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Abstract—Heterogeneous sensor networks, including water
distribution systems and traffic monitoring systems, produce
abundant time series data for monitoring network dynamics and
detecting events of interest. Nevertheless, errors and failures in
the calibration, data storage or acquisition can occur on some of
the sensors installed in those systems, producing missing and/or
anomalous values. This work proposes a computational system,
referred as AutoMTS, for the fully autonomous cleaning of
multivariate time series data using strict quality criteria assessed
against ground truth extracted from the targeted series data.
The proposed methodology is parameter-free as it relies on
robust principles for the assessment, hyperparameterization and
selection of methods. AutoMTS coherently supports an extensive
set state-of-the-art methods for (multivariate) time series imputa-
tion and outlier detection-and-treatment, considering both point
and segment/serial occurrences. A comprehensive evaluation of
AutoMTS is accomplished using heterogeneous sensors from two
water distribution systems with varying sampling rates, water
consumption patterns, and inconsistencies. Results confirm the
relevance of the proposed AutoMTS system.

Index Terms—parameter-free learning, multivariate time se-
ries, missing values imputation, outlier detection, heterogeneous
sensor networks, real-time data

I. INTRODUCTION
The placement of heterogeneous sensors within complex

systems – whether physiological, mechanical, digital, geo-
physical, environmental or urban – offers the possibility to
acquire comprehensive views of their behavior along time.
Sensorized systems produce abundant time series data, used
for monitoring purposes or the detection of events of interest.
However, the placed sensors are susceptible to failures and
errors associated with sensor calibration and data acquisition-
transmission-storage Gill et al. [1], producing time series data
with missing and anomalous values. In this context, time series
data are generally subjected to initial processing stages for
leveraging their quality for the subsequent mining stages.

Processing time series data produced by networks of het-
erogeneous sensors is, nevertheless, a laborious process due to
four major reasons. First, the selection and parameterization of
the processing methods is highly dependent on the regularities
of the target series data and challenged by the wide diversity
of approaches currently available. Second, the profile of er-
rors can be diversified, each leading to different processing
choices. In this context, the type and amount of anomalies and

missing values can largely affect decisions. Third, different
types of sensors – such as water flow, pressure and water
quality sensors in water distribution systems – may benefit
from dissimilar processing methods. In fact, sensors of the
same type but with singular calibrations, sampling rates, or
positioning within the monitored system can as well benefit
from different choices. Fourth and finally, different systems
equipped with identical sensors do not necessarily benefit from
the same processing options. Consider water distribution net-
work (WDN) systems, water consumption patterns can highly
vary between WDNs or along time, impacting decisions. Also,
different WDNs may be susceptible to unique externalities,
affecting the profile of observed errors.

In addition, time series data processing generally yields sub-
optimal results. First, cross-variable relationships in multivari-
ate time series data are commonly disregarded. For instance,
flow and pressure sensors in WDNs are generally correlated,
and thus co-located or nearby sensors can guide the treatment
of low-quality series data. Second and understandably, optimal
decisions are challenged by the wide diversity of available
processing approaches, multiplicity of sensors, and profile of
errors observed per sensor.

This work proposes a methodology for the fully autonomous
cleaning of multivariate time series, for historical and real-
time data settings, that is able to address the introduced
challenges. The proposed methodology, referred as AutoMTS
(Autonomous Multivariate Time Series data processing), of-
fers three major contributions. First, AutoMTS provides strict
guarantees of optimality as it places robust processing deci-
sions against ground truth extracted from the targeted series
data.

Second, AutoMTS provides a comprehensive coverage of
available processing options, currently providing state-of-the-
art methods for missing imputation, outlier detection and
gross-error removal from time series data, some of them
able to consider cross-variable dependencies in the presence
of multivariate time series data. Also, we further guarantee
the presence of methods able to deal with both point and
segment/serial missing and outlier values.

Third, AutoMTS is parameter-free as it relies on robust
principles to assess, hyperparameterize and select state-of-the-
art processing methods.

AutoMTS is provided as both a graphical and programmatic



tool satisfying strict usability criteria.
The manuscript is structured as follows. Section II provides

essential background and surveys recent contributions on time
series data processing. Section III described the AutoMTS
approach for either historical data and real-time data settings.
Section IV comprehensively assesses the adequacy of Au-
toMTS using two real-world heterogeneous networks as study
cases. Finally, concluding remarks and major implications are
synthesized.

II. BACKGROUND AND RELATED WORK
This section offers a structured view on how to process in-

consistencies in (multivariate) time series, providing essential
background, surveying recent contributions, and describing the
pre-processing methods implemented in AutoMTS.

Time series data processing. Signals produced by sensors
are generally represented as time series, an ordered set of
observations ~x1..T = (~x1, ..., ~xT ), each ~xt being recorded at a
specific time point t. Time series can be univariate, ~xt ∈ R,
or multivariate, ~xt ∈ Rm, where m > 1 is the order (number
of variables).

Errors associated with the calibration, measurement, stor-
age, logger communication and synchronization of sensors
are associated with inconsistencies on the produced time
series. As a result different types of errors can be observed,
including: 1) anomalous values, 2) missing values; 3) duplicate
values; 4) atypical values or gross errors (impossibilities in a
given domain); and 5) incorrectly timestamped observations
(arbitrarily-high sampling delays).

Low-quality data can be rectified. The task of pre-processing
time series is the process of leveraging quality data to facilitate
the subsequent extraction of useful information from the time
series. In this context, cleaning the identified inconsistencies
is an important step, and the one targeted in this work.

Time series can be decomposed into trend, seasonal, cycli-
cal, and irregular components using additive or multiplicative
models Jain [2]. Processing can take place on the original
series or separately on each component. Classical approaches
for time series analysis generally rely on statistical princi-
ples, including auto-regression, differencing and exponential
smoothing operations to either detect deviations from expec-
tations as well as to impute missing values Wei [3].

Time series typically have an internal structure with domain-
specific meanings. In this context, normalization, resampling,
piecewise aggregate approximation, symbolic aggregate ap-
proximation, and transformations (including Fourier, Wavelet
and other forms of window-based feature extraction) can
support the analysis of the internal structure of time series.
However, finding suitable representations is highly dependent
on the subsequent mining ends and therefore is not considered
part of the processing pipeline proposed in our work.

Missing value imputation. Missing observations, commonly
referred as missing values, can be characterized by the un-
derlying stochastic processes that describe their occurrence: i)
missing completely at random (MCAR) where there is no dis-
tribution characterizing their occurrence, generally caused by

punctual problems on data transmission-storage-acquisition; ii)
missing at random (MAR) where missings are independent
of the value of the observation but dependent on the other
non-missing observations (e.g. sensor malfunction under high
temperatures); and iii) not missing at random (NMAR) where
missings essentially depend on the value of the observation
(e.g. sensors failing measuring high pressure). Complementary,
missing values can be described by their type – whether point,
sequential or mixed similarly to outliers – and amount from a
given period.

There are three typical choices to deal with missing values:
i) force removal, leading to gaps on the time series to be
handled along the subsequent time series processing steps;
ii) replace them with a dedicated value or symbol; and iii)
estimate their values using imputation principles. Missing
removal can be listwise (indiscriminate missing deletion) or
pairwise (controlled deletion in accordance with the amount)
Osman et al. [4]. Missing imputation can either produce
hot-deck estimates from similar/nearby observations or from
matched segments of the time series; or cold-deck estimates
from external time series datasets Osman et al. [4].

Last observation carried forward (LOCF) and next ob-
servation carried backward (NOCB) are simplistic methods
based on the closest available observation. Linear interpolation
linearly combines last and next observations. Usually, the
seasonal component is removed at the beginning and included
after linear interpolation is done. Moving average (MA) can
include further observations to estimate the missing value,
~̂xt = 1

m

∑k
j=−k ~xt+j where [t−k, t+k] is a centered window

of 2k+1 length (also termed order). When the sequential values
are all missing observations, the window size can dynamically
expand until two non-missing values occur. In this context,
linear interpolation is a moving average or order 2. Average
(median) imputation corresponds to a moving average (me-
dian) with unbounded order, imputing the average (median)
of all non-missing occurrences. The expectation maximization
algorithm (EM) has been also suggested for estimating missing
observations within multivariate time series data, although
in its original form disregards time dependencies. Amelia
combines the EM method with bootstrapping to impute miss-
ing values in time series data using principles from multiple
imputation. Classical approaches for time series modeling,
including SARIMA and Holt-Winters Wei [3], are also viable
imputation candidates when time series have well-established
regularities.

k-nearest neighbors (kNN) can be applied to impute both
point and sequential missings from (multivariate) time se-
ries. To this end, time series are subjected to segmentation,
and the value estimates inferred from the closest neighbor
subsequences. Particular attention should be paid to its pa-
rameterization, as kNN performance highly depends on the
selected distance (e.g. ability to tolerate shift and scale mis-
alignments on the time and amplitude axes) and number of
neighbors. In the presence of multivariate time series data,
MissForests Stekhoven et al. [5] uses principles from random
forest approaches to deal with mixed-variables (relevant when



dealing with heterogeneous sensors) in accordance with the
frequency of missing values (chained principle). Despite its
role, it neglects time dependencies between observation. The
time-extended version of multivariate imputation by chained
equations (MICE) Buuren et al. [6] is able to addresses such
drawback while still accounting for cross-variable dependen-
cies.

Osman et al. [4] proposed an ensemble approach that selects
between classical imputation techniques (such as moving
average) and modern alternatives in accordance with the type
(MAR or MCAR) and amount of missings. In addition to
some of the surveyed methods, modern imputation techniques
further include reconstruction methods based on principal
component analysis Ilin et al. [7] and machine learning
techniques such as Gaussian process regression, tensor-based
methods Garg et al. [8], and neural networks, specially auto-
associative neural networks Luo et al. [9].

Moritz et al. [10] extensively compares multiple-imputation
approaches by deleting observations from time series with
varying trend and seasonal characteristics. Multiple-imputation
approaches rely on multiple estimates to reduce biases. For
instance, Aggregated values Zeileis et al. [11] is an estimator
from mean estimates collected at multiple temporal granu-
larities (overall, yearly, monthly and daily mean). Seasonal
Kalman filters and model-based approaches have been also
applied within multiple-imputation settings Kowarik et al. [12]
and Moritz et al. [10].

Imputation methods have been also proposed in the context
of specific domains. In water-energy-gas distribution systems,
the well-recognized Quevedo method Quevedo et al. [13] esti-
mates missings from observations collected at similar periods
from previous days, weeks, months and years. Barrela et al.
[14] further proposed a estimator that combines both forecast
and backcast missing observations values generated by TBATS
and ARIMA models, accommodating multiple seasonality.

For real-time data, Fan et al. [15] proposed a model called
On-line Missing Value Imputation (OLMVI), which can an-
alyze observations of information and impute the missing
observations before they are added into a database. Using
a correlation matrix (updated as new data enter the system)
and the attributes, imputation candidates are computed by
assigning an imputation score to each of them. The candidate
with the highest score is the one used as imputed value.
Also Osman et al. [4] present approaches for missing values
imputation in real-time data from a WDN.

Time series outlier detection. Outliers are observations sig-
nificantly deviating from expectations as to arouse suspicion of
being generated by a different mechanism Hawkins [16]. Out-
liers can occur in point or serial forms. Point outliers (also re-
ferred as punctual or singular outliers) can be detected against
the whole series (global outliers) or against observations
that occur on nearby time points or share the same context
(local/contextual outliers). Sequential outliers (also referred
as segment or serial outliers) are anomalous subsequences of
contiguous observations. Outliers can be further characterized

in accordance with their causation and impact Chan [17]:
additive outliers affect the time series for a single time
period; level shift outliers have preserved/continuous effects;
temporary change outliers show an exponential decaying over
time; and innovational outliers affect the nearest subsequent
observations. Outlier analysis generally comprises anomaly
scoring, detection and treatment steps. Treatment either de-
notes the removal (planting missing values) or re-estimation
of outlier values. Approaches for outlier analysis are generally
categorized according to distribution-based, depth-based, dis-
tance-based, density-based and clustering-based approaches
Aggarwal [18].

Outlier analysis can be applied on the raw time series
or over its irregular component once decomposed. Simple
methods for point outlier detection rely on deviation criteria
or inter-quartile ranges assessed on the irregular component.
Generally, this class of methods fits empirical or statistical
distributions and fix thresholds on what it is expected to occur.
Despite their simplicity, time dependencies are disregarded.
Local outlier factor (LOF) Breunig et al. [19] approach
minimizes this drawback by computing anomaly scores based
on the local density of an observation with respect to its
neighbours where the neighborhood criteria can include tem-
poral and cross-variable distances. Isolation forests Liu et al.
[20] recursively generate partitions from multivariate series
data by randomly selecting a feature and a split value for the
feature. Presumably the anomalies need fewer partitions to be
isolated compared to “normal” points, thus yielding smaller
trees. Parametric models from maximum likelihood estimates
are also available Chen et al. [21].

Gupta et al. [22] provide a comprehensive survey of con-
tributions on outlier detection over temporal data structures,
including (geolocalized) time series data. The approaches to
detect point outliers are grouped into five major categories:
predictive, profile-based models, information-theoretic, classi-
fication and clustering approaches. In the context of predictive
models, a score is assigned to each observation as a deviation
from the estimated value. Estimates can be computed using
imputation techniques for univariate and multivariate time
series data previously covered. Profile-based approaches trace
a normal profile for the time series using classical time
series models Wei [3] and more recent advances, including
recurrent neural networks that act as auto-encoders Guo et al.
[23]. Anomaly scores are then inferred by testing deviations
against the approximated profile. The principle behind the less
common information theoretic approaches is that the removal
of outlier results in higher abstraction ability (time series
representations with lower error bound) Jagadish et al. [24].

Approaches for sequential outlier detection traditionally
compare subsequences segmented under multi-scale sliding
windows to identify dissimilar subsequences. Keogh et al.
[25] outlines principles to surpass the computational com-
plexity of computing pairwise time series distances between
all subsequences, including heuristics to reorder candidate
subsequences, locality sensitive hashing, Haar wavelets, and
joint use of symbolic aggregations with augmented tries.



These are used for an improved ordering of subsequences.
An additional challenge is the fact that sequential outliers may
have an arbitrary length. Chen et al. [26] proposed a new class
of approaches that satisfy this premise: a pattern (subsequence
of two consecutive points) is defined and outliers are composed
of infrequent patterns on either the original time series or
compressed time series recovered after wavelet transform.

Time series clustering algorithms are as well used to de-
tect sequential outliers. Generally, these approaches segment
the inputted series to identify anomalous segments, paying
particular attention to distance metrics between time series
(including metrics to tolerate misalignments) and barycenter
criteria whenever applicable. Understandably, traditional clus-
tering algorithms can be also applied to detect outliers from
(multivariate) time series by assuming independence between
observations. HOT SAX Keogh et al. [27] also offers the
possibility to detect sequential outliers, referred as time series
discords, from symbolic representations of the time series.
HOT SAX, originally prepared to detect global sequential
outliers, was later on extended towards local sequential outliers
Toshniwal et al. [28].

Real-time data yields a significant difference: the non fixed
length of the data and the requirement that the processing task
must be efficient enough to deal with the sampling rate of the
new coming observations. Therefore, the referred methods for
outliers detection can substantially differ. According to Gupta
et al. [22], the methods can be divided into: 1) evolving predic-
tion models, 2) distance based outliers for sliding windows and
3) outliers in high-dimensional data streams, where multiple
investigations on the field are depicted in the paper.

Other inconsistencies. In the presence of domain knowledge,
atypical values or gross errors in time series can be detected
by fixing upper and/or lower bounds on the acceptable val-
ues. Duplicate values are harder to detect as they may not
necessarily result in anomalous values. Duplicates can have
different causes: 1) accumulation of values from previous
observations (generally preceded by missing occurrences), and
2) multiplicity of measurements within a single time step.
Density-based outlier approaches are generally considered for
the former case, while rule-based analysis of timestamps
against sampling expectations are pursued for the latter case.
Finally, irregular sampling rates observed within or between
sensors or between sensors often result from faulty sensor
synchronization. Diverse transforms and dedicated time series
analysis algorithms have been proposed to deal with irregular
measurements Fatehi et al. [29] and Xue-Bo et al. [30].

Parameter-free and autonomous processing. The litera-
ture on autonomous selection of either parametric or non-
parametric methods for time series processing is scarce, gen-
erally providing series-dependent contributions and focusing
on a single processing task. Rayana et al. [31] and Zimek
et al. [32] proposed ensemble principles to infer anomaly
scores from multiple estimates, validated in specific data
domains. Similarly, ensemble principles for imputing missing

observations in time series have been proposed Li et al.
[33] and Oehmcke et al. [34]. Böhm et al. [35] introduced
CoCo, a parameter-free method for detecting outliers in data
with unknown underlying distributions. Despite the relevance
of these contributions, to our knowledge there are not yet
methodologies for autonomously assessing, parameterizing
and selecting methods able to treat time series unsupervisedly.

III. SOLUTION

Despite the relevance of the surveyed contributions, existing
time series pre-processing methods are generally oriented
towards specific data regularities and types of errors. Thorough
comparisons are thus necessary to place proper decisions, a
generally laborious and difficult process due to the difficulty
of performing objective assessments in the absence of ground
truth.

The AutoMTS is a parameter-free methodology, a compo-
sition of steps that guarantee the robust assessment, hyper-
parameterization and selection of state-of-the-art processing
methods in accordance with the regularities and inconsisten-
cies observed in the inputted series data. We developed to
approaches: one for the historical data setting and one for the
real-time data setting.

A. Historical data

AutoMTS receives as input a pointer to a database or file
with the raw time series data, and produces as output the
processed data without inconsistencies in accordance with
strict quality criteria.

The major idea behind AutoMTS is to generate precise
ground truth for the sound and quality-driven evaluation of
available processing options. To this end, AutoMTS relies
on two major principles: i) detection of conserved segments
within the inputted series data, and ii) modeling the type
and amount of observed errors. Under these principles, the
assessment can be conducted by purposefully planting incon-
sistencies along the conserved segments. In this way, available
processing options can be objectively assessed.

AutoMTS provides a good coverage of available processing
options, providing methods for missing imputation, outlier
detection and gross-error removal from time series data. With
the aim of handling errors of varying profile, AutoMTS
incorporates processing methods able to deal with both point
and serial missing and outlier values. In addition, AutoMTS is
able explore the aided processing guidance provided by cor-
related variables within multivariate time series data. To this
end, state-of-the-art processing methods able to capture cross-
variable dependencies are further supported in AutoMTS.

1) Methodology: AutoMTS is a sequential approach for
pre-processing time series produced from heterogeneous net-
works. The four major steps are: given a (multivariate) time
series, the first step is to treat non-cumulative duplicates. After
the time series is cleansed of duplicates, the second step is the
detection of atypical values against background knowledge.
For instance, in the context of water flow and pressure sensors,
lower bounds are generally zero and upper bounds fixed in



accordance with pipe specifications. Atypical values are then
translated into missing values to be dealt later in the process.
On the third step, we detect outlier observations. This is a
core step in our pipeline as the wide-diversity of state-of-
the-art methods for outlier detection needs to be robustly
assessed using the methodology proposed in section III-A2.
The selected method, already hyperparameterized, is then
applied to detect outliers in the target (multivariate) time series.
The detected outliers, along with their anomaly scores, will
be given to the user and he may opt to either discard the
outliers (default option) or mark some of the detected outliers
to be retained in the time series. The fourth step is to impute
values on the missing observations, including originally miss-
ing occurrences as well as the removed outliers and atypical
values. Similarly with the third step, this is another core step
within the AutoMTS process. The assessment methodology
for hyperparameterizing and selecting imputation methods is
introduced in section III-A3. Once missing occurrences are
imputed, the treated time series is returned by AutoMTS.

2) Autonomous outlier detection (step 3): The third step
purposefully plants artificial outliers in the conserved segments
of the inputted time series eithe point-wise and/or segment-
wise. The robust planting of artificial outliers is essential to
gather ground truth for the objective assessment of the meth-
ods, necessary to their hyperparameterization and comparison.
AutoMTS runs by default 30 process simulations to collect
performance estimates.

The outlier detection methods available in the AutoMTS are
standard deviation, inter quartile range, isolation forests, local
outlier factor, DBScan and HOT SAX.

Let TP (true positives) be the correctly detected outliers,
TN (true negatives) be observations correctly identified as
non-outliers, FP (false positives) be the incorrectly detected
outliers, and FN (false negatives) be the non-detected outliers
wrongly. To evaluate the behavior of outlier detection methods,
we suggest as essential performance views the analysis of
recall,

recall =
TP

TP + FN
,

to understand the percentage of correctly identified outliers, as
well as precision,

precision =
TP

TP + FP
,

to understand whether the retrieved outliers were identified at
the cost of retrieving non-outlier observations (false positives).
To objectively guide the hyperparameterization and selection
steps, these complementary views can be combined within
scores, such as the F1-score,

F1-score = 2× precision× recall

precision + recall
,

which is not free of criticisms [36] due to the inherent
characteristics of the harmonic mean.

3) Autonomous missing imputation (step 4): The fourth step
generates missing observations within conserved segments of
the inputted time series in accordance with the profile of
missing data observed along the non-conserved segments.

Similarly to the generation of artificial outliers, the genera-
tion of artificial missings, is essential to gather ground truth for
objective assessments required for the hyperparameterization
and selection of imputation methods.

For generating the ground truth, three major steps are under-
taken. First, AutoMTS verifies whether the largest conserved
segment satisfies a minimum length assumption (four weeks).
To generate the artificial missing values random values are
selected, for point-wise and/or sequence-wise observations,
and are turned into missing observations. By default, 30
process simulations are considered to collect performance
estimates

The univariate imputation methods available in the Au-
toMTS are: random sample, interpolation, LOCF, NOCB and
moving average. The supported multivariate methods are:
random forests, expectation maximization, kNN, Mice and
Amelia.

To evaluate the performance of imputation methods,
residue-based scores are considered, including the mean abso-
lute error (MAE),

MAE = Σn
i=1|~̂xti − ~xti |,

where ~x and ~̂x are the observed and imputed time series
respectively, and n is the number of missings; the root mean
squared error (RMSE),

RMSE =

√√√√ n∑
i=1

(~̂xti − ~xti)
2

n
,

the symmetric mean absolute percentage error (SMAPE);
and the percentage of missing values imputed since not all
imputation methods may not encounter necessary conditions
for imputing certain missing observations.

4) Final remarks on the behavior of historical setting:
The state-of-the-art methods supported along the third and
fourth steps of the AutoMTS pipeline are tested one by one. A
good portion of these methods require the input of parameter
values. In this context, hyperparameterization is conducted
using the planted inconsistencies in order to identify the best
parameters. To this end, we rely on Bayesian optimization
[37] due to its inherent ability to traverse only the most
promising areas of the search space, thus promoting efficiency.
The hyperparameterization should be driven by one of the
performance views previously introduced. By default, F1-score
is selected for the hyperparameterization of outlier detection
methods, while RMSE is the default criteria to guide the
hyperparameterization of missing imputation methods.

Once parameterized, methods are then evaluated using the
same performance views and the best performing method is
selected and used to pre-process the original data.



B. Real-time data

As stated before, AutoMTS uses a sequential approach for
pre-processing time series, although in the real-time setting,
the approach is also conditional. Instead of having access to
the totality of the time series, we receive a new observations
with a specific period, so we have to deal observations-wise
instead of dataset-wise. The four major steps are the following:
given a new observation, the first step is to check if it is a
duplicate. If it is then we remove the observation, if it is not
we go to the next step. The second step is to detect if the
observation is a gross-error. If it is we remove the observation
and impute as a missing value, if it is not we go to the next
step. The third step is to detect the observation as an outlier. If
it is we remove the observation and impute as missing value,
if it is not we got to the next step. The fourth step, we check
if the observation is a missing value. If it is we impute it and
if it is not we can store the observation because we know it
is cleaned.

Even more, we have to consider that in the real-time setting
we have a time limitation, i.e., we have to complete the
four previous steps, before a new observation comes into the
system. Because of that we need to take into account two
new principles: historical window and buffer. For our real-time
approach to work we require a historical window, i.e., previous
stored observations. This window will help our methods to
behave better since they have the window size of observations
to work with. The buffer is what we call a window of saved
observations before they enter the system. With this we can use
methods that require observations after to the observation we
are working with. The window and buffer sizes are dependable
of the periodicity of the new coming observations, e.g., if an
observation takes 1 hour to get into the system, we can use
a bigger window and buffer size than if the periodicity of the
series is 1 minute.

1) Autonomous outliers detection step 3: The third step
autonomously detects if the new observation is an outlier.
The available methods are the same as section III-A2, but the
observations of the window are considered our ground truth
and the planted outliers are planted on them as explained in
section in section III-A2.

C. Missing values imputation (step 4)

The fourth step autonomously detects if the new observation
is a missing value. The available methods are the same as
section III-A3 and the hyperparameterization is performed in
the same way as in section III-B1.

For the regular imputation the window and buffer are used
and given to the method, more specifically for methods that
require further observations to the current one, e.g., moving
average and NOCB. Although, the addiction of the buffer
is mainly used for this methods, they might not be able to
perform, because of the buffer size, or simply because the
buffer are composed with missing observations.

1) Final remarks on the behavior of real-time setting.: In-
stead of doing the hyperparameterization like in the historical
data setting and run the hyperparameterization for every new

coming observation, we run the hyperparameterization with
a pre-defined time period, e.g., once a day. Because of that
we have a pre-defined outlier detection and missing values
imputation method and every time the hyperparameterization
occurs, we select the best new method with all the observations
stored in the system, including the new observations since the
previous hyperparameterization.

D. Computational complexity

Considering the presence of k1 pre-processing methods,
each with O(Ti) complexity, then the complexity of execut-
ing them is

∑k1

i O(Ti) = O(k1Tmax). Assuming that the
conducted Bayesian optimization per method converges in
a bounded number of k2 iterations for each method, then
O(k1k2Tmax). Finally, considering the presence of k3 testing
settings in accordance with the detected error profiles in the
original series (e.g. k3=2 for missing and outlier segments with
well-defined rate and length distributions), then AutoMTS has
O(k1k2k3Tmax) complexity. k1 and k3 are constants. Given
a window of bounded size w, the majority of pre-processing
methods are linear on the window size, yielding O(k1k2k3w).

IV. RESULTS

To assess the significance of the proposed contributions,
AutoMTS is extensively evaluated in two water distribution
network systems with heterogeneous sensors, producing ob-
servations at varying sampling rates, and subjected to unique
water consumption patterns and error profiles.

The gathered results confirm the relevance of the proposed
AutoMTS methodology, highlighting that processing choices
are highly specific to each sensor and thus guarantees of
optimality can only be provided under comprehensive and
robust assessments. Also, results further offer a thorough
comparison of state-of-the-art imputation and outlier detection
methods, assessing their ability to handle diverse error profiles
in real-world series data with varying regularities, on the
historical and real-time settings.

Results are organized in three major steps. First, we describe
the networks of heterogeneous sensors that will be used as
study cases, exploring some of the produced time series.
Second, we provide a thorough comparison of state-of-the-
art methods to detect outliers and impute missings, showing
that their adequacy is highly dependent on the time series
regularities and error profiles. Finally, we assess AutoMTS,
quantifying its performance gains.

A. Study cases: Beja and Barreiro water distribution systems

A Water Distribution Network (WDN) is a system com-
posed of pumps, pipelines, tanks and other elements for
delivering water in adequate quantities, pressure and quality
for the everyday needs. WDNs can be equipped with an
arbitrarily-high number of heterogeneous sensors, including
water flow and pressure sensors.

The results of this article were obtained in collaboration
with two major water utilities: Barreiro city Council and Beja



Fig. 1: Sensor measurements over 5 illustrative days for both
Barreiro and Beja WDNs water flow sensors.

Fig. 2: Sensor measurements over 5 illustrative days for both
Barreiro and Beja WDNs water pressure sensors.

city Council, which provided time series representative of their
telemetry systems.

Barreiro WDN is composed by 14 sensors of water flow and
pressure that provide aggregated measurements on an hourly
basis along 2018. The time series has 8473 observations, an
amount inferior to the total yearly hours given the presence
of weekly periods without measurements – real sequential
missings – and the presence of a scarce number of punctual
missings. Beja WDN offers water flow and pressure mea-
surements along a two-year period (5/2017 to 4/2019) with
an approximate 5-minute sampling rate. Each time series has
over 200.000 observations, a irregular sampling rate and the
presence of missing values along segments of lower extension
than those observed in the Barreiro WDN.

Figures 1 and 2 depicts the water flow and water pressure
series from sensors located near the principal tanks in the Bar-
reiro and Beja WDNs. As one can observe, the pressure and
flow series from show highly dissimilar structure. In addition,

sensors of the type show considerably different regularities
for different water distribution systems. These observations
motivate the need to perform processing decisions separately
for each sensor from the monitored systems.

B. Experimental setting

To assess the impact of placing appropriate choices along
the processing stages in accordance with the characteristics
and inconsistencies observed along time series, we consider
the water flow and pressure time series from Barreiro and
Beja WDNs and applied the proposed AutoMTS methodology
to generate ground truth. To facilitate the interpretability of
results, we further varied the profile of the planted inconsisten-
cies for some of the conducted analyzes. The major parameters
controlling the experimental setting are:

• available methods for point outlier detection (e.g. IF
(IF)) and sequential outlier detection (e.g. SAX), and the
corresponding parameters;

• planted outlier profiles, including: i) frequency of outliers
(2% and 10%); ii) type of outliers (point versus sequen-
tial); and iii) length of sequential outliers;

• available methods for missing imputation from univariate
series (e.g. moving average) or multivariate series (e.g.
MICE), and corresponding parameters;

• planted missing profiles, including: i) frequency of miss-
ing values (from 2% to 10%); ii) type of missings (point
versus sequential); and iii) length of sequential missing
observations.

The presented results provide the average performance col-
lected from 30 simulations. A stochastic process to generate
inconsistencies in accordance with the introduced parameters
is used to produce each simulation. Random seeds are consid-
ered to guarantee fair comparisons between methods.

The parameters controlling the experimental setting are
abreviated as the following: WP (water pressure sensor), WF
(water flor sensor), P (point-wise), S (sequential/segment-
wise), 2% (2% of planted anomalies) and 10% (10% of planted
anomalies). The score for the outliers detection methods is the
F1-score. On the other hand, for the missing values imputation
the decisive method is the RMSE.

For the real-time setting for the experimental setting was
used a buffer size of 5 and window size of 200.

C. AutoMTS performance

Table I provides a comprehensive analysis of the perfor-
mance of the available outliers detection methods on multiple
settings for the historical and real-time settings. In the histori-
cal setting the isolation forests (IF) method leads for the water
pressure sensors while the inter quartile range (IQR) is the best
performing method for the water pressure sensors. Even more
for the water pressure sensors with 2% of planted anomalies,
the scores obtained are considered low, even tough they are
the better. For the real-time setting the dominant method is the
inter quartile range for all settings except the segments in the
2% of planted anomalies, where the standard deviation and



Setting Historical Real-time
Method Score Method Score

WP:P:2% IF 0.322±0.00 IQR 0.56±0.02
WF:P:2% IQR 0.787±0.10 IQR 0.435±0.17
WP:S:2% IF 0.301±0.00 Std deviation 0.567±0.17
WF:S:2% IQR 0.827±0.07 DBScan 0.298±0.02
WP:P:10% IF 0.867±0.03 IQR 0.435±0.17
WF:P:10% IQR 0.926±0.02 IQR 0.868±0.05
WP:S:10% IF 0.854±0.03 IQR 0.892±0.00
WF:S:10% IQR 0.929±0.03 IQR 0.71±0.1

TABLE I: Best performing methods for the outliers detection
methods on multiple settings for the Barreiro WDN.

Setting Historical Real-time
Method Score Method Score

WP:P:2% Interp. 0.048±0.01 Interp. 0.039±0.02
WF:P:2% Interp. 16.871±2.52 MA 11.716±3.59
WP:S:2% MA 0.061±0.06 Interp. 0.045±0.04
WF:S:2% MA 24.745±12.15 Rand. forest 12.093±3.5
WP:P:10% Interp. 0.05±0.00 Interp. 0.046±0.01
WF:P:10% Interp. 17.246±1.34 Interp. 11.815±1.58
WP:S:10% Mean 0.169±0.01 Nocb 0.046±0.05
WF:S:10% MA 24.396±12.08 Nocb 13.917±5.12

TABLE II: Best performing methods for the missing values
imputation methods on multiple settings for the Beja WDN.

the DBScan are better. Overall the results are not as high as
the historical setting, but end up having good results.

Although this are the best performing methods (best values
of F1-score) for each of the settings, in the real-time setting
it is important to consider the time it takes to detect the
outliers. All this methods were able to detect one outlier under
1 second, so we can assure that they are performing well.

Table II provides a comprehensive analysis of the perfor-
mance of the available outliers detection methods on multiple
settings for the historical and real-time settings. In the histori-
cal data setting, the interpolation is the most dominant method,
followed by the moving average (MA) and surprisingly the
mean method. The disparity in the scores are between the
water pressure and water flow sensors, mostly because of
the differences of both values ranges that those two sensor
have. Although the moving average is getting good results,
some times might not be possible to impute the totality of
the missing values (mainly on the sequential missing values),
so the results here might be a little misleading. Even more,
the interpolation method is particularly strong in point-wise
imputation.

For the real-time data setting, the interpolation is again
dominant, but now the NOCB and random forests are also part
of the best available methods. The interpolation is again good
for point-wise missings, except for the water flow sensor with
2% of planted anomalies, where the moving average is the best
performing method. The random forest which is a multivariate
method is the best performing method for the setting water
flow sensor, sequential with 2% of artificial missings, further
proving the relevance of multivariate methods in this work. At
last the NOCB method perform better for 10% of sequential
artificial generated missings, which also proves the importance
of the buffer.

Complementary, Figure 3 offers a graphical description
of previous results for the Barreiro WDN on the historical

setting for the water flow sensor, further showing how the
performance of different outlier detection methods vary with
the amount of planted outliers. As we could see previously the
inter quartile range method performs better than the others and
improve the results with higher percentages of planted outliers.
The HOT SAX method is the only which deals mostly for
sequence of outliers is the best performing mthod with 5% of
outliers. The standard deviation tends to get worst with high
percentage of outliers.

Figure 4 offers complementary results for the real-time
setting for the water pressure sensor of Beja WDN. All
methods tend to get worse with higher percentages of missing
values, except the mean method which performs similarly for
any number of missings. The random forests also have a
stable performance like the mean method, and while he is
not a competitive method at lower percentages is the best
perfoming methods for higher one water pressure sensors..
The LOCF and interpolation methods require dependencies of
closer observations tend to get worse with higher percentages
of missings but are the best performing method for lower
percentages.

Fig. 3: Performance of outlier detection methods with varying
percentage of point outliers planted in time series for water
flow sensor in Barreiro WDN, for historical setting

D. AutoMTS tool

Figure 5 provides a snapshot of the AutoMTS tool. On the
left panel it is possible to upload the file which contains the
time series dataset. Different file formats are supported, includ-
ing .xlsx and .csv, as well as different data representations.
An illustrative representation of the input data is a table with
timestamped rows containing the measurements and as many
columns as the number of sensors (time series). If sensors
have temporally misaligned measurements, each row can al-
ternatively describe a single event, identifying the timestamp,
sensor and collected measurement. To guarantee that ground
truth is assessed over the provided series data, each sensor
needs to have at least one period of four weeks without missing
observations. Otherwise, synthetic series are generated for the



Fig. 4: Performance of missing imputation methods with
varying percentage of point missings planted in time series
for water pressure sensor in Beja WDN, for real-time setting

parameterization and selection of methods. Once the uploaded
dataset passes the initial validation process, it is possible to
filter the dataset by selecting the time series (sensors) that we
want to process. This can be done using sensor name fields.
It is possible to further filter the observations by time period
on the period field, the days of the week on the calendar field
(e.g. weekdays, holidays, saturdays), as well as the desirable
time granularity for the target time series.

On the right panel it is possible to select the steps along the
AutoMTS pipeline to be accomplished, in particular whether
we want to conduct missing imputation and/or outlier detec-
tion. For both options, it is possible to select one of three
distinct modes: i) the default mode which provides a simple
rule-based decision on what is the most appropriate method
given the general characteristics of the inputted series data;
ii) the parametric mode which allows the user to select a
desirable method method and its parameters; and, at last, iii)
the fully automatic mode which runs AutoMTS (section III)
to autonomously identify the best method for each one of the
sensors selected in the left panel.

The user can optionally specify the profile of the artificially
planted missing values and outlier values to be considered
along the evaluation stage of AutoMTS (as well as to provide
statistics whenever the user opts to select default and para-
metric modes). Here the user can select the type, percentage
and duration of artificial missings and outliers. It is also
possible to select the number of sensors on where we want
to plant the artificial inconsistencies. Finally, the user can also
specify whether the inconsistencies must occur at the same
time for the inputted set of sensors or planted for each sensor
individually, thus mimicking different real-world problems in
heterogeneous networks.

After running the query the user can select which outliers he
wants to maintain or remove and then it is possible download
the time series selected already cleaned.

Fig. 5: Graphical user interface.

V. CONCLUSION

In this work we were able to complete our objectives and
produce two approaches for the fully-autonomous and quality-
driven processing of time series data produced by networks of
heterogeneous sensors. Each one is parameter-free and offers
guarantees of optimality. To optimize pre-processing choices,
ground truth is created from conserved time series segments
for possible error profiles. In addition, AutoMTS provide a
coverage of state-of-the-art methods of outliers detection and
missing values imputation. AutoMTS implements processing
methods able to work with point-wise or sequence observa-
tions, and with cross-variable dependencies in the presence of
multivariate time series data. Also, our methodology can work
with varying types and amount of missing and outliers values,
including both point and sequential occurrences of different
duration and recurrence.

The experimental evaluation in two real world study cases
of water distribution network systems with different sampling
rates, water consumption patterns and error profiles confirm
the significance of AutoMTS contributions and highlight that
pre-processing choices are highly specific to each sensor. Thus
guarantees of optimality can only be provided under a robust
evaluation. Also the results further offer a comparison of the
available methods, showing the strengths and limitations when
handling multiple error profiles in real-world time series.

Also the time that takes to pre-process in the real-time
setting and its results show that our approach is applicable
for the treatment of time series in data streams.

Our approach also enables and facilitate the incorporation
and/or implementation of other methods, with almost no effort.

At last, this work provides a functional tool for the WIS-
DOM project, that would help the detection of events of
interest and acquire a comprehensive view of the behaviour
produced by their time series data.



A. Future work

Even though the work was completed with success, some
complementary extensions could be implemented in order to
improve our approach. For the imputation methods, some
specific time series methods could be added, e.g., the 10-
Min flow model from Quevedo, as long some variations of
the moving average method which could deal better with
sequential missings.

Moreover, the implementation of our real-time script in a
real system could provide a better insight on the behaviour of
our methodology, practical validation with the water entities
would be performed and evaluation of the pre-processing in
the detection leakage and on consumption patterns. Finally,
further evaluation on irregular time series sampling can be
supported.

VI. SCIENTIFIC COMMUNICATION

During the development of this methodology the article
Sousa et al. [38] was published and presented in the EAI
Qshine 2020 - 16th EAI International Conference on Het-
erogeneous Networking for Quality, Reliability, Security and
Robustness. This article only depicted the historical data
setting of the AutoMTS tool. The paper that extends the
contributions for the real time setting is under submission.
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