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Resumo

A emissão de neutrinos é o processo dominante no que toca à perda de energia em estrelas pre-

anãs brancas, e apesar de haver consenso relativamente à fı́sica que está por detrás deste efeito de

arrefecimento, os baixos valores de secções eficazes de interação destas partı́culas representam uma

barreira no que toca a testar experimentalmente e corroborar as implicações deste fenómeno num

laboratório terrestre.

Neste trabalho, fazemos uso de código numérico de ponta para modelar estrelas a partir da ZAMS

(Sequência Principal de Idade Zero) com massas compreendidas entre 9M� e 11M� e com evolução

até à sequência de arrefecimento das anãs brancas, obtendo também os correspondentes espetros de

pulsação. Tomando atenção particular ao domı́nio de luminosidade compreendido entre L/L� = 4 to

L/L� = 2, onde a emissão de neutrinos é o processo de perda de energia dominante, estudamos o

impacto de diferentes taxas de emissão de neutrinos de natureza não nuclear no espetro de perı́odos

dos modos de pulsação, bem como as consequências deste impacto na estrela a nı́vel fenomenológico

e estrutural.

Identificamos também um novo fenómeno que consiste numa deslocação do padrão da separação

de perı́odo em modos com ordem radial elevada, consequência das alterações nas taxas de emissão

de neutrinos, enquanto que o padrão relativo aos modos com ordem radial baixa permanece inalterado.

Este resultado, bem como o estudo realizado nesta tese, representa uma ferramenta instrumental no

que toca ao estudo da estrutura interna de anãs brancas pulsantes, as quais se espera serem obser-

vadas na futura missão PLATO.

Palavras Chave

Asterosismologia; Estrelas; Anã Branca; Pulsação Estelar;
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Abstract

Neutrino emission is the most dominant process in what concerns energy loss for pre-white dwarf stars,

and while there is consensus on the physics that is behind this cooling effect, the small interaction cross

section of these particles makes it hard to experimentally test and corroborate the implications of this

phenomena on a terrestrial laboratory.

We make use of state of the art numerical code to model stars beginning in the ZAMS with masses

ranging from 9M� to 11M� and evolving up to the white dwarf cooling sequence, and obtain their

correspondent asteroseismic spectrum. Taking particular attention to the luminosity range from L/L� =

4 to L/L� = 2, where neutrino emission is the dominant energy loss mechanism, we study the impact

of different non nuclear neutrino emission rates on the period spectrum of the g-modes, as well as the

consequences of this impact on the star at a chemical and structural level.

We identify a novel phenomena where a shift in the pattern of the period separation of higher order

radial modes seems to take place when the neutrino emission rates are altered, whereas the pattern

relative to lower order radial modes remains unchanged. This particular result, along with the study

performed in this thesis, represents a powerful tool to study the internal structure of pulsating white

dwarfs, expected to be observed by the forthcoming PLATO mission.
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1.1 Motivation

White dwarfs are objects that represent the final evolutionary stage of most stars, and are characterized

by their extremely high density and intrinsic low luminosity. Their status as the end product of most

stars makes them important subjects of study and observation, since their current population contain

information concerning general stellar evolution.

The discovery of white dwarfs dates back to 1914 [7], with the detection of a star located well below

the main sequence in the HR diagram, characterized by a very small radius, comparable to that of the

Earth, and later determined to have a mass comparable to that of the Sun. The introduction of this new

spectral class of high density stars became of considerable importance, soon turning into one of the

first tests of quantum theory of matter, as the high densities of these stars could only be explained by a

quantum degeneracy pressure effect of the electrons in their core [8].

Nowadays, among the many utilities that come from the study of these objects, the white dwarf

luminosity function [9, 10] represents one of the most important tools in what concerns not only the

advances in this area [11, 12], but also contributions to several other topics such as the history of our

Galaxy and certain constraints on its age [13, 14], photometric calibration [15], the theory of hot dense

plasmas [16] and even the study of fundamental interactions in physics, since white dwarf stars represent

quality astroparticle physics laboratories [17].

A particularly interesting trait of white dwarf evolution is the fact that as these objects cool, they cross

several pulsation instability phases, one such phase corresponding to the GW Vir stage (or DOV stage).

Stars at this stage have a characteristic chemical composition, lacking the typical hydrogen envelope

that most white dwarfs have, and present higher temperature and luminosity than most white dwarfs,

such that in this sense, they might as well be considered pre-white dwarfs.

Perhaps most importantly, these stars are known pulsating objects, presenting measurable buoyancy

induced luminosity fluctuations with periods that reach up to thousands of seconds. It then becomes

indispensable to approach the study of these stars with the use of asteroseismology, a recent branch of

astrophysics that concerns the study of oscillatory stellar objects, providing several mathematical tools

that allow for a detailed probing and analysis of the interior of stars.

To this context, one of the most interesting aspects of this GW Vir stage is that it corresponds to a

very short-lived stage where the primary cooling mechanism is the emission of non nuclear neutrinos.

The production of neutrinos inside stars is a well known process that may occur as a consequence

of several different reactions [18, 19], and while there’s consensus in what concerns the prevalence of

neutrino cooling during this stage of evolution of white dwarf stars, it is a difficult task to replicate and

experimentally test this phenomena in the laboratory, mainly due to the small interaction cross section

of these particles [20], which in turn, makes it hard to verify certain predictions regarding their impact

on the overall behaviour of this cooling stage, whether it be at a structural or at a phenomenological
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level. On the other hand, asteroseismology has been a consistent tool in what concerns the study of an

array of topics regarding stellar structure and evolution, and naturally encapsulates the main aspects to

consider when trying to approach the subject of the impact of neutrino cooling, effectively working as a

metaphorical laboratory that allows for the verification of this neutrino print.

It’s also worth mentioning that calculation of neutrino emission rates in white dwarfs and pre-white

dwarfs are based on the standard theory of leptonic interaction which contains several construction flaws,

particularly in what concerns the inclusion of neutrinos, which are predicted to be left-handed particles

with no renormalizable mass term [21]. This has since been proven incorrect with the introduction

of neutrino flavor oscillation [22]. Nonetheless, stellar emission rates of these particles are computed

making use of the interactions present in the standard electroweak Hamiltonian, being subject to the

constraints established by this theory, and hence the measurement of the effects of altered neutrino

rates and consequent neutrino interactions in these stars may represent an independent test of the

coupling of neutrinos in the leptonic processes of the standard model.

1.2 Objectives

The focus of this work will be to study the impact of neutrino emission as a star evolves through the

GW Vir stage. To this end, we make use of state of the art numerical models that contain detailed

information regarding the structural and phenomenological properties of these type of stars, and whose

neutrino emission rates we can manipulate in order to infer direct or indirect consequences of their effect.

At a first stage, we intend to study the structural ramification of altering neutrino rates, whether it be

through the response of certain global quantities to different rates, or by analyzing how the chemical

composition in the interior of the star behaves in these same circumstances. We then intend to inspect

how the pulsation spectrum of our models is impacted by these varying rates, making use of several

diagnostic quantities that concern the propagation and overall behavior of each mode.

In order to more effectively accomplish the goals of this study, we target stars with mass values

which are considerably higher than the average. As mentioned above, non nuclear neutrino emission

is the predominant effect in what concerns the cooling of stars at this stage of evolution, with most

of the energy loss being done through the plasma-neutrino process [23], but in the case of massive

stars, neutrino bremsstrahlung must also be taken into consideration [2, 24]. This attribute, along with

several other important factors, make massive white dwarfs great subjects of study in what concerns

the influence of neutrino emission along their evolution. In particular, mass-radius relations for massive

white dwarfs seem to show a notable dependence on the neutrino luminosity [25], and even beyond

that, these stars seem to be the ones which exhibit the most sensible temperature decay response to

the neutrino luminosity in all the mass range of these kind of stars [1], as can be seen in figure 1.1.
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Figure 1.1: Neutrino luminosity Lν as a function of stellar core temperature T for white dwarfs with masses M =
0.4, 0.6, 1 and 1.4M� [1]

Finally, it is important to mention that with the advent of mission PLATO [26], to be launched in

2025, the understanding of the underlying effects of certain phenomena on the measurable quantities of

stars is of utmost importance, and hence, with neutrino emission being the controlling process in what

concerns the cooling of stars at this stage of evolution, we intend with the work developed in this thesis

to provide novel information that will contribute to the increase in documentation of these kind of stars,

particularly since ”PLATO 2.0 will be the very first mission to bring WD seismology in the space era,

(...)” [26].

1.3 Organization of the Document

We now describe the configuration of this document. In this chapter, a brief motivation containing a

small historical perspective of white dwarfs, along with the most important aspects of the stars that will

be studied is presented.

In chapter 2, the theoretical basis needed for the work developed in this thesis is presented, contain-

ing the main aspects of stellar evolution that result in the formation of a white dwarf, the main processes

involved in the production and emission of neutrinos inside of stars and the basic mathematical descrip-

tion of stellar oscillations.

In chapter 3, we present information concerning the state of the art which motivates the subject of

this thesis, including some details concerning massive white dwarfs and some aspects of white dwarf

asteroseismology.
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In chapter 4, we give an overview of the code used in order to model the stars in study, we make

an analysis of the different neutrino emission sources present and we study the impact of altering these

rates on a phenomenological and structural level, as well as the influence it has on the period spectra of

these models.

In chapter 5, we focus the study of the impact of these neutrino rates on the propagation of the

pulsation modes inside of the star, defining an auxiliary sensitivity function to quantify the analysis. We

also address a novel effect that results on a shift of the modes that are trapped as a consequence of the

altered neutrino rates.

Finally, in chapter 6 we discuss our conclusions and address future prospects of this work.
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This chapter contains the theoretical basis needed for the work present on this thesis, being divided

in the three major topics that are necessary for the study being done. The first topic, present in 2.1,

consists on the main aspects of stellar evolution, including all the evolutionary stages and processes that

are comprised in the transition of a typical main sequence star into a white dwarf, and the subsequent

cooling branch of the latter. Additionally, a brief description of the mathematical details behind the

equations of stellar structure and evolution is also presented. The second topic, present in 2.2, concerns

the main processes involved in the production and emission of neutrinos inside of stars. The third topic,

present in 2.3, encompasses the basic mathematical description of stellar oscillations.

2.1 Stellar Evolution and White Dwarf Cooling Sequence

2.1.1 History of White Dwarf Evolution

White dwarfs are very dense stellar core remnants, presumably the final evolutionary stage of more

than 97% of all stars [2]. Resulting from low- and intermediate-mass hydrogen burning stars, these

objects have reached a phase of their evolutionary process in which nuclear burning has ceased to be

a significant energy source. Since no other energy source of the star is relevant enough to compensate

for the continuously radiated (stored) thermal energy, it will begin to cool, becoming dimmer with passing

time.

In order to comprehend this evolutionary process that leads to the formation of a white dwarf, which

is schematically depicted in figure 2.1 by the HR diagram of a typical 3.5M� initial mass main sequence

star, we must first understand the previous history of the stars that originate these remnants, starting

from their Zero Age Main Sequence (ZAMS) stage and up to the white dwarf cooling branch itself.

2.1.1.A White Dwarf Progenitors

The formation of a typical main sequence star is preceded by the collapse of a gas cloud in the inter-

stellar medium, with a chemical composition consisting mostly of hydrogen and helium [27], and the

subsequent ignition of hydrogen nuclear burning. It is when this hydrogen burning proto-star reaches

hydrostatic equilibrium that it is considered a main sequence star.

Evolution in the main sequence is very intricate, with several important aspects to consider, but in the

context of this work, it is enough to mention that this stage is mostly a hydrogen burning stage, with this

process happening through either the proton-proton chain (pp-chain) reaction or the CNO cycle. The

first of these processes is dominant for stars with masses less than 1.3M� [28], and may be summarized

by the following expression:
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Figure 2.1: HR diagram for the evolution of a typical 3.5M� star from the main sequence to the white dwarf cooling
branch [2]

4 1
1H→

4
2He + 2e+ + 2νe + 2γ (2.1)

Where e+ represents a positron, νe represents an electron neutrino and γ a gamma ray photon.

The CNO cycle is, in turn, dominant for stars with masses greater than 1.3M� [28], and is a catalytic

cycle composed of several reactions, all with the following end result:

4 1
1H + 2e− → 4

2He + 2νe + 7γ (2.2)

Where e− is an electron. A star will remain on the main sequence while there is still hydrogen present

in its core, so that nuclear burning is active. Once the hydrogen is depleted, the star will proceed to the

next evolutionary stage, which in the case of the stars that we’re studying, is usually the Sub Giant

Branch (SGB) and Red Giant Branch (RGB) sequence. This is a consequence of the contraction of

the core, triggered by the lack of hydrogen burning, which causes the release of gravitational energy to

the outer regions, increasing the temperature of the shell. This in turn excites nuclear reactions in this

region, increasing the luminosity and consequently the radiation pressure, which causes the envelope to

expand and cool, meaning that the effective temperature of the star drops and the star enters the SGB.

The expansion and drop in temperature of the envelope is accompanied by an increase of the opacity

of the photosphere due to the presence of H− ions. This in turn leads to the formation of a convective

region near the surface, marking the transition to the RGB. Further detail about this description can be
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found in [27].

Similarly to the main sequence, the RGB is a complex evolutionary stage with many important impli-

cations, but the most relevant event, in the scope of this work, happening at this stage is the ignition of

helium burning in the core. In short, this event occurs when the growing temperature of the core reaches

the required values to trigger the triple-alpha (3-α) process, originating carbon through the combination

of the following reactions [28]:

4
2He + 4

2He→ 8
4Be

8
4Be + 4

2He→ 12
6C + 2γ (2.3)

Additionally, oxygen may also be created as a side effect through the following reaction:

12
6C + 4

2He→ 16
8O + γ (2.4)

It is then at this stage that the Carbon/Oxygen (C/O) composition, usually present in the core of white

dwarfs, is built. It is then expected that a similar situation to that of the ending of the main sequence

stage occurs, since helium burning is bound to cease. When this happens, the gravitational energy

emitted from the core ignites the neighboring helium shell and the star enters the Asymptotic Giant

Branch (AGB). Eventually, the outer hydrogen shell is ignited as well, while the helium shell falls off in

what concerns energy output, but since the burning of the hydrogen of the outer shell results in helium

that is deposited inwards, the helium shell will periodically reignite and generate intermittent helium shell

flashes, also known as thermal pulses. In short, the net effect of these thermal pulses is an outward

displacement of the outer shells and considerable mass loss, consequence of the ejection of most of the

H-rich envelope, which can completely vanish if the star experiences some late thermal pulses as it is

departing from the AGB [29].

When the mass fraction of the outer layers starts approaching certain lower limit values (∼ 10−3M�),

a higher exposition of the core leads to a rapid increase in temperature at approximately constant lumi-

nosity, positioning the star in the planetary nebulae domain. Finally, at even lower mass fraction values

of the outer envelope (∼ 10−4M�), nuclear energy generation becomes essentially null, and the star en-

ters a phase of consistently decreasing luminosity with time, where it is effectively classified as pre-white

dwarf [2].

2.1.1.B Neutrino Cooling and White Dwarf Cooling Branch

At this point, stars may already be treated as white dwarfs from a spectroscopic point of view. This

means that they can be classified as DA and non-DA white dwarfs, depending on the main constituent
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of their outer layers. DA white dwarfs represent the most abundant class, containing ≈ 85% of all white

dwarf stars [30], and it corresponds to such stars with hydrogen rich atmospheres, while non-DA white

dwarfs correspond to these stars with hydrogen deficient atmospheres. This last class may be further

subdivided according to their spectra and effective temperature, with DO white dwarfs presenting strong

lines of HeII and with 45000K ≤ Teff ≤ 200000K, DB white dwarfs presenting strong HeI lines and with

11000K ≤ Teff ≤ 30000K and DC, DQ and DZ presenting traces of carbon and metal in their spectra,

and with Teff < 11000K.

As the star is transitioning to the white dwarf cooling branch, reactions due to the CNO cycle are

still occurring and they represent the largest contribution to the luminosity of the star. When nuclear

reactions cease, the evolution is controlled by non nuclear neutrino losses, with these being created

in the hotter, deep regions of the star, and due to their extremely small cross section, these leave the

star without interacting. At this point, neutrino luminosity is up to five times the surface luminosity, and

as a consequence, this phase has a small timescale in comparison with the timescale of the cooling

branch. It is also in this stage that DOV and DBV (where the first two letters refer to the spectroscopic

classification, and the V stands for ”variable”) are inserted, as can be seen by the thresholds presented in

the cooling branch of the HR diagram present in figure 2.1. The processes responsible for the production

of neutrinos are discussed in 2.2, but it is worth mentioning that plasma-neutrinos represent the main

energy loss, with the possibility of a considerable contribution of neutrino bremsstrahlung at later stages

of this neutrino dominated phase [31], noting that this last process implies a significant impact in the

cooling of massive white dwarfs [24]. The majority of the work contained in this thesis will be focused

on this stage of evolution, but for the sake of completeness, we further present a brief description of the

events that follow after this neutrino dominated phase.

When neutrino rates are low enough so that the neutrino luminosity Lν is negligible when compared

with the surface luminosity Lsur (or total luminosity as depicted in HR diagrams), the released gravi-

tational energy due to gravitational settling becomes relevant with Lsur ≈ Lgrav and the star enters a

stage where it satisfies most of the conditions established by the well known Mestel model [32]. In short,

these conditions are the consideration of an isothermal core, the assumption that the energy transported

throughout the envelope is done entirely by radiative processes and the usage of a non-degenerate, ideal

gas, equation of state to describe said envelope. The use of these conditions to derive the expression

that describes the cooling of the star at this stage, and the derivation itself, can be found in Mestel’s

original article [32], with the expression as follows:

tcool =
108

A

(
M/M�
L/L�

)5/7

(2.5)

Where A is the atomic weight of the ion species responsible for the luminosity process. This cooling

time defined as tcool = t−t0, where t0 is the time at which the star enters the white dwarf cooling branch,

11



may be computed at any present time t since both M and L are time dependent functions.

At lower luminosity values, around log(L/L�) ≈ −3, some conditions needed for the validity of

Mestel’s model fall off, namely the condition of energy transport in the outer layers, which is no longer

exclusively done through radiative processes because of the setting of envelope convection, which will

alter the rates at which energy flows from the inner regions to outer space [33]. Additionally, the con-

sideration of Coulomb interactions in the core also become relevant in what concerns the energy output

of the star [34], with the Coulomb coupling parameter Γ = (Ze)2/akBT , where a is the interionic sepa-

ration and kB is the Boltzmann constant, being inversely proportional to temperature. Around this time,

this coupling constant takes the value Γ ≈ 180, which corresponds to the case where the short-range

correlations experienced by the ions are so strong, that these begin to form a lattice structure, or in other

words crystallize, suffering a first-order phase transition which is accompanied with a release of latent

heat, enough to significantly alter the cooling rate of the star.

2.1.2 Equations of Stellar Evolution

The description that was made above presents an overview on the processes that occur as a star is

formed and evolves, and allows for a qualitative understanding on the details that go into the history of a

white dwarf. This evolution, however, is dictated by several physical principles that can be quantitatively

assessed, and further organized into a set comprised of a number of equations containing this same

number of unknown variables.

We then have a complete set of partial differential equations, determined under the assumption of

spherical symmetry, known as the equations of stellar evolution, whose derivation can be found in [35].

The first of these equations concerns the mass conservation of a spherical shell, detailing a relation

between its radius r and its mass m.

∂r

∂m
=

1

4πr2ρ
(2.6)

Where ρ is the density of the shell.

The second equation is also a conservation equation, this being the conservation of momentum. It

serves as an hydrodynamic condition that defines the pressure in each layer of the star.

1

4πr2

∂2r

∂t2
= − ∂P

∂m
− Gm

4πr4
(2.7)

In this equation, P is the pressure and G is the gravitational constant. An important form taken by this

equation is that of the hydrostatic equilibrium condition, which is obtained when ∂2r/∂t2 = 0, meaning

that a balance between pressure and gravity is obtained per unit volume of each shell.

Also part of the set, we have the equation of energy transport, which as the name suggests, conveys
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information on how energy is transported at each layer of the star.

∂T

∂m
= − GmT

4πr4P
∇ (2.8)

Where T is the temperature and∇ ≡ ∂ lnT/∂ lnP is a quantity whose value depends on how energy

is transported. In the case where this happens through radiative processes, this expression takes the

following form:

∇ = ∇rad =
3

16πacG

κlP

mT 4
(2.9)

Where a = 7.57 × 10−15 erg cm−3 K−4 is the radiation density constant that relates the energy

density with temperature, c is the speed of light constant, l is the local luminosity and κ is the mean

absorption coefficient that constrains the mean free path of a photon lph = 1/(κρ) in the interior of the

star.

An additional subset of equations that are part of our larger set is that of the chemical composition

equations, which is comprised of I equations, each relative to one of the I nuclei that constitute the star.

Each of these equations describes the evolution of the mass fraction χi of the i’th nucleus, taking the

following form:

∂χi
∂t

=
mi

ρ

∑
j

rji −
∑
k

rik

 i = 1, ..., I (2.10)

Where mi is the mass of the i’th nucleus and rji is the number of reactions per unit time and unit

volume that transform nuclei from type j to nuclei from type i.

Finally, and of most importance due to the context of this work, is the conservation of energy equation,

which defines the local luminosity of a given shell:

∂l

∂m
= εn − εν −

∂T

∂t
+
δ

ρ

∂P

∂t
(2.11)

With δ ≡ (∂ ln ρ/∂ lnT )P , with the subscript meaning that the quantity is taken at constant pressure,

and εn is the nuclear energy release per unit mass per second. The εν term is of special interest in

what concerns the rest of this work, since it represents the amount of energy released by unit mass per

second due to neutrino emission. There are two types of neutrinos that contribute to this, depending on

if they were created as a consequence of nuclear reactions or not. For this reason, we label the energy

lost due to nuclear neutrinos as ενn and the energy due to non nuclear neutrinos as εν̃ , such that:

εν = ενn + εν̃ (2.12)
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As mentioned previously, it is the process of non nuclear neutrino emission that dominates the cooling

of stars during this DOV stage, and as can be seen by equation 2.11, this has a direct impact on the

structure and evolution of the star, and hence the process that goes into the derivation of these emission

rates represents a crucial point in the description of the energy reservoir of the star at this stage, seeing

that changes in these rates represent differing results in what concerns the state of the star.

Equations 2.8 - 2.11 represent the equations of stellar evolution, which correspond to a complete

set of partial differential equations that may be numerically solved, at any time, given the appropriate

boundary conditions. The construction of these conditions is dependent on the model that is intended,

and the process that goes into the formulation of these can be found in [35].

2.1.2.A MESA Evolution Code

The numerical process that is behind the solution of these equations may be developed in numerous

ways given the existence of several state of the art stellar evolution codes that integrate this procedure.

This in turn allows for the modelling of stars, as well as access to the global quantities that constitute

this model, along several different evolutionary stages.

To this end, we make use of the MESA software [36], an open-source 1D stellar evolution package,

composed of different modules constructed as Fortran 95 libraries with defined user interfaces to sim-

plify independent use. In addition to solving the coupled equations of structure and composition which

comprise the set of equations of stellar evolution, MESA contains modules that provide equation of state,

opacities, nuclear reaction rates, element diffusion data and atmosphere boundary conditions, and allow

for stellar modelling in a wide range of mass and at several stages of evolution, including tracks ranging

from the ZAMS to the white dwarf branch, as is the case in this thesis. The main specifications that go

into the modelling of the stars used in this work are described in 4.1.

2.2 Neutrino Processes in Stellar Interiors

Neutrino production inside stellar interiors is a known phenomena that may occur due to several different

processes [18,19] and results in the emission of these particles, which may represent a relevant energy

loss in what concerns the energy balance of stars. Such is the case with white dwarfs, whose typical

radii are far shorter than the mean free path of neutrinos, making it so that this could represent a source

of energy loss during evolution.

There are several neutrino production processes, with them being divided into two categories, the first

being ordinary beta processes, which are essentially processes where electrons or positrons are either

captured or emitted by nucleons or nuclei. Some processes that fall in this category are interactions

involving nuclei, such as electron decay, positron decay and electron capture; interactions with nucleons,
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such as electron capture on free protons and positron capture on free neutrons; and the Urca process

[37]. Relevant for this work, and containing some of the processes that we will cover more carefully are

the leptonic processes. There are several processes that belong to this category, but only the ones that

are prevalent during the pre-white dwarf neutrino cooling phase will be covered.

2.2.1 Photoneutrinos

This process is a consequence of Compton scattering, where the outgoing photon is replaced by a

neutrino-antineutrino pair. This process is given by:

γ + e→ e+ ν + ν̄ (2.13)

We will follow the description of electroweak theory in order to compute the energy rate of this process

in a completely ionized gas with temperature T and density ρ. To this end, we make use of the lowest

order Feynman diagrams for this process, present in figure 2.2.

Figure 2.2: Lowest order Feynman diagrams for the photoneutrino production process [3]

Each of these diagrams contributes with a factor to the total matrix element for this process, which

can be written as [3]:

M =− ieg2

8m2
W

ūe(ṕ)γ
a(CV − CAγ5)

/p+ /k +me

2p · k + ω2
0

/εue(p)ūν(q)γa(1− γ5)vν̄(q′)

− ieg2

8m2
W

ūe(ṕ)/ε
/p
′ − /k +me

−2p′ · k + ω2
0

γa(CV − CAγ5)ue(p)ūν(q)γa(1− γ5)vν̄(q′) (2.14)

With:

CA = 1− g′2 + g2

2m2
Z

m2
W

g2
CV = 1 +

3g′2 − g2

2m2
Z

m2
W

g2
(2.15)

In these expressions, both g and g′ are coupling constants, p, p′, q, q′ and k are the incoming electron,

outgoing electron, outgoing neutrino, outgoing antineutrino and incoming photon momenta, respectively.

ue and ūe are the incoming and outgoing electron spinors, ūν and vν̄ are the outgoing neutrino and
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antineutrino spinors. γa with a ∈ {0, 1, 2, 3} are the Dirac gamma matrices and γ5 is the fifth gamma

matrix. ω0 is the oscillation frequency of the gas and me, mW and mZ are the electron, W-boson and

Z-boson masses respectively.

The interaction cross section σ of this process can now be obtained by summing and averaging over

the electron and neutrino spins, integrating over the neutrino momenta, and finally summing over the

polarization of the photon, while the energy rate per unit volume and unit time of the process Qphoto

can be obtained by integrating, over the number density of the particles involved, the product of this

cross section with the energy of the neutrino pair. These computations, while straightforward, are very

extensive, and so we refer to [19], where the main steps of these computations are described, with the

end result:

Qphoto =
1

2

[
(C2

V + C2
A) + n(C ′V

2 + C ′A
2)
]
Q+
photo −

1

2

[
(C2

V − C2
A) + n(C ′V

2 − C ′A2)
]
Q−photo (2.16)

Where n is the number of neutrino flavours other than the electron neutrinos, C ′A = 1 − CA and

C ′V = 1 − CV , and Q+
photo and Q−photo correspond to the numerical energy rates relative to the process

triggered by an electron or a positron respectively, present in [24].

2.2.2 Plasma Neutrinos

This process occurs when a photon, referred to as a plasmon in this situation, propagating inside an

electron gas, spontaneously transforms into a neutrino-antineutrino pair. This process is given by:

plasmon→ ν + ν̄ (2.17)

Following the same procedure as in the previous section, we present the lowest order Feynman

diagrams for the decay of a plasmon in figure 2.3.

Figure 2.3: Lowest order Feynman diagrams for the decay of a plasmon [3]

The computation of the matrix element correspondent to these diagrams is not as straightforward as

it was in the previous case, since it involves the computation of the Green’s function for the propagation

of an electron in a sea of particles, as well as the consideration of both longitudinal and transverse

components of the vector potential of the plasmon. The mathematical details involved in this procedure
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are detailed in [3,38], and the resultant energy rate is, as presented in [24]:

Qplasma = (C2
V + nC ′V

2)QV (2.18)

With:

QV = QL +QT (2.19)

Where QL and QT correspond to the numerical energy rates relative to the longitudinal and trans-

verse components contribution respectively, present in [39].

2.2.3 Bremsstrahlung Neutrinos

This process refers to a modification of the regular bremsstrahlung process and consists on the braking

or acceleration of charged particles in the interior of a star, resulting in the emission of a neutrino-

antineutrino pair instead of a photon. In a white dwarf, where the charged particles that generate this

process are electrons, this process is given by:

e− + (Z,A)→ e− + (Z,A) + ν + ν̄ (2.20)

Where (Z,A) corresponds to a fixed nucleus that is responsible for the generation of the Coulomb

field that is responsible for braking or accelerating the electron. The Feynman diagrams describing this

process are represented in figure 2.4, while the total matrix element relative to these is [4]:

M =− Ze2Gf
4

f(|~k|)2

[|~k|2ε(|~k|)]2
ūe(p

′)γa(CV − CAγ5)
1

/p+ /k −me
γ0ue(p)ūν(q)γa(1− γ5)vν̄(q′) (2.21)

− Ze2Gf
4

f(|~k|)2

[|~k|2ε(|~k|)]2
ūe(p

′)γ0
1

/p− /k −me
γa(CV − CAγ5)ue(p)ūν(q)γa(1− γ5)vν̄(q′) (2.22)

Figure 2.4: Lowest order Feynman diagrams for the neutrino bremsstrahlung effect [4]
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In equation 2.22, ε(|~k|) is the static dielectric function that accounts for electron screening, f(|~k|) is

the form factor corresponding to a uniform charge distribution within the charge radius rc for the nucleus

(Z,A) and Gf is the Fermi coupling constant.

Once again, the procedure for obtaining the energy rate is the same as the one used in the previous

subsections, the mathematical details of this procedure being described in [40], resulting in the following

expression:

Qbrem = aen(Z2/A)ρ

{
1

2

[
(C2

V + C2
A) + n(C ′V

2 + C ′A
2)Fgas −

1

2

[
(C2

V − C2
A) + n(C ′V

2 − C ′A2)
]
Ggas

} (2.23)

Where aen, Fgas and Ggas are temperature dependent numerical values, whose expressions are

present in [24].

2.3 Stellar Pulsation Theory

Variable stars are, as the name suggests, stars whose brightness as measured on Earth fluctuates with

time, either due to a non-constant luminosity of the star itself - Intrinsic variable star; or due to changes

in the amount of light that reaches Earth, consequence of external objects such as nearby orbiting

companions in case of binary systems - Extrinsic variable stars.

In the case of intrinsic variables, many factors may contribute to the variation in their luminosity, and

further classifications based on the underlying effect exist. One such example of this are the pulsating

intrinsic variables, whose name comes from the fact that their radius undergoes alternating expansions

and contractions, caused due to a non-equilibrium state between pressure and gravity in the star [41].

2.3.1 Linear Adiabatic Equations of Stellar Pulsation

In order to formally assess these stellar pulsations in a theoretical fashion, certain considerations are

needed, with the most important being the assumption that the star is a continuous spherical gas cloud,

and its properties may be specified as functions of position ~r and time t. When describing the properties

of the star, ~r may refer to a an independent quantity as observed from a stationary frame, or it can refer

to a time dependent quantity with a reference value ~r0, described in a frame where which follows the

motion, so that ~r ≡ ~r(~r0, t). These descriptions are known as the Eulerian and Lagrangian descriptions

respectively, and are related to each other when analyzing the time derivative of a certain quantity A,

through the following expression:
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dA

dt
=

(
∂A

∂t

)
~r

+ ~∇A · d~r
dt

=

(
∂A

∂t

)
+ ~v · ~∇A (2.24)

Where d/dt refers to the time derivative in the frame following the motion, while ∂/∂t is the time

derivative at a fixed point.

Additionally, the star must obey certain fundamental equations. The first equation is the continuity

equation, which states that the rate of a change in mass of a certain volume of the star must equal the

mass flux across that volume:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 (2.25)

The second equation is the momentum conservation equation, which describes the motion of the

object, taking into account the forces acting it:

ρ
d~v

dt
= −~∇p+ ρ~f (2.26)

Where p is the pressure on the surface of the body and ~f represents any other external forces, per

unit mass. One such force that must be considered is the force per unit mass from gravity, given by

~g = −~∇Φ , written as the gradient of the gravitational potential Φ. This potential must satisfy the third

equation of the set, this being the Poisson equation:

∇2Φ = 4πGρ (2.27)

Finally, the last equation contains the information regarding the energy balance of the gas, which

must follow the first law of thermodynamics, and can be written as:

dq

dt
=
dE

dt
+

p

ρ2

dρ

dt
=

1

ρ(Γ3 − 1)

(
dp

dt
− Γ1p

ρ

dρ

dt

)
(2.28)

With the following adiabatic exponents:

Γ1 =

(
∂ ln p

∂ ln ρ

)
ad

Γ3 − 1 =

(
∂ lnT

∂ ln ρ

)
ad

(2.29)

The information concerning the last step shown in equation 2.28 with the addition of the adiabatic

exponents can be found in [42].

In order to linearize this set of equations, a perturbative analysis is employed, where the relevant

quantities in the equations are perturbed around their equilibrium position. This may be done using the

Eulerian description, where a perturbed scalar quantity f is written as:
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f(~r, t) = f0(~r) + f ′(~r, t) (2.30)

Where f ′ is the function that describes the Eulerian perturbation.

This can also be done making use of the Lagrangian description, noting that a perturbation in the

path of the particle that is being followed reads as ~r = ~r0 + δ~r, hence ~v = ∂δ~r/∂t. In this situation, we

write the perturbation as:

f(~r + δ~r) = f0(~r0) + δf(~r) (2.31)

Where δf is the function that describes the Lagrangian perturbation.

Both perturbations are then related through the following expression:

δf(~r) = f ′(~r0) + δ~r · ~∇f0 (2.32)

The linearization of the set of equations can then be done by replacing ρ, p, Φ and v by their ap-

propriate perturbed forms, neglecting any terms that are higher than first order in the perturbations.

Additionally, we employ the well known adiabatic approximation [43], which further simplifies the expres-

sion 2.28 by allowing to set dq/dt = 0. This leaves us with the linearized set:

ρ′ + ~∇ · (ρ0δ~r) = 0 (2.33)

ρ0
d2δ~r

dt2
= −~∇p′ + ρ0~g

′ + ρ′~g0 (2.34)

∇2Φ′ = 4πGρ′ (2.35)

p′ + δ~r · ~∇p0 =
Γ1,0p0

ρ0
(ρ′ + δ~r · ~∇ρ0) (2.36)

It’s important to note that this linearization is done considering a spherically symmetric equilibrium,

and for this reason, it is adequate to specify the equations in a spherical coordinate system (r, θ, φ). In

these coordinates, the displacement δ~r is written as:

δ~r = ξr~er + ξθ~eθ + ξφ~eφ = ξr~er + ~ξh (2.37)

Additionally, the symmetry of the equilibrium implies that it is not dependent on θ and φ, and hence the

solution is separable in these coordinates, presenting a radial component F̃ , and an angular component
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f(θ, φ), which, through some manipulation of the equations, and considering a time dependence of

e−iωt, can be shown to require the form:

F (r, θ, φ, t) = F̃ (r)f(θ, φ)e−iωt =
√

4πR(r)(−1)mcl,mP
m
l (cos θ)eimφe−iωt

=
√

4πR(r)Y ml (θ, φ)e−iωt (2.38)

Here, Y ml is a spherical harmonic function, with angular degree l and azimuthal order m, and cl,m

is a normalization factor, dependent on these quantities. Using this ansatz on our set of equations, and

with some further extensive manipulation [43], we can rewrite them, now as differential equations for the

amplitude functions of the perturbations, which are labeled, for consistency, as the primed variables in

the equations.

The adiabatic condition 2.36, used for the simplification of the other equations, is rewritten as:

ρ′ =
ρ

Γ1p
p′ + ρξr

(
1

Γ1p

dp

dr
− 1

ρ

dρ

dr

)
(2.39)

As for equations 2.33-2.35, these become:

dξr
dr

= −
(

2

r
+

1

Γ1p

dp

dr

)
ξr +

1

ρc2

(
L2
l

ω2
− 1

)
p′ +

l(l + 1)

ω2r2
Φ′ (2.40)

dp′

dr
= ρ(ω2 −N2)ξr +

1

Γ1p

dp

dr
p′ − ρdΦ′

dr
(2.41)

1

r2

d

dr

(
r2 dΦ′

dr

)
= 4πG

(
p′

c2
+
ρξr
g
N2

)
+
l(l + 1)

r2
Φ′ (2.42)

Where c2 = Γ1p/ρ. Additionally, two other important quantities are defined, with:

N2 = g

(
1

Γ1p

dp

dr
− 1

ρ

dρ

dr

)
(2.43)

This quantity is known as the Brunt-Väisälä frequency, and it is the relevant quantity in what concerns

the spectrum of low frequency modes excited by buoyancy, as will be seen further.

Furthermore:

L2
l = l(l + 1)

c2s
r2

(2.44)

This is the Lamb frequency, and is the quantity that governs the spectrum of high frequency modes,

excited by pressure.

These equations, 2.40-2.42, form a fourth-order system of ordinary differential equations, with the
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four dependent variables ξr, p′, Φ′ and dΦ′/dr, thus constituting a complete set of differential equations

that can be solved with the appropriate boundary conditions, which may be found, for instance, in [44],

known as the linear adiabatic equations of stellar pulsation.

2.3.2 Asymptotic Theory and Cowling Approximation

One very useful approximation that can be used to simplify our set of linear adiabatic equations of

stellar pulsation, used extensively in order to analyse the behavior of the oscillations, is known as the

Cowling approximation [45], and it essentially consists on neglecting the perturbation of the gravitational

potential, such that Φ′ = 0. The mathematical details that are behind the validity of this approximation

can be found, for example, in [46].

With the use of this approximation, the order of the equation system of stellar oscillations is reduced

by two, and due to the form of our newer system, some properties of the solutions that represent the

pulsations can be inferred. With the additional consideration of high radial order modes, i.e. k >> l

where k is the radial order, our original set of equations is reduced to:

dξr
dr

=
1

ρc2

(
L2
l

ω2
− 1

)
p′ (2.45)

dp′

dr
= ρ(ω2 −N2)ξr (2.46)

Which can be further combined into a single second-order differential equation for ξr:

d2ξr
dr2

= −K(r)2ξr (2.47)

Where:

K(r)2 =
ω2

c2

(
N2

ω2
− 1

)(
L2
l

ω2
− 1

)
(2.48)

By looking at the form of 2.47, we can see that the behavior of ξr depends on the sign of the squared

wavenumber K2, since the expression of the solution will either be, approximately, an oscillatory si-

nusoidal function if K2 > 0, meaning that the wavenumber K is a real number, or an exponentially

decreasing function of r if K2 < 0, meaning that K is a purely imaginary number.

In order for the wavenumber to be real, we can define four inequalities, ω2 > N2, L2
l and ω2 < N2, L2

l .

Both these inequalities define two regions of propagation inside the star, also known as resonant cavities,

which are called the p-region (associated with the first inequality) and the g-region (associated with

the second inequality). If none of the inequalities is respected, then K is a purely imaginary number,

meaning that the perturbation is in fact an evanescent wave whose amplitude decreases exponentially
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along its path of propagation.

As the name of these cavities suggests, the p-region corresponds to the region of the star where

acoustic waves propagate, leading to the formation of p-modes (pressure modes), these being higher

frequency modes which are maintained as a consequence of pressure gradients working as restoring

forces, and the g-region corresponds to the region where gravity waves propagate, leading to the forma-

tion of g-modes (gravity modes), with buoyancy serving as the restoring force in this case. Since these

regions are dependent on the r coordinate, it is possible to admit situations where a wave of a certain

frequency may propagate in the g-region at a certain radial domain of the star (for instance, the core),

while it propagates in the p-region in another zone (for instance, the outer layers closer to the surface),

which indicates that it contains a mixed character in what concerns the force that is responsible for its

propagation, generating what is called a mixed mode. In order to provide a better insight into the prop-

agation of these perturbations along a star, propagation diagrams are usually sketched, in which both

N2 and L2
l are plotted against a typical global quantity such as radius or mass (or a function of these),

making it possible to visualize the regions of interest. Examples of typical propagation diagrams are

presented in figure 2.5 [2]:

Figure 2.5: Propagation diagrams representative of a DBV star (left) and a DAV star (right) [2]

2.3.3 Dziembowski Variables

There are some helpful quantities of interest in regards to the study of the behavior of pulsation modes

inside of the star if we consider a certain set of variables, known as the Dziembowski variables [47],

when defining the equations of stellar pulsation.

y1 =
ξr
r

y2 =
1

gr

(
p

ρ
+ Φ′

)
y3 =

1

gr
Φ′ y4 =

1

g

dΦ′

dr
(2.49)
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With the additional definition of a dimensionless frequency, as a function of the mode frequency σk:

ω2
k =

R∗3

GM∗
σ2
k (2.50)

If we now make use of equations 2.33-2.35 and the adiabatic condition 2.39, defining x = r/R∗

where R∗ is the radius of the star, and once again considering perturbations of the form 2.38, we can

write the following set of equations:

x
dy1

dx
= (Vg − 3)y1 +

[
l(l + 1)

C1ω2
− Vg

]
y2 + Vgy3 (2.51)

x
dy2

dx
= (C1ω

2 −A∗)y1 + (A∗ − U + 1)y2 −A∗y3 (2.52)

x
dy3

dx
= (1− U)y3 + y4 (2.53)

x
dy4

dx
= UA∗y1 + UVgy2 + [l(l + 1)− UVg] y3 − Uy4 (2.54)

Where the following dimensionless coefficients were defined:

Vg =
gr

c2
U =

4πρr3

Mr

C1 =
( r

R∗

)3
(
M∗

Mr

)
A∗ =

r

g
N2 (2.55)

Equations 2.51-2.52 represent an alternative fourth-order set of equations for linear adiabatic stellar

oscillations, which is usually used due to the simplicity in expressing many relevant physical quantities as

function of the Dziembowski variables. This set of equations may be solved with the use of appropriate

boundary conditions [48].

At stellar center (x = 0):

y1C1ω
2 − ly2 = 0 ly3 − y4 = 0 (2.56)

At stellar surface (x = 1):

y1 − y2 + y3 = 0 (l + 1)y3 + y4 = 0 (2.57)
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2.3.3.A GYRE Oscillation Code

As with the case of the numerical implementation of the equations of stellar evolution, there is an am-

ple amount of available code that integrate the adiabatic equations of stellar oscillation and allow for

the acquisition of quality pulsation spectra, as well as relevant quantities that are common practice in

contemporary asteroseismology.

With this intent, we make use of the GYRE oscillation code [49], an open-source stellar oscillation

code that solves both the adiabatic and non-adiabatic equations of stellar pulsation making use of a

new Magnus Multiple Shooting numerical scheme. Given an input stellar model at a certain temporal

instant, GYRE computes the eigenfunctions and eigenfrequencies concerning the oscillation modes of

that model, and outputs them, along with several relevant quantities to use in asteroseismic analysis, as

a text file.

The selection of GYRE as the code to be used in this work is of utmost importance due to two par-

ticular characteristics of its architecture, the first being the fact that the construction of the equations

is based on the procedure presented in this section, making use of the Dziembowski variables, and

presenting the outputs of the simulation as a function of these. These outputs may be presented as

summary files containing overall information of the entire spectra that was found, such as eigenfrequen-

cies, radial orders and the nature of the modes, or detail files containing information concerning single

modes, such as the eigenfunctions themselves. The second important characteristic of the GYRE code

is that it is built such that it may receive output files of resulting MESA models as input for computation of

the spectra, allowing for a smooth transition between the numerical computation of the stellar structure

and evolution to the computation of the spectra. The specifications, required by GYRE to be present in

the input files, that go into the computation itself, are detailed in 4.1.
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This chapter contains the relevant information concerning the state of the art which motivates the

subject of this thesis. In 3.1, we review some aspects concerning massive white dwarfs. In 3.2 we

discuss some particular aspects of asteroseismology when applied in order to study white dwarf stars,

namely the interesting occurrence of mode trapping due to the non homogeneous constitution of these

stars.

3.1 Massive White Dwarfs

As mentioned in 1.1, the study of the impact of neutrino emission in the cooling process of pre-white

dwarf stars becomes substantially richer when a more massive subset of these star are considered,

namely due to the fact that these seem to be the most responsive to variations in the emission of these

particles [1,25].

With this, we refer to an important consideration to take into account when studying the evolution and

properties of white dwarfs, this being their mass distribution. These objects result from stars with masses

up to ≈ 12M� [50], with resulting masses theoretically reaching up to the Chandrasekhar mass limit

[51,52], with a value of 1.45M� for a C/O core white dwarf. Recently, white dwarfs with masses reaching

up to 1.33M� have been catalogued through the data acquired by the SDSS [53], and candidates with

even higher masses [6, 54], closing in on the limit were also identified after the Gaia Data Release

(DR2) [55].

Recent studies resulting in mass distributions of select sets of white dwarfs [56,57] all seem to agree

on a main peak of stars centered at around ≈ 0.6M�, with existence of a secondary peak at higher mass

values of around ≈ 0.8M� [58], and further analyzing isolated massive white dwarfs above this mass

value reveals that a peak at ≈ 1.04M� [59] is present. There seems to be indeed a significant number

of massive white dwarfs with masses > 0.8M�, presenting fractions of around ≈ 8% of all catalogued

white dwarfs, either it be DA or DB [53].

It is clear to see that massive white dwarfs represent a considerable fraction of the total population

of these kind of stars. Not only this, but several particularities characteristic of said massive objects

make them interesting subjects of study. For instance, massive white dwarfs represent the only type of

these objects where Debye cooling is present at observable luminosities, since crystallization of the core

occurs at also high luminosities due to their higher densities [2,60], hence making it so that these objects

cool faster than their less massive counterparts as the luminosities decrease. Another feature of these

objects is the fact that the temperature of their progenitors is presumably high enough to achieve stable

carbon burning, making it so that O/Ne cores are possible [61], which is a relevant point to consider

when studying the cooling of these massive stars, since the diffusion of this 22Ne in the core may be

responsible for the release of a non-negligible amount of gravitational potential energy that may impact
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the cooling time of these objects [62].

3.2 White Dwarf Asteroseismology

The use of asteroseismology as a tool to infer about several quantities and properties of stars is a

mainstay of modern astrophysics, and hence the inclusion of white dwarf stars in this discussion is

natural.

In this particular case of white dwarfs, the development of this area is accompanied with the formula-

tion of typical procedures to consider when an observational pulsation spectrum is available. Examples

of these procedures are the determination of the stellar mass, which can be inferred by a dependence on

the period spacing of the modes [63], mode identification through magnetic and rotational splitting [64],

matching of pulsation models through period-to-period fits [65], among many others.

3.2.1 Asymptotic Period Spacing and Mode Trapping

DOV white dwarfs, as is the case with other classes of white dwarfs, are multiperiodic, low-amplitude

g-mode pulsators, and hence, this work will be focused on the study of g-mode spectra of modelled

pre-white dwarfs.

When dealing with a g-mode spectrum, it is usual to study the evolution of the period of the pulsation

modes, since these correspond to lower frequency modes which present periods whose timescales may

correspond to values that are sensible enough so that they are prone to being measured. One of the

main characteristics of the period spectrum of chemically homogeneous stellar structures is that in the

asymptotic limit (k >> l), every consecutive radial order modes (k) with the same harmonic degree (l)

have the same period spacing ∆Πa
l [66]:

∆Πa
l = Πk+1l −Πkl =

2π2√
l(l + 1)

[∫ R∗

0

N(r)

r
dr

]−1

= constant (3.1)

This is particularly interesting when considering the fact that typical models for GW Vir stars (and

white dwarfs in general) present steep composition gradients which result in deviations from the be-

haviour established by equation 3.1, with the most evident cases, in the case of a GW Vir star (DOV),

being the transition regions from the C/O core to the outer layers, and also the steep transition caused by

the He envelope. From a pictorial point of view, chemical interfaces work as reflecting boundaries inside

of the star, making it so that if the length between boundaries matches the wavelength of a certain mode,

it is possible to trap this mode as a standing wave, forcing it to oscillate with higher amplitudes in this

trapping region. Trapped modes have their nodes confined to a smaller region, effectively making their

periods seem shorter, and disabling the validity of a constant period separation value. It becomes more
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or less intuitive then to analyze the behavior of ∆Πk, which is usually done through diagrams which plot

this quantity as a function of Πk, revealing patterns that must deviate from the horizontal line established

by the asymptotic limit of equation 3.1, with local minima presumably referring to modes that are being

subject to this trapping effect, as seen in the upper panel of figure 3.1.

When analyzing these diagrams, there are three main features that are usually the main focal points

in what concerns the study of the period separation and all are identifiable in the figure: (i) The first

is known as the trapping cycle, as it refers to the number of modes between period spacing minima,

and it is generally inversely proportional to the thickness of the outer layers where the mode is trapped

[2]. (ii) There is also the trapping amplitude, which refers to, as the name suggests, as the amplitude

of the period spacing relative to the asymptotic limit, or in other words, it represents the amount by

which trapping alters the period spacing of the mode, this being generally proportional to thickness

of the chemical transition layer. (iii) The last relevant feature is known as the trapping phase, which

corresponds to the pattern generated by the period spacing as a function of the period, which usually

moves with changing stellar temperature.

The manifestation of mode trapping is then extremely dependent on the depth of the chemical transi-

tion regions inside of the star, as can be seen by the following analytical approximation, taken from [67],

which expresses the periods of trapped modes:

Π2
i = 4π2λ2

i

[(
1− rc

R∗

)
l(l + 1)ω2

0

]−1

ω0 =

√
GM∗

R∗3
(3.2)

This expression refers to the trapped mode that contains i nodes between the surface and the chem-

ical transition radius rc, with λi being constants related with the roots of Bessel functions.

3.2.2 Oscillation Energy and Weight Function

Another very important flag in what concerns mode trapping is the behavior of the oscillation kinetic

energy of modes, which can be written as a function of the Dziembowski variables defined in equation

2.49 as the following [44,48]:

Ek =
1

2
GM∗R∗2ω2

k

∫ 1

0

x2ρ

[
x2y2

1 + x2 l(l + 1)

(C1ω2
k)2

y2
2

]
dx (3.3)

It’s clear to see in this expression that, aside from the factors, this kinetic energy is proportional to

the integral of some of the squared eigenfunctions defined as the Dziembowski variables, weighted by

the density along the star. This then leads to the inference that modes propagating in deeper regions of

the star, where the density is high, will have larger kinetic energy values, even when they are induced by

small perturbations, while in turn, modes that are trapped in the outer layers of the star due to the steep
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Figure 3.1: Period separation (upper panel) and oscillation kinetic energy (lower pannel) as a function of the pulsa-
tion periods for a typical DB white dwarf model [2].

He transition in the envelope will necessarily have small kinetic energy values. This makes it so that,

similarly to the period spacing diagram, plots of the kinetic energy as a function o Πk function as good

indicators of trapped modes, since local minima of this function seems to indicate that a mode has less

kinetic energy than it otherwise would have, were it not trapped, as can be seen in the lower panel of

figure 3.1, which also enhances the idea that this energy analysis in conjunction with the period spacing

diagram represents an effective method of identification of mode trapping.

To complement the study of the behavior of the perturbations inside of the star, while providing addi-

tional information regarding the period spectrum formation, it is usual to analyze another mathematical

function, known as the mode weight function, which similarly to the kinetic energy, can also be written

as a function of the Dziembowski variables [44,48]:

Wk = (4πGR2
∗)
r2ρ2

R2
∗U

2
∗
[
A∗y2

1 + Vg(y2 − y3)2 − 1

U
(l(l + 1)y3 + y4)2

]
(3.4)

Each mode runs through the star, presenting different amplitude values depending on the stellar

structure and on how effective is the excitation mechanism. The relative values of weight functions

serve as indicators on how the eigendunctions are settled along the star [5], and they may provide

information regarding which regions of the stellar interior most contribute to the determination of the

modes’ periods.
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Figure 3.2: Weight function of a modelled 0.6M� mass pre-white dwarf at two different stages of evolution, with left
panel taken at logL/L� = 3 and the second panel taken at logL/L� = 1 [5]

Among other properties, the weight functions of g-modes are highly dependent on the polytrope index

n, which is a good indicator of central condensation of the star. A pre-white dwarf can be more or less

modelled as a n = 3 polytrope with significant central condensation and with g-modes being generated

in core, which is where the weight function will assume its maximum values, but as central condensation

decreases, this behavior will shift to the outer regions, making it so that at lower luminosities, the g-

modes are mostly generated in the outer regions of the star [68]. This behavior can be seen in figure

3.2, where the normalized weight function of the g25 mode (meaning that l = 1 and n = 25) of a modelled

0.6M� mass pre-white dwarf [5] is shown at two distinct points of evolution with different luminosity

values, as labelled in each panel. In the first panel, as mentioned previously, central condensation is

still significant enough so that the weight function is mainly centered in the core, but as the star evolves

and luminosity drops, the peak of this weight function shifts outwards until it is established in the outer

envelope of the star.
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In this chapter we begin by discussing, in 4.1, the code used in order to model different mass stars

from the ZAMS up to the white dwarf cooling sequence, as well as to obtain appropriate g-modes

spectra for each of these stars. In 4.2 we analyze the evolution of the neutrino emission rates as the

star cools during this DOV stage, discussing the prevalence of each neutrino source, and finally in 4.3,

by manually altering the neutrino rates of these models, we discuss the impact of neutrino cooling at

a phenomenological and structural level, as well as the influence it has on the period spectra of these

models.

4.1 Evolutionary Input Physics and Pre-White Dwarf Track

In order to study the signature of neutrino emission in massive white dwarfs, an appropriate model was

used to replicate the evolution of these stars. This was done using the MESA code [36], version r10398,

with evolutionary input closely following the description present in [69], which details the evolution of

both H and He atmosphere massive white dwarfs, starting from the ZAMS and reaching up to the oldest

stages of cooling, where luminosity values are as low as L/L� ≈ 4.

Figure 4.1: HR diagram containing the curves relative to the evolution of 9M� (blue), 9.5M� (green) and 10M�
(orange) initial mass stars from the ZAMS up to the white dwarf cooling sequence. Points A, B, C
and D are benchmark evolutionary stages from the 9M� initial mass star, chosen to study this region
of evolution. Additionally, massive white dwarf candidates from GAIA [6] are shown at the end of the
cooling sequences.

Our models consist of different evolutionary tracks, concerning stars beginning at the ZAMS with

masses ranging from 9M� to 11M�, resulting in white dwarfs with 1.02M� to 1.22M�, chosen with

the intent of covering a wide range in which typical massive white dwarfs are present. Regarding the

35



timezone in which we will focus our study, this being the initial track of the white dwarf cooling sequence,

corresponding to an age range of log t[yrs] ≈ 7.435 − 7.440, the main input considerations are, as

described in [69], the formulation of chemical diffusion and gravitational settling from [70], the absence

of convection due to numerical instabilities, which has no impact on the cooling times relative to when

convection is left active, and particularly does not affect the study of stellar pulsations and neutrino

emission at this stage of the evolution, since at this stage (GW Vir stage), convection is yet to set in

and pulsations are mainly excited by the κ−mechanism [71]. Lastly, the emission rates for plasmon,

bremsstrahlung and several less important neutrino sources are taken from [24], whose derivations are

briefly described in 2.2.

Figure 4.2: Weight of the several non-nuclear neutrino energy sinks for modelled 9M� initial mass star, starting at
the white dwarf cooling sequence.

Resulting HR diagrams from our models are shown in figure 4.1, as well as the benchmark profiles

chosen for one of the models, to probe the region where neutrinos represent the largest energy sink.

This figure also contains points relative to massive white dwarf candidates from GAIA, taken from [6],

which fall on the ending phase of our models and seem to agree with the branches established by our

models. The selection of these profiles is based on the information conveyed in figure 4.2, which allows

to compare the impact of several different loss mechanisms with the surface luminosity of the star as a

function of Teff .

Regarding the seismology component of this work, the pulsation eigenmodes of our models were

obtained making use of the GYRE oscillation code [49], version 5.1, using the MESA models as direct

input and using the formulation of [72] in what concerns the boundary condition of the shooting method

used in the search. An inverse frequency grid type (uniform in period) is also used in order to more

easily scan for adiabatic g-modes.
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4.2 Neutrino Emission Rates

The main purpose of this work is to study the impact that neutrino cooling has on the overall evolution

of pre-white dwarf objects while neutrinos are still the most relevant energy sink. For this reason, and

due to the numerical nature of the models, a similar prescription to that of [73] was used, in which the

emission rates of non nuclear neutrinos, as seen in equation 2.12, was parameterized before the star

enters the white dwarf cooling sequence. This parameterization takes the following form:

εν̃m = γmεν̃0 (4.1)

Where εν̃0 corresponds to the neutrino emission rate as predicted by standard leptonic theory. This

then allows to compare models relative to the same star but with different neutrino emission rates and

detect any changes which, as a result, will necessarily be a direct consequence of the neutrino effects

on the cooling of the star.

Figure 4.3: HR diagram containing the curves relative to the evolution of a 9M� initial mass star, each with different
initial neutrino emission rates, these being the unchanged rate of εν0 (blue), 0.7εν0 (green) and 0.5εν0
(orange). Each curve contains their respective benchmark points A, B and C, where each set of points
with the same color across all curves correspond to comparison evolutionary points.

Starting from the benchmark points shown in figure 4.1, we reproduce the same model, which in this

case corresponds to the 9M� initial mass model, up to the first of these points, this being profile A, and at

this point, we set the neutrino emission rate factor γm, making it so that the evolutionary track is slightly

changed from this point on. Figure 4.3 shows how the evolutionary track is altered by considering

situations where at point A, the neutrino emission rates are set to 50% and 70% of the original rate,

these being represented in orange and green respectively, relative to the model with unaltered rates,
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represented in blue. As for the comparison points, which are also represented in the figure, where each

set of points with the same color represent comparison points, these were selected such that the current

neutrino rate of the unaltered model multiplied by the factor of the altered model, is equal to the current

neutrino rate of the altered model, i.e., the neutrino emission rates of point B relative to the orange curve

is, at that point, half of the neutrino emission rate of point B relative to the blue curve.

Table 4.1: Values of certain global quantities relative to the profiles chosen as comparison points in figure 4.3

Profile log Teff logL/L� R∗/R� Age(t− tA) [yrs]
A 5.53 3.79 0.023 0

B100 5.51 3.29 0.014 8055
B70 5.50 3.20 0.013 10847
B50 5.48 3.10 0.013 14572
C100 5.48 3.01 0.012 13491
C70 5.46 2.90 0.011 19031
C50 5.44 2.79 0.011 25584
D100 5.37 2.43 0.010 32655
D70 5.35 2.33 0.010 43683
D50 5.33 2.22 0.010 57250

Information concerning some relevant quantities of each comparison point shown in figure 4.3 is

presented in table 4.1, where it is clear to see that throughout each set of comparison points chosen,

the star does not present equal values for the global quantities, but it is interesting to notice that, in

what concerns the age of the star relative to profile A, there seems to be an agreement between the

proportions of this value along each set of comparison points and the respective neutrino rate factor,

meaning for instance, that it took approximately twice as much time for the model with halved neutrino

emission rates to reach B50 than it took for the model with unchanged rates to reach B100. It’s important

to note that there is no mass column in this table, but this is only due to the fact that there is no mass

loss along this evolutionary segment, meaning that the mass of the star is equal across all profiles and

across all models, and its value is M∗/M� = 1.028.

Furthermore, figure 4.4 shows how the main unaltered sources of neutrino emission change as the

star evolves, both in terms of position in the star and intensity. As mentioned prior, plasma neutrinos are

the dominant energy source during this pre-WD phase, and along with the energy due to bremsstrahlung

neutrinos, which are also relevant when considering such high mass values, both make up for almost

the totality of energy lost during this phase. From this figure, we notice how the production of these

neutrinos moves outwards along the star as they decrease with time, and for this reason we don’t extend

the analysis to much later times relative to profile C, because it’s clear to see that the neutrino emission

rate dies off if we move ahead in time.
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Figure 4.4: Neutrino emission rates relative to benchmark points A, B and C concerning the modelled 9M� initial
mass star with unchanged neutrino emission rates. Continuous lines refer to plasma neutrino emission
rates while dashed lines refer to bremsstrahlung neutrino emission rates.

4.3 Nonradial Pulsation Spectrum of Massive Pre-White Dwarf

We now proceed with the analysis of the impact of altered neutrino rates on the structure and evolution

of the model. We begin by discussing some of the properties that are usually relevant in typical spectra

of massive (and overall) white dwarf pulsation. To this end, we can start by analyzing the evolution of

propagation diagrams along the region in study.

The first row of Figure 4.5 shows exactly how this takes place, containing, from left to right, the

corresponding diagrams relative to the profiles A, B and C present in Figure 4.1, concerning a 9M�

initial mass star and evolving into a 1.02M� white dwarf. In this figure, both the propagation diagrams

and the chemical profiles contain information regarding the star as it would normally evolve, and the case

where neutrino emission rates were set to half (orange curve in figure 4.3), with this being represented

with dashed lines. The situation corresponding to the rate reducing factor of 0.7 is not represented in

these diagrams in order to keep the figure visually clear, but the shape of the lines concerning this case

is evident, as this represents a midway point between the two cases that are shown.

Profile A, which is the common point between the cases, depicts the star right before Teff achieves

its maximum value, being at Teff = 341491K and with log(L/L�) = 3.79, and for this reason, it presents

some similarities with typical red giants diagrams, which correspond to a previous stage of evolution

in the lifetime of this star. In this regard, it can be seen that the central values of N2 are comparable

to the outer values, and some dips in this frequency structure allow for the presence of some mixed

modes. This trait vanishes as the star keeps evolving through this neutrino phase, with N2 increasing
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Figure 4.5: Propagation diagrams (first row) and chemical profiles (second row) of 9M� initial mass star models.
Continuous lines refer to the model where neutrino emission rates are unchanged and dashed lines
refer to the case where neutrino emission rates are halved. A, B and C labels are representative of the
benchmark points chosen for each model

in value in the outer regions of the star, making it so that there is a wider gap between the G- and P-

regions and no mixed modes seem to be possible. The propagation diagrams relative to profiles B and

C clearly illustrate this point, with the correspondent chemical profiles revealing that this is accompanied

with a settling of several layers in the star, with the outer carbon layer being the most evident. It is

then interesting to compare the situation between the case where neutrinos are unaltered and the case

where their rate is set to half. As seen in the figure, there’s a clear agreement between the abundance

curves at the inner regions of the star, but the outer layers seem to have a small departure from one

another as the evolution goes on, as can be seen by the helium and carbon curves, indicating that the

effects of gravitational settling are stronger when neutrino emission is halved, which is in agreement with

the fact that the model with halved neutrino takes approximately double the time to reach point B when

compared with the model where rates are unchanged.

As mentioned prior, GW Vir stars are known to pulsate with low amplitude g-modes, and for that

reason, the focus of the seismologic analysis in this work is done according to the eigenmodes present

in the G-region of the evolving propagation diagram of the star. We instill particular attention to the blue

dashed line present in the propagation diagrams of B and C, which corresponds to the frequency of the

mode g60 (radial order k = 60 and angular degree l = 1), which we choose as a reference mode due to

the fact that it is one of the lowest radial order g-modes that is allowed to propagate up to the surface

during most of the time range on which our study is focused on, and theoretically, would be one of the

easiest to detect.
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Nonetheless, it’s still relevant to acknowledge the general evolution of the g-mode spectrum, since

typical measured periods of modes for (non-massive) GW Vir stars are considerably smaller than the

period of this g60 mode. Figure 4.6 shows the evolution of the period Π for k = 20, 25, 30, 35, 40, 45, 50,

55 and 60 radial order g-modes for both models, with continuous lines being relative to the model with

unchanged rates and dashed lines relative to the model with halved rates. The period evolution behavior

is as expected when compared to other studies on a similar topic [48] (where non-massive GW Vir stars

are being considered), starting with a decrease in periods while the star approaches maximum effective

temperature due to rapid contraction of its layers, followed by a steady increase as the temperature and

luminosity both drop.

Figure 4.6: Evolution of the period Π for k = 20, 25, 30, 35, 40, 45, 50, 55 and 60 radial order g-modes. The
continuous lines refer to the model with unchanged neutrino rates and the dashed lines refer to model
with halved rates. The color scheme was chosen in order to easily distinguish the curves for each
mode, and each color corresponds to the same radial order mode. The points were connected through
the use of a Spline2 interpolation.

The general behavior of this evolution is similar in both cases, but it is clear to see that at later,

equal times, the period of the modes concerning the model with halved rates are smaller than those of

the model with unaltered rates, with this being more and more noticeable as the radial order increases.

This seems to be a consequence of the fact that the period evolution of the modes is directly affected

by the neutrino emission rates, making it so that modes concerning the model with halved rates take

approximately twice as much time in order to acquire a certain period value, meaning that the periods

of the modes in each model are approximately the same at the comparison points defined in figure 4.3.

To illustrate this point, we present in figure 4.7 the evolution of the deviation between the period the

g50 mode of the model with unchanged rates, taken at tC100 (time of the model with unchanged rates

at profile C), and the period of this same mode relative to the model with halved rates, as a function

t50/tC100
.
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Figure 4.7: Deviation between the period the g50 mode of the model with unchanged rates, taken at tC100 , and the
period of this same mode relative to the model with halved rates, as a function t50/tC100 . The points
were connected through the use of a Spline2 interpolation.

Where we define the deviation Dg50 as:

Dg50 =
πg50(t50)− πg50(tC100

)

πg50(tC100
)

(4.2)

In this expression, πg50(t50) represents the period of g50 as a function time t50 concerning the model

with halved rates, and πg50(tC100) represents the period of this same mode taken at tC100 . Indeed this

figure reveals that the minimum deviation occurs at t50/tC100
≈ 2, indicating that the periods of this mode

seems to match between models at approximately this point, in agreement with our previous statement.
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In this chapter we proceed with the discussion of the impact of altered neutrino rates as the star

cools, with special attention to the propagation of the pulsation modes inside of the star, doing so in 5.1

by making use of the weight functions that describe their behavior in stellar interiors. In 5.2 we define

a neutrino sensitivity function in order to more quantitatively assess the effects that neutrinos have on

these weight functions and on which modes the impact is more prevalent, and finally in 5.3 we tie this

subject to a novel effect that results on a shift of the radial order of the modes that are trapped as a

consequence of the altered neutrino rates.

5.1 Neutrino Impact on the Weight Function

While in the last section we were able to study the overall progression of the g-mode spectra as the star

evolves, no information regarding the behavior of the modes inside the star was inferred. To that end,

a more helpful procedure would be an analysis of the evolution of the weight functions of the modes,

which give information concerning the running of the mode inside of the star.

As mentioned previously in section 3.2, the typical behavior expected from these type of stars [5]

consists on an initial weight confined to the inner regions of the star, mostly the core, followed by an

uniformization of the envelope of the function caused due to the decrease of the weight values in the

interior and simultaneous increase of this function in the outer layers of the star, as a consequence of

the decrease in central condensation as the star evolves, making it look like the mode travels outwards

in intensity as the star cools. Indeed this behaviour can be mostly verified, as can be seen in Figure

5.1, where this outward motion of the weight function seems to be present when the radial order of

the mode is not too small. In this figure, we can see the evolution of the normalized weight function

concerning different radial order modes, these being k = 1, 5, 10, 20, 40 and 60 for our 9M� initial mass

star with unchanged neutrino rates, and it’s clear that the described behaviour starts taking place at

around k = 10, with modes below this radial order showing a less defined pattern, partly due to the

lesser amount of nodes intrinsic to lower radial orders, consequence of the dependence of the weight

function on the eigenfunctions defined by the Dziembowski variables, as can be seen in equation 3.4.

It is worth mentioning that the dependence of the eigenfunctions and of the variables defined in

equation 2.55 on quantities such as the Brunt-Väisälä frequency N2 makes it so that some unusual

discontinuities spikes occur on the weight function, to match the spikes that are present in N2 and are

visible in the propagation diagrams of figure 4.5. The existence of these spikes and further implications

will be addressed ahead, since at this point, the overall behavior of the weight functions is not at all

altered because of them.
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Figure 5.1: Weight functions of several radial order modes at different evolutionary points of modelled 9M� initial
mass star with unchanged neutrino emission rates. A, B and C labels apply to each column and are
representative of the benchmark points chosen for this model.

It is interesting to notice that this outward displacement effect is very identical to the outward dis-

placement of the neutrino emission rate curves seen in figure 4.4, which might imply the existence of a

relation between neutrino emission and mode formation. We may assess this possibility in more detail

by analyzing figure 5.2, where we plot the weight function of our previously selected reference mode g60

at several stages of evolution of the star, with the first row corresponding to the case where the neutrino

emission rates are unchanged, and the second row to the case where neutrino emission rates were

halved. The lines present in each panel correspond to the plasma (orange) and bremsstrahlung (green)

neutrino emission rates associated to that profile, with all cases being normalized to the maximum value

of the first panel of the correspondent row.

46



Figure 5.2: Weight functions of g60 mode at different evolutionary points of modelled 9M� initial mass star with
unchanged neutrino emission rates (first row) and halved neutrino emission rates (second row), as well
as plasma (orange) and bremsstrahlung (green) neutrino emission rates normalized to highest value
of correspondent row. A, B and C labels are representative of the benchmark points chosen for each
model.

Indeed the normalized neutrino curve seems to resemble this prevalent peak in the weight function,

both in shape and position, as they move outwards and decrease along this cooling period. Both these

peaks seem to follow the small region just outside the C/O core where there’s a drop in oxygen and

carbon, and an increase in neon, which corresponds to the region where off-center carbon ignition

occurred [74], and hence represents the hottest region of the star during this neutrino dominated period.

This attribute more or less explains why the neutrino emission rates are prevalent in this area, since

it is the region that most easily excites the pair production from plasmons, but no evident connection

between this neutrino production area and the peak in the weight function can be deducted.

5.2 Neutrino Sensitivity Function

Even though the behavior of the weight functions relative to the models in comparison in figure 5.2 is

similar, it is worth mentioning that the values of the normalized weight function along the stellar interior

corresponding to the model with halved rates, as the star evolves from point A, seem to be higher than

the ones relative to the model with unchanged rates in the chosen comparison points, which at the very

minimum, seems to imply that the rate of neutrino emission seems to have an impact on the regions that

most contribute for the formation of modes inside of the star.

In order to quantify this relation, so that a more concrete analysis of this overall effect can be done,
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even for different radial order modes, we define the following neutrino sensitivity function Sνk :

Sνk(r, t) =

∫ r
0

4πr′2ρ(r′, t)εν(r′, t)Wk(r′, t)dr′

Lν(r, t)
(5.1)

This function is taken at a certain temporal point of the evolution, with εν being the rate of non-

nuclear neutrinos along the star at this temporal point, Wk being the normalized weight function of

the gk mode also at this point, and Lν =
∫ R∗

0
4πr2ρ(r)εν(r)dr being the non-nuclear neutrino luminosity,

which essentially corresponds to the integral in the numerator of equation 5.1 without the weight function,

meaning that this sensitivity function will only present values between 0 and 1. This function is designed

with the intent of verifying how sensible the g-modes are in what pertains to the decaying neutrino rates

as the evolution proceeds, and hence why the numerator of this expression is chosen as a ”weighted”

version of the neutrino luminosity function, directly relating these two quantities across the entire stellar

structure. Looking at the shape of both functions in each panel of figure 5.2, it is expected that this

sensitivity assumes a similar behavior to that of a step function, with a very steep increase characterized

by an inflexion point right where both peaks assume their maximum value, making it so that, as time

progresses, this inflexion point moves outwards and the upper threshold decreases, assuming that the

peak of the weight function ceases to be the overall highest value of this function as it happens in the

first row of the figure.

Figure 5.3: Evolution of the sensitivity function given in equation 5.1 for different radial order g-modes for modelled
9M� initial mass star. Continuous lines refer to the model where neutrino emission rates are unchanged
and dashed lines refer to the case where neutrino emission rates are halved.

It is of interest to analyze how the sensitivity function of different modes behave as the star evolves,

and specially how it compares between the cases with different neutrino emission rates. Figure 5.3
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contains several points concerning the maximum value (upper threshold) of the sensitivity function of

different radial order g-modes at several stages of the neutrino cooling process as a function of the

surface luminosity. Points connected by a continuous line represent modes concerning the model where

neutrino rates are unaltered, while points connected by dashed lines represent modes concerning the

model where rates were halved.

It is clear to see that in most cases, regardless of the fact that the rates of neutrino emission were

changed or not, there is a common behavior in which the sensitivity seems to decrease with time, which

agrees with the fact that the peak of the weight function decreases with time relative to the absolute

maximum of this function. This behavior however seems to only be established when we consider

modes with k ≥ 10, since modes such as g1 and g5 seem to respond in a different manner, presenting

increasing sensibilities at certain stages. This seems to agree with the previously mentioned fact that

modes with lower radial orders, specifically k < 10, have weight functions with a considerably different

shape than the others, partly due to having a lesser amount of nodes, but mostly due to how their

envelopes are more evenly distributed along the star, not showing many evident peaks as is the case

with the envelopes of weight functions of higher radial order modes. Nonetheless, the existence of fewer

nodes in the weight functions of these lower radial order modes makes it so that, if any of the peaks

of this function fully encapsulates the peak of the neutrino emission rate, then the integral present in

Sνk will increase relative to the case where a similar valued oscillatory weight function takes the same

position. This trait explains the increases that might be present in the evolution of the sensitivity function

of lower radial order modes.

Another interesting subject regarding this figure is how the functions concerning the altered and

non-altered neutrino emission rates compare to each other. This, once again, seems to have a certain

dependence on the radial order of the modes that are being considered, and while the number of points

available should be increased in order to study this feature in more detail, it is more or less apparent

that higher radial order modes seem to be the ones that are more sensible to changes in the rates of

neutrino emission. Indeed when comparing the values of this function relative to a single mode in the

case where neutrino rates are unchanged to the values of the function relative to this same mode but

with the rates halved, it is indisputable that they do not match for any mode, even taking into account the

small sampling size that is being used. However, it is also clear that this mismatch is much more evident

as the radial order of the mode that is being considered increases, with a noticeable gap between the

continuous and the dashed line forming at around k = 10 and seemingly increasing as we consider

higher k values. This gap forms as a consequence of the fact that the sensitivity values are higher along

the evolution of the star when the rates halved, which is a direct consequence of the differences between

the weight functions present in the upper and lower panels of the last two columns. As discussed in the

beginning of this subsection, in the case where neutrino production is halved, this being the second
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row, the maximum values of the peak’s envelope that is being considered are considerably higher after

normalization than those of the first row. As a consequence of this fact, the area below the smaller width

peaks that are encapsulated by the envelope and also encapsulated by the neutrino emission peak, or in

other words, the integral of the product of these two functions, is higher, which is easily understandable

when noticing that these peaks ”close” slower as they grow into their maximum value due to having

a higher value to grow into when compared to the case where the rates are unchanged. This effect

becomes more and more drastic as we increase the radial order of the mode, which indicates that the

amplitudes of the weight functions of these modes are the most affected by changes in the rates of

neutrino emission as the star cools. As a consequence, and returning to our first assessment regarding

the differences between the weight functions of our models, this implies that the neutrino emission rates

seem to mostly influence some of the regions that contribute for the generation of higher radial order

modes.

5.3 Trapping Phase Shift due to Neutrinos

The analysis performed making use of the sensitivity function suggests that the rate of neutrino emission

at a certain point of evolution of a pre-white dwarf has a direct influence on the pulsation modes of

the star. This inference regarding the sensitivity of pulsation modes was done through a graphical

analysis of a function that suggests, but does not imply correlation. It is then instructive to further extend

the exploration of the impact of neutrino emission to defining and measurable properties of pulsation

modes. To this end, we will study the evolution of the period separation pattern during this phase, which

is shown in figure 5.4, where each panel corresponds to one of the previously mentioned profiles in what

concerns the model where neutrino emission rates are unchanged. In this figure, points connected by a

continuous (blue) line once again refer to this model, whereas points connected by a dashed black line

correspond to the model where rates were halved. For further auxiliary purposes, the last panel also

contains information concerning the model with a neutrino emission rate of 70% relative to the model

with unchanged rates, this being represented by points connected by a dashed orange line. Additionally,

the dashed, horizontal red line corresponds to the period spacing asymptotic limit, given by equation

3.1, concerning the model with unchanged rates, noting that while the asymptotic value relative to the

model with halved rates is not represented, it practically matches the previous case.

At first glance, it is evident that neither of the patterns correspond to the behavior established by the

asymptotic limit, which is to be expected due to the fact that our models contain several composition

gradients that, as mentioned previously, may work as reflecting boundaries for certain modes, which

makes it so that various resonant cavities may be identified throughout the star, these being evident by

looking at the chemical profiles of figure 4.5. The direct consequences of these cavities is that modes
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Figure 5.4: Evolution of the period separation ∆Πa
l of the g-mode spectrum for modelled 9M� initial mass star.

Once again, continuous blue lines refer to the model where neutrino emission rates are unchanged,
black dashed lines refer to the case where neutrino emission rates are halved, orange dashed lines
refer to the case where neutrino emission rates were set to 70% and the A, B and C labels are rep-
resentative of the benchmark points chosen for the models. The red, horizontal dashed line in each
panel corresponds to the value of the period separation in the asymptotic limit given in equation 3.1
concerning the model with unchanged rates.

with wavelengths identical to their sizes might get trapped inside, in return presenting changes in their

periods, which may then be mirrored onto the values of the period separation, since the distance relative

to the periods of adjacent modes in radial order (which coincidentally, might also have their own periods

altered due to this same effect) is altered as well. This creates a situation where ∆Πa
l for a certain k

mode becomes higher or smaller in value, and deviates from the expected behavior, hence creating the

maxima and minima that can be observed in the period separation patterns of our figure. This trapping

occurrence is of particular interest in what concerns predicting what modes might be impossible to

measure even though they are excited, since they may be enclosed in the resonant cavities inside of the

star, this being done with a correct identification of the extrema in the pattern and the respective mode

and cavity that is causing them.

That being said, there is an interesting feature that can be identified in this figure once a comparison

between the patterns generated by our two models is done, and that is the progressive shift of the

rightmost part of the pattern corresponding to the model with halved neutrino emission rates relative to
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the model with unchanged rates, as both evolve. As can be seen on the first panel, both patterns seem

to match entirely, which is expected since profile A correspond to the point of evolution where the rates

of the second model were set to half, effectively working as the initial point of the cooling phase in study,

but as we look further in time, there seems to be a slight localized displacement of the dashed pattern to

the right, relative to the continuous pattern. This displacement begins to be noticeable at stages close to

the temporal point where profile B is located, where from figure 4.4, plasma-neutrino rates are of around

εν̃p ≈ 25000 erg · g−1 · s−1, and half of that value in the case of the second model, and it seems to be

completely established at the evolutionary point represented by profile C, where the rates are now close

to half than the ones in B, and neutrinos start to become less and less relevant moving forward.

It is important to mention that this clear pattern that is being shifted contains several local minima

and maxima of the period separation, which suggests that the modes relative to these points are being

subject to trapping. This is further enhanced by performing a similar procedure to the one presented

in figure 3.1 and noting that local minima in ∆Πa
l correspond to local minima in the oscillation kinetic

energy, which can be obtained with the use of equation 3.3. This can be seen in figure 5.5, where both

these quantities, relative to the model with unchanged rates, are plotted in part of the period domain

containing the pattern that is being shifted.

Figure 5.5: Segment of the evolution of the period separation ∆Πa
l (upper panel) and oscillation kinetic energy

Ekin (lower pannel) as a function of the pulsation periods relative to profile C of our modelled 9M�
initial mass star. Minima in each panel correspondent to the same period are connected by an arrow
and represent to modes that are being subject to trapping.
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Another interesting trait from this result is that this displacement appears to occur only when con-

sidering higher period modes, starting at around Πk ≈ 1700s, which interestingly correspond to higher

radial order modes, with k ' 30, meaning that the direct or indirect effects of altering the neutrino rates

of the star seem to have an impact on these modes while leaving lower order modes unaltered, which

agrees with our previous assessment that higher radial order modes are more sensible to changes in

the rates of neutrino emission.

This pattern shift seems to be a consequence of various factors in which neutrino emission seems to

be a relevant factor, namely the propagation regions for g-modes inside the star, as well as the chemical

profiles. Indeed when looking at figure 4.5, there is a clear displacement of the outer chemical transition

interfaces between both models, which also seems to become more evident as time progresses. This

feature makes us refer to equation 3.2, which shows the dependence between the periods of trapped

modes and the radius of these transition regions rc, with these being effectively different when looking

at the outer layers of both models, but maintaining the same values when considering the inner regions.

This in turn makes it so that the trapping effect occurring at the outer regions of the model with halved

neutrino emission rates suffers a shift in what concerns the periods of the modes that are being subject

to this effect, relative to the model where neutrino emission rates are unchanged, while the periods of

modes that are trapped in the innermost regions of the star are unaltered.

We may quantitatively assess this effect by using equation 3.2 to write an appropriate expression that

allows for the comparison of the periods of trapped modes in the case where neutrino emission rates

are unchanged, which we label as Π100 with the periods relative to the case where rates are halved,

labelled as Π50:

(
Π50

Π100

)
=

√√√√√
[(

1− rc100
R∗

100

)
M∗

100

R∗
100

3

]
[(

1− rc50
R∗

50

)
M∗

50

R∗
50

3

] (5.2)

This expression eliminates the original dependence on λi since it intends to compare the modes that

are subject to trapping as a consequence of a chemical interface rc and contain the same amount of

nodes between this interface and the surface, even though the interface is shifted between models.

It is now necessary to define the values of rc relative to the interfaces that might be the reason for the

trapping. In 3.2.1, we mention how generally, this effect is a consequence of steep chemical interfaces

in the interior of the star, such as the inner transitions from the core to outer layer, or even the steep

transition to the He envelope. A useful diagnostic of what chemical interfaces might be relevant in what

concerns this effect is the Brunt-Väisälä frequency N2, since its dependence on dρ/dr will reveal some

spikes in this structure as a consequence of discontinuities in density, which is a typical trait of chemical

transition regions. With this in mind, and focusing on profile C, three different transition regions were

selected for each model with their rc being represented by the colored vertical lines in figure 5.6, with
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continuous and dashed representing the model with unchanged rates and the model with halved rates

respectively.

Figure 5.6: Propagation diagrams (first row) and chemical profiles (second row) relative to profile C of 9M� initial
mass star models. Continuous lines refer to the model where neutrino emission rates are unchanged
and dashed lines refer to the case where neutrino emission rates are halved. A, B and C labels are
representative of the benchmark points chosen for each model. The coloured vertical lines correspond
to the rc of the steep chemical interfaces that might be responsible for mode trapping, and are identified
according to the label in figure

Table 5.1: Values of all the rc represented as dashed lines in figure 5.6 and correspondent values of equation 5.2
for these transition regions.

i rci;50/R� rci;100/R� (Π50/Π100)rci

1 0.0066 0.0067 0.945

2 0.0070 0.0071 0.946

3 0.1112 0.1175 1.194

Additionally, table 5.1 contains the values of all the rc defined in figure 5.6, as well as the values given

by equation 5.2 relative to these transition regions. Each of these values corresponds to ratio between

54



the periods of modes trapped in the correspondent transition layer in the model where neutrino emission

rates are halved and the model where these rates are unchanged. This seems to indicate that the shift

of the rightmost pattern must be caused by the outermost transition region due to the He envelope, since

the value for this ratio seems to correspond to the same ratio between the periods in which this pattern is

present for each model. As for what modes are the ones being affected, the propagation diagrams seem

to show that the region of the star in which g-modes propagate grows with increasing radial order, with

modes starting at approximately k ' 30 in radial order reaching this layer, meaning that this predicted

shift of trapped modes’ periods should only be noticeable for higher radial order modes, which agrees

with the results shown in figure 5.4.

Figure 5.7: Evolution of the period separation ∆Πa
l of the g-mode spectrum for modelled 9M� initial mass star,

with periods of trapping pattern relative to the model with unchanged rates corrected by the appropriate
factor given by equation 5.2 for the He transition region. Continuous blue lines refer to the model
where neutrino emission rates are unchanged and black dashed lines refer to the case where neutrino
emission rates are halved.

If we indeed shift the the periods of the model with unchanged neutrino rates in which this pattern

seems to occur (starting at Π30 ≈ 1700s) by the equation 5.2 factor correspondent to this layer, we

see that the patterns of both models almost coincide as can be seen in figure 5.7, which is a strong

evidence to support the claims that indeed this trapping is being caused by the outer He layer, and that

this trapping effect is dependent on neutrino emission rates of the star, which indirectly alter the periods

of the modes that are being subject to this effect.
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6.1 Conclusions

This thesis focused on an overall analysis of the evolution of massive pre-white dwarfs at the GW Vir

(DOV) stage, as well as the behavior of the pulsation spectrum of these stars during this stage, but most

importantly, it contemplates an effective method to address the effect that the prime cooling mechanism

along this evolutionary stage, this being non nuclear neutrino emission, has on not only the structural

and phenomenological behavior of these stars, but also on the propagation of pulsation modes inside

the star and their measurable properties.

The topic of neutrinos as the largest energy sink during this early white dwarf stage is extensively

documented and agreed upon, but the exotic nature of these particles represents a barrier in what

concerns the experimental development of this subject. On the other hand, the small duration of this

short lived GW Vir stage when compared to the overall evolutionary timescale of white dwarfs imposes a

restriction in what concerns the quantity of observational data regarding the pulsation spectrum of these

kind of stars. The usage of asteroseismology as a tool for probing the interiors of stars, coupled with

state of the art numerical models that simulate the structural and evolutionary behavior of these stars in

detail, allows to tie both these ends to the best of our abilities and in turn provide crucial information that

might contribute to the loosening of these aforementioned restrictions.

6.2 Achievements

The main intent of the work developed in this thesis was to verify that indeed the emission of non nuclear

neutrinos has a significant impact on the pulsation spectrum of white dwarfs. To this point, not only did

we verify the evolution of the star is sensitive to the emission rate of these particles at a structural level,

as seen by the displacement of the outer chemical layers when comparing models with different emission

rates, but most importantly, the part of the spectrum concerning higher radial order modes, specifically

with k ' 30, also shows a significant response in what concerns altering the emission rates of these

particles.

We verified that the behavior of the modes in the interior of our model stars seems to follow a pattern

in line with the emission rates, making use of the weight function of individual modes, and further noticed

how altering these rates seems to impact the relative values of this weight function inside of the stars,

with an evident discrepancy growing as the radial order grows, as quantified by our neutrino sensitivity

function.

We further extended our study of the impact of neutrinos to typically measurable quantities of these

kind of stars by comparing the period separation and kinetic energy of our distinct neutrino rates models,

and verifying the onset of a displacement of the pattern of the period separation relative to higher radial

order modes, with k ' 30, in agreement with the assessment that may be infered by our previous

58



results that these are the modes most sensible to the emission rates of neutrinos. We verified that this

pattern was being caused due to trapping of these modes, and concluded that the pattern shift was

a consequence of the displacement of the He envelope transition layer between models with different

rates, effectively presenting a method of deducing that this layer is responsible for the trapping of high

order radial modes during this evolutionary stage, and most importantly establishing, as a complement

of the analysis of the sensitivity function, that changing neutrino emission rates impact the propagation

and overall behavior of these same modes.

6.3 Future Work

The continuous advances concerning the identification and the acquisition of information of a tremen-

dous amount of celestial objects is undeniable, as evidenced by the numerous missions carried out to

this purpose, and it immensely improves the quality of work in the field of asteroseismology. In partic-

ular, the satellite missions COROT [75] and Kepler [76] were responsible for surveying an impressive

amount of stars, in which considerable numbers of main-sequence stars, red giants and white-dwarfs

were identified to present stellar oscillations. The Gaia [77] space mission only further increased these

numbers, and moreover, it is expected that the PLATO [26] mission will be launched in 2025, contributing

to the potential of yet again extending the number of observed pulsating stars, in which white dwarfs and

pre-white dwarfs are included. The increase in documentation concerning typical pulsation properties

in these kind of stars, which is scarce, would allow for an increase in quality of the numerical models

that are used currently to simulate and study these stars. In the specific case of the work developed in

this thesis, an ample measurement of several g-mode spectra relative to these kind of stars at different

stages of evolution would allow for a better understanding of the impact of neutrino emission during this

stage, as possibly allow for a more complete description of effects such as the one studied in this work.

Nonetheless, while our study of the impact of neutrino emission rates on the evolution and spectra

of pre-white dwarfs was focused on a small subset consisting on the massive portion of these stars with

He atmospheres, there is no constraint in what concerns chemical composition nor mass that prevents

this procedure to be applied. A similar analysis to this one on a larger set of pre-white dwarfs represents

an interesting prospect which may contribute to a more complete description of the impact of neutrino

cooling on evolution, either it be by furthering the insight of the effects studied in this thesis, or by finding

and understanding new ones.
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ABSTRACT
Neutrino emission is the most dominant process in what concerns energy loss for pre-white dwarf stars, and while there is
consensus on the physics that is behind this cooling effect, the small interaction cross section of these particles makes it hard to
experimentally test and corroborate the implications of this phenomena on a terrestrial laboratory. We make use of state of the
art numerical code to model stars beginning in the ZAMS with masses ranging from 9"� to 11"� and evolving up to the white
dwarf cooling sequence, and obtain their correspondent asteroseismic spectrum. Taking particular attention to the luminosity
range of !/!� = 4 to !/!� = 2, where neutrino emission is the dominant energy loss mechanism, we study the impact of
different non nuclear neutrino emission rates on the period spectrum of the g-modes, as well as the consequences of this impact
on the star at a chemical and structural level. We identify a novel phenomena where a shift in the pattern of the period separation
of higher order radial modes seems to take place when the neutrino emission rates are altered, whereas the pattern relative to
lower order radial modes remains unchanged.

Key words: Asteroseismology – Stars – White dwarfs

1 INTRODUCTION

White dwarfs are very dense stellar core remnants, presumably the
final evolutionary stage of more than 97% of all stars. Resulting from
low- and intermediate-mass hydrogen burning stars, these objects
have reached a phase of their evolutionary process in which nuclear
burning has ceased to be a significant energy source. Since no other
energy source of the star is relevant enough to compensate for the
continuously radiated (stored) thermal energy, it will begin to cool,
becoming dimmer with passing time.
Among the many utilities that come from the study of these ob-

jects, the white dwarf luminosity function (García–Berro & Oswalt
(2016); Harris et al. (2006)) represents one of the most important
tools in what concerns not only the advances in this area (Mendez
& Ruiz (2001); Hansen & Liebert (2003)), but also contributions to
several other topics such as the history of our Galaxy and certain
constraints on its age (Noh & Scalo (1990); Wood (1992)), photo-
metric calibration (Holberg & Bergeron (2006)), the theory of hot
dense plasmas (Isern et al. (1997)) and even the study of fundamen-
tal interactions in physics, since white dwarf stars represent quality
astroparticle physics laboratories (Raffelt (1996)).
From a spectroscopic point of view, these objects can be classi-

fied as DA and non-DA white dwarfs, depending on the main con-
stituent of their outer layers. DA white dwarfs represent the most
abundant class, containing ≈ 85% of all white dwarf stars (Eisen-
stein et al. (2006)), and it corresponds to such stars with hydrogen
rich atmospheres, while non-DA white dwarfs correspond to these
stars with hydrogen deficient atmospheres. This last class may be
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further subdivided according to their spectra and effective tempera-
ture, with DO white dwarfs presenting strong lines of HeII and with
45000 ≤ )4 5 5 ≤ 200000 , DB white dwarfs presenting strong
HeI lines and with 11000 ≤ )4 5 5 ≤ 30000 and DC, DQ and
DZ presenting traces of carbon and metal in their spectra, and with
)4 5 5 < 11000 .

2 NEUTRINO PHYSICS

The cooling of white dwarfs along their evolution is one of the main
subjects of study in what concerns these stars, and any HR diagram
containing the evolution of one of these objects indeed shows a char-
acteristic evolutionary branch known as the cooling curve. Several
analytical descriptions of this evolutionary branch are presently avail-
able or currently on the works, with the first and simplest being the
Mestel model (Mestel (1952)), which indeed captures the essential
features of this cooling sequence, but it is derived with few and sim-
ple assumptions that do not include the many processes are known to
occur along this path (D’Antona &Mazzitelli (1990a); Garcia-Berro
et al. (1997); Jr & MacDonald (1985)). One such process that has a
significant impact at certain stages of this branch is the emission of
neutrinos.
Neutrino production inside stellar interiors is a known phenomena

that may occur due to several different processes (Barkat (1975);
Munakata et al. (1985)) and results in the emission of these particles,
which may represent a relevant energy sink in what concerns the
energy balance of stars. Such is the case with white dwarfs, whose
typical radii are far shorter than the mean free path of neutrinos,
making it so that this could represent a source of energy loss during
evolution. In a typical white dwarf, when nuclear burning ceases, the
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timescales of the surface luminosity drop and the central temperature
drop differ, with the latter occurring over a longer period, which is
a consequence of the large ratio between neutrino emission and the
aforementioned surface luminosity (D’Antona&Mazzitelli (1990b)),
with this being the case during a significant amount of time during
the evolution along the cooling curve, extending up to timescales
of around C ≈ 107 years (Althaus et al. (2010)). Since this neutrino
dominated phase corresponds to the beginning of the cooling process,
it is common to refer to these stars as pre-white dwarfs, noting that
the spectroscopic classification of these objects is valid anyways.
A very interesting class of variable stars that fall into this category
are the well-known GW Vir stars, which are essentially variable DO
white dwarfs (also known as DOV’s) whose pulsations are gravity
driven with typically low amplitudes. As already mentioned, stars
at this stage have a characteristic chemical composition, lacking the
typical hydrogen envelope that most white dwarfs have, and present
higher temperature and luminosity than most white dwarfs, such that
in this sense, they might effectively be considered pre-white dwarfs.
Among the many processes that are responsible for the produc-

tion and subsequent release of non nuclear neutrinos inside of a white
dwarf during this GWVir stage, plasma-neutrinos represent the main
energy loss mechanism, with the possibility of a considerable contri-
bution of neutrino bremsstrahlung at later stages of the branch (Lamb
& van Horn (1975)), noting that this last process implies a significant
impact in the cooling of massive white dwarfs (Itoh et al. (1996)).
It is interesting to reflect on the fact that, while there’s consensus

in what concerns the prevalence of neutrino cooling during this stage
of evolution of white dwarf stars, it is a difficult task to replicate and
experimentally test this phenomena in the laboratory, mainly due to
the small interaction cross section of these particles (Hansen et al.
(2015)), which in turn, makes it hard to verify certain predictions
regarding their impact on the overall behaviour of this cooling stage,
whether it be at a structural or at a phenomenological level. On
the other hand, asteroseismology has been a consistent tool in what
concerns the study of an array of topics regarding stellar structure
and evolution, and naturally encapsulates themain aspects to consider
when trying to approach the subject of the impact of neutrino cooling,
effectively working as a metaphorical laboratory that allows for the
verification of this neutrino print.
It’s also worth mentioning that calculation of neutrino emission

rates in white dwarfs and pre-white dwarfs are based on the stan-
dard theory of leptonic interaction which contains several construc-
tion flaws, particularly in what concerns the inclusion of neutrinos,
which are predicted to be left-handed particles with no renormal-
izable mass term Peskin & Schroeder (1995). This has since been
proven incorrect with the introduction of neutrino flavor oscillation
Maki et al. (1962). Nonetheless, stellar emission rates of these par-
ticles are computed making use of the interactions present in the
standard electroweak Hamiltonian, being subject to the constraints
established by this theory, and hence the measurement of the effects
of altered neutrino rates and consequent neutrino interactions in these
stars may represent an independent test of the coupling of neutrinos
in the leptonic processes of the standard model.

3 MASSIVE WHITE DWARFS

An important consideration to take into account when studying white
dwarfs is their mass distribution. These objects result from stars with
masses up to ≈ 12"� (Doherty et al. (2014)), with resulting masses
theoretically reaching up to the Chandrasekhar mass limit (Chan-
drasekhar & Milne (1931); Chandrasekhar (1935)), with a value of

1.45"� for a C/O core white dwarf. Recently, white dwarfs with
masses reaching up to 1.33"� have been catalogued through the
data acquired by the SDSS (Kepler et al. (2007)), and candidates
with even higher masses (Gentile Fusillo et al. (2018); Jiménez-
Esteban et al. (2018)), closing in on the limit were also identified
after the Gaia Data Release (DR2) (Prusti et al. (2016)).
Recent studies resulting inmass distributions of select sets ofwhite

dwarfs (Liebert et al. (2005);Kleinman et al. (2013)) all seem to agree
on amain peak of stars centered at around≈ 0.6"� , with existence of
a secondary peak at higher mass values of around ≈ 0.8"� (Kepler
et al. (2014)), and further analyzing isolated massive white dwarfs
above this mass value reveals that a peak at ≈ 1.04"� (Nalezyty, M.
&Madej, J. (2004)) is present. There seems to be indeed a significant
number of massive white dwarfs with masses > 0.8"� , presenting
fractions of around ≈ 8% of all catalogued white dwarfs, either it be
DA or DB (Kepler et al. (2007)).
It is clear to see that massive white dwarfs represent a consider-

able fraction of the total population of these kind of stars. Not only
this, but several particularities characteristic of these massive ob-
jects make them interesting subjects of study. For instance, massive
white dwarfs represent the only type of these objects where Debye
cooling is present at observable luminosities, since crystallization of
the core occurs at also high luminosities due to their higher densi-
ties (D’Antona & Mazzitelli (1990a); Althaus et al. (2010)), hence
making it so that these objects cool faster than their less massive
counterparts as the luminosities decrease. Another feature of these
objects is the fact that the temperature of their progenitors is pre-
sumably high enough to achieve stable carbon burning, making it so
that O/Ne cores are possible (Garcia-Berro et al. (1997)), which is a
relevant point to consider when studying the cooling of these massive
stars, since the diffusion of this 22Ne in the core may be responsible
for the release of a non-negligible amount of gravitational potential
energy that may impact the cooling time of these objects (Deloye &
Bildsten (2002)).
On the context of the cooling of these objects and on the topic of

this article, it is important to mention the effect of neutrinos, which
indeed influence the cooling times of white dwarfs, usually through
the plasma-neutrino process (Haft et al. (1994)), but in the case
of these massive stars, neutrino bremsstrahlung must also be taken
into consideration (Itoh et al. (1996); Althaus et al. (2010)).This
attribute, along with several other important factors, make massive
white dwarfs great subjects of study in what concerns the influence
of neutrino emission along their evolution. In particular, mass-radius
relations for massive white dwarfs seem to show a notable depen-
dence on the neutrino luminosity (Althaus et al. (2005)), and even
beyond that, these stars seem to be the ones which exhibit a the most
sensible temperature decay response to the neutrino luminosity in all
the mass range of these kind of stars (Kantor & Gusakov (2007)).

4 WHITE DWARF ASTEROSEISMOLOGY

As mentioned prior, GW Vir stars present multiperiodic, low-
amplitude g-mode pulsations, and hence, we will be focusing on
the study of g-mode spectra of modelled pre-white dwarfs. These
modes can be theoretically computed by solving the fourth-order set
of equations concerning linear, nonradial and adiabatic pulsations
given in (Unno et al. (1979)). It is easier to infer certain proper-
ties from these solutions making use of approximations such as the
consideration of high radial order modes and also the Cowling ap-
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proximation (Cowling (1941)), which make it so that these modes
respect the following dispersion relation:

:2A =
1

f222B
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f2 − !2;

) (
f2 − #2

)
(1)

This relation contains two relevant quantities in what concerns
the analysis of the pulsation modes of the star, the first being the
Brunt-Väisälä frequency:
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Which governs the g-mode period spectrum (low frequency
modes), as can be seen by the direct dependence on the local gravity
acceleration 6.
The second quantity is the Lamb frequency:

!2; = ; (; + 1)
22B
A2

(3)

Which defines the critical frequencies for p-modes (high frequency
modes). Thesemodes can be physically interpreted as radial displace-
ments of the stellar fluid.
The relation defined by equation 1 allows for the mapping of

the interior of the star in what concerns the propagation of modes,
which is easily understandable when noting that pulsations only exist
when the wavenumber is real. Considering the frequency f of a
certain mode, this can be achieved if f2 > #2, !2

;
which defines the

resonant cavity where p-modes propagate, known as the p-region, or
if f2 < #2, !2

;
which in turn defines the g-region.

When dealing with a g-mode spectrum, it is usual to study the
evolution of the period of the pulsationmodes, since these correspond
to lower frequency modes which present periods whose timescales
may correspond to values that are sensible enough so that they are
prone to beingmeasured.One of themain characteristics of the period
spectrum of chemically homogeneous stellar structures is that in the
asymptotic limit (: >> ;), every consecutive radial order modes (:)
with the same harmonic degree (;) have the same period spacing
ΔΠ0

;
(Tassoul (1980)):
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This is particularly interesting when considering the fact that typ-
ical models for GW Vir stars (and white dwarfs in general) present
steep composition gradients which result in deviations from the be-
haviour established by equation 4. From a pictorial point of view,
chemical interfaces work as reflecting boundaries inside of the star,
making it so that if the length between boundaries matches the wave-
length of a certain mode, it is possible to trap this mode as a standing
wave, forcing it to oscillate with higher amplitudes in this trapping
region. Trapped modes have their nodes confined to a smaller re-
gion, effectively making their periods seem shorter, and disabling
the validity of a constant period separation value. The manifestation
of mode trapping is then extremely dependent on the depth of the
chemical transition regions inside of the star, as can be seen by the
following analytical approximation, taken from (Kawaler & Bradley
(1994)), which expresses the periods of trapped modes:

Π28 = 4c
2_28
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'

)
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This expression refers to the trapped mode that contains 8 nodes
between the surface and the chemical transition radius A2 , with _8
being constants related with the roots of Bessel functions.
An important flag in what concerns mode trapping is the behavior

of the oscillation kinetic energy of modes, which can be written as
the following (Córsico & Althaus (2006)):
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In this expression, H1, H2, H3 and H4 are the dimensionless Dziem-
bowski variables (Dziembowski (1971)), which are essentially eigen-
values, defined in order to solve the previously mentioned fourth-
order set of equations that determine the pulsations. �∗, +6 and *
are also dimensionless coefficients defined in order to further sim-
plify the pulsation equations.
It’s clear to see that, aside from the factors, this kinetic energy is

proportional to the integral of some of the squared eigenfunctions
defined as the Dziembowski variables, weighted by the density along
the star. This then leads to the inference that modes propagating
in deeper regions of the star, where the density is high, will have
larger kinetic energy values, even when they are induced by small
perturbations, while in turn, modes that are trapped in the outer
layers of the star due to the steep He transition in the envelope will
necessarily have small kinetic energy values. This makes it so that,
similarly to the period spacing diagram, plots of the kinetic energy as
a function o Π: function as good indicators of trapped modes, since
local minima of this function seems to indicate that a mode has less
kinetic energy than it otherwise would have, were it not trapped,
Another interesting object that’s worth looking into and may com-

plement this period spectrum analysis is the weight function ,: of
a mode with radial order : . Each mode runs through the star, pre-
senting different amplitude values depending on the stellar structure
and on how effective is the excitation mechanism. The relative values
of weight functions serve as indicators on how the eigenvalues are
settled along the star (Kawaler et al. (1985)), and they may provide
information regarding which regions of the stellar interior most con-
tribute to the determination of the modes’ periods. We follow the
expression defined in (Córsico & Althaus (2006)), given by:

,: = (4c�'2∗)
A2d2

'2∗*2
∗
[
�∗H21 ++6 (H2 − H3)2 −

1
*
(; (; + 1)H3 + H4)2

]

(7)

This expression, just like the kinetic energy, is also written as a
function of the same dimensionless variables that were mentioned
above.

5 EVOLUTIONARY INPUT PHYSICS AND PRE-WHITE
DWARF TRACK

In order to study the signature of neutrino emission in massive white
dwarfs, an appropriate model was used to replicate the evolution
of said stars. This was done using the MESA code (Paxton et al.
(2010)), version r10398, with evolutionary input closely following
the description present in (Lauffer et al. (2018)), which details the
evolution of both H and He atmosphere massive white dwarfs, start-
ing from the ZAMS and reaching up to the oldest stages of cooling,
where luminosity values are as low as !/!� ≈ 4.
Our models consist on different evolutionary tracks, concerning
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Figure 1. HR diagram containing the curves relative to the evolution of
9"� (blue), 9.5"� (green) and 10"� (orange) initial mass stars from the
ZAMS up to the white dwarf cooling sequence. Points A, B, C and D are
benchmark evolutionary stages from the 9"� initial mass star, chosen to
study this region of evolution. Additionally, massive white dwarf candidates
from GAIA (Jiménez-Esteban et al. (2018)) are shown at the end of the
cooling sequences.

Figure 2. Weight of the several non-nuclear neutrino energy sinks for mod-
elled 9"� initial mass star, starting at the white dwarf cooling sequence.

stars beginning at the ZAMS with masses ranging from 9"� to
11"� , resulting in white dwarfs with 1.02"� to 1.22"� , cho-
sen with the intent of covering a wide range in which typical mas-
sive white dwarfs are present. Regarding the evolutionary stage in
which we will focus our study, this being the initial track of the
white dwarf cooling sequence, corresponding to an age range of
log C [HAB] ≈ 7.435 − 7.440, the main input considerations are, as
described in (Lauffer et al. (2018)), the formulation of chemical dif-
fusion and gravitational settling from (Burgers (1969)), the absence
of convection due to numerical instabilities, which has no impact on
the cooling times relative to when convection is left active, and par-
ticularly does not affect the study of stellar pulsations and neutrino
emission at this stage of the evolution, since at this stage (GW Vir
stage), convection is yet to set in and pulsations are mainly excited
by the ^−mechanism (Saio, H. (2013)). Lastly, the emission rates for
plasmon, brehmsstralung and several less important neutrino sources
are taken from (Itoh et al. (1996)).

Figure 3. HR diagram containing the curves relative to the evolution of a
9"� initial mass star, each with different initial neutrino emission rates, these
being the unchanged rate of na (blue), 0.7na (green) and 0.5na (orange). Each
curve contains their respective benchmark points A, B and C, where each set
of points with the same color across all curves correspond to comparison
evolutionary points.

Resulting HR diagrams from our models are shown in figure 1, as
well as the benchmark profiles chosen for one of the models, to probe
the region where neutrinos represent the largest energy loss mech-
anism. The selection of these profiles is based on the information
conveyed in figure 2, which allows to compare the impact of several
different energy loss mechanisms with the surface luminosity of the
star as a function of )4 5 5 .
Regarding the seismology component of this work, the pulsa-

tion eigenmodes of our models were obtained making use of the
GYRE oscillation code (Townsend & Teitler (2013)), version 5.1,
using the MESA models as direct input and using the formulation
of (Christensen-Dalsgaard (2008)) in what concerns the boundary
condition of the shooting method used in the search. An inverse fre-
quency grid type (uniform in period) is also used in order to more
easily scan for adiabatic g-modes.

6 NEUTRINO EMISSION RATES

The main purpose of this work is to study the impact that neutrino
cooling has on the overall evolution of pre-white dwarf objects while
neutrinos are still the most relevant energy sink. For this reason, and
due to the numerical nature of the models, a similar prescription to
that of O’Brien & Kawaler (2000) was used, in which the emission
rates of non nuclear neutrinos was parameterized before the star
enters the white dwarf cooling sequence. This parameterization takes
the following form:

nã< = W<nã0 (8)

Where nã0 corresponds to the neutrino emission rate as predicted
by standard leptonic theory. This then allows to compare models
relative to the same star but with different neutrino emission rates
and detect any changes which, as a result, will necessarily be a direct
consequence of the neutrino effects on the cooling of the star.
Starting from the benchmark points shown in figure 1, we repro-

duce the same model, which in this case corresponds to the 9"�
initial mass model, up to the first of these points, this being profile
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Figure 4. Neutrino emission rates relative to benchmark points A, B and
C concerning the modelled 9"� initial mass star with unchanged neutrino
emission rates. Continuous lines refer to plasma neutrino emission rates while
dashed lines refer to bremsstrahlung neutrino emission rates.

A, and at this point, we set the neutrino emission rate factor W<,
making it so that the evolutionary track is slightly changed from this
point on. Figure 3 shows how the evolutionary track is altered by
considering situations where at point A, the neutrino emission rates
are set to 50% and 70% of the original rate, these being represented
in orange and green respectively, relative to the model with unaltered
rates, represented in blue. As for the comparison points, which are
also represented in the figure, where each set of points with the same
color represent comparison points, these were selected such that the
current neutrino rate of the unaltered model multiplied by the factor
of the altered model, is equal to the current neutrino rate of the al-
tered model, i.e., the neutrino emission rates of point B relative to
the orange curve is, at that point, half of the neutrino emission rate
of point B relative to the blue curve.
Furthermore, figure 4 shows how the main unaltered sources of

neutrino emission change as the star evolves, both in terms of position
in the star and intensity. As mentioned prior, plasma neutrinos are the
dominant energy source during this pre-WD phase, and along with
the energy due to bremsstrahlung neutrinos, which are also relevant
when considering such highmass values, bothmake up for almost the
totality of energy lost during this phase. From this figure, we notice
how the production of these neutrinos moves outwards along the star
as they decrease with time, and for this reason we don’t extend the
analysis to much later times relative to profile C, because it’s clear to
see that the neutrino emission rate dies off if we move ahead in time.

7 MODE PROPAGATION ANALYSIS

We now proceed with the analysis of the impact of altered neutrino
rates on the structure and evolution of the model. We begin by dis-
cussing some of the properties that are usually relevant in typical
spectra of massive (and overall) white dwarf pulsation. To this end,
we can start by analyzing the evolution of propagation diagrams
along the region in study.
The first row of Figure 5 shows exactly how this takes place,

containing, from left to right, the corresponding diagrams relative to
the profiles A, B and C present in Figure 1, concerning a 9"� initial
mass star and evolving into a 1.02"� white dwarf. In this figure,
both the propagation diagrams and the chemical profiles contain

information regarding the star as it would normally evolve, and the
case where neutrino emission rates were set to half (orange curve in
figure 3), with this being represented with dashed lines. The situation
corresponding to the rate reducing factor of 0.7 is not represented
in these diagrams in order to keep the figure visually clear, but the
shape of the lines concerning this case is evident, as this represents
a midway point between the two cases that are shown.
Profile A, which is the common point between the cases, depicts

the star right before )4 5 5 achieves its maximum value, being at
)4 5 5 = 341491 and with log(!/!�) = 3.79, and for this reason,
it presents some similarities with typical red giants diagrams, which
correspond to a previous stage of evolution in the lifetime of this
star. In this regard, it can be seen that the central values of #2 are
comparable to the outer values, and some dips in this frequency
structure allow for the presence of some mixed modes. This trait
vanishes as the star keeps evolving through this neutrino phase, with
#2 increasing in value in the outer regions of the star, making it so
that there is a wider gap between the G- and P-regions and no mixed
modes seem to be possible. The propagation diagrams relative to
profiles B and C clearly illustrate this point, with the correspondent
chemical profiles revealing that this is accompanied with a settling of
several layers in the star, with the outer carbon layer being the most
evident. It is then interesting to compare the situation between the
case where neutrinos are unaltered and the case where their rate is set
to half. As seen in the figure, there’s a clear agreement between the
abundance curves at the inner regions of the star, but the outer layers
seem to have a small departure from one another as the evolution
goes on, as can be seen by the helium and carbon curves, indicating
that the effects of gravitational settling are stronger when neutrino
emission is halved, which is in agreement with the fact that the model
with halved neutrino takes approximately double the time to reach
point B when compared with the model where rates are unchanged.
As mentioned prior, GW Vir stars are known to pulsate with low

amplitude g-modes, and for that reason, the focus of the seismologic
analysis in this work is done according to the eigenmodes present
in the G-region of the evolving propagation diagram of the star.
We instill particular attention to the blue dashed line present in the
propagation diagrams ofB andC,which corresponds to the frequency
of themode 660 (radial order = = 60 and angular degree ; = 1), which
we choose as a reference mode due to the fact that it is one of the
lowest radial order g-modes that is allowed to propagate up to the
surface during most of the time range on which our study is focused
on, and theoretically, would be one of the easiest to detect.

8 SENSITIVITY OF EIGENMODES TO NEUTRINO
EMISSION

To further the study of this mode, we make use of the expression
given in equation 7 to obtain the correspondent weight function,
which is depicted in figure 6 at several stages of evolution of the
star. Additionally, the first row in this figure represents the case
where the neutrino emission rates are unchanged, with the letters
A, B and C referring to the profiles to which these weight function
applies. The second row refers to the case where the emission rate
was set to half, and each lower panel corresponds to a profile of the
altered star where the neutrino luminosity is half of the luminosity
of the profile in the correspondent upper panel. The lines present in
each panel correspond to the plasma (orange) and bremsstrahlung
(green) neutrino emission rates associated to that profile, with all
cases being normalized to the maximum value of the first panel of
the correspondent row.
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Figure 5. Propagation diagrams (first row) and chemical profiles (second row) of 9"� initial mass star models. Continuous lines refer to the model where
neutrino emission rates are unchanged and dashed lines refer to the case where neutrino emission rates are halved. A, B and C labels are representative of the
benchmark points chosen for each model

One interesting characteristic of the weight function, regardless of
the row that is being considered, is that its maximum value seems
move from close to the core up to the surface as time goes by,
which seems to be the case when considering lower mass white
dwarfs, as seen in other works (Kawaler et al. (1985); Córsico &
Althaus (2006)), meaning that the zone most contributing to the
generation of this mode transitions outwards as the star cools. It
is worth mentioning that all modes with : > 10 present a very
similar behavior to this one, the only difference being the number
of nodes, which evidently correspond to : itself, which means that
the aforementioned statement regarding the region where the mode
is most prevalent, as well as further analysis concerning this 660
mode also applies these lower order modes. This particular outward
shifting effect that we just assessed is a consequence of a decrease in
central condensation in the star, as described in (Schwank (1976)).

Perhaps the most interesting feature of this figure, which coinci-
dentally also refers to an outward displacement, granted that this time
we’re referring to the well defined peak seen in each panel and not
the overall maximum value, is how the normalized neutrino curve
seems to resemble this prevalent peak in the weight function, both in
shape and position, as they move outwards and decrease along this
cooling period. Both these peaks seem to follow the small region just
outside the C/O core where there’s a drop in oxygen and carbon, and
an increase in neon, which corresponds to the regionwhere off-center
carbon ignition occurred (Siess, L. (2006)), and hence represents the
hottest region of the star during this neutrino dominated period. This
attribute more or less explains why the neutrino emission rates are
prevalent in this area, since it is the region that most easily excites the
pair production from plasmons, but no evident connection between
this neutrino production area and the peak in the weight function can
be deducted.

In order to more or less quantify this apparent relation between
these two quantities, we define a neutrino sensitivity function (a: :

(a: =

∫ A
0 4cA

′2d(A ′)na (A ′),: (A ′)3A ′
!a

(9)

This function is taken at a certain temporal point of the evolution,
with na being the rate of non-nuclear neutrinos along the star at this
temporal point, ,: being the normalized weight function of the 6:
mode also at this point, and !a =

∫ '∗
0 4cA2d(A)na (A)3A being the

non-nuclear neutrino luminosity, which essentially corresponds to
the integral in the numerator of equation 9 without the weight func-
tion, meaning that this sensitivity function will only present values
between 0 and 1. This function is designedwith the intent of verifying
how sensible the g-modes are in what pertains to the decaying neu-
trino rates as the evolution proceeds, and hence why the numerator
of this expression is chosen as a "weighted" version of the neutrino
luminosity function, directly relating these two quantities across the
entire stellar structure. Looking at the shape of both functions in each
panel of figure 6, it is expected that this sensitivity assumes a similar
behavior to that of a step function, with a very steep increase char-
acterized by an inflexion point right where both peaks assume their
maximum value, making it so that, as time progresses, this inflexion
point moves outwards and the upper threshold decreases, assuming
that the peak of the weight function ceases to be the overall highest
value of this function as it happens in the first row of the figure.
It is of interest to analyze how the sensitivity function of differ-

ent modes behave as the star evolves, and specially how it compares
between the cases with different neutrino emission rates. Figure 7
contains several points concerning themaximumvalue (upper thresh-
old) of the sensitivity function of different radial order g-modes at
several stages of the neutrino cooling process as a function of the
surface luminosity. Points connected by a continuous line represent
modes concerning the model where neutrino rates are unaltered,
while points connected by dashed lines represent modes concerning
the model where rates were halved.
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Figure 6. Weight functions of 660 mode at different evolutionary points of modelled 9"� initial mass star with unchanged neutrino emission rates (first row)
and halved neutrino emission rates (second row), as well as plasma (orange) and bremsstrahlung (green) neutrino emission rates normalized to highest value
of correspondent row. Just as in figure 5, A, B and C labels are representative of the benchmark points chosen for the model with unchanged rates, while the
correspondent comparison points for the model with halved rates are chosen such that at each column, the neutrino emission rate of the model of the lower panel
is half of the rate correspondent to model with unchanged rates in the upper panel.

Figure 7.Evolution of the sensitivity function given in equation 9 for different
radial order g-modes for modelled 9"� initial mass star. Continuous lines
refer to the model where neutrino emission rates are unchanged and dashed
lines refer to the case where neutrino emission rates are halved.

It is clear to see that in most cases, regardless of the fact that the
rates of neutrino emission were changed or not, there is a common
behavior in which the sensitivity seems to decrease with time, which
agrees with the fact that the peak of the weight function decreases
with time relative to the absolute maximum of this function. This
behavior however seems to only be established when we consider
modes with : ≥ 10, since modes such as 61 and 65 seem to respond
in a different manner, presenting increasing sensibilities at certain
stages. This seems to agree with the previously mentioned fact that
modes with lower radial orders, specifically : < 10, have weight
functions with a considerably different shape than the others, partly

due to having a lesser amount of nodes, but mostly due to how their
envelopes are more evenly distributed along the star, not showing
many evident peaks as is the case with the envelopes of weight
functions of higher radial order modes. Nonetheless, the existence
of fewer nodes in the weight functions of these lower radial order
modes makes it so that, if any of the peaks of this function fully
encapsulates the peak of the neutrino emission rate, then the integral
present in (a: will increase relative to the case where a similar
valued oscillatory weight function takes the same position. This trait
explains the increases that might be present in the evolution of the
sensitivity function of lower radial order modes.

Another interesting subject regarding this figure is how the func-
tions concerning the altered and non-altered neutrino emission rates
compare to each other. This, once again, seems to have a certain de-
pendence on the radial order of the modes that are being considered,
and while the number of points available should be increased in order
to study this feature in more detail, it is more or less apparent that
higher radial order modes seem to be the ones that are more sensible
to changes in the rates of neutrino emission. Indeed when comparing
the values of this function relative to a single mode in the case where
neutrino rates are unchanged to the values of the function relative
to this same mode but with the rates halved, it is indisputable that
they do not match for any mode, even taking into account the small
sampling size that is being used. However, it is also clear that this
mismatch is much more evident as the radial order of the mode that
is being considered increases, with a noticeable gap between the con-
tinuous and the dashed line forming at around : = 10 and seemingly
increasing as we consider higher : values. This gap forms as a con-
sequence of the fact that the sensitivity values are higher along the
evolution of the star when the rates halved, which is something that
can be understood by looking at figure 6 and noticing the differences
between the weight functions present in the upper and lower panels
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Figure 8. Evolution of the period separation ΔΠ0
;
of the g-mode spectrum for modelled 9"� initial mass star. Once again, continuous blue lines refer to the

model where neutrino emission rates are unchanged, black dashed lines refer to the case where neutrino emission rates are halved, orange dashed lines refer to
the case where neutrino emission rates were set to 70% and the A, B and C labels are representative of the benchmark points chosen for the models. The red,
horizontal dashed line in each panel corresponds to the value of the period separation in the asymptotic limit given in equation 4 concerning the model with
unchanged rates.

of the last two columns. In the case where neutrino production is
halved, this being the second row, the maximum values of the peak’s
envelope that is being considered are considerably higher after nor-
malization than those of the first row. As a consequence of this fact,
the area below the smaller width peaks that are encapsulated by the
envelope and also encapsulated by the neutrino emission peak, or
in other words, the integral of the product of these two functions,
is higher, which is easily understandable when noticing that these
peaks "close" slower as they grow into their maximum value due
to having a higher value to grow into when compared to the case
where the rates are unchanged. This effect becomes more and more
drastic as we increase the radial order of the mode, which indicates
that the amplitudes of the weight functions of these modes are the
most affected by changes in the rates of neutrino emission as the star
cools.

9 ASTEROSEISMOLOGY DIAGNOSTIC: NEUTRINO
INDUCED TRAPPING PHASE SHIFT

The analysis performed making use of the sensitivity function sug-
gests that the rate of neutrino emission at a certain point of evolution
of a pre-white dwarf has a direct or indirect influence on the pulsation
modes of the star. This inference regarding the sensitivity of pulsation

modes was done through a graphical analysis of a function that sug-
gests, but does not imply correlation. It is then instructive to further
extend the exploration of the impact of neutrino emission to defin-
ing and measurable properties of pulsation modes. To this end, we
will study the evolution of the period separation pattern during this
phase, which is shown in figure 8, where each panel corresponds to
one of the previously mentioned profiles in what concerns the model
where neutrino emission rates are unchanged. In this figure, points
connected by a continuous (blue) line once again refer to this model,
whereas points connected by a dashed (black) line correspond to the
model where rates were halved. Additionally, the dashed, horizontal
line (red) corresponds to the period spacing asymptotic limit, given
by equation 4, concerning the model with unchanged rates, noting
that while the asymptotic value relative to the model with halved
rates is not represented, it practically matches the previous case.

At first glance, it is evident that neither of the patterns corre-
spond to the behavior established by the asymptotic limit, which
is to be expected due to the fact that our models contain several
composition gradients that, as mentioned previously, may work as
reflecting boundaries for certain modes, which makes it so that var-
ious resonant cavities may be identified throughout the star, these
being evident by looking at the chemical profiles of figure 5. The
direct consequences of these cavities is that modes with wavelengths
identical to their sizes might get trapped inside, in return presenting
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changes in their periods, which may then be mirrored onto the values
of the period separation, since the distance relative to the periods of
adjacent modes in radial order (which coincidentally, might also have
their own periods altered due to this same effect) is altered as well.
This creates a situation where ΔΠ0

;
for a certain : mode becomes

higher or smaller in value, and deviates from the expected behavior,
hence creating the maxima and minima that can be observed in the
period separation patterns of our figure. This trapping occurrence is
of particular interest in what concerns predicting what modes might
be impossible to measure even though they are excited, since they
may be enclosed in the resonant cavities inside of the star, this being
done with a correct identification of the extrema in the pattern and
the respective mode and cavity that is causing them.
That being said, there is an interesting feature that can be identified

in this figure once a comparison between the patterns generated by
our two models is done, and that is the progressive shift of the
rightmost part of the pattern corresponding to the model with halved
neutrino emission rates relative to the model with unchanged rates,
as both evolve. As can be seen on the first panel, both patterns seem
to match entirely, which is expected since profile A correspond to
the point of evolution where the rates of the second model were set
to half, effectively working as the initial point of the cooling phase
in study, but as we look further in time, there seems to be a slight
localized displacement of the dashed pattern to the right, relative to
the continuous pattern. This displacement begins to be noticeable at
stages close to the temporal point where profile B is located, where
from figure 4, plasma-neutrino rates are of around na? ≈ 25000
4A6 · 6−1 · B−1, and half of that value in the case of the second model,
and it seems to be completely established at the evolutionary point
represented by profile C, where the rates are now close to half than
the ones in B, and neutrinos start to become less and less relevant
moving forward.
It is important to mention that this clear pattern that is being

shifted contains several local minima and maxima of the period
separation, which suggests that the modes relative to these points are
being subject to trapping. This is further enhanced by noting that
local minima in ΔΠ0

;
correspond to local minima in the oscillation

kinetic energy, which can be obtained with the use of equation 6.
This can be seen in figure 9, where both these quantities, relative
to the model with unchanged rates, are plotted in part of the period
domain containing the pattern that is being shifted.
Another interesting trait from this result is that this displacement

appears to occur onlywhen considering higher periodmodes, starting
at around Π: ≈ 2000B, which interestingly correspond to higher
radial order modes, with : ' 30, meaning that the direct or indirect
effects of altering the neutrino rates of the star seem to have an impact
on these modes while leaving lower order modes unaltered, which
agrees with our previous assessment that higher radial order modes
are more sensible to changes in the rates of neutrino emission.
This pattern shift seems to be a consequence of various factors

in which neutrino emission seems to be a relevant factor, namely
the propagation regions for g-modes inside the star, as well as the
chemical profiles. Indeedwhen looking at figure 5, there is a clear dis-
placement of the outer chemical transition interfaces between both
models, which also seems to become more evident as time pro-
gresses. This feature makes us refer to equation 5, which shows the
dependence between the periods of trapped modes and the radius
of these transition regions A2 , with these being effectively different
when looking at the outer layers of both models, but maintaining
the same values when considering the inner regions. This in turn
makes it so that the trapping effect occurring at the outer regions of
the model with halved neutrino emission rates suffers a shift in what

Figure 9. Segment of the evolution of the period separation ΔΠ0
;

(upper
panel) and oscillation kinetic energy �:8= (lower pannel) as a function of the
pulsation periods relative to profile C of our modelled 9"� initial mass star.
Minima in each panel correspondent to the same period are connected by an
arrow and represent to modes that are being subject to trapping.

concerns the periods of the modes that are being subject to this effect,
relative to the model where neutrino emission rates are unchanged,
while the periods of modes that are trapped in the innermost regions
of the star are unaltered. We may quantitatively assess this effect by
using equation 5 to write an appropriate expression that allows for
the comparison of the periods of trapped modes in the case where
neutrino emission rates are unchanged, which we label as Π100 with
the periods relative to the case where rates are halved, labelled as
Π50:

(
Π50
Π100

)
=

√√√√√√√√√√√
[(
1 − A2100

'∗100

)
" ∗100
'∗3100

]
[(
1 − A250'∗50

)
" ∗50
'∗350

] (10)

This expression eliminates the original dependence on _8 since
it intends to compare the modes that are subject to trapping as a
consequence of a chemical interface A2 and contain the same amount
of nodes between this interface and the surface, even though the
interface is shifted between models.
It is now necessary to define the values of A2 relative to the in-

terfaces that might be the reason for the trapping. As mentioned
previously, this effect is a consequence of steep chemical interfaces
in the interior of the star, such as the inner transitions from the core
to outer layer, or even the steep transition to the He envelope. A
useful diagnostic of what chemical interfaces might be relevant in
what concerns this effect is the Brunt-Väisälä frequency #2, since
its dependence on 3?/3A and 3d/3A will reveal some spikes in this
structure as a consequence of discontinuities in pressure and density,
which are typical traits of chemical transition regions. With this in
mind, and focusing on profile C, three different transition regions
were selected for each model with their A2 being represented by the
colored dashed lines in figure 10.
Additionally, table 1 contains the values of all the A2 defined

in figure 10, as well as the values given by equation 10 relative
to these transition regions. Each of these values corresponds to ratio
between the periods of modes trapped in the correspondent transition
layer in the model where neutrino emission rates are halved and the

MNRAS 000, 1–11 ()

79
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Figure 10. Propagation diagrams (first row) and chemical profiles (second
row) relative to profile C of 9"� initial mass star models. Continuous lines
refer to the model where neutrino emission rates are unchanged and dashed
lines refer to the case where neutrino emission rates are halved. A, B and
C labels are representative of the benchmark points chosen for each model.
The coloured vertical dashed lines correspond to the A2 of the steep chemical
interfaces that might be responsible for mode trapping, and are identified
according to the label in figure

[H]

Table 1. Values of all the A2 represented as dashed lines in figure 10 and
correspondent values of equation 10 for these transition regions.

i A28 ;50/'� A28 ;100/'� (Π50/Π100)A28
1 0.0066 0.0067 0.945

2 0.0070 0.0071 0.946

3 0.1112 0.1175 1.194

model where these rates are unchanged. This seems to indicate that
the shift of the rightmost pattern must be caused by the outermost
transition region due to the He envelope, since the value for this ratio
seems to correspond to the same ratio between the periods in which
this pattern is present for each model. As for what modes are the
ones being affected, the propagation diagrams seem to show that the
region of the star in which g-modes propagate grows with increasing
radial order, with modes starting at approximately : ' 30 in radial
order reaching this layer, meaning that this predicted shift of trapped
modes’ periods should only be noticeable for higher radial order
modes, which agrees with the results shown in figure 8.
Ifwe indeed shift the periods of themodelwith unchanged neutrino

rates in which this pattern seems to occur (starting at Π30 ≈ 1700B)
by the equation 10 factor correspondent to this layer, we see that
the patterns of both models almost coincide as can be seen in figure
11, which is a strong evidence to support the claims that indeed this
trapping is being caused by the outer He layer, and that this trapping
effect is dependent on neutrino emission rates of the star, which
indirectly alter the periods of the modes that are being subject to this
effect.

Figure 11. Evolution of the period separation ΔΠ0
;
of the g-mode spectrum

for modelled 9"� initial mass star, with periods of trapping pattern relative
to the model with unchanged rates corrected by the appropriate factor given
by equation 10 for the He transition region. Continuous blue lines refer to the
model where neutrino emission rates are unchanged and black dashed lines
refer to the case where neutrino emission rates are halved.

10 CONCLUSIONS

The main intent of the work developed in this article was to verify
that indeed the emission of non nuclear neutrinos has a significant
impact on the pulsation spectrum of white dwarfs. To this point,
not only did we verify the evolution of the star is sensitive to the
emission rate of these particles at a structural level, as seen by the
displacement of the outer chemical layers when comparing models
with different emission rates, but most importantly, the part of the
spectrum concerning higher radial order modes, specifically with
: ' 30, also shows a significant response in what concerns altering
the emission rates of these particles.
We verified that the behavior of the modes in the interior of our

model stars seems to follow a pattern in line with the emission rates,
making use of the weight function of individual modes, and further
noticed how altering these rates seems to impact the relative values of
this weight function inside of the stars, with an evident discrepancy
growing as the radial order grows, as quantified by our neutrino
sensitivity function.
We further extended our study of the impact of neutrinos to typi-

cally measurable quantities of these kind of stars by comparing the
period separation and kinetic energy of our distinct neutrino rates
models, and verifying the onset of a displacement of the pattern
of the period separation relative to higher radial order modes, with
: ' 30, in agreement with the assessment that may be inferred by
our previous results that these are the modes most sensible to the
emission rates of neutrinos. We verified that this pattern was being
caused due to trapping of these modes, and concluded that the pat-
tern shift was a consequence of the displacement of the He envelope
transition layer between models with different rates, effectively pre-
senting a method of deducing that this layer is responsible for the
trapping of high order radial modes during this evolutionary stage,
andmost importantly establishing, as a complement of the analysis of
the sensitivity function, that changing neutrino emission rates impact
the propagation and overall behavior of these same modes.
It is important to mention that with the advent of mission PLATO

Rauer et al. (2014), to be launched in 2025, the understanding of the
underlying effects of certain phenomena on themeasurable quantities
of stars is of utmost importance, and hence, with neutrino emission
being the controlling process in what concerns the cooling of stars
at this stage of evolution, we intend with the work developed in
this article to provide novel information that will contribute to the

MNRAS 000, 1–11 ()
80



Asteroseismology of a Massive Pre-White Dwarf 11

increase in documentation of these kind of stars, particularly since
"PLATO 2.0 will be the very first mission to bring WD seismology
in the space era, (...)" Rauer et al. (2014).
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