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Abstract

In the aviation sector, human factors are the primary cause of safety incidents. Intelligent prediction
systems, capable of evaluating human state and managing risk, have been developed over the years
to identify and prevent human factors. However, the lack of large useful labelled data has often been
a drawback to the development of these systems. This paper proposes and implements a predictive
model that can identify and classify human factor categories from aviation incident reports. The study
data, provided by the Aviation Safety Network (ASN), comprises 1674 incident reports between 2000
and 2020. These reports consist of aircraft details, planned route, probable cause, and other flight
information. A novel human factor classificatory framework is proposed and a diversified labelling
set is developed, based on the acquired data. For feature extraction, a text pre-processing and
Natural Language Processing (NLP) pipeline is developed. For data modelling, semi-supervised Label
Spreading (LS) and supervised Support Vector Machine (SVM) techniques are considered. Random
search and Bayesian optimization methods are applied for hyper-parameter analysis and improvement
of model performance, measured by the Micro F1 score. The best predictive models achieved a Micro
F1 score of 0.900, 0.779 and 0.875, for each level of the proposed framework, respectively. The proposed
solution indicates that favourable predicting performances can be achieved for the classification of
human factors based on text data. Notwithstanding, a larger data set would be recommended in future
research.
Keywords: Machine Learning, Natural Language Processing, Classification, Human Factors, Aviation
Safety

1. Introduction
Over the past decades, human factors have been the
main latent cause of aviation safety breaches. Stud-
ies such as [1, 2, 3] have found pressure, fatigue, mis-
communication, and lack of technical knowledge on
crucial personnel - such as maintenance workers, air
crew, and air traffic controllers - to be some of the
main probable causes for aviation mishaps. Accord-
ing to the International Civil Aviation Organization
(ICAO), in 2018 alone, there were 98 aircraft acci-
dents for scheduled commercial air transport oper-
ations, of which 11 were fatal accidents, resulting in
514 passenger fatalities [4]. These figures reflect the
current relevance of human factor predictive safety
models that can detect and prevent high-risk situ-
ations for the aviation sector.

Recently, it is notable an increase in a common ef-
fort within the research community to develop data-
based Human Reliability Assessment (HRA) pro-
cesses that can produce accessible predictive indica-
tors, while leveraging already acquired data. How-
ever, some of these prominent processes [5, 6], es-

pecially those which rely on the contents of text
reports, often require manual categorization of hu-
man factor categories, an expensive and error-prone
task.

The aim of this research is to contribute to a bet-
ter knowledge about how to enhance aviation safety,
by developing a comprehensive methodology based
on data mining and machine learning techniques, to
identify and classify the main human factors causal
of aviation incidents, based on descriptive text data.

The general problem of inferring taxonomic in-
formation from text data is not novel and has been
extensively explored in other fields of research, such
as healthcare and journalism. Some examples of
successful applications have been the prediction of
patient illness based on medical notes [7, 8] and au-
tomated fake news detection from internet pages [9].
Surprisingly, to our knowledge, only a few studies
have tried to infer information from aviation safety
reports using NLP [10].

This paper is organized as follows. Section 2
presents a carefully conducted initial data analy-
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sis and pre-processing of the corpora, and intro-
duces a novel HFACS-ML framework to facilitate
human factor classification on machine learning ap-
plications. Moreover, a diversified labelled set is
also developed. After that, Section 3 describes how
embedding techniques can be used to associate the
semantic meaning between long pieces of text by
comparing, in a local setting, human factor cate-
gories of differently distanced documents. All the
work developed in Sections 2 and 3 is availed in Sec-
tion 4, where we associate the labelled samples and
document vectors with classification algorithms in
order to infer the category of unknown documents.
In a preliminary analysis, using a D2V and LS com-
bination, we gain insight into some of the limita-
tions that may corrupt our models, and iterate on
this information to improve over the different lev-
els. Then, in section 5 conclusions are addressed,
as well as some recommendations for future work.

2. Tailored Data Analysis
In order to acquire descriptive texts containing the
most recent threats to aviation safety, for this study,
we gathered the last two decades (2000 to 2020) of
”Probable Cause” reports from the publicly avail-
able ASN database, amounting to a total 1674 doc-
uments. Additional information on the database
and report structures can be found in [11].

2.1. Human Factor Classification Framework
After a comprehensive examination of the database,
it resulted clear that the content present in the text
reports could not be exactly correlated to the stan-
dard Human Factor Analysis and Classification Sys-
tem (HFACS), shown in Figure 1. Some reasons
for the inapplicability of this framework were: lack
of Organizational Influence information; insufficient
subcategorical detail; and confliction between core
vocabularies within the same category.

Figure 1: HFACS framework (adapted from [12]).

For this reason, a variation from this framework,
adapted for machine learning (ML) research, the
HFACS-ML, was proposed (Figure 2). This new
framework was designed to correct the previously
mentioned challenges, as well as to facilitate the
association between the various distinguished con-
texts found in the ”Probable Cause” reports to inde-
pendent human factor categories. One main change
worth pointing out was the division of the ”Phys-
ical Environment” category into two distinct cate-
gories, ”Physical Environment 1” and ”Physical En-
vironment 2”, appurtenant to weather and animal
preconditions, respectively. Another change worth
noticing was the introduction of outlier categories,
”Not Available” (n/a) and ”Undetermined” (und),
for the cases where no human factor would be men-
tioned in the text or the cause of the incident was
explicitly undetermined. Additional descriptions of
the remaining categories can be found in [12].

Figure 2: Proposed HFACS-ML framework.

Note that, similarly to the original HFACS, in
the proposed HFACS-ML each document may have
a minimum of zero labels and a maximum of three
labels, with at most one label per level.

2.2. Construction of a Labelled Data Set
To enable the development and testing of predictive
classification models, we constructed a labelled set
using two simple and efficient approaches: Data-
driven automated labelling and manual labelling.

In the first approach, we used keywords available
in the database, already attributed to some of the
documents, and searched for possible associations
with HFACS-ML categories. For this task, a con-
sistency criterion was defined: in the observation of
15 random documents with a certain keyword, if at
least 12 belonged to the same HFACS-ML category,
for a certain level of the framework, then consis-
tency was satisfied. In these cases, all documents
which possessed that keyword would be equipped
with the same human factor label for that particu-
lar level, and the observed irregular samples would
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be manually corrected. If the consistency criterion
was not satisfied for a certain keyword, then no la-
bel would be attributed to any of the respective re-
ports. Table 1 shows all keyword associations that
were found to satisfy consistency, and therefore con-
tributed to the data-driven automated labelling.

Table 1: Automated labelling table
HFACS-ML Level

Keyword Unsafe Supervision Precondition Unsafe Act
Weather - (all) - Physical Env. 1 -

ATC & navigation - VFR flight in IMC - Physical Env. 1 -
ATC & navigation - Language/communication - Personnel Factor -

Collision - Object - Bird - Physical Env. 2 -
Collision - Object - Person, animal - Physical Env. 2 -

Airplane - Engines - Fuel exhaustion Supervisory Violation Personnel Factor -
Airplane - Engines - Fuel starvation Supervisory Violation Personnel Factor -

Flightcrew - Alcohol, drug usage - Condition of Operator -
Flightcrew - Incapacitation - Condition of Operator -

Flightcrew - Disorientation, sit. awareness - Condition of Operator Error
Flightcrew - Insufficient rest / fatigue - Personnel Factor -

Flightcrew - Non adherence to procedures - - Violation
Cargo - Overloaded - - Violation

Flightcrew - Un(der)qualified Supervisory Violation Personnel Factor -
Security - Suicide - Condition of Operator Violation

Although a considerable amount of labels was
attained through this labelling method, the dis-
tribution of the resulting set revealed very imbal-
anced. For this reason, in order to add variety
to the labelled set a second approach, manual la-
belling, was also conducted. Throughout the course
of this study, more than 60 documents were individ-
ually analyzed and classified onto their respective
HFACS-ML categories. The result of both labelling
processes lead to a total classification of 107 Unsafe
Supervision labels, 370 Precondition for Unsafe Act
labels and 119 Unsafe Act Labels. The complete la-
bel distribution is summarized in Table 2.

Table 2: Total label distribution.
HFACS-ML Level HFACS-ML Category Label count

Unsafe
Supervision

Inadequate Supervision 20
Planned Inap. Oper. 6
Failed Known Prob. 3

Supervisory Violation 52
n/a 22
und 4

Precondition
for Unsafe Act

Physical Env. 1 169
Physical Env. 2 46

Technological Env. 10
Condition of Operator 55

Personnel Factor 78
n/a 8
und 4

Unsafe Act
Error 54

Violation 47
n/a 14
und 4

2.3. Pre-Processing
In data mining, the presence of irrelevant informa-
tion, often found in raw text data, is known to sub-
stantially condition the performance of predictive
models. Since, to our knowledge, no studies have
tried to explore which pre-processing tools result
most efficient for aviation incident report analysis,
we took inspiration from studies applied to other
settings, such as [13, 14], to implement a tailored
pipeline. The resulting process can be summarized
in three stages: Data cleaning, Normalization and
Tokenization.

In the first stage, all duplicate instances were re-
moved and all incidents which originated from ter-
rorist assaults were excluded. The reason behind

the latter was based on the principle that person-
nel performance under malicious external threats
should not be representative of their professional
behaviour under conventional circumstances.

In the second stage, all non-English documents
were translated into English, all letters were lower-
cased, as suggested in [13], and punctuation was
removed.

In the third stage of pre-processing, for each doc-
ument, the text was parsed (or tokenized), convert-
ing each word into a single entity (or token). For
this step, we chose to apply alphabetic parsing and
stripped all digits from the data set. Although sig-
nificant information may at times be derived from
these characters, we found them not to provide any
additional value regarding human factors, as the
main relevant semantic meaning from our database
was often found in word descriptions and core vo-
cabularies. The same justification applies to punc-
tuation removal.

After parsing, we considered the removal of stop-
words. For this purpose, two lists of unwanted
words were introduced. The first list, extracted
from the publicly available [15], consisted of stan-
dard stop-words commonly used for the treatment
of natural English data. The second list, was tai-
lored to our data set and designed to handle in-
troductory information, which could appear in dif-
ferent parts of the text. This list consisted of
the following words: ‘summary’, ‘probable’, ‘cause’,
‘accident’, ‘contribute’, ‘factor’, ‘find’, ‘conclusion’,
‘translate’, ‘spanish’, ‘italian’, ‘french’, ‘german’.

In the final step of this stage, words under-
went lemmatization, a morphological process which
leverages dictionary information to reduce words to
their base form. This process is especially useful
for feature extraction as it simplifies the vocabulary
and facilitates semantic word association. Follow-
ing this process, extremely rare words appearing 5
or less times throughout the corpora were also ig-
nored, as these would prove too rare to form mean-
ingful patterns.

Together, all the above pre-processing steps pro-
vided a significant contribution to improving data
quality and reducing computational costs, by ho-
mogenizing the text and reducing noisy or unwanted
information. The result of this process is availed in
the next section.

3. Feature Extraction with NLP
In order to enable computers to read, decipher and
understand the semantic meaning of language data
in a manner that is valuable, mathematical models
are used to convert text segments into numerical
vector projections. This process is referred to as
feature extraction. A series of NLP models, specif-
ically designed to process natural language data,
have been considered to efficiently derive document

3



projections from our ”Probable Cause” reports.

3.1. TF-IDF
In the Term Frequency–Inverse Document Fre-
quency (TF-IDF) algorithm, each feature in a doc-
ument vector is associated to a single word from
the vocabulary, and increases proportionally to the
frequency of that word in the same document. How-
ever, the value of this feature is also offset by the
number of documents in which that word appears.
The latter concept helps to adjust for the fact
that some words appear more frequently in general,
and should therefore be considered with less impor-
tance, while others more domain specific should be
compensated with a greater weight [16].

Formally, let V = {w1, w2, ..., wV } be the set of
distinct words in the vocabulary, each feature qi(w)
in a TF-IDF document vector di represents the
weight word w possesses for that document. Ad-
ditionally, let fi(w) be the frequency of the same
word, in the same document, and fN (w) be the to-
tal number of documents in which that word ap-
pears. The formal weight computation is shown in
equation 1.

qi(w) = fi(w). log N

fN (w) (1)

Although the simplicity of this algorithm, in this
overview we also present some of its biggest limita-
tions: computational complexity increases with the
size of the vocabulary; word relations are not cap-
tured; and it has trouble handling out of vocabu-
lary words, for the classification of new documents
[17]. For these reasons, the next subsections de-
scribe other approaches used in this research that
seek to solve some of the above mentioned obstacles.

3.2. Word2Vec
Also known as W2V, this feature extraction algo-
rithm, introduced in [18], uses shallow Neural Net-
works (NN) to efficiently derive word embeddings
(or vectors) of custom size P . It can do so through
two different architectures: the Skip-Gram (SG)
and the Continuous Bag of Words (CBoW).

In the first architecture, a shallow Neural Net-
work is trained on the task of predicting the sur-
rounding context words wO,i of a single target word
wI , given a context window of size C. The objective
function is shown in equation 2.

log p(wO,1, ..., wO,C |wI) (2)
In the second architecture, a shallow Neural Net-

work is trained on the task of predicting a single
target word wO, given a set of context words wI,i

and a context window of size C. Equation 3 shows
the respective objective function.

log p(wO|wI,1, ..., wI,C) (3)

After the training process, word embeddings can
be extracted from the weights of the hidden layer
and transformed into document embeddings. Let
vw be the vector projection of word w, di the vector
projection of an arbitrary document i, and Ti be the
set of ordered words found in that same document.
Equation 4 shows the mathematical equivalent of
this transformation.

di = 1
|Ti|

∑
w∈Ti

vw (4)

However, another more recent method enables
the computation of document embeddings directly
from NN training. This method is described in the
following subsection.

3.3. Doc2Vec
First proposed in [19], this feature extraction al-
gorithm introduces ‘paragraph vectors’ that act as
memory devices which retain the topic of para-
graphs. In our case, we use these vectors to directly
portray the information from the text documents in
a vector of custom size P . The underlying intuition
of Doc2Vec (D2V) is that document representations
should be good enough to predict the words or the
context of that document.

This algorithm’s two principal architectures, the
Distributed Memory (DM) and the Distributed Bag
of Words (DBoW), hold a high affinity to W2V’s
CBoW and SG architectures, respectively. The
main difference is that the document vectors from
this new algorithm are directly embedded in the NN
training and prediction.

3.4. Preliminary Analysis
In this subsection we analyse, at a local level, how
human factor categories may be inferred from the
document projections generated by the previously
described architectures. For this purpose, we used
the widely known cosine similarity measure (equa-
tion 5) to identify the 5 closest and 3 furthest doc-
uments from a randomly picked report, with iden-
tification (iD) 361, and analysed them as to their
human factors.

S(d1, d2) = cos(d1, d2) =
~d1. ~d2

|| ~d1||.|| ~d2||
(5)

Tables 3 and 4 illustrate the best results from this
test, provided by the D2V DM model.

The set of tests conducted in this section suggest
that documents with similar human factors may
tend to be placed in close cosine distances, while
documents with distinct human factors might tend
to be placed further apart. This observation justi-
fies the set of models, described in the next section,
designed to classifying human factors of unknown
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documents based on their position in the vector
space.

Table 3: Most similar documents, from the D2V
DM model.

HFACS-ML Level
iD Unsafe Supervision Precondition Unsafe Act

Reference Doc 361 Inadequate Supervision Personnel Factor Error

Most Similar
Docs (D2V)

771 Inadequate Supervision Physical Env. 2 Error
1191 Inadequate Supervision Personnel Factor Error
1011 Inadequate Supervision Personnel Factor Error
1411 Inadequate Supervision Condition of Operator Error
857 Inadequate Supervision Personnel Factor Error

Score 5/5 3/5 5/5

Table 4: Least similar documents, from the D2V
DM model.

HFACS-ML Level
iD Unsafe Supervision Precondition Unsafe Act

Reference Doc 361 Inadequate Supervision Personnel Factor Error

Least Similar
Docs (D2V)

212 n/a Physical Env. 2 n/a
626 n/a Technological Env. n/a
823 n/a Technological Env. n/a

Score 0/3 0/3 0/3

Note that in order to keep using cosine distance
as the primary metric of vector similarity, all doc-
ument projections have been normalized to unit
length. Therefore, excluding magnitude from their
differentiation.

4. Human Factor Label Propagation
During the last years, semi-supervised learning has
emerged as an exciting new direction in machine
learning research. It is closely related to profound
issues of how to effectively infer from a small la-
belled set while leveraging properties of large unla-
belled data. A challenge often found in real-world
scenarios, where labelled data is expensive to ac-
quire.

In this study, we analyse how the Label Spread-
ing (LS) algorithm may propagate information to
infer the intrinsic structure of the data and there-
fore predict human factors of unknown documents.

4.1. Label Spreading
Introduced in [20], this algorithm uses labelled
nodes to interact as seeds which spread their in-
formation through the network, following an affin-
ity matrix based on node distance and distribution.
During each iteration, each node receives the infor-
mation from its neighbours, while retaining a part
of its initial information. The information is spread
symmetrically until convergence is reached, and the
label of each unlabelled point is converted to the
class which it has received most information during
the iteration process.

To define the affinity matrix, it may use a Gaus-
sian Radial Basis Function (RBF) associated to a
single hyper-parameter Gamma, which defines the

weight with which two document vectors may influ-
ence each other. This process is shown in equation
6 and additional documentation regarding the algo-
rithms can be found in [21].

K(d2, d2) = exp(−Gamma ∗ ||d1 − d2||2) (6)

4.2. Evaluation Metrics
Multi-class classification metrics compare predicted
results to ground truth labels not used during the
training process. In this study, we established one
primary metric, Micro F1 score, on which the mod-
els were optimized, and two other complementary
metrics, Macro F1 score and Precision, that will be
used to gain deeper insights into the results. Next,
follows the expressions for each of the metrics.

Micro F1 = F1class1+...+classN (7)

Macro F1 = F1class1 + ... + F1classN

N
(8)

Precision =
∑

a∈A TPa∑
a∈A(TPa + FPa) (9)

Where A is any set of main categories from a sin-
gle level of the HFACS-ML framework. Note that
complementary documentation of some of the used
terms can be found in [22].

4.3. Early Findings
In an initial attempt to better understand how
data extraction and prediction may be improved, an
initial categorization experiment was globally car-
ried out, using the baseline D2V DBoW embedding
model together with the LS classifier.

For this experiment, we availed the previously la-
belled data and split it into train and test sets, in
a stratified manner, over different train sizes (Ts).
Figure 3 shows the confusion matrix appurtenant
to the best result from the Precondition for Unsafe
Act level, at Ts = 0.36.

It may be immediately noticed from Figure 3 that
our multi-class classification system is largely af-
fected by class imbalance. Because of this factor,
especially evident for the exhibited level, we decided
to down-sample the ‘Physical Env. 1’ category to
an order of magnitude more similar to that of the
other categories. The subsequent results are shown
in Figure 4.

Through observation of the differences in the
main diagonal, it is interesting to note, from Fig-
ure 4, that class balance and prediction evenness
were considerably improved after down-sampling.
Although the Micro F1 score remained roughly the
same, around 0.54, the Macro F1 score increased
from 0.25 to 0.34.

5



Figure 3: Precondition for Unsafe Act confusion
matrix.

Figure 4: Precondition for Unsafe Act confusion
matrix, with down-sampled ‘Physical Env. 1’.

Another observed irregularity, transversal to all
levels of the framework, was the inefficiency of the
outlier category ‘und’ to predict documents of the
same class. Because it failed its purpose and con-
tributed only to adding noise to the system, this
category and the documents related to it were re-
moved from the rest of the study.

4.4. Hyper-Parameter Impact Analysis
A procedure often followed by algorithm designers
to improve model performance is hyper-parameter
tuning. Yet, tuning complexity grows exponentially
with the number of hyper-parameters and for cer-
tain scenarios, such as the present one, where this
number is particularly large, a selection has to be
made [23]. For this reason, we considered the func-
tional Analysis of Variance (fANOVA) [24, 25] to

help us narrow down which hyper-parameters ac-
count for the biggest impact on the objective func-
tion and therefore hold a higher need for tuning.

Since this approach requires the use of empiri-
cal data, we ran a random search with 350 dif-
ferent states, registering for each state the per-
formance score (Micro F1) and the respective
hyper-parameter configuration. The list of hyper-
parameters, range, scale and type is shown in Table
5. Note that these trials were conducted on the
Unsafe Act level. Due to being the most even of
the framework, it was expected to provide the most
reliable results.

Table 5: Random search characteristics of each
hyper-parameter.

Hyper-Parameter Min Value Max Value Scale Type
Train size 0.2 0.8 Uniform Float
Gamma 0.2 200 Log Uniform Float

Dimensions 10 1000 Log Uniform Integer
Window size 1 50 Log Uniform Integer

Epochs 1 100 Log Uniform Integer
Learning rate 0.0025 0.25 Log Uniform Float

NS words 1 50 Log Uniform Integer

After fitting our empirical data into the fANOVA
process, we obtained the marginal contribution of
each hyper-parameter (Figure 5). Note that the
marginal contribution can be interpreted as the rel-
ative importance a certain variable over the final
objective function.

Figure 5: Marginal contribution of each hyper-
parameter, predicted by the fANOVA.

From the bar plot exhibited in Figure 5, it may be
observed that even in high-dimensional cases most
performance variations are attributable to just a
few hyper-parameters - in this case Gamma, Learn-
ing rate and Epochs - while others, such as Dimen-
sions and Window size, seem to possess a much
lower influence. These results are availed in the
next subsection.

4.5. Bayesian Optimization
There exist a variety of industry-standard optimiza-
tion approaches. In this work, we consider the
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automatic Bayesian optimization algorithm due to
its ability to use previous objective function ob-
servations to determine the most probable opti-
mal hyper-parameter combinations [26, 27]. This
approach falls into a class of optimization algo-
rithms called Sequential Model-Based Optimization
(SMBO), and is capable of balancing exploitation
versus exploration of the search space, for either
sampling points which are expected to provide a
higher score or regions of the configuration space
which have not been explored yet.

With the aim of improving comprehension and
steadily test the potentialities of Bayesian opti-
mization, we applied this algorithm multiple times
with an incremental number of free variables. For
this implementation, we followed the order sug-
gested by the fANOVA results (Figure 5), priori-
tizing hyper-parameters with higher marginal con-
tributions. Note that the procedure shown in this
subsection retracts again to the Unsafe Supervision
level, but has been replicated for all levels of the
framework.

Starting with Gamma, Figure 6 illustrates how
the Bayesian optimization algorithm performed
with one free variable, over a total of 100 iterations
(shown on the left), and how it explores the relaxed
state space (shown on the right).

Figure 6: Bayesian optimization results with one
free variable.

From Figure 6 it can be observed that although
the optimization algorithm diligently explores dif-
ferent regions of the state space, the best achieved
result of 0.61 is still not very good. To broaden
the search scope, we ran the Bayesian optimization
algorithm once again, but now with an additional
free variable, Learning rate. Figure 7 shows the
subsequent search distribution for both variables.

A far better result of 0.82 can be observed from
this new configuration. We may also note from the
data distribution that Gamma has been explored
in some of the same regions as in the previous it-
eration, but with a drastically different outcome.
This is an evident reflection of the high association
between Gamma and Learning rate.

Figure 7: Bayesian optimization results with two
free variables.

As the number of free variables increased, not
necessarily did the final outcome. Similar values
from the previous one were registered with three
and four free variables, reaching a global best of
0.875 at four free variables. However, only lower
values were obtained with five, six and seven free
variables, reaching as low as 0.685 in these tests.
This may suggest that, for the current non-convex
maximization problem, there might be a limit to
Bayesian optimization, situated around four free
variables, which may be a consequence of the ex-
ponential expansion in configuration space, as well
as in objective function complexity.

4.6. Metric Results
To test the effectiveness of the developed human
factor classification algorithm, we took the best re-
sults from the Bayesian optimization models and
compared them against other baseline embedding
and classification techniques. For this, we tried the
previously tested TF-IDF as a D2V substitute to
represent the document vectors, and added a Sup-
port Vector Machine (SVM) as a potential substi-
tute of LS for the task of vector classification. To
make it a fair comparison, we also included the re-
sults from our non-optimized baseline model, D2V
DBoW NS + LS, after ‘und’ removal.

Additionally, we took advantage of the ran-
dom search infrastructure, initially built for the
fANOVA process, and retrained all the embeddings
on this search mechanism, therefore including an-
other widely used optimization method in the anal-
ysis. The final comparison for each level of the
framework is summarized in Tables 6, 7 and 8, re-
spectively.

From the results observed in Tables 6, 7 and 8,
we distinctively attribute the best performance to
the Bayesian optimization approach, which exhib-
ited much better results than the baseline model.
Comparatively, random search provided acceptable
results for a high enough number of iterations, but
it did not prove to be as optimal or as consistent.
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Table 6: Best predictions from the Unsafe Supervi-
sion level.

Best Results
Model Type Model Name Micro F1 Precision Macro F1

Random Search

D2V DBoW NS’ + LS 0.816 0.894 0.548
D2V DBoW HS’ + LS 0.850 0.928 0.531

D2V DM NS’ + LS 0.833 0.880 0.492
D2V DM HS’ + LS 0.800 0.900 0.471

Bayesian
Optimization

D2V DBoW NS” + LS 0.900 0.933 0.578
D2V DBoW HS” + LS 0.900 0.933 0.578

D2V DM NS” + LS 0.850 0.928 0.510
D2V DM HS” + LS 0.850 0.866 0.518

Baseline
Models

D2V DBoW NS + LS 0.800 0.750 0.488
D2V DBoW NS + SVM 0.500 0.500 0.133

TD-IDF + LS 0.650 0.625 0.378
TF-IDF + SVM 0.600 0.555 0.276

Table 7: Best predictions from the Precondition for
Unsafe Act level.

Best Results
Model Type Model Name Micro F1 Precision Macro F1

Random Search

D2V DBoW NS’ + LS 0.657 0.656 0.659
D2V DBoW HS’ + LS 0.729 0.732 0.782

D2V DM NS’ + LS 0.610 0.618 0.517
D2V DM HS’ + LS 0.573 0.573 0.375

Bayesian
Optimization

D2V DBoW NS’ + LS 0.729 0.724 0.693
D2V DBoW HS” + LS 0.779 0.789 0.735

D2V DM NS” + LS 0.644 0.644 0.536
D2V DM HS” + LS 0.627 0.632 0.494

Baseline
Models

D2V DBoW NS + LS 0.407 0.407 0.197
D2V DBoW NS + SVM 0.441 0.441 0.185

TD-IDF + LS 0.763 0.759 0.745
TF-IDF + SVM 0.661 0.661 0.560

Table 8: Best predictions from the Unsafe act level.
Best Results

Model Type Model Name Micro F1 Precision Macro F1

Random Search

D2V DBoW NS’ + LS 0.800 0.800 0.818
D2V DBoW HS’ + LS 0.731 0.710 0.735

D2V DM NS’ + LS 0.704 0.704 0.495
D2V DM HS’ + LS 0.741 0.739 0.761

Bayesian
Optimization

D2V DBoW NS’ + LS 0.875 0.923 0.859
D2V DBoW HS” + LS 0.826 0.842 0.830

D2V DM NS” + LS 0.782 0.800 0.755
D2V DM HS” + LS 0.869 0.850 0.898

Baseline
Models

D2V DBoW NS + LS 0.565 0.526 0.560
D2V DBoW NS + SVM 0.522 0.522 0.288

TD-IDF + LS 0.739 0.737 0.762
TF-IDF + SVM 0.652 0.652 0.447

As for the comparison between models, various
conclusions may be extracted. In a primary analy-
sis, it can be observed that the DBoW architecture
generally performed slightly better than the DM for
the current data set. In a second inspection, it can
also be observed that the supervised SVM did not
perform as well against class imbalance, presenting
always the lowest Macro F1 scores. In contrast,
a surprisingly good result came from the baseline
TF-IDF + LS model, significantly surpassing the
baseline D2V DBoW NS + LS on two levels of the
framework. Due to this result, we also explored op-
timizing this model. However, it did not surpass
the best results, described in Tables 6, 7 and 8, for
any of the experiments.

5. Conclusions and Future Work
In this section, we summarize the results obtained
from this study and propose some ideas for future
work.

5.1. Conclusions
The results obtained in this study showed that the
semi-supervised LS algorithm was an appropriate
classifier for the current setting, particularly for
the HFACS-ML levels which possessed fewer labels.
We do not discard the potential of the supervised
SVM, for the same purpose, but note that it might
prove more reliable for larger and more even la-
belled data sets. Surprisingly, the TF-IDF model
was also observed to be an interesting alternative
to D2V, for some levels of the framework, although
it also proved to be more computational expensive
due to its high dimensionality.

A final relevant conclusion to be taken from
this study is the usefulness of Bayesian optimiza-
tion, when properly tuned, for finding near-optimal
hyper-parameter combinations over non-convex ob-
jective functions. The fANOVA marginal contri-
bution analysis was also crucial for this purpose,
providing valuable insight into the most influential
hyper-parameters.

5.2. Future Work
In the present dissertation, a novel HFACS-ML
framework has been proposed. It would be inter-
esting to perform a study comparing how it would
stack against the original HFACS, on the same task.
It could also be pertinent to investigate how dif-
ferent variations from these frameworks could bet-
ter fit other machine learning applications and data
sets.

Another concept that should also be considered is
the inclusion of a larger labelled and unlabelled data
set, in order to understand how this work could per-
form in a scaled scenario. This fact also motivates
further research regarding other approaches for con-
structing labelled data sets. An interesting alterna-
tive to the methods used here is Active Learning,
a methodology that prioritizes the labelling of un-
certain points, instead of randomly selected docu-
ments, so as to optimize convergence of label prop-
agation algorithms.

Finally, feature selection analysis, such as redun-
dancy and noise, should be carried out in greater
depth. In the particular case of the developed mod-
els, this is a very important topic, since these oper-
ate based on the quality and size of the vocabulary.
More work can also be done around exploring other
types of feature extraction and classification algo-
rithms, as well as their respective combinations.
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BOA: The bayesian optimization algorithm. In
W. Banzhaf, J. M. Daida, A. E. Eiben, M. H.
Garzon, and V. Honavar, editors, Proceedings
of the 1st Annual Conference on Genetic and
Evolutionary Computation, volume 1, pages
525–532. Morgan Kaufmann Publishers.

[27] J. Snoek, H. Larochelle, and R. P. Adams.
Practical bayesian optimization of machine
learning algorithms. In F. Pereira, C. J. C.
Burges, L. Bottou, and K.Q. Weinberger, edi-
tors, Advances in Neural Information Process-
ing Systems, volume 25, pages 2951–2959. Cur-
ran Associates.

10


