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Abstract 

The aorta coarctation (CoA) is one of the most common congenital heart diseases (CHDs). It is defined 

by a narrowing in the proximal thoracic aorta and is treated through surgery or stent placement. 

Advances in medical imaging and computational techniques provided the research community with a 

unique opportunity to investigate CHDs, with computational fluid dynamics (CFD) models opening new 

ways to understand cardiovascular pathologies. Due to the complexity of the cardiovascular system, it 

is common to model merely the region of interest and represent the remaining circulation through 

boundary conditions (BCs), whose choice is critical for CFD since different BCs could lead to 

quantitative differences in the solution.  

This work presents a framework to adjust Murray’s law BC, using an optimisation approach. Taking 

Murray’s law parameter as the control, the approach uses a discretise-then-optimise methodology to 

numerically solve the control problem. The framework was tested using generated in-silico data sets 

and then applied to a realistic 3D geometry representing a CoA, using patient-specific data, for 

validation.  

The results show small errors over the domain, with absolute errors < 1% and relative errors <10%. 

The largest relative errors were found in the supra-aortic outlets when different types of BCs were 

attributed in the in-silico data and in the controlled problem, whilst the absolute errors kept minor 

(<1.5%). For the normal aorta and CoA, the parameters obtained are different from those found in the 

literature, with higher parameter values found for the CoA, which can be explained by the flow 

behaviour.  

Keywords: cardiovascular system, aortic coarctation, computational fluid dynamics, boundary 

conditions, Murray’s law, optimisation 

1. Introduction  

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the leading 

cause of death worldwide, corresponding to 31% of all world deaths. Therefore, it is important to have 

a comprehensive knowledge of the cardiovascular system to understand the pathophysiology and the 

mechanism of the diseases, assist in the preventative and therapeutic measures, and understand the 

outcome of the CVDs treatments.  

Computational fluid dynamics (CFD) field, which concerns the numerical methods for solving fluid 

dynamics, has become a widely used tool by researchers for the cardiovascular system because it 

explains the physical laws that govern blood flow (hemodynamics). Numerical description helps us 

quantifying parameters, such as pressure, flow velocity and orientation or forces applied in the vessels, 

that characterize the physiological and pathological states.  

When studying the hemodynamics of blood flow in the circulatory system, two significant aspects affect 

the numerical simulation – the geometry of the domain of interest and the boundary conditions (BCs). 

To reduce the complexity of the blood flow simulation is essential to truncate the domain of interest by 

creating artificial sections, which separate the region of interest for the simulation from the remaining 
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part of the circulatory system. The choice of BCs on artificial boundaries is an essential issue for fluid 

dynamic computations since different BCs could lead to quantitative differences in the solution. [1]–[5] 

In an ideal numerical simulation, the BC should consist of patient-specific data (e.g., velocity or 

pressure), which are very complex to obtain. The most appropriate boundary conditions are still a topic 

of debate and continuous development, mainly due to the lack of patient-specific measurements, 

especially for the outflow.  While at the inlet, the missing data can be replaced by adapting literature 

data to the case of interest, at the outlets is more challenging due to the morphological variation. 

The inlet BC should truncate the upstream vasculature of the vessel of interest. The simplest BC include 

idealised velocity profiles such as the flat-velocity, the fully-developed or the Womersley profiles. This 

velocity profiles can also be translated into a volumetric flow rate (Q) when the section’s diameter is 

known since the flow rate is equal to the measured average velocity times the area of the section where 

the velocity profile was measured.  

Despite the importance of the inlet BC, the solutions to the NS equations in large arteries are also highly 

dependent on the imposed outlet BCs to represent the downstream vascular systems. It has been 

demonstrated that velocity and pressure fields of the same computational domain can change 

significantly depending on the choice of outflow BC.[6] The Murray’s law boundary condition is a 

common strategies, stating that the flow in a vessel is proportional to the diameter of the vessel lumen 

cubed. Which in a generic outlet, translates to: 
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Another example of prescribed BCs, still common amongst the cardiovascular research community, is 

the traction-free (TF), one of the simplest BC to apply in a simulation, consists in assigning a zero 

pressure to the boundary, similar to assuming the vessel is cut and exposed to atmospheric conditions, 

thus neglects the resistive effects of downstream vessels. 

More advanced BCs, such as the three-element Windkessel has such, have been developed to better 

model the interaction between the computational domain and the downstream vasculature, by coupling 

the domain with simple models such as resistance, impedance, lumped parameter, to capture the 

resistance and compliance effects of the proximal and distal vessels in the arterial tree from 

corresponding outlets. [7] 

Another approach observed in the literature is using the variational approach to obtain more accurate 

boundary conditions and other flow metrics. Variational approaches, which consists of varying a defined 

number of parameters to minimise a cost function, have been used successfully as a strategy to take 

advantage of real data measurements. The variational approach allows for increasing the accuracy of 

numerical simulations. [8]   

The variational approach is a type of optimisation problem that consists of finding the parameters that 

optimise the objective - a quantitative measure of the system’s performance being studied, which 

depends on certain system characteristics (parameters). These parameters might be subject to 

constraints, or bounds, depending on the problem and system being studied. The optimisation consists 

of the minimisation or maximisation of a function subjected to constraints on its parameters. [9], [10] 

2. Methods  

2.1. Mathematical model and problem definition  

An aorta developed and studied by [11], was used to create a framework where the exponents of 

Murray’s law (ML) were automatically adjusted in the boundary conditions (BCs), using an optimisation 

study in COMSOL Multhiphysics®. Adaptations were made to the model of [11], and an independent 

mesh convergence study. The refined study concluded that a mesh with average element size ℎ =

4.32 × 10−3m was the most appropriated, consisting of 193,611 degrees of freedom.  

This framework consists of two problems – the forward problem and the controlled problem. The forward 

problem was used to generate different in-silico datasets,  since no patient-specific data was available, 

in the same aorta model where the optimisation tool was applied. [6], [12] The controlled problem 
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consisted of using a variational approach to adjust ML exponent – here designated as a parameter – 

that fitted better the in-silico data generated in the forward problem.  

The three-dimension computational domain consists of the upper part of a patient-specific thoracic 

aorta, which was truncated by three planar surfaces: one at the entrance of the ascending aorta, to 

define the inlet; one in the intersection of the arteries brachiocephalic artery (BA), left common carotid 

artery (LCA) and left subclavian artery (LSA) with the aortic arch, to define the supra-aortic outlets; and 

one in the middle of the thorax, to define the descendent aorta (DA) outlet.  The domain is divided into 

two by a virtual outlet, in the xy-plane, used as the optimisation baseline.  

Blood was modelled as a stationary, incompressible, laminar, homogeneous and Newtonian fluid with 

a constant density (𝜌𝑏𝑙𝑜𝑜𝑑) of 1060 kg/m3 [2], [13]–[15], and constant viscosity (𝜇𝑏𝑙𝑜𝑜𝑑) of 0.004 Pa.s [2], 

[16]–[18]. Also, the interaction with the vessel wall was not considered since it is a stationary model [19] 

Under these assumptions, blood flow was described using the stationary Navier-Stokes (NS) equations  

for an incompressible fluid [20]: 
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Where 𝑢 is the fluid velocity, 𝑝 is the pressure divided by density, 𝑓 is the body forces, 𝜌 is the density 

of the fluid, 𝜇 is the dynamic viscosity, and 𝜈 is the kinematic viscosity (𝜈 = 𝜇 𝜌⁄ ). 

The wall was considered a rigid surface with a no-slip condition, which means the velocity of the 

elements of the wall was set to zero, which translates by: 

 = 0u  (3) 

At the inlet, patient-specific flow rate (Qin) BC was imposed, where the maximum velocity (Vmax) was 

obtain from [11]. It is described by: 

 =  = 
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At the outlet in the descendent aorta (ΓDA), the BC imposed was a traction-free boundary condition 

(TFBC); this condition assumes that the normal stresses at the boundary, which are approximately 

equal to the pressure, are zero. The tangential stress component is also set to 0 Pa; therefore, the 

expression used to apply this BC was:  
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T
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where P0 = 0.  

The inlet and outlet DA BCs were set to be the same at the forward and the controlled problem. On the 

other hand, the BCs at the supra-aortic outlets were changed accordingly to the type of in-silico data 

being generated and the controlled test being performed.  

In sum, two types of BCs were attributed in the supra-aortic outlets: TFBC, where the condition imposed 

was (5), and MLBC, where the flow rate in each branch (Qi) was given by: 
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Where 𝑄𝑖𝑛 is the inflow given by (4). 𝐷𝑖𝑛 is the diameter of the inlet, 𝐷𝑖 is the diameter of the branch 𝑖, 

with 𝑖 ∈ (𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴), and 𝑝 is the exponent of the MLBC.  

The parameter 𝑝 is what will distinguish the forward problem from the controlled problem. When 

attributing MLBC, in the forward problem, the parameter was considered 𝛼 = 3, as stated in the 

literature [21], in the controlled problem, the parameter 𝛼 was used as the value to be optimized.  

• Forward problem  

Three different datasets (Data A, Data B and Data C) were generated using different combinations of 

BCs in the supra-aortic outlets, while the outlet DA and the inlet BCs were given by (5) and (4), 

respectively. The BCs attributed to the supra-aortic outlets are summarized in Table 1. 
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Table 1: Boundary conditions attributed to the supra-aortic outlets (BA, LCA and LSA) in the forward problem. 

Test Inlet Outlet DA Outlet BA Outlet LCA Outlet LSA 

Data A ▲ ● ▲ ▲ ▲ 

Data B ▲ ● ▲ ● ▲ 

Data C ▲ ● ● ● ● 
 

● TFBC  ▲ 𝑄𝑖 = (𝑉𝑚𝑒𝑎𝑛 ∗ 𝐴𝑖𝑛) ∗ (
𝐷𝑖

𝐷𝑖𝑛

)
3

, 𝑖 ∈ (𝑖𝑛, 𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴) 

The forward problem consists of solving the equation (2), using the BCs above described.  

• Controlled problem 

For each in-silico data set, either one control optimising a single parameter (α1)  common to all outlets 

(A1, B1 and C1) or three controls optimising a different parameter(α1, α2, α3) in each outlet (A3, B3, C3), 

was attributed to the boundary conditions. In Table 2, the summary of each BC applied to each test is 

stated.  

The controlled problem consisted of looking at the parameter 𝛼𝑥 such that the following cost function: 

 ( )
2

cos ( )
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f U u u dx= −  (7) 

Will be minimised. Here 𝑢 corresponds to the solution of the NS for the controlled problem, and 𝑢𝑑 

represents the solution of the NS for the forward problem, both at 𝑆𝑜𝑏𝑠. 𝑢 is subjected to the parameters 

obtained and their respective bounds.  

An optimisation problem always needs an initial value, and sometimes might need bounds, for example, 

due to physical constraints. To reduce computational time, as the mesh was refined, the bounded 

interval was adapted and can be consulted in [22].  

Table 2: Boundary conditions attributed to the supra-aortic outlets (BA, LCA and LSA) in the controlled problem. 

Test 
Forward 
Problem 

Inlet Outlet DA Outlet BA Outlet LCA Outlet LSA 

A1 Data A ▲ ● 𝛼1 𝛼1 𝛼1 

A3 Data A ▲ ● 𝛼1 𝛼2 𝛼3 

B1
LCA Data B ▲ ● ▲ 𝛼1 ▲ 

B1 Data B ▲ ● 𝛼1 𝛼1 𝛼1 

B3 Data B ▲ ● 𝛼1 𝛼2 𝛼3 

C1 Data C ▲ ● 𝛼1 𝛼1 𝛼1 

C3 Data C ▲ ● 𝛼1 𝛼2 𝛼3 
 

𝛼𝑥 𝑄𝑖 = (𝑉𝑚𝑒𝑎𝑛 ∗ 𝐴𝑖𝑛) ∗ (
𝐷𝑖

𝐷𝑖𝑛

)
𝛼𝑥

, 𝑖 ∈ (𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴) 

● TFBC 

▲ 𝑄𝑖 = (𝑉𝑚𝑒𝑎𝑛 ∗ 𝐴𝑖𝑛) ∗ (
𝐷𝑖

𝐷𝑖𝑛

)
3

, 𝑖 ∈ (𝑖𝑛, 𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴) 
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2.2. The solution to the controlled problem  

When coupling the stationary NS equations for incompressible fluids, stated in (2), with the appropriate 

boundary conditions, parameters 𝛼𝑥 to be adjusted and the bounds they are subjected. The resulting 

system of equations is: 
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Where 𝛼𝑥 are the parameters to be obtained with the minimised cost function, and the 𝑙𝑜𝑤𝑥 and the 𝑢𝑝𝑥 

with 𝑥 ∈ [1,3] are the lower and upper bound, respectively, for each parameter.  

A discretise-then-optimize (DO) approach will be used to solve both (7) and (8), which consists of first 

discretizing the optimal control problem and then solving the optimisation problem, resulting from the 

discretization. Beginning by discretizing the cost functional 𝑓0(𝑈) given by (7).  
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Since the solution of the forward problem (𝑢⃗ 𝑑) and the solution of the controlled problem (𝑢⃗  ) can be 
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Equation (9) becomes: 
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Where ‖∙‖ is the norm induced by the inner product (∙,∙)𝑀 and M is symmetric 𝑁𝑢 × 𝑁𝑜 matrix where 

each element is given by: 

  = = = , 1,2, , , 1,2, ,

obs

i j u o

S

mij dx i N j N  (12) 

The finite element method (FEM) was used to discretize the NS equations, resulting in the system of 

algebraic equations is formed in the form: 

 

TAU+ B P+ N(U) = 0

BU = 0





 (13) 

Where U is the matrix (𝑁𝑢 × 1) of the unknows coefficients 𝑢ℎ, and P is the matrix (𝑁𝑝 × 1) of the 

unknows coefficients 𝑝ℎ, AU is the discretised form of diffusion term, where 𝐴𝑖𝑗 = ∫ ∇𝜙𝑖 ∙ ∇𝜙𝑗
 

Ω
 𝑁(𝑢) is 

the discretised form of nonlinear convection, 𝐵𝑇𝑃 is the discretised pressure term, and 𝐵𝑈 is the 

discretised form of the divergence of U, where 𝐵𝑖𝑗 = ∫ ∇𝜙𝑖 ∙ ∇𝜓𝑗
 

Ω
 [23]–[26]. The full discretization can 

be consulted in the thesis.  
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The discrete problem can be stated as: 
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Where F is the discretization of the NS equations, seen in (13) taking into consideration the parameters 

𝛼𝑥 and its respective bounds.  

2.3. Application to aortic coarctation  

The framework developed applied to a model of an aorta with coarctation, for validation. The 

assumptions made regarding the flow were the same as those for developing the framework. The model 

consists of the upper part of a patient-specific aorta with a coarctation, with the same boundaries as the 

model in [11]. A virtual boundary (𝑆𝑜𝑏𝑠) was added to the aorta for the optimisation process.  

The first step consisted of solving system the NS equations, using the BCs in Table 3. The flow rate at 

the inlet was obtained from the literature (𝑄𝑖𝑛 = 316 𝑚𝐿/𝑠 ) [27], based on the geometry of the patient 

and the morphology of the aorta.  

Table 3: Boundary conditions attributed to the supra-aortic outlets (BA, LCA and LSA) in the forward problem for 

the aortic coarctation.  

Test Inlet Outlet DA Outlet BA Outlet LCA Outlet LSA 

Data P ▲ ● ▲ ▲ ▲ 

Data Q ▲ ● ● ● ● 
 

● TFBC  ▲ 𝑄𝑖 = (𝑉𝑚𝑒𝑎𝑛 ∗ 𝐴𝑖𝑛) ∗ (
𝐷𝑖

𝐷𝑖𝑛

)
3

, 𝑖 ∈ (𝑖𝑛, 𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴) 

The second step, applying the optimisation framework, consisted of solving the system (8) using the 

BCs in Table 4, with the appropriate bounds (found in [22]). An additional simulation was performed for 

each dataset, where the laminar flow hypothesis was not considered (Test Pv and Test Qv), and the 

fully-developed profile is not expected.  

Table 4: Boundary conditions attributed to the supra-aortic outlets (BA, LCA and LSA) in the controlled problem for 

the aortic coarctation. 

Test 
Forward 
Problem 

Inlet Outlet DA Outlet BA Outlet LCA Outlet LSA 

P1 Data P ▲ ● 𝛼1 𝛼1 𝛼1 

P3 Data P ▲ ● 𝛼1 𝛼2 𝛼3 

Pv Data P ▲ ● 𝛽1 𝛽1 𝛽1 

Q1 Data Q ▲ ● 𝛼1 𝛼1 𝛼1 

Q3 Data Q ▲ ● 𝛼1 𝛼2 𝛼3 

Qv Data Q ▲ ● 𝛽1 𝛽1 𝛽1 
 

▲ 𝑄𝑖 = (𝑉𝑚𝑒𝑎𝑛 ∗ 𝐴𝑖𝑛) ∗ (
𝐷𝑖

𝐷𝑖𝑛
)
3

, 𝑖 ∈ (𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴)  𝛼𝑥 𝑄𝑖 = (𝑉𝑚𝑒𝑎𝑛 ∗ 𝐴𝑖𝑛) ∗ (
𝐷𝑖

𝐷𝑖𝑛
)
𝛼𝑥

, 𝑖 ∈ (𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴)  

● TFBC 𝛽𝑥 𝑉𝑖 = 𝑉𝑚𝑒𝑎𝑛 ∗ (
𝐷𝑖

𝐷𝑖𝑛

)
3

, 𝑖 ∈ (𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴) 

In this case, the objective function was built using patient-specific data. The controlled problem 

consisted of looking at the parameter 𝛼𝑥 such that the following cost function: 

 ( )
2

cos ( )

obs

t

S

f U u v dx= −  (15) 

Where u is the controlled problem solution in the section 𝑆𝑜𝑏𝑠 and 𝑣 is the mean velocity obtained from 

a patient-specific hemodynamic gradient. A hemodynamic gradient, in the coarctation area, was 

obtained from the hospital (𝑃 = 30 𝑚𝑚𝐻𝐺) and using a simplification of Bernoulli’s equation: 
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3. Results  

The solutions of recovering Data A, Data B and Data C were compared and found in [22], together with 

the results of applying the framework to an aorta with coarctation. In this section, the recovery of the 

flow from Data B and the flow from the aorta with coarctation are analysed.  

Simulations with controlled parameter  

Table 5 contains the obtained optimized ML exponent parameters for each test, recovering Data B. 

Values when applying a control in only one outlet (Test B1
LCA) are around 60% lower than when applying 

controls in all three supra-aortic outlets (Test B1 and Test B3). Therefore, the velocities obtained in the 

outlet LCA will be higher for Test B1
LCA. On the other hand, since the remaining boundary conditions for 

Test B1
LCA  have α = 3 and  α1

 < 3, in Test B1 and Test B3, outlets LSA and BA will have higher values 

for both tests. 

For Test B3, as the diameter decreases, DBA > DLSA > DLCA, the value of the parameter increases, α1 <

α3 < α2. Considering the equation (6), as the diameter of a daughter’s vessel increases the flow entering 

that vessel also increases. Additionally, as the parameter of ML increases, the flow declines, since it is 

powered to a number < 1. Therefore, as the diameter increases, the parameter adapts to the largest 

daughter’s flow is proportional high. For Tests B1/B3, where the flow in all outlets was subjected to 

optimisation, the parameters obtained for Test B3 are analogous between them - 𝛼1 = 2.3107, α2 =

2.3122 and α3 = 2.3118 – and between the parameter obtained for Test B1 (α1 = 2.3114). Since the 

parameters are very close to each other, the velocity, pressure, and WSS solutions will be the same. 

Therefore, the errors derived will also be similar.  

Table 5: Murray’s Law parameters obtained by solving Test 𝐵1
𝐿𝐶𝐴, with and without noise, Test B1, with and without 

noise, and Test B3. 

Test 𝛂𝟏 𝜶𝟐 𝜶𝟑 

B1
LCA 1.4437 - - 

B1
LCA + noise 1.4441 - - 

B1 2.3114 - - 

B1 + noise 2.3039 - - 

B3 2.3107 2.3122 2.3118 

 

Table 6 contains the errors of the domain, of the section used for the optimisation problem (𝑆𝑜𝑏𝑠), and 

of the descendent aorta. The errors in 𝑆𝑜𝑏𝑠 can be neglected since it is used as the optimisation stop 

and therefore need to be as small as defined in the objective function (7).  

Table 6: Absolute errors, relative errors and magnitude in the domain, section 𝑆𝑜𝑏𝑠 and outlet DA of the controlled 

solutions obtained by solving Test 𝐵1
𝐿𝐶𝐴, with and without noise, Test B1, with and without noise, and Test B3. 

Test 
Domain 𝑆𝑜𝑏𝑠 Section Outlet DA 

Abs. Error Rel. Error Abs. Error Rel. Error Mag. Abs. Error Rel. Error Mag. 

B1
LCA 2.4E-05 6.8E-03 6.8E-07 7.4E-05 -8.2E-12 3.3E-07 3.2E-05 3.8E-06 

B1
LCA + noise 2.4E-05 6.8E-03 9.6E-07 1.0E-04 -6.3E-05 6.7E-07 6.4E-05 -5.9E-05 

B1 3.4E-04 9.7E-02 6.6E-05 7.2E-03 -1.2E-10 2.7E-05 2.6E-03 1.5E-04 

B1 + noise 3.4E-04 9.7E-02 7.1E-05 7.7E-03 1.6E-03 3.3E-05 3.2E-03 1.8E-03 

B3 3.4E-04 9.7E-02 6.6E-05 7.2E-03 -9.0E-11 2.7E-05 2.6E-03 1.4E-04 

 

The three tests have a low absolute error in the domain, with Test B1
LCA presenting 0.002% and Tests 

B1/B3 0.034%. Tests B1/B3, nonetheless, present a considerable relative error (9.7%) while Test B1
LCA a 
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small one (0.678%). Since the same BC was attributed for outlets BA and LSA, in Test B1
 LCA, this relative 

error is only driven by the solution in outlet LCA while for Tests B1/B3 all outlets contribute to the error.  

The attribution of the same boundary conditions from Data B explains the neglectable error found for 

B1
LCA  in Table 7, for those two outlets, in both absolute error and relative error. On the other hand, for 

LCA – the outlet where the parameter was imposed – the absolute error is around 0.12% and the 

relative error 32.58%. This value of error means that the velocity in these outlets, with an optimised 

parameter, is 1/3 higher or lower than the velocity obtained in the controlled solution. Relative errors 

take into consideration the differences in the magnitude of the velocity vectors and their direction. Since 

the MLBC was imposed in the optimised solution, this solution must have a parabolic shape while in 

the controlled solution, the flow does not necessarily achieve a parabolic flow. 

Table 7: Absolute errors, relative errors and magnitude in the supra-aortic outlets (Outlet BA, Outlet LCA and Outlet 

LSA) of the controlled solutions obtained by solving Test 𝐵1
𝐿𝐶𝐴, with and without noise, Test B1, with and without 

noise, and Test B3. 

Test 

Outlet BA Outlet LSA Outlet LSA 

Abs. 
Error 

Rel. 
Error 

Mag. 
Abs. 
Error 

Rel. 
Error 

Mag. 
Abs. 
Error 

Rel. 
Error 

Mag. 

B1
LCA 5.6E-09 5.8E-06 -9.5E-08 1.2E-03 3.3E-01 2.2E-02 1.1E-09 1.9E-06 -3.5E-08 

B1
LCA + noise 7.2E-09 7.4E-06 -3.3E-08 1.2E-03 3.3E-01 2.3E-02 2.5E-09 4.5E-06 -3.0E-08 

B1 1.1E-03 1.1E+00 -1.1E+00 2.8E-03 7.6E-01 7.7E-01 8.4E-04 1.5E+00 -1.5E+00 

B1 + noise 1.1E-03 1.1E+00 -1.1E+00 2.8E-03 7.6E-01 7.6E-01 8.6E-04 1.6E+00 -1.6E+00 

B3 1.1E-03 1.1E+00 -1.1E+00 2.9E-03 7.6E-01 7.7E-01 8.4E-04 1.5E+00 -1.5E+00 

Relatively to the errors obtained using a noise component in the objective function, Table 7 shows that 

they are in the same order of the errors obtained for the same tests without noise.  

Application to aortic coarctation 

When comparing all the CoA tests, the first observation is that the controlled parameter obtained (Table 

8) is similar in the same type of tests, regardless of the data used (Data P or Data Q). For example, 𝛼1 

in Test P3 is similar to 𝛼1 in Test Q3, while 𝛽1 in Test Pv is similar to 𝛽1 in Test Qv. The fact that the same 

values were obtained regardless of the data used confirms the method’s validity, even if the flux in the 

outlets is not well adjusted to the real data.  Moreover, parameters show different values as seen in the 

literature [21], with the tests using a non-laminar profile approach with the closest values to 𝛼 = 3. In 

this case, the values obtained as parameters for the CoA were higher than the ones for the normal 

aorta.  

Table 8: Murray’s Law parameters obtained by solving the CoA tests 

Test  𝛂𝟏 𝜷𝟏⁄  𝜶𝟐 𝜶𝟑 

P1 5.5296 - - 

P3 5.9972 4.2723 4.3380 

Pv 3.3576 - - 

Q1 5.4765 - - 

Q3 5.9972 4.2723 4.3380 

Qv 3.3576 - - 

 

Additionally, unlike what was obtained for the tests in the previous section, when using a different control 

per each outlet (Test P3 and Test Q3) the values obtained are considerably difference, mainly between 

the parameter for the outlet BA (𝛼1) and the remaining ones. These higher values in 𝛼1 reduce the flow 

rate going into this outlet which, in the end, approximates the proportion of flow in each supra-aortic 

outlet to what would be expected. However, this outlet BA does not have a circular shape, but an 

elliptical one, which might influence the results since Murray’s Law was developed in pipes.  
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Errors - both absolute and relative – are similar for all tests, with the absolute error in the domain < 1%. 

Nevertheless, for tests with Data P, the relative error in the domain is <10% while for the test with Data 

Q is ~145%, driven by the errors in the outlet DA and the coarctation section. In the supra-aortic outlets, 

relative errors are in the order of 101 and absolute errors around 0.2% for tests with Data P and 1.4% 

for tests with Data Q. 

Table 9: Absolute errors, relative errors and magnitude in the domain, section 𝑆𝑜𝑏𝑠 and outlet DA of the controlled 

solutions obtained by solving the CoA tests. 

Test 

Domain 𝑺𝒐𝒃𝒔 Section Outlet DA 

Abs. 
Error 

Rel. Error 
Abs. 
Error 

Rel. Error Mag. 
Abs. 
Error 

Rel. Error Mag. 

P1 1.1E-03 9.8E-02 2.6E-03 9.4E-02 -9.4E-02 1.6E-03 9.3E-02 -9.3E-02 

P3 1.1E-03 9.7E-02 2.6E-03 9.4E-02 -9.3E-02 1.6E-03 9.3E-02 -9.3E-02 

Pv 1.1E-03 9.7E-02 2.6E-03 9.4E-02 -9.3E-02 1.6E-03 9.3E-02 -9.3E-02 

Q1 8.4E-03 1.5E+00 2.0E-02 2.0E+00 -2.0E+00 1.2E-02 2.0E+00 -2.0E+00 

Q3 8.4E-03 1.5E+00 2.0E-02 2.0E+00 -2.0E+00 1.2E-02 2.0E+00 -2.0E+00 

Qv 8.4E-03 1.5E+00 2.0E-02 2.0E+00 -2.0E+00 1.2E-02 2.0E+00 -2.0E+00 

4. Conclusions 

To conclude, using a variational approach is an acceptable method to attribute boundary conditions 

when patient-specific is not available to provide individual characteristics to the boundary conditions. 

The absolute errors over the domain obtained for both models are small (< 1%), with the normal aorta 

(where the framework was developed) showing smaller values (<0.03%). Relative errors in the domain 

are considerably higher but no more than 10%, for both models except for some tests in the aorta with 

coarctation. In general, relative errors in the supra-aortic outlets were higher driven by the laminar profile 

forced in the boundary conditions.  

The ML parameters obtained in both development of the framework and validation using a CoA, are 

different from those found in the literature, with higher parameter values found for the CoA, which can 

be explained by the flow behaviour. 

This work has some limitations primarily related to the model assumptions, for example, considering 

the flow stationary or not considering the interaction with the vessel wall. Additionally, the flow was 

considered laminar. A turbulence or transition model should be considered when studying the aortic 

arch’s hemodynamics since, in pathologies like the aorta’s coarctation, the flow is proved to be 

turbulent.  

Other limitations include the mesh sizes, which were not the ideal one, since they have associated a 

relatively high error; the accuracy of the geometry used, since the acquired images have some noise 

associated; and the use of inflow data taken from the literature instead of patient-specific data. 

Nevertheless, this work was only the first stage of developing a method to help make better patient 

treatment decisions. Surpassing the limitations of the work and improving some of the assumptions, as 

a next step, could lead to better and more useful results.  
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