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Abstract

Recent advances in natural language processing show that modern neural networks are capable of learning context and semantics
of language with unsupervised pre-training. Using such language models, researchers are now introducing new ways to represent
protein sequences as continuous vectors (embeddings) that capture biophysical properties directly from unlabelled sequences. In this
work, the embeddings generated by SeqVec, a deep learning model based on the ELMo language model and trained on the UniRef50
data set, were studied for their capacity to capture protein thermostability.

Three thermostability data sets were prepared and used to train and evaluate several machine learning models for their capacity
to predict protein thermostability properties using only the SeqVec embeddings as features. Although far from perfect, experiments
on wild-type proteins show that such models produce meaningful predictions of protein melting temperature, and can isolate proteins
with high thermostability. Additionally, models trained to predict the effect of mutations on the protein thermostability were capable of
achieving Matthews correlation coefficients as high as 0.354 on independent testing data, a competitive value compared with recent
literature.

Using transfer-learning for protein stability prediction opens up a new form of sequence-based tools that do not rely on biophysical
features and do not require protein structure information. With this work it was shown that this approach to protein thermostability
prediction has a lot of potential, but the lack of data is still a large limitation.
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1. Introduction
Protein engineering aims to obtain proteins with useful prop-

erties for technology, science and medicine. As the amino
acid sequence determines the protein’s properties [1], specific
amino acid modifications have already resulted in new protein
designs and in the optimization of existing enzymes [2]. How-
ever, traditional protein engineering processes face overwhelm-
ing amounts of possible mutations to model [3], from which most
are not functional or can produce unaccounted effects in stabil-
ity [4], or are limited to an iterative approach of trial and error
with expensive and time-consuming screening procedures [3].

One of the protein properties with industrial interest is the
thermostability of enzymes. Increasing their thermostability is
useful to facilitate purification steps based on heat treatments,
higher associated stability to destabilizing agents, and also al-
lows the use of higher reaction temperatures making for a faster
and more sterile process [3], [5]. Numerous protein thermosta-
bility models and machine learning (ML) predictors have been
developed, but protein stability modelling is a very difficult task
and for which there is still limited data [6].

With the exponential increase in protein sequence databases
[7], already we are seeing some efforts in making the con-
nection between sequence and function, with natural language
processing models that find high-level protein representations,
called embeddings, that are closely associated with the protein
function and properties. The hypothesis that these models can
be applied to model protein sequences and learn the biologi-
cal rules that dictate protein properties directly from the amino
acids is seeing a lot of support [8], [9], [10], [11], [12], [13].

In this work, the SeqVec protein sequence model [9], based
on the ELMo natural language model [14], was studied for its
capacity to capture protein thermostability information directly
from sequence data, to determine its potential use in protein
thermostability prediction for protein engineering applications.

2. Validation of the SeqVec model
Aiming to explore the biological meaning of the SeqVec em-

beddings and to validate the original paper’s results, a data set
was prepared for visualization of biological properties in the em-
bedding space and for the implementation of a secondary struc-
ture prediction algorithm.

2.1. Materials and Methods
A protein secondary structure data set was prepared from

the Protein Data Bank [15], after removing sequences with over
50% identity using CD-HIT [16]. The Structure Integration with
Function, Taxonomy and Sequence database [17] was used to
obtain the Enzyme Commission (EC) numbers of 26999 pro-
teins. SeqVec was then used to embed the protein sequences.
The proteins were represented by the sequence average of the
sum of the outputs of SeqVec, and the 23969 amino acids of
100 of these proteins were represented by the output of the
middle layer of the model.

The previously mentioned amino acid embeddings were split
into a training set of 20 655 residues and a testing set of 3314
residues, used to implement a k-Nearest Neighbours (k-NN)
classifier, trained to predict the secondary structure label of the
embeddings. A Principal Component Analysis (PCA) was used
to reduce the dimensionality of the embeddings to 100 compo-
nents (40.2% explained training data variance), and the value
of k was chosen by cross-validation as 25.

2.2. Results

Figure 1: t-SNE visualization of the protein embeddings from the data set, coloured
by EC number of the proteins (x-axis: t-SNE 1; y-axis: t-SNE 2. The projection
into two dimensions shows small isolated clusters that are representative of protein
function.

Projecting the protein embeddings to two dimensions using t-
Distributed Stochastic Neighbour Embedding (t-SNE) (figure 1),
the representation obtained shows several small isolated clus-
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ters that are representative of enzyme class, with a mixed and
uninformative central cluster.

Figure 2: t-SNE visualization of the amino acid embeddings from the data set (x-
axis: t-SNE 1; y-axis: t-SNE 2). Colouring by the secondary structure label of the
amino acids shows some separation between different structures.

Projecting the amino acid embeddings in a similar procedure
shows that these group each amino acid type in mostly separate
clusters, indicating that the model learns how to identify each
amino acid and to take into account its context. Amino acids
with similar physicochemical properties were also found to be
closer in the embedding space. Additionally, the clusters also
exhibit some clustering within themselves, representative of the
secondary structure labels of the amino acids (figure 2).

Using these embeddings to train a k-NN secondary structure
predictor produced a positive performance in the testing set,
with an accuracy score of 57.8% and an F1 score (weighted
average based on class support) of 54.9%. Analysis of the
model’s Confusion Matrix (CM) and Receiver Operating Char-
acteristic (ROC) curves show a good performance of the model
for the most common labels and that it can still maintain a better
than random performance on the most difficult classes (figures
3 and 4.

Figure 3: Confusion matrix of the k-NN secondary structure predictor on the testing
set, detailing the predictions of each label, according to their true labels.

Figure 4: Receiver operating characteristic curve of the k-NN secondary structure
predictor on the testing set obtained by a one-vs-rest approach, detailing the true
positive rate as a function of the false positive rate, obtained at different decision
thresholds.

2.3. Discussion
As was observed by the authors of the SeqVec model [9], the

unsupervised embeddings learned by the ELMo model trained
on protein sequences contain biological information which can
be used to model aspects of protein biochemistry. Such con-
clusions were also obtained by other authors of relevant deep
learning protein embedders such as UniRep [10], D-SPACE
[8], the bidirectional transformer as published by [11], and the
transfer-learning repository published by [13].

The obtained t-SNE projection of the protein embeddings is
similar to the authors’ results with the same procedure on the
SCOPe data set. By obtaining equivalent results in this small
experiment, the generalizability of the results to different data
sets is confirmed.

We also observed that the SeqVec amino acid embeddings
show the capacity to learn the physico-chemical properties of
the amino acids, as well as some indication that they can be
used for secondary structure prediction tasks with clusters rep-
resentative of the secondary structure labels. However, due to
time limitations this experiment used a reduced data set with
only 100 proteins, and although it was processed to remove
protein sequences with at least 50% sequence similarity, it may
not be representative of the diverse range of proteins that are
found in nature.

For secondary structure prediction, we obtained an accu-
racy score of 57.8% that is inferior to the best application of
SeqVec by the authors, which implements a deep learning
model with evolutionary profiles together with the amino acid
embeddings, and obtained an accuracy of 64.1%, and even
this method was inferior to the state of the art secondary struc-
ture prediction method NetSurfP-2.0, which was applied by the
SeqVec model’s authors and obtained an accuracy score of
71.1%. Another of the previously mentioned transfer-learning
effort used for secondary structure prediction is the bidirectional
transformer, which shows similar performances, with an accu-
racy score of 60.8%.

This can be due to the small training set, the implementation
of k-NN, one of the most simple ML algorithms, and the severe
class imbalance of this prediction task. State of the art mod-
els use deep neural networks for this problem that have been
trained on more extensive data. Given the difficulty of this pre-
diction task, our implementation is considered a success.

Additionally, more effort could have been performed to ex-
plore individual protein sequences and their secondary struc-
ture annotation, because certain patterns might have arisen that
could explain why this amino acid prediction task was not con-
sidered optimal by the original authors, facilitating further efforts
to improve this method for protein annotation.

3. Thermostability prediction with the
ProTherm wild-type data set

The first effort to develop a model of protein thermosta-
bility directly from protein sequences was attempted with the
ProTherm database. Using its wild-type data set, a ML regres-
sion model was implemented, using only the SeqVec protein
embeddings as features, to test whether these encode ther-
mostability information.

3.1. Materials and Methods
The ProTherm database [18] was used to prepare a data set

of protein sequences and their free Gibbs energy of unfolding
(∆G) annotation. With several unusable records and multiple
records per protein in the database, only a total of 794 exper-
imental records were collected, coming from 119 different pro-
tein sequences. In order to use only one label per sequence,
all ∆G records were converted to kcal/mol, and the mean ∆G
value of each protein across all available experimental condi-
tions was calculated. The protein sequences were represented
by the sequence average of the amino acid embeddings ob-
tained as the output of the middle layer of SeqVec.

This data set was discretized into 5 bins of equal ∆G in-
tervals, and a random, stratified stratified split was performed,
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where 85% of the data was used for the training of a Lasso lin-
ear regression model, and the remaining 15% for an indepen-
dent evaluation of the model on unseen data. PCA was applied
to reduce the dimensionality of the data to 50 dimensions (ex-
plained data variance of 94.33%). This model was also applied
with polynomial features of degrees 2, 3 and 4, and all imple-
mentations used an α regularization strength manually chosen
as 0.1.

Considering the poor performances obtained with this imple-
mentation, different approaches to incorporate the experimental
conditions were implemented, such as calculating a weighted
mean ∆G value that takes into account the experimental con-
ditions and gives more weight to records closer to physiological
conditions [19], removing the effect of the experimental condi-
tions by fitting a linear regression to the data and removing the
residuals (individually for each protein, and also to the entire
data set at once), and also incorporating these as additional fea-
tures. Two baselines were also developed. The first is a naı̈ve
baseline that always predicts the average ∆G value of the data
set, and the second one is a linear regression that predicts the
∆G values based on temperature and pH only.

3.2. Results
Neither the PCA nor the t-SNE two-dimensional projections of

the protein embeddings revealed a separation between proteins
with different ∆G values, suggesting that the SeqVec embed-
dings are not capable of capturing this information directly from
the sequence.

Using polynomial features of degree 3 and the mean ∆G val-
ues, the model could achieve a test Root Mean Squared Error
(RMSE) of 4.474, but the test set r2 score of -0.036 and an
Explained Variance Score (EVS) of -0.027 are very poor. The
negative predictive power of this model was compared to the
first baseline model, where a constant prediction of the data
set’s average ∆G produced a test RMSE of 4.088. This in-
dicates that using the SeqVec protein embeddings to train a
thermostability prediction model directly from sequence is not
directly possible. The inclusion of the temperature and pH as
additional features for the model produced the best results, with
the lowest test RMSE and the highest r2 and EVS scores of all
the experiments, as expected since it uses all 794 records in
the data set and includes large amounts of repeated protein se-
quences. The second baseline indicates that the temperature
and pH by themselves do not include any relevant information
for the prediction of protein thermostability.

Table 1: Root Mean Squared Error (RMSE), r2 correlation coefficient and Explained
Variance Score (EVS) performances of the regression models using different pre-
processing approaches to take into account the experimental conditions. Calculating
a weighted mean of ∆G that gives more weights to experiments closer to physiolog-
ical conditions was considered the best approach, because it was the only approach
with positive r2 and EVS that did not used repeated records.

Model
Features
degree

RMSE test r2 test EVS test

Average ∆G baseline 1 4.088 -0.015 0.000
T and pH only baseline 1 4.009 0.024 0.049

Mean ∆G 3 4.474 -0.036 -0.027
Weighted mean ∆G 2 4.592 0.035 0.048

Remove T and pH effect
from the entire data set

1 7.860 -0.229 0.000

Remove T and pH effect
from each protein

1 8.455 -0.175 -0.171

Including T and pH as
additional features

3 3.643 0.461 0.463

It is also noteworthy that the experiment where the effect of
the experimental conditions was globally removed from the data
set produced very similar ∆G values for all records, producing
an almost constant prediction of the ∆G values, inaccurate in
the testing set. In addition, removing the effect of the exper-
imental conditions from each protein separately produced the
worst model in this experiment, as a result of records with ex-
treme experimental conditions being assigned unexpected ∆G
values during the data processing. We can also observe that

using the weighted average of each protein’s ∆G values pro-
duced better results than a simple average calculation of this
value, with similar RMSE values, but positive r2 and EVS val-
ues in the testing set, which were only achieved by the second
baseline and the model which included the experimental condi-
tions.

Figure 5: Scatter plot of the predicted free Gibbs energy of unfolding values (y axis)
and their true values (x axis) in the testing set. The trend is almost horizontal and
uninformative.

In a final effort to extract conclusions from this model, scatter
plots of the predictions of this model in the training set and in
the testing set were produced. An overall positive correlation
with positive slope could be found in the training set, but the
predictions were almost horizontal in the testing set (figure 5),
which further proves the difficulty of developing such a machine
learning protein thermostability predictor from this data set.

3.3. Discussion
Prediction of the free Gibbs energy of unfolding of wild-type

proteins is not usually performed directly from sequence. This
procedure is usually based on additional structural information,
or based on physicochemical models of amino acid interactions.
In this experiment, the ProTherm database of wild-type proteins
proved to be unusable for the development of a machine learn-
ing model to predict protein thermostability directly from protein
sequence, using the SeqVec embeddings as features.

This can be a result of three steps of the process: inade-
quate data processing, inadequate features or inadequate re-
gression models. However, not much could have been done
with only 119 different protein sequences, given the issues re-
lated to the ProTherm database. The visualization of the fea-
tures suggested instead that these were not capable of captur-
ing elements of thermostability, which was further confirmed by
the inaccurate prediction models.

However, the correlation obtained by the polynomial regres-
sion with the SeqVec protein embeddings was positive, and
although mostly horizontal, indicates that perhaps with more
records a more accurate predictor could be developed. Addi-
tionally, using the experimental conditions as additional features
could, in fact, be more adequate for visualization of the predic-
tions (instead of the method using the weighted ∆G average of
each protein). This method allowed the use of more records,
and should not have been discarded because of this, as the
use of experimental conditions as predictive features is also fre-
quently used in literature on thermostability engineering.

4. Prediction of thermostability changes with
the ProTherm single-mutants data set

Instead of modelling protein thermostability directly from se-
quence, the prediction of changes to protein thermostability as a
result of point mutations (described by the ∆∆G value) is more
frequently used in protein engineering. To assess the useful-
ness of the SeqVec embeddings in the development of such
a model, a thermostability data set was compiled. The amino
acid embeddings of the obtained protein sequences were ex-
plored for the development of predictive features for several ML
models, from which the most promising were studied in detail.
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4.1. Materials and Methods
Considering the issues with the ProTherm database found in

the previous experiment, and looking to use as much data as
possible, we used the protein thermodynamic data made avail-
able by the iStable 2.0 [6] and the PremPS [20] prediction mod-
els. However, there is a large overlap between these data sets,
as all originate from ProTherm data. Duplicate records were re-
moved, and a unique ∆∆G value per record was calculated.
After this processing step we obtained a data set with 3706
unique records from 305 different proteins, without redundancy
from experimental conditions. This data set was named S3706,
and was split in a partition with 3272 mutation records, called
S3272, for the training of sequence-based protein thermosta-
bility machine learning models, and another with 434 records,
called S434, used for an unbiased evaluation of the models (ta-
ble 2). This split was performed manually to avoid a random
split, so that the models could be evaluated in entirely different
protein sequences.

Table 2: Description of the data partitions of the data set S3706 of protein thermosta-
bility changes upon single mutations used for the separate training and evaluation of
the machine learning algorithms, evidencing the imbalanced representation of the
positive and negative classes of records.

S3706 S3272 S434

Total number
of records

3706 3272 434

Records with
positive label

855 648 171

Records with
negative label

2851 2588 263

Total number
of proteins

305 155 150

The SeqVec model was used to process the wild-type and
the mutant sequences of the records in this data set, from which
the amino acid residue embeddings were obtained as the out-
put of the middle layer of the model. 10 different feature sets
were attempted to describe the mutation records in the embed-
ding space, from which it was observed that by describing each
wild-type and mutant sequences by the average of the residue
embeddings in a window of 5 residues to each side of the mu-
tation, and then subtracting the mutant representation from the
wild-type representation, the best results could be observed in
both visualization and prediction experiments. For the develop-
ment of ML models, PCA was used to reduce the features to
250 dimensions, with 83.35% explained data variance.

Several ML classifiers were attempted, from which the lin-
ear Support Vector Machine (SVM) produced the best results
based on the Matthews Correlation Coefficient (MCC) and the
precision score. Hyperperparameter tuning was performed by
cross-validation, in which the primal formulation and the dual
formulation of the problem were both attempted as well as the
standard SVM loss function and its squared formulation, and
the l1 and l2 regularization types, applied with different regular-
ization strengths C. A squared loss function with a l1 penalty
and a C value of 50 provided the best mean cross-validation
MCC of 0.133.

A baseline model was also developed, which uses a Decision
Tree classifier based on simple features to describe the protein
mutations: a one-hot-encoding label of the amino acid types
and of the physicochemical properties (aliphatic, aromatic, po-
lar neutral, acidic, basic or unique), their molecular weights and
hydrophobicity values, and the BLOSUM62 value for the substi-
tution were used.

4.2. Results
The feature set prepared to describe the mutation records

was projected to two-dimensions by t-SNE (figure 6), where
some separation between mutations with a positive and a neg-
ative effect in the ∆∆G can be observed, suggesting that the
features capture some thermostability information directly from
the protein sequence.

Figure 6: Projection to two dimensions of the mutation records, represented by the
difference between the wild-type features and the mutant features, where each pro-
tein is described by the average of the embeddings of the amino acids in a window
of 5 residues in each direction of the mutation by t-SNE (x-axis: t-SNE 1; y-axis:
t-SNE 2). The projection shows separation between mutations with a positive and a
negative effect on thermostability.

Using these features, a linear SVM with hyperparameters
tuned by cross-validation in the training set was used to pre-
dict the ∆∆G value of the records, achieving a MCC of 0.318
and precision score od 0.774 in the testing set. The model’s CM
and Precision-Recall Curve (PRC) are shown in figures 7 and
8, respectively, showing that although severely biased to the
over-represented negative class, this model is capable of cor-
rectly predicting a large number of positive labels. The baseline
model was only capable of achieving a MCC of 0.200 and pre-
cision of 0.73, with a severly worse PRC.

Figure 7: Confusion Matrix (CM) of the tuned linear Support Vector Machine (SVM),
evaluated on the testing set S434 to predict the protein thermostability changes upon
single mutations.

Figure 8: Precision-Recall curve (PRC) of the tuned linear Support Vector Ma-
chine (SVM), evaluated on the testing set S434 to predict the protein thermostability
changes upon single mutations.

The achieved MCC values are quite behind the state of the art
iStable 2.0 prediction model, which achieved a value of 0.708
for the same metric, but are better than the PoPMuSiC model
with a MCC of 0.291 and the MUpro model, with a MCC of 0.248
[6].

Although a logistic regression and a MLP classifier were ca-
pable of achieving slightly better MCC values than the linear
SVM shown here, these models produced worse precision met-
rics, and were considered inadequate for a protein engineering
application. To further study the precision of this model, dif-
ferent subsets of the testing set were created to evaluate the

4



performance of the model on protein sequences of decreasing
sequence similarity to the training set, where it was found that
the model achieves a better precision on sequences similar to
those it was trained on.

4.3. Discussion
Overall, the SeqVec embeddings provided predictive features

to develop ML models of ∆∆G changes upon single mutations
that provide better performances than some well established
models but still fall behind state of the art.

However, this comparison is not straightforward, as the data
sets used in this experiment for the training and the testing of
the machine learning models were different from those used by
other models. Since different models frequently use different
data sets, only the review papers that train and test each model
on the same data present a valid comparison, and this was not
implemented for the models developed in this thesis.

In protein engineering, it is desirable to perform as least mu-
tations to a protein as possible in order to avoid altering its fit-
ness, and since each protein can be mutated in a wide number
of different ways, from which only a few will result in real posi-
tive stability changes, a thermostability predictor does not need
to accurately predict a lot of the records correctly (which would
translate into a high MCC), as long as the ones it predicts as
positive are correct (high precision score). If the most confi-
dently predicted positive records are correct, such a model can
still be interesting for application in a protein thermostability en-
gineering procedure. In addition, the study of the PRC in testing
subsets of different sequence identities was also useful for this
evaluation, where although it would have been interesting to see
that the model can predict the positive class correctly indepen-
dently of sequence identity to the training set, observing a cor-
relation between sequence similarity and higher precision indi-
cates that the model is learning biologically significant features
that describe the effect of the mutations in the proteins, and can
accurately generalize this knowledge to similar proteins.

It is noteworthy that the models developed in this experiment
used solely the SeqVec embeddings as features, with no ad-
ditional structural features, nor even the explicit amino acid se-
quence of the protein. This approach, very different from the
sequence or structure-based models seen in literature, skips
the difficult step of generation of complex protein features of
those models, which sometimes rely on other physicochemi-
cal models themselves. Capable of achieving MCC values that
are relevant for recent literature, this opens a completely new
approach to protein thermostability prediction with the helpful
advantages associated with transfer-learning, namely the pos-
sibility to compare different proteins or mutations in the high-
dimensional feature space. A way to conclude about the useful-
ness of the embedding space for direct comparison of mutations
could have been based on the two-dimensional projections gen-
erated for the features, as the t-SNE plot showed some cluster-
ing that could be representative of specific amino acid substitu-
tions, which could be analyzed as positive or negative according
to their context in the entire protein sequence.

A trade-off between increasing the MCC at a decrease on the
precision score, and vice versa, was also observed. In no at-
tempt could the models maintain both of these scores elevated,
indicating that, when using the SeqVec features for machine
learning prediction of protein thermostability upon point muta-
tions, a choice needs to be made on a very precise model that
misses a lot of potential positive mutations, or a model that can
overall separate the two classes of mutations but might suggest
some negative mutations as positives.

In general, it was expected that this experiment would find
better results, as the prediction of protein thermostability di-
rectly from sequence is quite difficult due to the complexity of
the protein folding process, but the prediction of the effect that
a mutation can have in a protein can more easily be modelled.

5. The effect of mutations in the embeddings
Seeing that the effect of a mutation in the thermostability of

a protein is better modelled by SeqVec when only the embed-
dings of amino acids close to the mutation are used to generate
the protein embedding, it became interesting to study the effect
that mutations have in the embeddings of the entire amino acid
sequence.

5.1. Materials and Methods
To describe the effect of a mutation in the amino acid em-

beddings, the euclidean distance between the wild-type and the
mutant sequence amino acid embeddings of each protein was
used. This was used to study the mutation records in the S3706
data set, and an additional mutagenesis data set prepared from
a subset of 84 proteins from the S3706 data set. These pro-
teins were chosen due to the availability of binding-site informa-
tion and for having a sequence length smaller than 250 amino
acids. For each protein, a single-mutant sequence was gener-
ated by changing each amino acid in the protein individually, ac-
cording to the BLOSUM62 matrix [21], where each amino acid
was mutated according to the highest scoring substitution, or
randomly between the highest scoring substitutions. This was
performed under the hypothesis that this would make the mu-
tations as equivalent as possible, and allow us to focus entirely
on the mutation location and its effect on the protein sequence
as a function of the position.

For each wild-type and mutant sequences, the amino acid
embeddings were obtained as the sum of the output of the three
layers of SeqVec. The euclidean distance effect was studied
both in terms of linear distance in the amino acid sequence and
also in terms of 3D distance between the amino acids in the
wild-type protein conformation. The Wilcoxon rank-sum statisti-
cal test was used to verify the statistical relevance of differences
in the euclidean distances between the embeddings.

5.2. Results
The mutation records in the S3706 data set were explored,

from which a few arbitary records were plotted in terms of
euclidean distance between the wild-type and the mutant se-
quence embeddings, showing that the highest difference was
usually concentrated in and close to the mutation location, but
that in some cases there was also an effect in distant amino
acids (figure 9). Performing a similar visualization of all records
showed that quite frequently there is also a strong effect in
amino acids distant from the mutation. Note that except for the
mutated amino acid in the center of the x axis, these amino
acids are of the same type in the wild-type and in the mutant
sequences, showing the capacity of the SeqVec model to cap-
ture the different contexts, as a consequence of a mutation in
another amino acid of the protein.

Figure 9: The euclidean distance between the wild-type sequence amino acid em-
beddings and the mutant sequence amino acid embeddings (y axis) as a function of
the sequence position of the mutation (x axis) of the mutation W22F in protein 1AJ3.

The same procedure was performed with the mutagenesis
data set prepared above. Assuming that this mutagenesis ap-
proach does not induce bias towards the possible mutations,
a mutation to a binding site is expected to have a stronger ef-
fect in the embeddings, and is also expected to affect amino
acids throughout the sequence more strongly. By splitting the
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results in segments of linear distance to the mutation location,
the statistical relevance of the difference between the euclidean
distances of embeddings from sequences with binding site mu-
tations can be compared to the euclidean distances of embed-
dings from sequences with mutations outside of binding sites
(figure 10).

Figure 10: Boxplot representation of the euclidean distance value between wild-type
sequence amino acid embeddings and mutant sequence amino acid embeddings (y
axis) in segments of 20 amino acids of sequence distance to the mutation (x axis).
For each segment, the rank-sum test statistic is shown, indicating that the effect of a
mutation in a binding site is stronger than that of mutations out of the binding sites.

A widespread effect is can be seen throughout the amino acid
embeddings, and this effect is clearly stronger in amino acids
closer to the mutation, and gradually weaker with an increas-
ing distance except for certain cases were the mutation caused
a disruption throughout the sequence. A rank-sum (RS) test
shows that mutations in binding sites cause a higher euclidean
distance between embeddings throughout the sequence, as ev-
idenced by the positive RS test statistic in every segment, and
the p-values very close to zero obtained in all segments. By
performing a collective RS test to compare the distributions of
the euclidean distance between the embeddings of the binding
site mutations and the non-binding site mutations, a factor of
53.237 with a p-value close to zero is obtained, further confirm-
ing the hypothesis that binding site mutations cause a signifi-
cantly stronger effect in the embeddings.

Performing the same procedure in terms of 3D distance be-
tween the amino acids, we can now see that the stronger effect
of the binding site mutations is only noticed by embeddings of
amino acids close in space to the mutation. This is evidenced
by the fact that the RS test statistic becomes negative for larger
3D distances, with p-values close to zero in all segments.

Figure 11: Boxplot representation of the euclidean distance value between wild-type
sequence amino acid embeddings and mutant sequence amino acid embeddings (y
axis) in segments of 6 angstrom of distance in space to the mutation (x axis). For
each segment, the rank-sum test statistic is shown, indicating that the effect of a
mutation in a binding site is stronger than that of mutations out of the binding sites
only if the amino acid is close to the mutation.

Since amino acids of the protein binding site are usually close
in space in the final conformation of the protein, and since it was
previously concluded that a mutation to a binding site causes a
stronger effect in the embeddings, seeing this effect concen-
trated in amino acids that are close together suggests that the

SeqVec embeddings capture the protein conformation and the
three-dimensional distance between amino acids.

5.3. Discussion
In this experiment we studied the effect of mutations in the

SeqVec embeddings. Under the hypothesis that the simulated
mutations were equivalent, and did not induce bias to spe-
cific amino acid changes, the euclidean distance between the
amino acid residue embeddings of the wild-type and the mu-
tant sequences suggests that the SeqVec embeddings can both
capture long-distance effects of the mutation in the protein se-
quence, but also the three-dimensional conformation of the pro-
tein and the interactions between amino acids in the protein,
as evidenced by the difference observed when mutations were
performed to binding sites.

However, given the diversity of three-dimensional protein
structures observed in nature, the assumption that the simu-
lated mutations are equivalent in amino acid type changes is
far from ideal. Although simulating the amino acid substitu-
tions based on the BLOSUM concept for biologically significant
amino acid changes was the best solution for this experiment,
the use of a curated deep mutational scanning data set would
have been more suitable. This was, however, out of the scope
of this thesis, and the experiment was performed with the limita-
tion that performing mutations to very similar amino acids might
not result in large effects in the context of the other amino acids.

Using the euclidean distance between embeddings to rep-
resent their differences could also induce some wrong conclu-
sions, as it does not capture the notion of closeness between
two high-dimensional vectors. The cosine similarity could have
been used instead but, even with this measure, capturing dis-
tances in high-dimensional data is difficult [22]. On the other
hand, the secondary structure prediction experiment applied a
k-NN algorithm using the euclidean distance with success, so
this distance metric is expected to be accurate.

Although the SeqVec model was not used for protein engi-
neering nor was it studied for the prediction of mutational ef-
fects, the UniRep model [10] was applied to predict the stability
of naturally occurring proteins and of de novo designed proteins
using deep mutational scanning data sets, achieving better re-
sults than well established methods such as Rosetta [23], and
was also able to predict the functional effects of mutations to
proteins, as well as modelling the fitness landscapes of diverse
proteins. This model was also capable of predicting mutations
that increase certain properties such as protein fluorescence,
which was also observed with the D-SPACE model [8]. Ad-
ditionally, the bidirectional transformer from [11] was used to
successfully predict amino acid residue contact points as well
as to predict enzyme activity changes upon mutations. Our re-
sults with the SeqVec model are in agreement with the obser-
vations that such unsupervised language models can compete
with state of the art models of protein biology.

6. Thermostability prediction with the Meltome
Atlas wild-type data set

With the publication of the Meltome Atlas [24], an extensive
and uniform data set of protein thermostability is made avail-
able. Considering the obstacles faced in the prediction of ther-
mostability directly from sequence with the ProTherm database,
another attempt to develop such a model was performed, using
the SeqVec models to represent the protein sequences of the
Meltome Atlas, and studying them for their capacity to capture
the melting temperature values.

6.1. Materials and Methods
From the Meltome Atlas data set, we used all proteomes ex-

cept those coming from human cell lines, choosing to use only
proteins that were clearly identified with a UniProt database en-
try code [7], with a total of 34501 unique protein sequences.
We used only proteins with a melting temperature annotation
coming from cell lysate experiments, resulting in 27354 unique
protein sequences. For repeated sequences across different
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tissues, strains and organisms, the mean melting temperature
value was used. The protein sequences were processed by Se-
qVec, from which the protein-level embeddings were generated
as the sequence average of the amino acid residue embeddings
of each protein, obtained as the output of the middle-layer of the
model.

This data set was split in two random, shuffled and stratified
partitions (obtained by dividing the original data set in 10 quan-
tiles, and performing a random, shuffled split on each), where
85% of the data was used for training of ML models that use the
SeqVec protein embeddings to predict the melting temperature
values, and the remaining 15% was left out for an independent
testing of the performance of the models on previously unseen
data. PCA was used to reduce the dimensionality of the fea-
tures to 100 principal components, fit to the training set with an
explained variance of 86.4%, and used to reduce both data set
partitions.

From several regression models, the Pearson Correlation Co-
efficient (PCC) in the testing set was used to choose the Multi-
layer Perceptron (MLP) as the best model. An architecture with
2 hidden layers of 256 and 20 neurons was chosen by cross-
validation based on the Mean Squared Error (MSE). A learning
rate of 0.001 and 23 training epochs were implemented, chosen
by experiments with an early stopping callback.

A baseline feature set was also developed, which describes
each protein sequence by a vector with the frequencies of each
amino acid type in the protein. The performance of the previ-
ously mentioned MLP with the SeqVec embeddings was com-
pared with its performance with this baseline feature set.

6.2. Results
The protein embeddings were projected to two dimensions by

t-SNE, revealing that embeddings from thermophile organisms
are different from the mesophile embeddings and are grouped
together in well-defined clusters, while the mesophile proteins
are dispersed throughout the embedding space (figure 12).
Colouring this same projection by the organism of each pro-
tein, we found that the thermophile organisms are the only ones
that are in well-defined clusters in the embedding space, while
all other organisms are spread throughout the feature space,
suggesting that SeqVec can identify thermophile proteins from
among a varied data set of protein sequences from multiple or-
ganisms.

Figure 12: t-SNE projection to two dimensions of the protein embeddings, coloured
by melting temperature (x-axis: t-SNE 1; y-axis: t-SNE 2).

Although the MLP model implemented to predict the melting
temperature of the proteins showed some signs of overfitting,
with a decrease in performance between the training set and
the testing set evaluation metrics, this model showed the high-
est PCC value of 0.74 in the testing set, the most widely used
parameter to evaluate protein thermostability regression mod-
els. With a close to best test RMSE value of 7.04, this model
was considered the best model obtained in this experiment.

For this model, the test r2 and EVS scores of 0.52 and 0.53,
respectively, show a positive predictive power, and their sim-
ilar values suggest that the model is unbiased. The perfor-
mance of this model was studied further, by visualization of
the predictions of the testing set (figure 13). From this figure
we can observe that the SeqVec protein embeddings can be

used to train a MLP to predict the melting temperature directly
from sequence that accurately models the stability of wild-type
proteins, as this model has the capacity to predict the melting
temperature of the most stable proteins in the data as signif-
icantly different from the melting temperature of the more fre-
quent mesophile proteins, while also achieving a good PCC.

Figure 13: Scatter plots of the melting temperatures of the testing set predicted by
the MLP model developed with the protein embeddings, and their true values

To compare the SeqVec protein features to hand-crafted fea-
tures, a baseline feature set that describes each protein by a
vector with the frequency of each amino acid in the sequence
was developed and used to train and test the same MLP archi-
tecture. This baseline model obtained very similar results, with
a test PCC value of 0.73 and a test SCC value of 0.43, as well
as a similar test RMSE of 7.14, the hand-crafted features pro-
vide very similar predictive performances, which suggest that
the SeqVec features are not an improvement to protein ther-
mostability prediction directly from sequence.

Figure 14: Root Mean Squared Error (RMSE), r2 correlation coefficient, Explained
Variance Score (EVS), Pearson Correlation Coefficient (PCC) and Spearman Cor-
relation coefficient (SCC) performance metrics of the MLP model implemented with
the protein embeddings for melting temperature prediction, upon training on all or-
ganisms except one, which was used for evaluation. The results indicate that the
predictions are not accurate on organisms in which the model was not trained on.

An additional generalization experiment was performed,
where the MLP model with the SeqVec features was trained
on the proteins of all organisms except one, and evaluated on
the proteins of the left-out organism.

This experiment showed that this prediction model is not
accurate when applied to proteins from organisms it was not
trained on (figure 14). Ideally, the model would be capable of
maintaining the performance metrics when evaluated on a dif-
ferent organism, but this was not observed due to the nega-
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tive r2 score and EVS throughout all test organisms. The cor-
relation coefficients were also both reduced in all cases, ex-
cept for certain organisms such as C. elegans, D. melanogaster
and D. rerio that show the best PCC and SCC values of this
experiment, which are still lower than the correlations on the
training data. Additionally, analysis of the RMSE, r2 score
and EVS values of the evaluation organisms shows a clear
distinction between evaluating the model on thermophiles and
mesophiles/psycrophiles, in which the model shows severely
worse values when evaluated on the thermophiles.

Figure 15: Scatter plots of the melting temperatures predicted for the testing set
by the MLP model developed with the protein embeddings and their true values, on
a training set without proteins from M. musculus, which were used as the testing
set. The performance in the testing set indicates that the model is not accurate
enough to correctly predict the melting temperatures of proteins with similar melting
temperatures belonging to an organism outside of the training set.

The reduced performances in this experiment were studied
further, and the prediction plots were generated, in which the re-
duced PCC in the left-out organisms can be clearly explained.
As an example, the experiment where M. musculus proteins
were isolated from the training and were used as the testing set
are shown in figure 15. Although centered in the line of per-
fect prediction, the predictions on the test proteins are severely
dispersed, an unexpected result, considering the good correla-
tion in the training data. This suggests that the model is only
learning how to identify the organisms.

The results of these experiments suggest that the SeqVec
protein embeddings only superficially describe the thermostabil-
ity of the proteins, because although the first regression model
trained on all organisms shows very promising results, this
model is incapable of generalization to different organisms. A
naı̈ve baseline was constructed, using a linear regression that
simply uses the average melting temperature of the organism
of the protein as a single feature. The first experiment with the
entire data set produces a test RMSE of 4.50 and a test PCC
of 0.895, which are better than those of the MLP with either the
baseline features or the SeqVec features. This naı̈ve baseline
also shows lower RMSE values in the same generalization ex-
periment (figure 16).

Figure 16: Root Mean Squared Error (RMSE) values of a naive linear regression
baseline in the same leave-one-out experiment. The error values are better than
those obtained by the Multilayer Perceptron (MLP) model with the SeqVec features.

6.3. Discussion
The publication of the Meltome Atlas, with a large amount of

coherent and well-annotated records from diverse organisms,

provided the requirements that the ProTherm database previ-
ously failed to meet. The SeqVec protein embeddings gen-
erated from this data set proved to be capable of modelling
aspects of protein thermostability directly from sequence, but
their use in the development of ML resulted in poor perfor-
mances, only capable of differentiating between different organ-
isms. This information is too general and can not be applied in
a protein engineering approach.

The obtained SeqVec protein features could be used to accu-
rately differentiate proteins originating from thermophile organ-
isms from other organisms less resistant to high temperatures,
suggesting that the ELMo model could identify the characteris-
tics that make a protein resistant to high temperatures.

The ML models trained with the protein embeddings to pre-
dict the melting temperature of previously unseen proteins pro-
duced generally positive results with meaningful predictions
when trained on the entire data set. However, the best per-
forming MLP predictor was only slightly better than a simple
baseline feature set that describes each protein by an amino
acid frequency vector, and this model was also found to lack
in generalizability. Since this experiment used a large enough
data set, the reduced performance of the models can only be
explained by the features used. It is noteworthy, however, that
this experiment was based on the PCA-transformed protein em-
beddings, with only 100 dimensions. This was the only experi-
ment performed in the thesis where enough data was available
to discard this step. Additionally, since the algorithm chosen
was the MLP, the feature reduction could have been performed
by an initial layer of the perceptron. This was not studied, and
could be somewhat responsible for the reduced performances
obtained.

The issues with this model were not unexpected due to the
difficulty of the task at hand, but with the surprisingly similar
success of the baseline features we are forced to conclude that
the SeqVec features do not provide a revolutionary approach
for the development of new protein thermostability engineering
methods that can predict the melting temperature directly from
protein sequence. This is further evidenced by the high disper-
sion of the predictions around the average melting temperature
of each organism, where simply predicting this value resulted in
lower prediction errors.

This high dispersion was not studied in detail. By developing
a model that uses the SeqVec embeddings together with the
hand-crafted features that were here only used as baselines,
more meaningful conclusions could have been drawn, perhaps
showing that, with additional features, a useful ML prediction
model could be developed with the SeqVec embeddings. But
at the end of this experiment, with a model that predicts a gen-
eral melting temperature value, randomly spread around the or-
ganism’s average melting temperature, the delicate task that is
protein design becomes impossible, and a more specific model
that can accurately differentiate between very similar proteins,
and not just separate the thermophile proteins, is still to be de-
veloped.

7. Conclusions
The objective of this thesis was to study the application of

deep language models for protein sequence modelling. For
this, the SeqVec model was used to produce protein features
that were used to apply several ML models for the prediction of
protein thermostability properties.

The first experiment with the SeqVec model produced suc-
cessful protein secondary structure models, and in all experi-
ments the protein embeddings showed a capacity to model as-
pects of protein thermostability, with an additional positive result
in the capturing of three-dimensional conformation and amino
acid interactions. The positive literature results on the applica-
tion of deep language models for protein engineering, coupled
with the advantages that these models have over conventional
protein engineering methods, prove that this is an approach to
biological sequence modelling with a lot of potential. It is, how-
ever, still behind state of the art performance, and would un-
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doubtedly benefit from the preparation of larger and more well-
curated databases of protein properties.

The results obtained in the development of ML models for
protein thermostability prediction directly from wild-type se-
quences using the SeqVec protein embeddings revealed that
such models are capable of identifying features related with
thermostability, but are not yet adequate for the prediction of
melting temperatures. The use of the ProTherm database
confirmed its frequently mentioned issues, but not even with
the larger Meltome Atlas could this prediction achieve perfor-
mances useful for protein engineering. This is a difficult predic-
tion task, with various factors influencing protein thermostabil-
ity, that is not expected to be improved by introducing the use
of transfer-learning with language models trained on protein se-
quences.

More frequently used in protein thermostability engineering,
is the prediction of the effect that a mutation will have on the
protein’s free Gibbs energy of unfolding. Using the SeqVec fea-
tures, we developed ML models that achieved higher Matthews
correlation coefficients than some well established models. Our
models also achieved useful precision metrics, proving that
transfer-learning methods can compete with current literature.
The application of these models to guide mutagenesis studies
is expected to see an increase in use and a substantial increase
in performance if more data is made available for their training.
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