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Abstract

Nowadays, processor companies aim at achieving higher performing and more efficient processor ar-

chitectures, which is not an easy task as we reach the limits of Moore’s Law. To keep up with the

market demands, processors micro-architectures are increasing in complexity, which makes it harder for

application developers and other professionals to identify the factors that affect application efficiency

and performance. In order to accurately characterize and improve application performance, it is nec-

essary to rely on models and tools that provide useful insights on how an application is performing on

the micro-processor. These models use micro benchmarking and hardware counters in order to obtain

their the metrics, to guarantee more accurate results. Even though there are plenty of state-of-the art

models used to analyse application performance, most of them focus on the Back End portion the the

micro-architecture. Consequently, the Front End of the micro-architecture, which is responsible for the

decoding and issuing of instructions, has been overlooked. Which is an issue considering how it can im-

pact and bottleneck application performance. In this Thesis a new methodology of micro-benchmarking

to assess Front End (FE) limitations is proposed, in order to provide useful insights on their impact

in application performance. To achieve this goal, a set of micro benchmarks is designed using hardware

counters and tested on the Intel Skylake micro-architecture to assess the Front End components and their

capabilities. Finally a set of benchmarks are created and used to validate the methodology proposed in

different scenarios.

Keywords

Performance; Efficiency; Micro Benchmarking; Front End; MITE; DSB; Application Characterization;

Integer Applications.
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Resumo

Nos dias de hoje as empresas de processadores estão em constante competição para criarem os pro-

cessadores mais eficientes e com melhor performance posśıvel, sendo cada vez mais difićıl à medida que

nos aproximamos do limite da lei de Moore. Para acompanharem as exigências do mercado, as micro

arquitecturas dos processadores estão cada vez mais complexas, o que dificulta o trabalho de encontrar

os factores que afectam a eficiência e a performance que é da responsabilidade de engenheiros de software

e outros proffisionais. De modo a caracterizar e optimizar aplicações é necessário recorrer a modelos e

ferramentas que forneçam informações utéıs no que toca à performance da aplicação em determinado

micro-processador. Estes modelos utilizam micro benchmarking e hardware counters para obterem as

suas métricas, e garantirem resultados mais precisos. Apesar de existirem vários modelos para analisar a

performance de aplicações, a maior parte deles foca-se sobretudo no Back End das micro-arquitecturas.

Consequentemente, o Front End das micro-arquitecturas, que é responsável pela descodificação e envio

de instrucões para o Back End, tem sido esquecido. O que é problemático considerando o impacto que

este pode ter na performance de aplicações. O objectivo desta tese é propor uma nova metodologia para

o micro benchmarking do Front End que avalie as suas limitações, de modo a fornecer informações úteis

sobre os seus impactos na performance de aplicações. Para atingir este objectivo foram criadas micro

benchmarks, recorrendo a hardware counters, e executadas num processador Intel Skylake, para obter

resultados relativos às capacidades do Front End da micro-arquitetura e das suas componentes. Por fim

foram criadas benchmarks para validar a metodologia proposta em diversos cenários.

Palavras Chave

Performance; Eficiência; Micro Benchmarking; Front End; MITE; DSB; Caracterização de aplicações;

Aplicações de Inteiros.
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Over the course of the last decade micro-processors were target of several micro-architectural enhance-

ments in order to keep up with the increasing performance demands. However, these enhancements have

also contributed to the increasing complexity of the underlying hardware. For example, current modern

multi-core systems contain a memory hierarchy with several memory levels, and support a wide range of

function units. For this reason, achieving an efficient execution of applications is modern systems is a

demanding task. This leads to software developers having to search for the best optimization techniques

in a broad design space.

In order to accurately pinpoint the architecture components that prevent the application to achieve

higher performance, it is necessary to assess the performance limits of micro-architectures. However,

this is not always an easy task due to the multitude and complexity of the components inside the

micro-architecture, many of which work in conjunction, thus making it more difficult to evaluate their

limits. The assessment of micro-architecture limits can be performed through micro-benchmarks, that

are designed to exercise different components in the core pipeline. This is an important process because it

gives the realistic performance limits, different from the theoretical maximums typically found in the data

sheets. To validate the micro-benchmarks it is also essential to rely on hardware counters. These registers

included in the micro-architectures can not only be used to obtain a large number of micro-architecture

related metrics, but also to verify the correctness of micro-benchmarks.

The added value of micro-benchmarks make them popular among several state-of-art works, that

rely on them to obtain their metrics. For example, the Cache-Aware Roofline Model (CARM) [4] uses

micro-benchmarks in order to obtain micro-architecture metrics, such as memory bandwidths and compu-

tational throughput of instructions, which are further combined to provide insights regarding applications

bottlenecks and optimization guidelines. Other methods and tools also rely on hardware counter based

metrics to give the idea of the main performance limiters of applications, e.g., the Top Down Method

[7], which focuses on the utilization of different pipeline components when determining the performance

bottlenecks.

1.1 Motivation

Until now processors have followed the Moore’s Law, duplicating the number of transistors per chip

every two years, and that has allowed computational power of processors to grow at a fast pace. How-

ever, Moore’s Law is reaching it’s limits since transistors can not physically continue to get smaller,

putting more pressure on the increase of efficiency and performance. The continue enhancement of

micro-architectures also comes with an increase of their complexity, turning this process of improvement

more expensive and slow.

Due to their complexity it is hard to analyse application performance without an adequate performance

model. Nowadays there are many tools and performance models available, each one using a slightly

different approach to uncover micro-architecture limitations. However, the majority of these models

focus only on one part of the micro-architecture, the Back End. Models such as CARM, provide great

insights regarding application performance bottlenecks, but are lacking any information regarding Front

End bottlenecks.
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While many important scientific applications over the last decade might have been mostly Back End

bottlenecked, due to the great amount of floating point operations they performed, in current days more

and more applications are becoming limited by the Front End. For example, artificial intelligence and

neural network applications are made of a big number of integer instructions and branches, which lead

them to be bottlenecked by the Front End. Since these type of applications continue to evolve, there is

a need to include the Front End in current application performance models.

To tackle these issues, the main objective of this Thesis is to provide a micro benchmarking method-

ology of the Front End of current micro-architectures to assess its limitations in a wide range of scenarios.

This will allow to better understand the components of the Front End and how they can impact appli-

cation performance.

1.2 Objectives

To accomplish this task, the following objectives are established:

• Developing a micro-benchmarking methodology that exercises the diverse components of the Front

End under different execution scenarios;

• Proposing the minimum set of performance counters present in Intel processors that allow to derive

the metrics necessary to benchmark the main Front End components;

• In-depth micro-benchmarking of the performance limits of the Front End of an Intel Skylake micro-

architecture when fetching instructions from different memory levels and when issuing micro oper-

ations through different hardware resources;

• Predicting the performance bottlenecks of several benchmarks that mimic the characteristics of

real-world applications with different instruction sizes and accessing different memory levels for

both data and instruction fetching.

1.3 Main Contributions

In this Thesis, a micro-benchmarking methodology is proposed in order to evaluate the performance

limits of the Front End under different scenarios. This methodology consists on assessing different Front

End components related to the decoding and issuing of micro operations. The methodology considers a

wide range of scenarios, from accessing instructions from different memory levels to varying the instruction

sizes. To asses each component individually, new performance metrics were designed related to each

component that provide new insights regarding Front End performance. The hardware counters used

provide a good base of Front End related metrics useful for benchmarking several Front End components

and understanding their limitations.

Furthermore, by relying on this methodology, the Front End of an Intel Skylake processor is evaluated

in order to assess its limitations when fetching and decoding instructions from multiple memory levels

and when using different Front End components. Besides this, it was also validated for some kernels

that simulate the characteristics of real applications. The low errors obtained allow to conclude that the

3



method is accurate and can be used in performance models that lack information regarding Front End

bottlenecks. Improving the quality of the performance analysis by incorporating both Front End and

Back End limitations.

1.4 Outline

This thesis is organized as follows:

• Chapter 2 - Background and State of the art : presents a summary on the state of the

art. This chapter contains four sections. The first will provide detailed information on the Skylake

micro-architecture, the multi-core processor used in this thesis. The next section highlights the

importance of micro benchmarking and its use in state of the art works. It will also provide a

description of models based on micro benchmarking and hardware counters that are used in today’s

tools for application performance analysism such as CARM [4] and Top Down method[7]. After

presenting these models, the following section briefly introduce several state-of-the-art works related

to micro benchmarking and performance analysis. Finally the open challenges that we propose to

tackle are presented and discussed.

• Chapter 3 -Micro Benchmarking: In this chapter the tool used for micro benchmarking is

presented, followed by a description of the proposed methodology for micro-benchmarking the

Front End, as well as a methodology to validate the results of our method.

• Chapter 4 - Experimental Results: In this chapter the results obtained from the micro-

benchmarks are presented alongside a critical discussion and some conclusions about their outcome.

After presenting the results we present a different approach to calculate Front End bottlenecks, and

execute a series of tests in order to validate this new approach.

• Chapter 5 - Conclusions and Future Work: In this final chapter, conclusions on the performed

worked are given along with some future work suggestions.
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The work on this Thesis mainly focuses on micro benchmarking the different hardware components

involved in the fetching and decoding of instructions in modern Out-Of-Order (OOO) computing systems.

While these hardware resouces can significantly impact application performance they are usually not

considered by different methods and models that aim at modeling and evaluate application performance.

To address this issue it is essential to have a solid background on the micro-architecture of current multi-

core processors, as well as the usability of micro-benchmarking on the state-of-the-art models and tools

used for performance modeling in order to derive a useful and accurate micro-benchmarking methodology.

With this aim, this chapter introduces one of the most recent Intel micro-architectures, Skylake,

providing a detailed overview on the different components of the processor, such as memory hierarchy

and pipeline stages. After covering this subject in detail, the state-of-the-art solutions that make use

of micro benchmarking and hardware counters for performance modeling are presented and discussed,

in particular the CARM [4] and the Top-Down method [7]. Following the introduction of the two main

solutions currently used, the next section provides a brief overview of other tools used for application

performance modeling, such as Hardware counters and static code analyzers. We will then present state of

the art works that highlight the usefulness and importance of micro benchmarking in evaluating different

systems performance. To close out the chapter we will discuss the open challenges we intend to tackle

with this thesis work, and end with a brief summary.

2.1 Intel Core Micro-Architecture

Intel is one of the biggest companies in the world regarding micro-processors manufacturing. It has

been in this market since their first release, the x86 processor, in 1978. Since then, their processors have

come a long way in terms of computational capabilities and efficiency by mostly following Moore’s Law

when improving the manufacturing process. Together with the enhancements introduced across micro-

architectures, this resulted in an improved performance throughout the years, at the cost of increased

complexity.

In order to understand why these changes have such a big impact in the modeling of application

performance, the micro-architectures should be studied and well known , not only to be aware of which

component can be influencing the performance of the application but also to discover possible extensions

that can be integrated in current state-of-the-art models. In the scope of this thesis, the core pipeline

of Skylake based micro-architecture is considered, providing an overview regarding the main hardware

resources that significantly impact application performance.

2.1.1 Intel Skylake micro-architecture

The Intel Skylake micro-architecture was launched by Intel in August 2015. It is based on a 14nm

transistor technology, succeeding the Broadwell micro-architecture. Although 5 years have passed most

Intel processors found in home computers and industries servers have micro-architectures based on Intel

Skylake. Thus the core pipeline is very similar apart of some minor improvements, such as support for

AVX512 instructions, higher number of cores and a new mesh interconnect, resulting in higher perfor-

mances. For this work two different processors were used, an Intel i7 6700K [8] and an Intel Xeon Gold
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6140 (Skylake-SP [9, 10]). The next paragraphs will explore the last machine (the Xeon Gold 6140).

Considering the similarity between the core pipelines of Skylake processors we will only present the

pipeline of Intel Skylake-SP, shown in Figure 2.1. In general, the core pipeline can be divided in two

main sub-systems, i.e., Front End (FE) and Back End (BE). These parts are separated by the Instruction

Decode Queue (IDQ), which will be described in later on this chapter. It is important that the FE can

provide a steady stream of decoded instructions to the BE to avoid starving it. For example, if the IDQ

is left empty and the BE scheduler does not have instructions to send to the execution units, the pipeline

will be stalled until instructions are available again, resulting in a loss of performance.

Figure 2.1: Skylake SP Pipeline. [1]

2.1.2 Front End

The FE of Intel Skylake-SP is presented in Figure 2.2. This part of the core pipeline is responsible

for fetching and decoding the instructions into micro-operations. Since it is a complex system that

contains multiple components which can limit the performance of applications, to correctly identify

which component impacts application performance, it is crucial to understand how each component

works and their limitations. The FE, presented in Figure 2.2 [2], is responsible for fetching and decoding

the instructions into micro-operations. There are three paths available to decode x86 instructions into

micro operations: the Micro-Instruction Translation Engine (MITE), the Decoded Stream Buffer (DSB)

and the Micro-Code Store Read Only Memory (MSROM) , all of them send decoded micro operations

to an allocation queue called IDQ.

Regarding the MITE, the x86 instructions are fetched from the L1 Instruction Cache (32 KiB 8-Way

associative) in a 16 byte window to the pre-decode component. The fetched instructions have variable

length ranging from 1 byte to 15 bytes, depending on the instruction. For example, a simple instruction

that does not use registers will not have any bytes with registers information and will consequently have

less bytes than an instruction that uses two different registers. In order to facilitate the work on the rest
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Figure 2.2: Skylake SP Front End. [2]

of the pipeline, the length of each instruction is detected at this pre-decode stage. These pre-decoded

instructions, typically called macro operations, are sent to the Instruction Queue (IQ) at a maximum rate

of 6 macro operations per cycle. This queue has 25 entries per thread and can perform macro operation

fusion, i.e., fuse two macro operations into one complex macro operation (for example, by combining one

compare with one jump instruction).

With this information we can already see one theoretical bottleneck for applications. Knowing that

the maximum bytes fetched from the L1 is 16 bytes per cycle, the bigger the size of the instructions the

lower the throughput of macro operations, implying that fewer instructions are being feed to the rest of

the pipeline. In this scenario, if the instructions are long enough, the Pre-Decoder stage may affect the

overall performance of the micro processor. The IQ can help alleviate these problems by serving as a

buffer, for example, if the IQ is holding 10 macro operations and in the next 2 cycles the Pre-Decoder

sends 2 and 3 macro operations respectively to the IQ, the Decoder will still receive from the IQ 5 macro

operations on the next cycle, followed by another 5 macro operations the cycle after, and finally 5 (2+3)

macro operations in the last cycle. In this example the IQ was holding enough macro operations so that

when the throughput of the Pre-Decoder dropped it did not influence the throughput of the IQ to the

Decoder. The IQ can send macro instructions to the instruction decoder at a maximum rate of 5 macro

instructions per cycle.

The macro-operations contained in the IQ are sent to the instruction decoder. This component is

responsible for decoding the macro operations into micro operations that have fixed length and can be

interpreted by the BE. The decoder contains 4 Simple decoders, that can decode 1 macro instruction per

cycle, and 1 Complex decoder for macro instructions that result in more than 1 micro operation. The

complex decoder can decode one macro operation into a maximum of 4 micro operations per cycle. When

the complex decoder is performing macro-operation decoding, there is one less simple decoder active per

each extra micro operation the complex decoder outputs. For this reason, the instruction decoder is

able to deliver a maximum of 5 micro operations per cycle to the IDQ. However, when macro operations
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correspond to more than 4 micro operations, these instructions are decoded by the MSROM. In this case

the instruction decoder is deactivated and the macro operations are decoded and delivered to the IDQ by

the MSROM, at a maximum rate of 4 micro operations per cycle. The instruction decoder will remain

deactivated until the MSROM finishes decoding.

Besides the MITE and MSROM, micro operations can also be delivered to the IDQ through the DSB,

which works as a L0 instruction cache. It contains 32 sets, 8-ways and it is inclusive to the L1 instruction

cache. It stores the last micro operations decoded and issued by the MITE, with a maximum capacity

of 1536 micro operations. Hence, when micro operations are delivered by the DSB to the IDQ, all the

instruction decoding stages previously mentioned are avoided, decreasing the possibility of execution

bottlenecks. The micro operations are stored along 256 lines, each line holding anywhere from 1 micro

operation to 6 micro operations. The DSB lines are divided in groups with a maximum of 6 lines, each

corresponding to code blocks aligned to 64B. In the scenario that a 64B block contains more than 36

micro operations, i.e., the maximum number of micro operations that can fit in 6 DSB lines, none of the

micro operations of the block are stored in the DSB. Whenever the last micro operation of the current

block has some of its bytes in the next block, the DSB waits for the next block and puts this instruction

in the last line of the initial block. The filling strategy of the DSB has the disadvantage of some lines

ending up partially filled with less than 6 micro instructions. Since the DSB can deliver one line per

cycle, its maximum throughput corresponds to the maximum number of micro operations that can be

stored in a single line, i.e., 6 micro operations per cycle. We can say that the DSB throughput is directly

related to the fill ratio of its lines, and a code that leaves a lot of lines partially filled can result in a

negative impact on the performance. The DSB not only allows to avoid all the decoding process, but

can also improves the throughput significantly, specially for bigger instructions, since their throughput is

usually limited by the MITE 16B window. For these instructions the DSB can be very useful to keep a

high FE throughput, has long as the code being fetched fits in the DSB.

The IDQ is the queue that receives all the micro instructions, coming from either the MITE, the DSB

or the MSROM, and can hold up a total of 64 micro operations per thread. The instructions emitted to

the IDQ are analysed by the Stack Engine in search for operations that change the stack pointer. When

it finds one of these instructions, such as PUSH and POP, it uses one of its three dedicated adders to

increase or decrease the stack pointer, alleviating work from the Back End. Finally, micro operations are

ready to be sent to the BE at a maximum rate of 6 micro instructions per cycle. The IDQ also contains

the Loop Stream Detector (LSD) which detects loops of instructions that fit inide the IDQ. When it is

activated, the LSD locks the loop, streaming always the same sequence of micro operations directly from

the IDQ, avoiding fetching and decoding of instructions. While this is happening the rest of the front

end is disabled. The streaming of micro operations stops when it reaches a branch miss predict. The

LSD is turned off in Intel Skylake-SP.

The component that decides from which path (MITE, DSB or MSROM) the instructions are fetched is

the Branch Prediction Unit (BPU). This hardware component predicts the next instructions that belong

to the correct stream of instructions, even before a branch true path is known. This usually leads to a big

increase in performance, since current BPUs have very good prediction ratios. However, in the case of
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applications that have a instruction stream that cannot be predicted by the BPU, the overall performance

can be severely impacted by the BPU, since every time a branch prediction misses the core pipeline needs

to be flushed and cleared, which represents a big overhead of cycles. Besides the instruction decoding

and issuing process, fetching instructions from the memory subsystem can also lead to severe application

bottlenecks, especially when considering the high complexity of current memory subsystems containing

several memory levels and TLBs.

Furthermore, the memory subsystem of the Intel Skylake-SP micro-architecture contains three mem-

ory levels that can be used to store instructions, namely: L1 Instruction, L2 and L3. The L1 Instruction

Cache (L1 ICache), which is 8-way set associative and can store a maximum of 32KiB, has a maximum

bandwidth of 16 bytes per cycle. The L2 Cache is a 1 MiB 16-way cache and, unlike the L1 ICache, it

is shared between instructions and data. The bandwidth between this cache and the L1 ICache is 64

bytes per cycle, which should be enough to avoid performance losses, since the MITE only fetches 16

bytes per cycle. Unfortunately there is usually a penalty in performance when fetching instructions from

the L2, caused by the latency of bringing the instructions from the L2 to the L1 ICache. The last level

cache, the L3 cache, has a maximum bandwidth of 64 bytes per cycle between itself and the L2 and

it stores 1.375MiB (per Core) in a 11-way configuration. Considering the latency penalty of accessing

this cache, we should expect to see a drop in performance when accessing the L3. Although it is not

part of the micro-processor there is another memory level worth mentioning, the DRAM. This level can

have different configurations with much bigger sizes but it will always have a big negative impact in the

application performance since its bandwidth is lower than the caches with much bigger latency penalties.

Other system memory components, such as hardrives and SSDs, offer even worse performance, and are

almost never used by an application.

Besides the different memory levels, the TLBs can also play an important role when limiting applica-

tion performance. The Instruction TLB (ITLB) in Skylake-SP is similar to a 8-way cache that facilitates

the translation of virtual addresses to physical addresses. It can hold 128 entries for pages of 4KB, which

means it can hold all the pages of a code with a maximum of 512KB of instructions. If a page is not

present in the ITLB the processor will spend a lot of cycles translating the virtual address which will

lead to a loss in performance. This should only happen if we have an application with a huge code size

and/or we have a great number of jumps that hit different pages.

2.1.3 Back End

The BE, illustrated in Figure 2.3 [2], is the OOO part of the processor where the instructions are

executed. To attain an efficient OOO execution, the BE relies on several components, such as, execu-

tions units and register tables. These components have limitations that can become the bottleneck of

applications. The first component of the BE, the one that receives micro instructions from the FE, is the

Re-Order Buffer (ROB)

The ROB receives up to 6 micro instructions per cycle from the IDQ and can perform 3 different

optimizations, namely: ”Move Elimination”, ”Ones Idioms” and ”Zeroing Idioms” . These optimizations

are performed before any renaming or execution happens, in order to prevent the waste of resources to
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execute micro operations whose the result can be predetermined. While ”Move Elimination” focus on

eliminating register to register moves, ”Ones Idioms” and ”Zeroing Idioms” optimize instructions in which

the result would be either all ones or all zeros respectively, for example a XOR of a register with itself

(Zeroing Idiom). After the optimizations are completed micro-architecture registers are mapped onto

the physical registers, available scheduler ports are determined and register naming is performed through

the Register Alias Table (RAT), that can rename up to 4 micro operations per cycle. The renaming

of registers is important to identify data dependencies and data sources, so that the micro-processor

can perform optimizations, like the forwarding of operands, and avoid pipeline stalls. The ROB also

interacts with the Branch Order Buffer (BOB) which guarantees that in the case of a miss speculation

the processor can invalidate its state and role back to a previous valid state. The BOB can hold up to

48 micro instructions that are in the same order has they were originally fetched. From the ROB, the

micro operations are delivered to the Scheduler.

Figure 2.3: Skylake SP Back End. [2]

The scheduler can receive up to 8 micro instructions per cycle from the ROB and has 97 entries

(shared by two threads), 180 integer registers and 168 vector registers. It will hold a micro instruction

until all the operands are available for the operation and the Execution Units (EU)s needed are free.

Once a micro instruction is ready for execution, the scheduler sends it to the respective EU, through one

of its 8 ports. The Scheduler can output one micro instruction per cycle per each of its ports.

A new EU was added in Skylake-SP micro-architecture that is able to perform Advanced Vector

Instructions 512 (AVX512) instructions. These instructions can increase the performance of the Intel

Skylake-SP up to 2x the performance of previous Intel Skylake architectures that only supported at most

AVX instructions. This comes from the ability of the new EU to perform the same vector operations

at the same rate but with registers with double the size. The scheduler sends this type of instructions

to port 5, that has a dedicated AVX512 execution unit, or to port 0, where two execution units able to
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perform calculations with 256 bits registers (one on port 0 and one on port 1) are combined to compute

the 512 bit operation. For integer operations the scheduler ports that link to integer units are the ports

0, 1, 5 and 6, to perform memory operations the scheduler can dispatch memory instructions to any

of its following ports: 2, 3, 4 and 7. While port 2 and 3 are reserved for load operations, port 4 is

used to perform store operations and port 7 reserved for store address calculation. After executing any

instruction in the EUs the BE is capable of retiring them at a rate of 4 micro operations per cycle, i.e.,

a maximum Clockticks per Instruction (CPI) of 0,25 [11, 12].

The memory sub-system of the BE, can be observed in Figure 2.3 [2], is responsible for feeding both

the loads and stores instructions. The memory sub-system is capable of sustaining two memory reads

and one memory write per clock cycle since it has two available ports for loading instructions (ports 2

and 3), and one for writing(port 4). Each memory operation can fetch a maximum of 512-bits. The

memory hierarchy, similar to the FE, is divided in 3 levels: a private L1 Data cache with 32KB (8-Way

associative), which can perform two loads (2 x 64B) and a store per cycle (64B); the L2 cache, shared

with the FE, with 1 MiB (16-Way associative) with a bandwidth of 64B per cycle; and a L3 non-inclusive

shared cache between the cores with a size of 1,375 MB per core (the size of the L3 is related to the

number of cores) with a bandwidth of 64B per cycle. With these specifications in mind, it is possible to

calculate the maximum rate that integers can be loaded and stored for L1 cache. For example, a double

word integer occupies 32 bits, using vector instructions and AVX-512 registers 32 integers can be loaded

and 16 can be stored per cycle. However, for the remaining memory levels, the sustainable memory

bandwidth can only be obtained through an accurate micro-architecture benchmarking.

All these micro architecture characteristics should be known before start micro benchmarking and

evaluating application performance. This knowledge allows for a better use and understanding of the

components and grant a more comprehensive and critical view of the micro benchmarks results.

2.2 Micro Benchmarking

Micro benchmarking is the process through which we can experimentally obtain the characteristics of

an architecture and its components, from their limitations to their capacities and performance. By evalu-

ating the performance of a hardware component under diverse execution scenarios it is possible to uncover

its impact on the application performance. Due to the ability of micro-benchmarking methodologies to

accurately expose the micro-architectural bottlenecks that contribute to reduce application performance,

several performance models, such as CARM are derived based on these methodologies. Moreover, to

assess the characteristics of real-hardware, micro-benchmarking are also usually validated by relying on

hardware counters in-built on current processors. These hardware counters are not only essential to ver-

ify the accuracy of micro-benchmarking, but can also be used to construct accurate performance models

that provide a set of metrics to hinting which components limit application performance. Other areas

unrelated to micro-processors also take advantage of micro-benchmarking to analyse their platforms and

tools. Such is the case for areas like cloud computing, software development, GPUs, etc. The broad use

of micro-benchmarking is a good indicator of their usefulness and importance.

As mentioned previously, one important instrument widely used, including in micro-benchmarking,
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are hardware counters. These are registers incorporated in the micro processor that store values related

to many different metrics related to hardware activities, from the number of clock cycles to the power

consumption. They allow for a low level analysis (obtaining micro-architecture metrics) yet they can differ

from processor to processor. It requires the programmer to initialize them in the code with the correct set

of parameters that change depending on the processor (even if from the same company) and are usually

found in a document provided by the micro processor company [6]. After initializing the counters they

have to be read from and then meaningful metrics have to be produced from those readings, since most

of the counters alone do not provide great insights.

2.2.1 Performance Models Based on Benchmarking and Hardware Counters

There are several state-of-the-art models that can be used to predict and analyse the performance of

applications in modern processors, each of them have a distinct approach [4, 7, 13, 14]. The most adopted

models rely on micro-benchmarking and hardware counters. One of the most popular solutions that rely

on micro-benchmarking and hardware counters are the roofline modeling approaches, in particular ORM

and CARM. In the next pages we will present these two models.

Original Roofline Model (ORM) [3] relates the maximum floating point performance of the processor,

Fp in Floating Point Operations per Second (Flops), with the maximum DRAM sustainable bandwidth,

BD in βD/s (βD refers to the bytes transferred between DRAM and Last Level Cache (LLC)), and with the

operational intensity of the application, I in Flops/βD. I gives a sense for how much DRAM bandwidth

the application will need. ORM considers that the application spends most of its time performing

computational operations or memory transfers and that these overlap in time due to OOO nature of

modern processors.

Due to its principles, ORM contains two regions, i.e., the compute bound and memory bound regions,

as it can be observed in Figure 2.4. The compute region is limited by a horizontal roof which corresponds

to Fp, while the performance on the memory region is bounded by the maximum bandwidth between L3

cache and DRAM, represented by the slanted roof in Figure 2.4. The point in the graph where the two

roofs intercept is called the ridge point. This point provides some insight on the overall performance of

the computer. If it is too far to the right, it means that in order to achieve Fp an application has to have

very high I which can be difficult to program, if it is far to the left means that almost every application

will be able to achieve peak performance.
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Figure 2.4: Original Roofline Model in OpteronX2. [3]

By characterizing applications in this model, it is possible to extract useful information for software

developers to improve application performance. The position of the application on the graph tells the

programmer what is the maximum performance their application could get, and if it that performance

would be memory bounded (application is under the memory roof) or compute bounded (application

under computational roof). It also provides a sense of where should the developer focus to improve

the application, if the application has a very high I but is far away from the computational roof, the

programmer should spend most of its efforts on improving the code to allow better resource utilization,

for example, vectorizing the application code to increase computational performance. On the other hand,

if the application has a low I and it is far away from the memory roof, the programmer should invest

more time in improving accesses to memory, for example by doing software pre-fetching.

Since the model only considers the memory traffic between L3 cache and DRAM, it is not ideal because

applications access data from different memory levels and can be bounded at different memory levels.

One solution is the utilization of a different roofline modeling approach, i.e., the Cache-Aware Roofline

Model (CARM), which considers all the memory levels contained in the memory hierarchy of modern

processors.

Differently from ORM, CARM evaluates both memory bandwidth and floating point performance

from the core point of view. For this reason it accounts for all data transfers, not only accesses to the

DRAM, and provides the different values of bandwidths (BL1→c, BL2→c, BLLC→c, BD→c). Figure 2.5

[4] illustrates this difference between ORM and CARM.

Figure 2.5: Memory Traffic CARM Vs RM. [4]
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Another difference between ORM and CARM is the way intensity is defined. CARM considers the

Arithmetic Intensity (AI) and is dependent on the number of floating point operations φ, and the number

of bytes transferred β, AI(φβ ), seen from core point of view. With a different application intensity, and

different bandwidths (By), the CARM has a maximum attainable performance, Fa,y(AI), given by

Fa,y(AI) = min(ByAI, Fp) (2.1)

With this new equation for Fa,y(AI), the CARM provides performance limits (roofs) for each memory

level, as is demonstrated in Figure 2.6. This contrasts with the ORM that only contains one roof in the

memory region as we can see in Figure 2.4. It is possible to apply ORM to other memory levels by using

different bandwidth instead of BD but it would require to construct and analyze the model many times,

one for each memory level.

The point were the curves intercept is called ridge point, just as in the ORM, and provides the same

insights as discussed in previous paragraphs. The horizontal roofs of ORM and CARM are identical,

since they are related to computational bounds.

Figure 2.6: Example CARM Model. [5]

There are other differences between ORM and CARM that are should be pointed out. First, due

to how ORM calculates its operational intensity, I, accounting only for bytes transferred between the

LLC and the DRAM, when the problem size grows (increasing the number of iterations) it affects the I

of the application, possibly moving the application to a different bound region. In CARM, application

AI remains constant when the problem grows in size, thanks to the way it is calculated (accounting

for all data transfers). Secondly, since in ORM changes in problem size can shift the application to a

different region, it is possible that by analysing the application ORM the user concludes that there are

optimizations that can be made, when in reality there is not, the application is just in the wrong zone.

Both ORM and CARM need to consider a multitude of limitations inherent to a micro-architecture,

from memory bandwidth to the number of scheduler ports. CARM uses micro benchmarks to obtain the

bandwidths for the different levels of the memory hierarchy and the maximum computational throughput

for different instructions. It is with these values that its roofs are calculated and plotted, and since every

micro-architecture is unique, with components of different specifications, the model need to execute

a set of micro benchmarks on every processor before creating the model an evaluate the application
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performance. The CARM model has already been incorporated in Intel Advisor. Intel Advisor is an

Intel high-performance framework that provides insight into code vector optimization, memory access

patterns, thread prototyping, flow graph analysis and Roofline analysis [15]. It provides CARM modeling

for applications along with some guidelines on which part of the code is affecting performance the most

and how should it be optimized. The CARM chart itself provides useful information such as: values of

the different computational roofs, bandwidths from different levels memories, applications performance

and application arithmetic intensity. These provide the user insights on the amount of performance being

lost.

Besides models based on micro benchmarking, state-of-the-art methods that rely on performance coun-

ters can also be a viable mechanism to identify the main bottlenecks that limit application performance.

This is the case of Top Down method [7], which uses a wide set of performance counters presented in

modern processors to identify the possible bottlenecks that affect application execution. To perform this

task, this method provides an in-depth and hierarchical structure, which decouples application execution

time in several nodes, each representing a potential bottleneck.

At the top of the hierarchy there are 4 main nodes. These nodes will be flagged if they represent a

bottleneck for the application, so that the user knows what path of the hierarchy to follow in order to

get more details regarding the bottlenecks. The hierarchic view of this method is displayed in Figure 2.7

The top four nodes are:

• Frontend Bound - Highlights performance issues at the initial stage of the pipeline, the Front End.

The rate that the front end feeds instructions to the back end can be a major performance problem.

The Top Down method divides frontend bound in two other subcategories: the fetch latency and

the fetch bandwidth. The first relates to performance bottlenecks caused by cache misses, like a

instruction cache miss. The last refers to performance bottlenecks caused by inefficiency in the

instruction decoders.

• Bad Speculation - Reflects time wasted when a branch misprediction occurs, including the time the

processor was executing operations of the wrong path (that have to be discarded) and the time the

processor takes to recover to a stage before the miss prediction. High values in this domain should

be considered a red flag by the user, since the amount of time lost to perform a flush of the pipeline

is huge. Bad speculation divides into two subcategories: branch miss predictions, performance lost

due to wrong predictions, and Machine Clears which requires also a pipeline flush.

• Retiring - This node represents the time spent retiring micro operations. A high percentage of

application time spent in this node is what we would want. High percentages of retiring means

the processor is working at his the maximum, and it is mostly bounded by the capacity of the

micro-architecture to retire instructions. A high retiring value also means that if the number of

operations per instruction can be improved (for example by vectorizing the code) the performance

can be improved, and so, this node has sub-nodes that allow the user to have a sense of the type of

computations being performed (scalar or vector) and if could be improved.

• Backend Bound - This node divides into two big sub-nodes: the core bound, and the memory
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bound. The memory bound represents time spent in the pipeline performing memory accesses (or

waiting for memory accesses). The memory node is then divided in smaller nodes that represent

different memory levels, from L1 cache to external memory. Each memory level has its sub-nodes

that provide information regarding latency issues, for example when memory accesses are sporadic,

or related to bandwidth, when the memory has not enough sustainable bandwidth. The Core bound

represents time spent in the execution units of the pipeline, the sub-nodes provide information port

utilization.

Figure 2.7: Top Down Hierarchy

When using this method to analyse application performance is important to compare only the cat-

egories in the same hierarchical level and from the same group. For example, the user can compare

Fetch Latency with Fetch Bandwidth, but it should not compare Fetch Latency with Core Bound or with

ICache Miss. The Top Down Method can be used to analyse applications in Intel VTune. Intel VTune is

an Intel product which implements the Top Down Method, providing the user with a simple graph with

the metrics related to it. This means the user can see in a simple way, the percentage of the application

that is Frontend Bound, Backend Bound, etc, and can even go into more detail down the hierarchical

path to discover what is causing damage to the application performance. VTune is also a helpful tool for

memory access analysis, threading performance analysis, software sampling, etc [16].

2.3 State of the Art Approaches

Despite its undeniable value for understanding of microprocessors and their behaviour, micro bench-

marking is also used in other areas. There are several state of the art works that utilize benchmarks in

order to evaluate and/or improve their systems. In the next table some of this works are mentioned and

briefly detailed: Micro benchmarking is very useful to the understanding of micro-processors and how

they function in different cases, but this is not the only use case for micro benchmarks. There are several
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state of the art works that utilize benchmarks in order to evaluate and/or improve their systems. In table

2.1 some state of the art works mentioned.

Table 2.1: State of the art works

Article/Source Year Use Case

[17] 2018 Micro Benchmarking used to construct faithful
models of the latency, throughput and port usage

of x86 Instructions.
[18] 2010 Micro benchmarks and benchmarks used to

model application performance in Virtualized
Environments

[19], [20] 2017, 2018 Micro benchmarks and Roofline used to gather
important information on a supercomputer and
create guidelines for performance optimizations

[21] 2010 Micro benchmarks used to model application
performance in GPUs

[22] 2018 Micro benchmarks used to model application
performance on Cloud services

[23] 2010 Micro benchmarks used to provide insights of
applications performance on 3 supercomputers

[24] 2017 A set of benchmarks representative of real world
applications used to evaluate processor

performance
[25], [26] 2009, 2016 Mechanistic performance model focused on

development of micro-architectures
[27] - A performance analysis tool to statically measure

performance of machine code

There are multiple works where micro benchmarks are used as the foundation of the work developed

thanks to the detail information micro benchmarks can provide. For example, in [17] the authors create

a series of micro benchmarks to characterize the latency, throughput and port usage of instructions

on Intel micro-architectures. Some of the micro benchmarks results shined a light on information not

publicly available, while other provided more accurate values for some metrics. This information can then

be used by other tools, such as performance-analysis tools, to predict, explain and optimize application

performance. The work presented in [18] focuses on application performance in virtual environments. For

these environments architecture-specific and performance-counters based models are not the best option

for analysing application performance, due to resource competition by other applications virtual machines

(VM) and the lack of information the developer may have regarding VM applications, operating systems,

etc. To overcome this issue, this work uses a set of micro-benchmarks to gather information on the memory

system of a virtualized application and its relation with other components such as I/Os. On other works,

namely [20] and [19], micro-benchmarking was used to uncover key micro-architectural specifications of

China’s SW26010 processor that is used on the TaihuLight supercomputer. The results of this work

provided important information for performance optimization and modeling on this supercomputer, such

as: instruction latencies, the issue order of instructions (in order vs out of order), static and dynamic

routing, different bandwidths, etc. There are also works related to GPU performance that take advantage

of micro-benchmarking, such as [21]. Unfortunately micro-benchmarking techniques used for CPUs do
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not translate to GPUs architectures due to the high level of parallelism in them. In order to create an

application performance model for GPUs, the authors of this work design a suite of micro-benchmarks in

order to gather the exact values of GPU architectural parameters and other features that vary depending

on program characteristics. With this new suite they highlighted some GPUs bottlenecks and provided

not only better insights on the GPUs components but also some optimization guidelines. The next work

mentioned in table 2.1 is on the area of cloud application modeling [22]. This work focused on developing

a methodology using micro-benchmarks to profile applications and predict their performance on cloud

services. The methodology was then tested with scientific applications, with positive results, achieving

a prediction error inferior to 10%. It is also highlighted the importance of using benchmark-based

metrics instead of specification-based to improve estimation accuracy. The work done in [23] uses micro-

benchmarks to compare application performance in three different supercomputers: Intrepid, Ranger and

Jaguar. The results from micro benchmarking does not only allow a comparison of the supercomputers

regarding characteristics like latencies, bandwidths, etc. but also provides important insights regarding

application performance. Some models, such as the Interval Model described in papers [25] and [26], do

not use values obtained through benchmarks and instead use theoretical or estimated values. These two

models in particular focus on providing a helpful insight into the processor performance, focusing more

on how changing some aspects of the processor, like the pipeline width, can influence overall performance.

In this case by not having to run simulations or a ton of micro benchmarks they provide information in a

much shorter time period, which help architects make multiple experiments with different configurations.

The trade-off is that typically they have a bigger margin of error, so it is not the best approach to evaluate

applications performance and their bottlenecks. There is also work been done with other tools that

provide alternative options for evaluating performance. For example the LLVM-MCA (low level virtual

machine - machine code analyzer) [27]. This performance analysis tool not only provides estimations of

code execution time in a specific target processor but also helps identifying bottlenecks and performance

issues.

For all the importance that micro benchmarks have in today’s works, there is also need to have

standard benchmarks publicly available to test different platforms, processors, components, etc. in order

to enable comparisons among them. Nowadays there is a vast number of applications used around the

scientific world which can be very different from each other, from the size of the problem to the type

of operations they perform. In order to evaluate processor performance the benchmarks used should be

representative of the applications seen in the real world. This is the case of SPEC CPU benchmarks

which were created with the objective of emulating present and future real life applications. The last

iteration launched is the SPEC 2017 [24], launched in 2017. It has a total of 43 benchmarks, divided in

four suites: SPEC speed integer, SPEC speed floating point, SPEC rate integer and SPEC rate floating

point. A list of all the benchmarks per suite can be seen in 2.8

All the benchmarks have three sets of input data: test, train and ref. The test is the smallest

input and has the lowest execution time. Typically this input only server as a quick test to confirm

all requirements are in order. The train set is the middle data set, which can be used to to provide

information on bottlenecks and performance problems. The ref set has the largest input, making it the
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Figure 2.8: SPEC CPU2017 benchmarks

one that consumes more time to run, and it is used to analyse processor performance, being the only set

acceptable for submitting official results. To run all the benchmark suites with the ref data set it takes

a great amount of time run, and some of these benchmarks might provide similar insights onto processor

performance. In order to reduce the time running the benchmarks, there is some work being done in

order to obtain the subset of benchmarks that offer the best representative subset [28, 29]. There are also

state of the art works focused on creating more workloads for the benchmarks [30], allowing to minimize

the risk of the hidden learning problem, where the target of the evaluation is optimized to these data

sets and will have better performance results that may not correspond to a better machine in terms of

performance.

A lot of work is done in characterizing the SPEC benchmarks [28, 29, 31, 32]. This work provides useful

information on the type of operations Integer applications are most prone to, where are the bottlenecks

usually situated and what are the focus points that affect performance. From these works some conclusions

can be taken about the Integer applications: around 35% of operations are memory operations; around

35% of operations are computational operations; 10% of operations are Stores; around 18% of operations

are Branches (considerably more than FP applications); integer applications are mostly bounded by FE

stalls and Memory Bound stalls. These analysis of SPEC CPU Integer benchmarks demonstrate the need

to characterize and model performance problems related to the FE, especially for integer applications.

2.4 Open Challenges

So far we have presented different approaches and tools used to analyze and characterize application

performance, which allow a developer to discover the bottlenecks of an application and optimize it for

the processor where it is running. However there is a crucial piece missing, a detailed analysis of the FE

components and what limitations it imposes on the overall application performance.

The Top Down method takes into account FE problems based on FE stalls emitted, but it does not

show the affect those stalls have in the performance or even what performance we could achieve if we
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improved our FE performance. On the other hand we have CARM that does a very good job in showing

the developer where are the bottlenecks of the application and the impacts on the performance, but that

does not take into consideration the limitations and problems of the FE, which means that using CARM

on applications with problems on the FE will not provide useful information regarding optimization. To

better justify these claims, lets look at example of an application bounded by the FE.

To find such application we tested some SPEC CPU Integer Speed benchmarks utilizing the train

input set, and analyzed the application using Intel VTune to obtain the Top Down method, and Intel

Advisor to obtain a CARM chart. From the applications tested we pick the one that better illustrated a

FE bound condition with very low BE problems in order to only focus on FE problems and avoid mixing

both. After an overview of all tested applications we picked the 600 Perlbench s to present and discuss.

This application, according to experiments performed in [28], has around 44% memory instructions, 18%

Branch instructions and 38% Computational instructions. Even though these results do not come from

the same machine they can expected to be approximated to what we would obtain since the architecture

of our machine (Skylake SP) is very similar to the one used in the paper. With these percentages of

instructions, at first look, we can expect the application to be computational bound or memory bound,

since there is a big percentage of these two types of instructions. The percentage of branches instructions

is also high enough to consider it a possible issue that can affect performance, if the application has a lot

of mispredictions.

Looking at the roofline in Figure 2.9 we see the 5 bigger functions/loops of the application and

where the overall application would stand (represented by a black cross). From this we can infer that

the application is bounded by memory (being in the memory zone and close to memory roofs), more

specifically by the DRAM and L3. For a Top Down analysis we picked one of the biggest functions,

namely the function s regmatch, not only because, according to CARM, it has the most impact in overall

performance, but also due to the fact that, according to Top Down, it is mostly FE bounded. The values

of the Top Down method in Figure 2.10 and 2.11 tell us that the function is limited by the FE, and that

it also loses a considerable amount of performance due to bad speculation. It is worth nothing that not

all subcategories contain values due to the low information gathered from those subcategories that are

not enough to provide a confident result. If we perform a critical analysis of these results we see some

of the models weaker points. In CARM we would assume the memory is the the main bottleneck, since

s regmatch is in the memory zone under the L2 roof, and would not point us to problems in the FE

at all (the model does not take these into account). On the other hand we have the Top Down which

points to problems in the FE latency and bandwidth but it does not show what that relates to in terms

of performance lost or what performance we could achieve if we made the correct optimizations. This is

important information since an application can be bottlenecked by a specific component but there may

not be any optimization possible, for example if the component is working at maximum throughput.
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Figure 2.9: Roofline 600 perlbench s

Figure 2.10: Top Down perlbench s - s regmatch Figure 2.11: s regmatch detailed Top Down

Looking at the subcategories of the Top Down method in Figure 2.11 we can see different components

of the FE with the potential to impact the overall performance, namely: ICache, ITLB, BPU, DSB, MS

and MITE. All of these deserve to be investigated in detail in order to fully model the FE and create a

model that incorporates both BE and FE bottlenecks.

In this thesis we will work on micro benchmarking and understanding the behaviours and limitations of

the MITE, DSB and ICache. To highlight some of these overlooked components and how they can impact

application performance lets take a deeper look at the MITE, DSB and ICache with some examples.

At the beginning of this chapter we described the MITE in great detail, and talked about the 16B

window at the start of the pre-decode stage. The size of this window can actually be a bottleneck for

some applications. For example, with big instructions, like 8B instructions, the throughput of the pre-

decode stage will be 2 operations per cycle, which can drastically reduce the overall throughput of the

micro-processor, since this can retire a maximum of 4 micro operations per cycle. On the other hand,

if the instruction size is small enough to fit more than 6 instructions in one window, for example 7

instructions, the pre-decoder will output 6 macro operations in one cycle and 1 macro operation in an

extra cycle, limiting the throughput to 3.5 ( 7
2 ) macro operations per cycle. Therefore also limiting the
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overall throughput to 3.5 micro operations per cycle. To complicate things further, there can also be a

negative impact on performance whenever the last instruction in the 16B window is splitted between the

current and the next window. For example, a code made of 3B instructions would be able to fetch 5.33

instructions per window. However, the pre-decoder would output 5 macro instructions in the first cycle

and then spend and an extra cycle to fetch the remaining bytes of the split instruction. This behaviour

would affect the following windows, with the second window having 2 less bytes to decode and resulting

in a similar behaviour, outputting 4 macro operations in the first cycle and 1 macro operation in an extra

cycle. Finally in the third window, now with 1 less byte to decode, this behaviour would reset and 5

macro operation would be sent to the IQ in one single cycle. In total we would get 16 macro operations

in 5 cycles which gives a throughput of 3.2 macro operations per cycle, instead of 5.33 ( 16
3 ) or 2.66 (

16
3

2 ).

Regarding the DSB it is important to understand its limits and how it can be utilized to improve

application performance. To give an example, if we look at instructions of 8B, the same size we used

early for the MITE example that had a maximum throughput of 2 micro operations per cycle, in the

DSB we would have 8 micro instructions ( 64
8 ), that would use 2 lines of the DSB, one filled with 6 micro

instructions an the other with only 2, resulting in a throughput of 4 micro instructions per cycle. Just by

using the DSB we could double our maximum performance. Another possible scenario where we could

be loosing application performance is if the DSB lines are not being filled to their maximum. Sometimes

this might be inevitable, but other times the developer might be able to shuffle instructions around to

maximize the DSB fill ratio. One last component that is not receiving the proper attention and that

can severely affect application performance is the ICache and all the memory hierarchy for instructions.

Despite the fact that a lot of work has been done regarding the impact of memory accesses on application

performance, all of it focus just on the Data side and not on the Instruction side. For code that works

with a lot of data and a small number of instructions this should be enough, but when we start to have

applications with a big number of instructions the accesses to memory to fetch instructions might become

a bottleneck to the application.

All of these details are mostly overlooked by today’s tools, and deserve to be studied and incorporated

in new solutions. On this thesis we pretend to perform a detailed micro benchmarking of the FE of the

Skylake micro architecture in order to gain a deep knowledge on its limitations. With this knowledge

we should be able to better understand how an application is limited by the FE, achieve some early

predictions of performance accounting for FE bottlenecks, and produce important results and conclusions

to serve as base for a future performance model able to incorporate both FE and BE problems.

2.5 Summary

This chapter provided a deep analysis on the processor micro architecture, Skylake, that will be used

in this thesis work, such as maximum number of instructions retired per cycle and the width of the

FE, to allow a critical view of the results obtained and conclusions. In the next section importance of

micro-benchmarking and hardware counters is discussed, followed by a brief description of state-of-the-art

models that utilize micro-benchmarks and hardware counter, such as CARM and the Top Down Method,

as long with the modern performance analysis tools that have implemented them.
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After presenting the models, several state-of-the-art works on micro-benchmarking are presented,

alongside some modern tools for performance analysis. To end the chapter we discussed the open chal-

lenges this thesis proposes to tackle, namely the lack of micro benchmarking methodology to asses FE

limitations and its impact on overall performance.
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The fetching and decoding of instructions in current out-of-order processors involves diverse hardware

resources with distinct capabilities, that affect application performance differently. For this reason,

optimizing applications whose execution is highly dependent on the FE performance is a challenging

task.

To tackle this issue, it is crucial to evaluate the performance upper-bounds of the FE under diverse ex-

ecution scenarios, and relate them to application execution. With this aim, micro-benchmarking methods

can be used to accurately assess the performance limits of the diverse FE components. This experimental

evaluation also allows to assess the realistic capabilities of a real systerm, which may not correspond to

the theoretical upper-bounds indicated in data sheets.

In this Chapter, the micro-benchmarking tools and methodology used to assess the performance limits

of the Intel Skylake FE are introduced and deeply analyzed. The proposed methodology consists on a

set of micro-benchmarks that stress the different components in the FE of the micro-architecture (MITE,

DSB, etc), allowing to assess their performance upper-bounds under different execution scenrarios. This

task is performed through the utilization of a set of metrics based on hardware counters. Finally, a

validation methodology is also proposed in this Chapter aiming at demonstrate the usability and accuracy

of the micro-benchmarking when used to predict the overall performance of the system.

3.1 Micro Benchmarking Tool

In order to derive the metrics to experimentally obtain the performance upper-bounds of the FE

components, it is necessary to access a set of hardware counters available in current processors. In

particular for Intel Skylake, each hardware counter is represented by a register, i.e., a Model Specific

Register (MSR), that can be identified by its unique address. This unique address is always used when

it is necessary to read the counter value, or when the counter is modified. To perform a read or a write

on a MSR specific assembly instructions must be used, i.e., rdmsr, to read the counter, and wrmsr, to

configure the counter. However, both the reading and configuration of the counters can only be performed

in kernel-space. Thus, to access the MSRs, a separate kernel module needs to be incorporated in the

micro-benchmarks in order to access the counters from the user space. To solve this issue we used the

benchmarking tool illustrated in Figure 3.1, which provides an interface between the user-space and

kernel-space through a set of system calls.

Figure 3.1: Benchmarking tool layout

As it can be observed in Figure 3.1, the tool starts by initializing the interface between user-space

and kernel-space. After the interface initialization, the threads are launched by using the function

pthread create from the phtreads interface. Then, each thread configures the counters necessary to
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obtain the measurements required to derive the metrics used to evaluate each component (e.g. through-

put, bandwidth, etc). This includes fixed counters that are not configured by the user, such as the Time

Stamp Counter (TSC) which measures the number of elapsed clock cycles. At this point, the tool creates

the MSR configuration in the user side and uses the system calls and assembly instructions to send the

configuration to the kernel-space, along with its unique address and command (read/write).

To configure the counters it is necessary to enable them through the IA32 PERF GLOBAL CTRL

MSR [6]. The first 8 bits of this MSR enable the general purpose counters, while the bits from 32 to

34 enable the fixed counters, therefore we need to set all these bits to 1 so that we can access both

types of counters. After enabling the counters we configure the general purpose counters. This is done

by using the respective IA32 PERFEVTSEL MSR [6]. The first 8 bits of this MSR (0-7) correspond

to the event select of our desired counter and the next 8 bits (8-15) correspond to its unit mask. In

the case where our counter needs to define a counter mask this is also done on this MSR. With all the

configuration done, the counters can be read from the respective IA32 PMC MSR [6]. The machine used

for our micro benchmarking supports 4 general purpose counters per core, in hyper-threading mode, or

8 without hyper-threading on.

3.2 Front End Micro benchmarks

In this section the methodology used for micro benchmarking is presented and discussed. To bench-

mark the FE components 4 general purpose counters and 2 fixed counters are configured in every micro-

benchmark. While the general purpose counters vary based on the tested component, the fixed counters

CPU CLK UNHALTED.THREAD (to measure the number of cycles), and INST RETIRED.ANY (to

measure the number of instructions retired) are configured for all the FE micro-benchmarks. Further-

more, to ensure that the micro-benchmarks were exercising each component as expected, the counters

IDQ UOPS NOT DELIVERED.CYCLES FE WAS OK (measures the cycles where FE issues 4 micro

operations or is stalled by the BE), IDQ.ALL MITE CYCLES 4 UOPS (measure the cycles where MITE

issues 4 micro operations) and IDQ.ALL DSB CYCLES 4 UOPS (measure the cycles where DSB issues

4 micro operations) were also measured in order to confirm the origin of the performance issues. Through

the fixed hardware counters, we define the throughput as the number of micro operations per cycle, which

is given by Equation (3.1):

P =
#micro operations

#cycles
=

#instructions× (#micro operations
#instructions )

#cycles
, (3.1)

where #micro operations is the number of micro operations, #cycles is the amount of elapsed cycles

and #instructions is the number of instructions retired.

As referred in the analysis of the Intel Skylake micro-architecture (Section 2.1.2), the IDQ is able to

receive micro operations from three different sources: MITE, DSB and MSROM. This implies that the

total number of execution cycles can be estimated by adding together the number of cycles where each

of the decoding paths (MITE, DSB, MSROM) is issuing and the number of cycles all decoding paths are
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stalling for instructions (assuming there are no stalls from the BE), which leads to equation (3.2):

Cycles = MITE Cycles+DSB Cycles+MSROM Cycles+ FE Stalls, (3.2)

where MITE Cycles is the amount of cycles where the MITE is issuing micro operations, DSB Cycles

is the amount of cycles where the DSB is issuing micro operations, MSROM Cycles is the amount of

cycles where the MSROM is issuing micro operations and FE Cycles is the amount of cycles where all

components (MITE, DSB, MSROM) are stalling for instructions.

For the proposed micro-benchmarking methodology, all the tested instructions have one micro opera-

tion per instruction, allowing us to calculate the throughput by using only the number of cycles and the

number of instructions retired. Other approaches, such as CARM, take in consideration the number of

computations per operation, but since the FE works at the micro-operation granularity, the amount of

operations performed by each instruction does not affect its throughput. Its throughput is only affected

by instructions based on their size and complexity, not by the operations they will execute.

3.2.1 MITE Benchmarks

The micro benchmark code used to test the limitations of the MITE has the structure illustrated

in Figure 3.1. The code contains two main loops: the outer loop, and the inner loop. The outer loop

ensures that every benchmark runs during a pre-defined amount of time. To achieve this, the code is first

executed a small number of times in order to calculate how long it takes to run a single micro-benchmark

iteration. After knowing how long it takes to execute it once, the number of iterations of the outer loop

is calculated in order to achieve an execution time equal (or at least very close) to the pre-defined time

duration. This way the outer loop guarantees small benchmarks run enough times that any sporadic

error that may occur in one iteration is attenuated. Otherwise the results of a small benchmark could

be influenced by a sporadic event that occur during the small time window it was running. For big

benchmarks the outer loop has the number of iterations reduced in order to save time, since in a big time

window sporadic errors should not have great impact in the results. The inner loop focus on attenuating

the impact of the first run of the benchmarks. The first time instructions are being executed they are not

stored in either the DSB or the caches, to mitigate this situation our inner loop has a fixed value of 10

iteration, decreasing the weight of the first iteration. When parsing the results of these micro benchmarks

all the iteration values are considered in order to obtain the results regarding a single code execution.

Algorithm 3.1 Micro benchmark structure

for Outer Loop iterations do
for Inner Loop iterations do

NOP Instruction
NOP Instruction
.
.
.

end

end
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Inside the inner loop only one instruction per benchmark is used, meaning to test two different in-

struction, for example, 2B NOP and 3B NOP, two different benchmarks are created. To micro benchmark

the MITE, it is crucial to minimize the BE interference in the measurements. In order to mitigate this

issue the proposed MITE micro benchmarks only contain NOP instructions. While these instructions are

still decoded by the FE and issued to the BE, NOPs are practically ignored by the latter, since they are

immediately retired without interacting with other BE components besides the ROB. Therefore provid-

ing information regarding FE performance. With this approach it is guaranteed that any performance

limitations identified through the measurements are related uniquely to the FE, with the exception of

the micro-architecture limitation of 4 micro operations per cycle.

In order to test the limitations of the MITE under different execution scenarios, different instruction

sizes are considered, through the utilization of NOP instructions with sizes ranging from 2B to 10B.

With this methodology, it is possible to assess the throughput and performance of the MITE for a wide

range of instruction sizes, which can be used to predict application performance based on the average

instruction size. Moreover, to evaluate how the accesses to different memory levels impacts the MITE

performance, the code size of the benchmark varies according to the tested memory level. For example,

to test L1 instruction cache, the code size changes from a few bytes to 32KB. In order to reach all three

caches, L1 Icache, L2 and L3, the code size ranges from 100B to 4MB.

To analyse the MITE performance and later on predict FE bottlenecks two different metrics are pro-

posed. These are: the overall MITE throughput (POverall MITE) and the MITE throughput (POnly MITE),

calculated through equations (3.3) and (3.4) respectively:

POverall MITE =
#MITE Uops

#Cycles
, (3.3)

POnly MITE =
#MITE Uops

#MITE Cycles
, (3.4)

where #MITE Uops is the number of micro operations issued by the MITE, #Cycles is the amount

of elapsed cycles and #MITE cycles is the amount of cycles where the MITE is issuing micro operations.

Although at first glance these metrics may seem almost identical they provide useful and unique

insights about the FE. Based on equation (3.2) and on the micro-architecture details discussed in chapter

2, there should be situations where POnly MITE and POverall MITE are equal, and situations where they

diverge. In order to discuss these situations let us first assume that there are no FE Stalls. When this

occurs, all execution cycles are associated with the issuing of instructions by one of the FE components.

With no FE Stalls, three different scenarios can occur: 1) all instructions are being issued by the MITE,

leading the POnly MITE and POverall MITE to be equal; 2) none of the instructions are issued by the MITE,

leading to a POverall MITE = 0 and a POnly MITE with an unreliable value (caused by residual values

in the measurements); 3) the micro-operations are issued by the MITE and other decoding components,

which would make the POverall MITE lower than the POnly MITE due to the number of total cycles being

bigger than the number of MITE cycles.
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Other possibilities emerge when we assume the existence of cycles linked to FE Stalls. For those same

three situations it is expected to obtain a worst POverall MITE , consequence of an increase of the number

of total cycles, and the POnly MITE to have a similar behavior as before, since the MITE Cycles do not

account for FE Stalls. After validating that POnly MITE is not affected by FE Stalls, we can use it to

calculate and predict MITE bottlenecks, provided we also have the number and size of instructions issued

by the MITE.

In order to micro benchmark the L1 instruction cache and the rest of the memory system, the micro

benchmarks use the structure as for the MITE micro benchmarks. Considering that for code sizes bigger

than the L1 ICache the only component issuing instructions is the MITE, any memory bottlenecks will

affect both MITE and FE performances equally. However, MITE performance and FE performance are

not the same metric, since they only behave equally once the code is outside the L1 ICache. The purpose

of micro benchmarking the memory system is to analyse how accesses to different memory levels can

impact the FE performance. Hence, these benchmarks will begin with a small number of instructions

that will steadily increase until the total code size reaches 16MB, ensuring the code goes from fitting

in the L1 to fitting in the DRAM, passing by all memory levels in between. Since only the overall FE

performance is being analysed, when evaluating the instruction caches, only the fixed hardware counters

are needed to obtain our metrics.

Since the MITE is directly connected to the L1 instruction cache, FE problems caused by memory

accesses should start to appear only when instructions no longer fit inside the L1 and start being fetched

from the L2. At this point only the MITE is decoding instructions, consequently the overall throughput

(POverall) can be calculated through equation (3.5). The POverall is expected to behave inline with

POverall MITE after the L1, and has a combination of POverall MITE and POverall DSB while the code fits

inside the L1. Besides the POverall it is possible to calculate the bandwidth of each memory level, from

the point of view of the FE, (Bmem level). This is calculated based on the code size and the total number

of cycles, resulting in Equation (3.6). With the bandwidth values it is possible to calculate the maximum

throughput of the FE for different size instructions, when the only limitation factor is the memory.

POverall =
#InstructionsRetired

#Cycles
=

#MicroOperations

#Cycles
=

#MITE Uops

#Cycles
, (3.5)

B (bytes/cycle) =
CodeSize(bytes)

#Cycles
=

#Instructions× Instruction Size

#Cycles
, (3.6)

where #InstructionsRetired is the number of instruction retired by the micro-processor, #Micro

Operations is the number of micro operations, #MITE Uops is the number of micro operations issued by

the MITE, #Cycles is the amount of elapsed cycles, CodeSize is the size of the code and Instruction Size

is the size of the instruction used in the benchmark.

In order to derive the metrics necessary to evaluate MITE and FE performance (POnly MITE , POverall MITE ,

POverall andB), it is necessary to rely on the set of counters presented in Table 3.1, where IDQ.MITE UOPS =

#MITE Uops, IDQ.MITE Cycles = #MITE Cycles, INST RETIRED.ANY = #Instructions =

#InstructionsRetired and CPU CLK UNHALTED.THREAD = #Cycles.
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Table 3.1: Hardware Counters MITE micro benchmarking [6]

IDQ.MITE UOPS Counts the number of micro operations that are delivered to the Instruc-
tion Decode Queue (IDQ) from the MITE path. When instructions are
being issued to the BE through MITE there are no micro operations issued
by the DSB

IDQ.MITE CYCLES Counts the number of cycles which micro operations are delivered to the
IDQ through the MITE path

INST RETIRED.ANY Counts the number of all instructions retired. Since we use instructions
with one micro operation per instructions, this can be used as micro in-
structions retired

CPU CLK UNHALTED.
THREAD

Counts the number of core cycles while the thread in not in a halt state.
If core frequency is constant it can be used to obtain an approximated
elapsed time

3.2.2 DSB Benchmarks

The DSB, as it was discussed in chapter 2, works as a cache of decoded micro operations that

is inclusive of the L1 instruction cache. With this in mind the micro benchmarks were slightly altered.

While they follow the exact same micro-benchmark structure presented in Figure 3.1, it is only considered

a maximum code size of 32KB, since the DSB only stores instructions contained in the L1 instruction

cache. Similarly to the MITE tests, DSB micro-benchmarks are composed of instructions with the same

size. Furthermore, in order to test different size instructions, multiple benchmark sets are tested, each

set containing NOP instructions of different sizes ranging from 2B to 10B. By knowing exactly what

instructions are being tested it is possible to predict how the DSB is filled and the moment where it

starts to discard instructions. Due to the use of NOP instructions to avoid bottlenecks outside of the

FE, it is expected the DSB to be limited by the micro-architecture retiring limit of 4 micro instructions

per cycle.

In order to analyse DSB performance two different metrics are calculated, the overall DSB throughput

(POverall DSB) and the DSB throughput (POnly DSB), which are calculated through equations (3.7) and

(3.8) respectively.

POverall DSB =
#DSB Uops

#Cycles
, (3.7)

POnly DSB =
#DSB Uops

#DSB Cycles
, (3.8)

where #DSB Uops is the number of micro operations issued by the DSB, #Cycles is the amount of

elapsed cycles and #DSB cycles is the amount of cycles where the DSB is issuing micro operations.

Just as it was the case for the MITE metrics, there are situations where these two DSB metrics should

have the same values, and situations where they are expected to differ. Since all instructions fit inside

the L1 instructions cache, FE stalls are very unlikely to occur. In this scenario, there are three possible

outcomes: 1) all instructions are issued by the DSB; 2) instructions are issued by the DSB and also by

the MITE; 3) no instructions are being issued by the DSB.
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In these benchmarks the DSB is only expected to issue 0 instructions when the code size reaches 32KB.

At that point it is expected that POverall DSB = 0, just as it happened for POverall MITE when the MITE

issued no instructions. The differences between the DSB and MITE metrics occur in the two remaining

situations. When the DSB is issuing all instructions, the POverall DSB can be either equal or lower than

the POnly DSB , contrary to what happened in MITE. This occurs mainly due to the micro-architecture

limitation of retiring 4 micro operations per cycle. For those instructions where the DSB is able to issue

more than 4 instructions per cycle, the POverall DSB will be lower than the POnly DSB . According to the

DSB behaviour described in chapter 2, this is expected to happen for the benchmarks with instructions

of 2B, 3B, 4B, 5B, 6B and 7B, since these instructions fill the DSB lines with an average number of micro

operation bigger than 4, and the DSB outputs on line per cycle, the throughput is superior to 4. When

both the DSB and the MITE are issuing instructions, the POverall DSB is expected to be lower than the

POnly DSB since the throughput of the DSB should always be higher than the throughput of the MITE

when comparing the same instruction size.

For the DSB micro benchmarks the hardware counters needed to obtain our metrics are briefly detailed

in table 3.2.

Table 3.2: Hardware Counters DSB micro benchmarking [6]

IDQ.DSB UOPS Counts the number of micro operations that are delivered to the Instruc-
tion Decode Queue (IDQ) from the DSB. When instructions are being
issued to the BE through DSB there are no micro operations issued by
the MITE

IDQ.DSB CYCLES Counts the number of cycles which micro operations are delivered to the
IDQ through the DSB path

INST RETIRED.ANY Counts the number of all instructions retired. Since we use instructions
with one micro operation per instructions, this can be used as micro in-
structions retired

CPU CLK UNHALTED.
THREAD

Counts the number of core cycles while the thread in not in a halt state.
If core frequency is constant it can be used to obtain an approximated
elapsed time

Compared to the hardware counters necessary to evaluate the MITE, DSB evaluation requires two

different general purpose MSRs, namely: IDQ.DSB UOPS (measure number of micro operations issued

by DSB) and IDQ.DSB CYCLES (measure number of cycle where the DSB is issuing). These are used

on the DSB metrics as #DSB Uops and #DSB Cycles respectively.

3.2.3 Bottleneck Prediction

Our proposed method to calculate the FE bottlenecks of an application is based on the number of

instructions, the instructions sizes, the percentage of each instruction and the metrics presented in the

previous sections, namely the memory bandwidths, the MITE throughput and the DSB throughput.

Since applications are composed by a mixture of instructions, for our method to combine the expected

throughput of different instructions, we adapted our performance metric and arrived to Equation (3.9).

Pa =
θ

T
=

∑
i θi∑
i
θi
Pi

=

∑
iR

θ
i ∗ #θi∑

i
Rθi ∗#θi
Pi

=
1∑
i
Rθi
Pi

, (3.9)
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In equation (3.9) our performance Pa is defined as the total amount of instructions, θ, divided by

the total time, T . Developing the equation further we can define the total amount of instructions as the

sum of all types of instructions,
∑
i θi, and the total time corresponds to the sum of all θi divided by

the maximum attainable performance of each instruction, Pi. In order to account for the percentage of

each instruction in the code, we redefine θi as the the ratio of each instruction, Rθi , times the number of

micro instructions per instruction, #θi. Since in our tests all instructions have one micro instruction per

instruction, we can simplify the equation once more, giving us the final form we see in equation (3.9).

For the value of Rθi we will use the results obtained in our micro benchmarking, more specifically Rθi

will be the lowest bottleneck between DSB+MITE throughput and memory bandwidth, both calculated

according to the size of the instruction, code size and the memory level where the instruction is fetched.

3.3 Validation Tests

After micro benchmarking the FE and obtaining the metrics needed for the proposed method, a series

of benchmarks is developed in order to validate our method under different execution scenarios. In this

section the methodology used for these benchmarks is going to be presented and discussed.

The first validation test focus on evaluating the proposed method in situations where the code is

composed by a mix of instructions. This validation test inherits the same structure used in the previous

micro benchmarks. Besides the structure, the amount of instructions inside the inner loop also follows

the same trend, starting with a low number of instructions and adding instructions up until the code

reaches the DRAM (16MB). The difference between this validation test and the micro benchmarks are in

the instructions used to fill the inner loop. While the validation test still only contains NOPs,in order to

avoid BE issues, the inner loop contains several blocks composed by 15 NOPs of different sizes, The sizes

of each NOP are randomly selected prior benchmark execution. By repeating the same block throughout

the test, the percentage of each instruction in the test is equal to its percentage in the block. Using this

method we test how well our predictions fare against a more typical application while easily obtaining

the average instruction size and instruction percentages.

With the goal of evaluating our method against logic and computational instructions, the second

validation test once again follows the structure of our previous benchmarks by placing logical and com-

putational instructions in the inner loop, instead of NOPs. The selected instruction is repeated in the

inner loop, with each benchmark adding more instructions until the code reaches the DRAM (16MB).

In order to minimize BE issues each instruction uses only one register which can not be used again by

the following 4 instructions, avoiding data dependencies. For this test it is also taken into account the

number of ports available in the BE to each instruction when predicting performance.

Finally, our last validation test will evaluate our method against memory operations, i.e. loads and

stores. Unlike our previous benchmarks, this test has a slightly different structure, which is displayed

in Figure 3.2. In order to evaluate the impact on the FE when also fetching data from the memory

subsystem, this benchmark contains memory operations fetching data from specific memory levels while

varying the code size. In order to accomplish this task, the micro-benchmark contains one additional
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loop when compared to the tests previously introduced, and a vector with the necessary size. This extra

loop, displayed in Figure 3.2, ensures the instructions are fetching data from the memory level being

tested. By copying the address of the first vector element into a pointer (rax), different elements of the

vector can be accessed. In order to access different vector elements, an offset value is added the the

pointer, corresponding to the size of X number of elements. This offsets the pointer that is then used in

a load or store to access the vector element corresponding to that offset. By adding an offset value to

the the pointer (rax) before iterating the loop, in the next iteration the same instructions will access a

different vector element. In order to reach the DRAM, the new loop has to iterate enough times so that

the offset can reach vector elements on the desired memory level. The number of instruction inside this

loop depends on the code size, for small code sizes the loop has to perform more iterations to reach the

memory level intended. Since the number of instructions needed to reach a certain data memory level

is not always multiple of the number of instructions needed to reach the desired code size, there will

sometimes be instructions outside the third loop to ensure both the code size and data size intended are

reached.

Algorithm 3.2 Benchmark structure - Third Loop

for Outer Loop iterations do
for Inner Loop iterations do

for Third Loop iterations do
Memory Instruction 0(rax) , (register)
Memory Instruction 8(rax) , (register)
Memory Instruction 16(rax) , (register)
.
.
Memory Instruction 2048(rax) , (register)
Add 2048, (rax)

end
Memory Instruction 0(rax) , (register)
Memory Instruction 8(rax) , (register)
.
.

end

end

3.4 Summary

In this chapter the tool used for micro benchmarking the Front End was introduced and explained. A

new methodology for micro benchmarking the Front End was proposed along with the Front End related

metrics that provide crucial information to our method. The hardware counters necessary to obtain our

metrics were highlighted and the structure of the proposed micro benchmarks was presented along with

some important details regarding the micro benchmarks. Finally a methodology to validate our method

was presented and discussed.
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In the Chapter 3 the micro-benchmarks necessary to evaluate the different hardware resources con-

tained in the FE of current OOO micro-architectures were presented. As it was stated, in order to fully

uncover the limits of each component, the micro-benchmarks need to be carefully designed in order to

exercise each one of the resources.

In this chapter the experimental results obtained by relying on the proposed micro-benchmarking

methodology are presented and analyzed. Futhermore, the results obtained through micro-architecture

benchmarking are used to predict the performance of the validation tests presented in Chapter 3, which

better mimic the characteristics of real-world applications.

4.1 Front End Micro-benchmarking Result

In this section we will start by presenting the execution setup used to run the micro-benchmarks. Then

the results of the micro benchmarking are presented and discussed in the following order: MITE, DSB

and Instruction Cache. We will briefly analyse our metrics and compare the results with our expectations,

which were detailed in chapter 3. At the end of each component section we will highlight how the results

will be used to predict performance bottlenecks.

For the following results we used a machine with an Intel Core I7 6700K. The system specifics are

presented in the table 4.1. This machine has its frequency fixed at the base frequency and every benchmark

runs in single-threaded mode, with the thread bounded to a single core to avoid context switching

overheads.

Table 4.1: Machine Specifications

CPU Intel Core i7 6700K, based on Skylake micro architecture 6th Intel Processor generation
built on 14 nm technology

Frequency Maximum base frequency of 4.00 GHz, maximum turbo frequency of 4.2 GHz

Cores 4 cores and 8 threads available

OS Linux CentOS 7.3

RAM Total of 32 GB, DDR4 frequency of 2.4 GHz

ISA Intel SSE, Intel AVX2

Memory Hi-
erarchy

L1 ICache (32KB) - L2 (256KB) - L3 (8MB) - DRAM (32GB)

4.1.1 MITE Micro Benchmark Results

The MITE micro benchmarking focus on evaluating the MITE throughput for diverse instruction sizes,

and fetched from different memory levels. In chapter 3 the methodology used for these benchmarks was

presented in detail along with two MITE metrics: the overall MITE throughput (POverall MITE), and the

MITE throughput (POnly MITE), calculated through equations (3.3) and (3.4) respectively. The results

obtained for these two metrics can be observed in Figures 4.1 (POverall MITE) and 4.2 (POnly MITE).
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Figure 4.1: Results for POverall MITE

Figure 4.2: Results for POnly MITE

In Figure 4.1 the POverall MITE depends significantly on the code size. While the code size is lower

than 8KB, POverall MITE value is always close to 0 until it increases drastically. The drastic increase

happens at different code sizes for different instruction sizes, for example, while for all instructions bigger

than 5B (6B, 7B, 8B and 9B and 10B) this occurs at around 8KB, for 2B instructions this occurs earlier,

at around 2 KB. This behaviour is related to instruction size because it depends on the moment the DSB

gets fully filled. Since the DSB stores micro operations and not instructions, the fact smaller instructions

produce a larger amount of micro operations for the same size, i.e., 8KB of 2B instructions is equal to

4096 micro operations while for 8B instructions is only 1024 micro operations, justifies why the DSB gets

full quicker for smaller instructions (in terms of code size).

With this information three conclusions can be made: the DSB is issuing instructions while the code

is in the L1; for small codes the DSB is issuing all the instructions, justifying why POverall MITE is 0

until the point where the DSB gets full; the initial spike in POverall MITE implies that some instructions

previously issued by the DSB start being issued by the MITE, otherwise POverall MITE would increase

37



more gradually, since what changes drastically at those points and consequently changes POverall MITE , is

the number of micro operations issued by the MITE. The code size does not change drastically, meaning

the big increase in micro operations issued by the MITE is at the cost of a decrease on micro operations

issued by the DSB.

Once the code size surpasses the L1 instruction cache sized (32KB) and fetches instructions from

the L2 cache the POverall MITE stays constant until reaching the limits of the L2 This constant value

depends on instruction size, due to the MITE 16B window and the MITE behaviour discussed in detail

in chapter 2. For example, the results show for 10B instructions a value around 1.6, which is the result

obtained by dividing the 16B window for 10B (the instruction size). For some instruction sizes this value

can not be calculated only by dividing the 16B window by the instruction size. For example, for 3B

instructions this constant value seen in 4.1 is around 3.2, and not 5.33, because how 3B instructions fit

in the MITE window, this was explained in more detail in section 2. We might have expected to see a

slight performance drop when the code size passes from the L1 to the L2, since the L2 is expected to

have lower bandwidth and higher latency penalties than the L1, but has we can see Figure 4.1, there is

no noticeable drop for any of the instructions tested. This behaviour indicates that any performance loss

when accessing instructions in the L2 is not due to the L2 bandwidth, meaning there are no apparent

penalties in terms of POverall MITE in fetching instructions from the L2.

When reaching the end of the L2 (256KB) we see an expected performance drop, that can be attributed

to the smaller bandwidth and higher latency penalties of the L3. POverall MITE continues to decrease

until all the code is inside L3, at which point POverall MITE achieves another constant region. This

behaviour is in line with what was previously discussed in chapter 3, i.e., the POverall MITE decreases

from L2 to L3 due to the FEstalls that occur due to the instruction fetching from a higher latency

memory level, except for 2B and 3B instructions. This effect occurs for these specific instruction types

since their reduced size allows each cache line of 64B to contain enough instructions to hide L3 latency.

Since instructions are fetched from the memory subsystem in 16B window, having enough instructions

on those 16B for the MITE to take more cycles decoding them can help hide the L3 latency. While the

MITE is still busy decoding instructions the next block of instructions is being fetched from the L3. The

decrease of POverall MITE on L3 is related to the smaller bandwidth and higher latency penalties. These

limitations will be discussed latter in this section when we present and discuss the impacts of memory

accesses on the FE performance.

Knowing the MITE is not the only component issuing code, it is necessary to look at POnly MITE

(Figure 4.2) so we can later combine both the MITE and DSB performance to obtain an overall perfor-

mance. When analysing these results, it is possible to observe an unexpected behaviour until the code

size reaches 8KB. The behaviour is caused by residual instructions issued by the MITE which are not

the focus of our tests, producing the unexpected results.

This is confirmed by the results presented in Figure 4.3, which shows the amount of micro operations

issued by the MITE according to the code size. As it can be observed, the moment where the MITE starts

to issue instructions from our loop the values of POnly MITE achieve a constant value, for example, the

10B results show a POnly MITE of 1.6 after the code size reaches 8KB. Comparing with Figure 4.3, 8KB
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is the same code size where 10B instructions start seeing an increase of the number of micro operations

issued by the MITE. The same happens for the other instructions, to give another example, for 2B

instructions the number of MITE instructions start increasing near 2KB, and at the same code size

POnly MITE reaches its constant value of 4. POnly MITE continues to stay constant even when the code

enters the L3. This allow us to confirm our suspicions that POnly MITE is not affected by accesses to

higher latency caches, has it was expected since POnly MITE is calculated based on the number of cycles

the MITE is issuing instructions and not on the overall number of cycles, which would contain cycles

where the MITE is waiting for the instruction to arrive from the caches. This allow the of POnly MITE

values to predict FE bottlenecks, especially when not considering memory limitations.

Figure 4.3: Uops Coming from MITE

To evaluate the impact of the memory subsystem on the FE performance, the maximum code size

was extended to 16MB, in order to include the impacts of the DRAM. The results of these benchmarks

that focus on the evaluation of the memory subsystem when fetching different instructions are presented

in Figures 4.4 (POverall) and 4.5 (B - overall bandwidth).

Regarding the POverall, its initial values are expected to be similar to POverall DSB for small code sizes,

up until the MITE starts issuing instructions, where the expected decrease in POverall occurs, declining

until it reaches the end of L1 instruction cache. At this point the value of POverall equals the values

seen before for the POverall MITE . From L2 to DRAM, POverall behaves like POverall MITE , suffering

performance losses whenever it reaches a new memory level, as we can see, for example, in instructions

of 5B, where both POverall (Figure 4.4) and POverall MITE (Figure 3.3) values are 3.2, when the code

is inside the L2, and both decreasing to 2.7 after the code reaches the L3. The only exceptions to this

behaviour are the 2B and 3B instructions for reasons that were already discussed in the MITE analysis,

maintaining the same POverall value of 4 and 3.2 respectively, through L2 and L3.

Regarding the bandwidth results on Figure 4.5, where the bandwidth, calculated through equation

(3.6), is presented, it is possible to observe that L1 bandwidth depends on the instruction size. For

example, for 2B attains 8 bytes per cycle while for 10B achieves values from 34 to 16 bytes per cycle.

These results can be explain by the use of the DSB to issue instructions. Since DSB is able to issue
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big instruction at a higher rate than the MITE, the overall bandwidth achieves higher values, with the

smaller bandwidths corresponding to the smaller instructions. When entering the L2 cache the DSB

stops issuing instructions and we see our bandwidth stabilize at 16B per cycle, which corresponds to the

window size of MITE. The only exceptions are the L2 bandwidths of 2B and 3B instructions. While all

other instructions (from 4B to 10B) achieve a bandwidth of 16 bytes per cycle (4.5), the 2B and 3B have

a lower bandwidth of 8 and 9.55 bytes per cycle, respectively.

When fetching these instructions, each 16B decoding windows contains more than 5 instructions,

resulting in extra cycles to decode them, decreasing their performance as well as their overall bandwidth.

Therefore the bottleneck for these instructions continues to be the MITE path and not the memories

accesses.

When the code size reaches the L3 cache, the bandwidth for 2B and 3B instructions remains the

same while all the other instructions see their bandwidths drop to around 13.6 bytes per cycle. Finally,

when reaching the DRAM all instructions are affected, even the 2B and 3B instructions, with their

bandwidth falling to around 3.5 bytes/cycle. The DRAM is the first memory level to affect both the 2B

and 3B instructions since its the only situation where the memory bandwidth limitation is lower than

the limitation of the MITE, making it the performance bottleneck for these instructions.

Figure 4.4: Overall Throughput - POverall

40



Figure 4.5: Overall Bandwidth

With these results we can attribute a bandwidth value for the different levels of memory which will be

use to predict performance and application bottlenecks. Since the L2 does not seem to have an impact in

the FE performance, due to the bottlenecks related to the 16B windows of MITE, the method proposed

in this Thesis only considers the bandwidth values for the L3 cache (BL3 = 13.6 bytes/cycle) and DRAM

(BDRAM = 3.5 bytes/cycle). From BL3 and BDRAM it is possible to obtain the expected throughput,

for situations where an application is only bottlenecked by memory, just based on the instruction sizes,

with the exception of 2B and 3B instructions inside the L3. For example, for instructions of 7B, and with

no problems on the BE we would expect their throughput when coming from L3 and DRAM to be:

P7B−L3 =
BL3

7B/Instr.
=

13.6

7
= 1.94 Instr./cycle, (4.1)

P7B−DRAM =
BDRAM

7B/Instr.
=

3.5

7
= 0.5 Instr./cycle. (4.2)

4.1.2 DSB Micro Benchmark Results

By following the methodology for the DSB micro-benchmarks presented in Chapter 3, it is possible

to obtain the measurements necessary to calculate the overall DSB throughput (POverall DSB) and the

DSB throughput (POnly DSB). Similarly to the MITE benchmarking, the DSB study focus on evaluating

its performance for different instruction sizes. The obtained results are presented in Figures 4.6, 4.7

(POverall DSB), and 4.8 (POnly DSB).

As it can be observed in Figures 4.6 and 4.7 the POverall DSB is clearly limited by the maximum

retirement rate of instructions for sizes between 2B and 7B, since for these sizes the DSB is expected

to output more than 4 micro operations per cycle, as it was discussed in chapter 2. For example, 4B

instructions are expected to be issued by the DSB at a rate of 5.33 micro operations per cycle. This would
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Figure 4.6: Results for POverall DSB - 2B, 3B, 4B and
5B Instructions

Figure 4.7: Results for POverall DSB - 6B, 7B, 8B, 9B
and 10B Instructions

Figure 4.8: Results for POnly DSB

be the expected throughput for small code sizes where the MITE is not issuing instructions. Although

for smaller code sizes the results are less stable (mainly due to the reduced code size). For the remaining

instructions (8B, 9B and 10B) POverall DSB aligns with the expectations. These instructions are limited

by how they fill the DSB lines, for example, for the 10B instructions the value of POverall DSB before

the MITE starts issuing instructions (before code size reaches 8KB) is around 3.2 (Figure 4.7), which

matches with the DSB behaviour explained in section 2.

As the code size increases, there is a reduction on POverall DSB , due to the issuing of instructions

by the MITE. The moment when the MITE starts issuing micro operations POverall DSB has a drastic

drop, for example, for 2B instructions this drop happens at around 2KB of code size (Figure 4.6), which

we previously concluded to be point where the MITE starts issuing micro operations (Figure 4.3). This

drastic drop implies that some micro operations previously issued by the DSB start being issued by the

MITE, otherwise POverall DSB would decrease more gradually. In this case, the number of DSB micro

operations drop significantly while the number of cycles continues to steadily increase, making those big

POverall DSB drops. The reason why theses drops occur at different code sizes for different instruction

sizes was already discussed in the results of MITE, but to summarize, smaller instructions have a higher

number of micro operations for the same code size and the drop occurs when to the DSB reaches its
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maximum storage capacity. Since the DSB stores micro operations and not instructions, the code size

where the DSB gets full depends on the size of the instructions, for example, while 10B instructions fill the

DSB at around 8KB of code, for 4B instructions this happens around 4KB. After the MITE starts issuing

micro operations, POverall DSB steadily decreases as can be seen, for example, for 4B instructions when

the code size surpasses 4KB (Figure 4.6). The difference between POverall DSB of different instruction

sizes is related to how the different instructions fit in DSB lines, and to how many instructions fit in that

code size, i.e., 8KB of code being 4096 instructions of 2B while only being 1024 instructions of 8B. Upon

reaching 32KB of code size the instructions will no longer be in the L1 cache, and POverall DSB drops to

0 as expected since all micro operations are issued by the MITE..

In Figure 4.8 we have the results of POnly DSB for the different instruction sizes. Differently from

POverall DSB , the results for the POnly DSB are constant for the entire range of code size. This is expected

since it is calculated based on the number of cycles the DSB is issuing micro operations and all the code

fits in L1 ICache . Furthermore, this throughput also depends on the instruction size. For example, with

instructions from 2B to 7B having a POnly DSB of 5.33 and bigger instructions having POnly DSB of 4 or

lower due to their sizes. As discussed in Chapter 2, these values are expected since the DSB structure is

based on lines that can have from 1 to 6 micro operations, depending on how the instructions fit in each

line.

Moreover, in order to accurately use POnly DSB and POnly MITE to predict the FE performance, it

is crucial to uncover the number of micro operations at which point the MITE starts issuing and how

many micro operations the DSB issues before and after this point. With this aim, the number of micro

operations issued by the DSB for different code sizes are obtained and presented in Figures 4.9 and 4.10.

The number of DSB micro operations issued after reaching its limits do not vary equally for any

instruction sizes from 2B to 10B. Since the DSB is not holding instructions but decoded micro operations,

and that the fill rate of a DSB line can change from 1 micro operation to 6 depending on how the micro

operations fit the first time they are decoded, the amount of micro operations per each block of 64B

depends on the instruction size. Thus, for bigger instructions, it is necessary to achieve a higher code

size in order to attain the maximum number of micro operations that can be stored in the DSB.

Before the MITE starts to issue micro operations the DSB will be issuing all the micro operations.

This can be seen by the steady increase on the number of DSB micro operations, seen in Figures 4.9 and

4.10, for the smaller code sizes. For example, in 4B instructions and 8B instructions before the code size

reaches 4KB and 8KB respectively. After the MITE starts to issue, we see the number of DSB micro

operations drop to a constant value, which will depend on the size of the instructions, for example, in 4B

instructions the DSB continues to issue around 400 micro operations while for 3B instructions it continues

to issue around 620 micro operations.
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Figure 4.9: Uops issued by DSB - 2B-5B Instructions Figure 4.10: Uops issued by DSB-6B-10B Instructions

This behavior can also be observed when representing the variation of amount of micro operations

served by the DSB with the number of total instructions, which can be observed in Figures 4.11 and 4.12.

Figure 4.11: Uops issued by DSB per Total instruc-
tions - 2B-5B Instructions

Figure 4.12: Uops issued by DSB per Total instruc-
tions - 6B-10B Instructions

In both Figures 4.11 and 4.12 it is clear that once the drop of instructions happens the DSB keeps

issuing approximately the same amount of instructions until the code exceeds the L1 cache. Moreover,

for some instruction sizes there is two regions of instructions. For example, the 2B instruction has a

constant region of 780 micro operations for code sizes between 2KB and 3.5KB. After 3.5KB, it drops

for another constant region of 400 micro operations. This effect occurs due to switches between MITE

and DSB, which results in FE stalls. In order to reduce the impact of this penalty, the FE is designed to

avoid switching between MITE and DSB frequently, which explains the existence of this constant regions.

Hence, in certain scenarios the DSB may contain the necessary micro operations but the FE continues

to issuing instructions from the MITE.

The proposed method will use the results presented in Figures 4.11 and 4.12 to calculate the point

where MITE starts issuing instructions, in order to estimate the number of micro operations coming both

DSB or MITE. With the number of instructions coming from these components and their respective

throughput, the FE performance can be calculated.
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4.1.3 Predicting bottlenecks and performance

In order to validate the approach proposed in this Thesis, three set of tests were developed to evaluate

our predictions by following the validation methodology presented in Chapter 3. The first set of tests

aims at validating our prediction when the code is composed by a mixture of instructions with different

sizes. Following this methodology we created 4 different blocks of 15 instructions randomly chosen. These

blocks have different average instruction sizes and instruction percentages. The average instruction sizes

are : 4.13B for block 0, 5.67B for block 1, 6.2B for block 2 and 4.67B for block 3. A summary of these

blocks that includes the percentage of each instructions is presented in in Table 4.2:

Table 4.2: Blocks Instruction Details.

Block
Average
Instruction
Size [B]

2B
(%)

3B
(%)

4B
(%)

5B
(%)

6B
(%)

7B
(%)

8B
(%)

9B
(%)

10B
(%)

0 4.13 20 13.33 20 26.67 20 0 0 0 0

1 5.67 6.67 20 6.67 13.33 20 13.33 6.67 0 13.33

2 6.2 6.67 13.33 26.67 0 0 13.33 6.67 20 13.33

3 4.67 6.67 20 26.67 6.67 26.67 13.33 0 0 0

However, based on the experimental results obtained for the DSB and MITE, the prediction approach

proposed in Chapter 3 needs to be slightly modified. The first approach to predict the bottlenecks of these

tests takes into account the percentages of each instruction and their maximum attainable performance.

While for most of code sizes this methods provides accurate predictions, when the codes fit in the L1

instruction cache, the prediction error increased significantly. This increased error results mainly from

the DSB utilization, since the instructions order have a big impact on the DSB fill rate, and consequently

on its throughput. Hence, using the percentage of instructions as described in Section 3.3, leads to

inaccurate results. As an alternative, when predicting DSB performance for a mix of different instruction

sizes, the prediction method for DSB prioritizes the average instruction size. The modified approach only

considers the percentages of two instructions to achieve a given average instruction size. The predicted

performance is calculated based on the maximum attainable throughput of these two instruction sizes:

the size equal to the average size rounded up and the size equal to the average rounded down. For

example, if our average instruction size is 4.7B we will use the maximum throughput of 4B and 5B, with

ratios of 0.3 and 0.7 respectively. This results in a smaller margin of error when predicting performance.

With this approach, it is possible to obtain the performance predictions presented in Figures 4.13

and 4.14. Both Figures 4.13 and 4.14 represent the overall throughput of each benchmark, with our

predictions plotted in solid lines. The initial part of all predictions, when the code in inside the L1

instruction cache, is based on MITE and DSB maximum attainable throughputs. After surpassing the

L1 limit, our predictions are calculated through the average instruction size and the bandwidth values

of each memory level. For blocks 0 and 1, the performance predicted inside the L2 is 3.87, and 2.82

respectively, and has it shows in Figure 4.13, they both are close to the results obtained. The same

happens for blocks 2 and 3, that have a predicted performance of 2.58 and 3.42 respectively. The
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predictions continue to be very close to the results throughout L3 and DRAM for all 4 blocks. The error

between prediction and experimental results can be observed in Figure 4.15. For all the 4 benchmarks

the prediction error is low after the code size is bigger than L1 cache capacity. The error is almost 0%

for blocks 1, 2 and 3, and under 5% for block 0. Since the predictions only change value after crossing

the limits of a memory level, and in a real scenario the application performance starts decreasing before

reaching the limit of the memory level, and only becomes constant again when inside the next memory

level, the error values spike at two points. These points, as can be identified in Figure 4.15, are at code

size 256KB and 8192, which correspond to the limits of L2 and L3 respectively. The results when the code

fits in the L1 are more unpredictable. While block 0 and block 3 have good predictions and consequently

low errors along all the L1, blocks 1 and 2 have worst predictions when the DSB is filled and the MITE

starts issuing instructions. Without knowing how all instructions fit in the DSB it gets extremely hard

to calculate a bottleneck more in line with the results. It is important to remember that our bottleneck

estimations are a best case scenario, which means our goal is to estimate the bottlenecks of the FE and

see how far the application is from this value. This provides useful insights to the developer of how much

performance the application is leaving on the table, and that can possibly be gained back by optimizing

the code.

Figure 4.13: Blocks of Random Instructions - Throughput blocks 0 and 1
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Figure 4.14: Blocks of Random Instructions - Throughput blocks 2 and 3

Figure 4.15: Blocks of Random Instructions - Error Margin

These first set of tests used NOP instructions to avoid having the BE limit our results in any way.

However, it is still necessary to consider the maximum retirement rate of the micro-architecture, i.e., 4

micro operations per cycle. In the results presented in Figures 4.13 and 4.14 this bottleneck was taken

into account, which consequentially made all the predictions start at 4 micro instructions per cycle. To

truly consider only the FE limitations it would be necessary to neglect the maximum retirement rate,

which would increase the error of the predictions when the code fits in L1 cache, as it can be observed

in Figure 4.16. In this scenario, presenting the predictions seen in Figure 4.16 would be misleading,

suggesting that there is a big performance loss that could possibly be avoided.
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Figure 4.16: Blocks of Random Instructions - Not considering retirement bottleneck

The second set of tests validates the proposed method for logical and computational instructions.

Following the methodology discussed in chapter 3, the second set of tests is comprised of computational

and logic instructions with registers of three different sizes, 8B, 16B and 32B, and no accesses to the

memory hierarchy to fetch Data. The instructions were selected: one logical instruction that executes a

XOR in regular registers, two arithmetic instructions, one that performs additions with regular registers

and one that performs vector addition with both xmm and ymm registers. The instructions chosen have

some details, such as number of ports available and size, summarized in table 4.3. For these results we

will continue to account for the maximum retirement rate, and for the number of ports available to each

instruction. Since each test will only use one type of instructions, the performance of this instruction is

limited by the number of ports available to execute that instruction. For example, if the number of ports

available for a given instruction is 2, the instruction will never be able to achieve throughput superior

to 2 micro instructions per cycle. Taking this limitation into account will provide a better insight on

performance issues.

Table 4.3: Instructions Second Set of Tests

Instruction Size [B]
Number of
Ports

Registers
Size Data Elements
[B]

ADD 3 / 4 4 r0 - r15 8

XOR 3 / 4 4 r0 - r15 8

VPADDW 4 / 5 3 xmm0 - xmm15 16

VPADDW 4 / 5 3 ymm0 - ymm15 32

The results obtained for this set of tests are present in Figures 4.17 and 4.18 (instructions with 4

execution ports) and in Figures 4.19 and 4.20 (instructions with 3 execution ports). The first group

of instructions, composed of XOR and ADD , utilizes registers with 8 bytes of data. Both ADD and

XOR instructions have two different sizes according to their operands. When these instructions only
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use registers, their size is equal to 3B; when their operands are a register and an immediate, XOR and

ADD occupy 4B. As it can be observed in Figures 4.17 and 4.18, the predictions of the performance of

these instructions are accurate. With the errors displayed in Figure 4.18, always near 0%, except for

the two zones already explained, where the limits of the L2 and L3 are reached and a spike in the error

value occurs. The results on Figure 4.17 also demonstrate that the throughput of 3B XOR and ADD are

first limited by the maximum retirement rate of the micro-architecture, and after the code size surpasses

4KB, the FE throughput is the main performance limiter, attaining a throughput of 3.2 inside the L2

and L3, and a throughput of 1.2 when it reaches the DRAM. While for both 4B XOR and ADD, the

FE only becomes the bottleneck upon reaching the L2. The second group of instructions is composed

of instructions VPADDW that use either YMM or XMM registers. Depending on the registers used,

the instruction size varies. For registers between xmm0 and xmm7 or ymm0 and ymm7 the instruction

size is 4B, while for the registers xmm8 and xmm15 or ymm8 and ymm15 the size of the instructions

increases to 5B. Once again our predictions in Figure 4.19 are close to the experimental measurements,

which leads to a very small error as we can see in Figure 4.20. Once again with the error values near 0%

except at 256KB and 8192KB, when the limits of L2 and L3, respectively, are reached. On these tests the

throughput is limited by the number of ports available, limiting the throughput of all instructions to 3

as we can see in Figure 4.19, up until the code size reaches the L3 cache, where the throughput decreases

to 2.7 for the 5B instructions, while the 4B instructions maintain their throughput. At this point the

results are bottlenecked by the FE, more precisely by the accesses to the memory. When the instructions

reach the DRAM their throughput massively drops.

Figure 4.17: Throughput Instructions with 4 ports
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Figure 4.18: Error Margin - Instructions with 4 ports

Figure 4.19: Throughput Instructions with 3 ports
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Figure 4.20: Error Margin - Instructions with 3 ports

These results illustrate the accuracy and usability of the proposed approach to predict the performance

of logical and computational instructions when limited by the FE throughput. With this set of tests it

was possible to assess the importance of considering both FE limitations and BE limitations. By only

considering limitations from certain components the results provide misleading guidelines to software

developers when optimizing applications. A good model should incorporate both FE and BE bottlenecks,

either by calculating an overall bottleneck based on both, or by highlighting the multiple bottlenecks in

place.

The third and last set of tests focuse on evaluating the proposed method against memory instructions,

i.e loads and stores. These tests are composed by the instructions MOV, VMOVAPD and VMOVDQA,

following the methodology presented in chapter 3. A summary of the instructions used is displayed in

Table 4.4, where it is detailed the size of each instruction, the number of ports available and the size of

the operators for each instruction. To simplify prediction calculations it is considered that the size of all

MOV instructions is 7B and all VMOVAPD and VMOVDQA instructions to have a size of 8B. We can

safely make this approximation since only a very small number of instructions will not be 7B or 8B.

This set of benchmarks considers 5 distinct execution scenarios, namely: load instructions with data

coming from L1 Data cache, L2, L3 and DRAM; and store instructions with data coming from L1 Data

cache. For all the benchmarks, the code size varied from a few hundreds of bytes up to 16 MB. The

results obtained for this set of tests are presented in Figures 4.21 to 4.26.

With the data inside the L1 Data cache (Figure 4.21) the throughput of all instructions is limited to 2

micro operations per cycle due to port limitations. This remains the limitation factor until the code size

reaches 256KB, where the throughput of 8B instructions decreases to 1.7 due to FE limitations. Upon

reaching the DRAM, both 7B and 8B instructions are bottlenecked by the FE and have their throughput

decrease to around 0.54 uops/cycle. As it can be observed in Figure 4.22, when data is served by L1 data

cache the error results, are under 5% throughout all memory levels. With the same exception as before,

51



Table 4.4: Instructions Third set tests

Instruction Size [B]
Number of
Ports

Registers
Size Data Elements
[B]

MOV 7
2 (Loads) - 1
(Stores)

r0 - r15 8

VMOVAPD 8
2 (Loads) - 1
(Stores)

xmm0 - xmm15 16

VMOVAPD 8
2 (Loads) - 1
(Stores)

ymm0 - ymm15 32

VMOVDQA 8
2 (Loads) - 1
(Stores)

xmm0 - xmm15 16

VMOVDQA 8
2 (Loads) - 1
(Stores)

ymm0 - ymm15 32

at the limits of L2 and L3.

Figure 4.21: Load Data L1 - Throughput

For the load test with data served by the L2 cache. In Figure 4.23, it is possible to observe that the

test is limited at 1 uops/cycle. This is undoubtedly a BE limitation, caused by the fetching of data from

the L2 cache. This limitation continues to bottleneck the test up until the code size reaches the DRAM,

only then the test starts being bottlenecked by the FE, more precisely by the memory accesses performed

by the FE, which decreases the throughput of all instructions to 0.5 uops/cycle. Similar effects occur

for the L3 and DRAM evaluations, presented in Figures 4.24 and 4.25, respectively. For smaller code

sizes, the L3 Data test throughput is limited by the BE, attaining a performance of 0.5 uops/cycle when

using YMM registers and 0.65 uops/cycle when using XMM and/or general purpose registers. Once the

code only fits in DRAM, the FE becomes the main performance limiter, decreasing the performance of

all instructions to around 0.4 uops/cycle. For DRAM Data, the performance is never limited by the

FE, since the BE bandwidth is always lower than FE performance, and it attains a throughput of 0.2
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Figure 4.22: Load Data L1 - Error Margin

uops/cycle when using YMM registers and 0.11 uops/cycle when using XMM and/or general purpose

registers.

Figure 4.23: Load Data L2 - Throughput

For the store instructions, the micro architecture only supports one micro operation per cycle (1

execution port). Hence, the maximum attainable performance of this test is equal to be maximum

performance supported by the BE. For the store instructions only the L1 test is presented since the

remaining tests have a behavior similar to the loads tests. The results obtained for the store benchmark

are presented in Figure 4.26. As it can be observed, when the code size is small, the performance of the

stores is limited by the number of ports that support store instructions. Once the code size surpasses
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Figure 4.24: Load Data L3 - Throughput

Figure 4.25: Load Data DRAM - Throughput

L1 instruction cache capacity, it occurs a small decrease of the throughput of the stores to around 0.9

uops/cycle. While this performance decrease was not expected in the predictions (1 uops/cycle), this

effect ikely occurs due to the unified storage of data and instructions after L1 I cache. Differently from the

loads, the stores are written-back to the memory after the update in the cache, caused by the instructions

filling the L2. For this reason, the FE may provoke evictions in the caches, reducing stores performance.

Moreover, as it can be observed in Figure 4.26, after the code size surpasses L3 capacity, the FE directly

limits stores performance, attaining a throughput of around 0.4 uops/cycle.

This experimental evaluation demonstrates that the proposed approach is able to pinpoint execution
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Figure 4.26: Store Data L1 - Throughput

scenarios where application performance is limited by the FE, especially for big code sizes. These tests

also highlighted the importance of considering both the FE and BE bottlenecks, while focusing on a

single micro-architectural sub-system can results in misleading guidelines. The proposed approach is also

accurate for diverse instruction types, from NOPs to computational and memory instructions, with all

of the results providing some useful information regarding FE bottlenecks and insights.

4.2 Summary

In this section the execution setup was briefly introduced. The results of the micro benchmarking

of the Front End components was presented and discussed in depth. From the results, the limitations

of each component were measured and highlighted, and were later used to predict the performance of

applications limited by the FE.

Finally three sets of tests were used to validate the results of the proposed method. Each test focused

on different scenarios. The first test aim was to evaluate the proposed test against an application with

a mix of different instructions. The second test evaluated the proposed method against logical and

computational instructions. The last test was used to validate the proposed method against memory

instructions. The proposed method presented small errors in all validation tests, and by doing so, proved

to be accurate and useful in predicting the performance of different type of applications bottleneck by

the FE.
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5.1 Conclusions and Future Work

Over the last years, micro-processor companies have been continuously pushing the boundaries of

technology, to keep improving the performance of micro-processors. However, the enhancements intro-

duced in the micro-architectures also contributed to significantly increase their complexity. For this

reason, the optimization of an application is far from being a trivial task, especially when considering

the high system complexity coupled with the distinct capabilities and characteristics of each hardware

component. Hence, software developers strive for tools that analyse application performance and provide

insightful information regarding application bottlenecks.

With this aim, it is crucial to assess the performance upper-bounds of the different hardware com-

ponents contained in the core pipeline of micro-architectures. One of the best approaches to assess

the micro-architecture limitations is through micro-benchmarks designed to exercise differently each of

the components. Through carefully designed micro-benchmarks we can obtain important performance

metrics, that can be used to pinpoint the execution bottlenecks. There are several models that utilize

micro-benchmarking to perform application performance analysis. Unfortunately, none of them assess

FE limitations, leaving all of its components out of the bottleneck analysis.

In order to tackle this issue, this Thesis proposed a new micro-benchmarking methodology that

exercises multiple FE components under different execution scenarios. This new methodology provides

a new set of metrics linked to the FE components in order to calculate FE bottlenecks and predict

application performance. To obtain these metrics, a minimum set of hardware counters was proposed.

This set of counters provide useful insights into multiple FE metrics, and can be used to micro-benchmark

several FE components.

The proposed methodology was used to perform an in-depth micro-benchmarking of the Intel Skylake

FE in order to assess its performance limits. The results provided useful information regarding the

limitations of FE components (MITE, DSB and memory subsystem), such as MITE throughput and

memory bandwidths.. The results obtained from the micro-benchamarking were also used to predict the

performance of applications limited by the FE. Finally to validate the proposed method, it was created a

set of benchmarks that mimic the characteristics of real-world applications. The proposed methodology

presented small errors in all of the validations tests, proving to be a capable method of prediction the

performance of applications bottlenecked by the FE

5.1.1 Future Works

The proposed methodology focuses on three components of the FE that can limit application perfor-

mance. These are the MITE, the DSB and the memory subsytem. As it was highlighted in chapter 2,

there are two more FE components that impact application performance and which are not considered

in this work.

The first component is the ITLB. The ITLB can become a bottleneck for applications with big code

sizes, or applications with big jumps (superior to page sizes). When the translation of the address pages

is not inside the ITLB, the whole FE will have to stall until the translation process is completed, which

can take a big amount of cycles. Further research should be done regarding the ITLB and its impact in

57



application performance. The second component is the BPU. The BPU can heavily impact application

performance if it misses the prediction of a lot of branches. This is not something unusual, specially in

Artificial Intelligence applications. Therefore it should be researched in order to assess its limitations and

impact on application performance.
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