ability and
interpretable nature, which enables the close involvement
of fire domain experts in the validation of new ground truth
data for a broad array of fire detection applications. Our
approach to fire data annotation aims to streamline this
procedure, towards the creation of high-quality large-scale
datasets that can allow robust deployments in safety-critical
real-world scenarios.

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S.
Ssstrunk. SLIC Superpixels Compared to State-of-the-Art
Superpixel Methods. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 34:2274–2282, 2012. 4

[2] T. Adão, T. M. Pinho, L. Pádua, N. Santos, A. Sousa, J. J.
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