
Deep Learning for Protein Thermostability Engineering

Rafael Espinheira Alves

Thesis to obtain the Master of Science Degree in

Biological Engineering

Supervisors: Prof. Dr. Marcel J. T. Reinders
Prof. Dr. Ana Luı́sa Nobre Fred

Examination Committee

Chairperson: Prof. Dr. Ana Margarida Nunes da Mata Pires de Azevedo
Supervisor: Prof. Dr. Ana Luı́sa Nobre Fred

Member of the Committee: Prof. Dr. Maria Margarida Campos da Silveira

January 2021





Preface
The work presented in this thesis was performed at the Delft Bioinformatics Lab of Delft University of the

Technology (Delft, Netherlands), during the period February-December 2020, under the supervision of

Prof. Dr. Marcel J. T. Reinders. The thesis was co-supervised at Instituto Superior Técnico by Prof. Ana
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Abstract
Recent advances in natural language processing show that modern neural networks are capable of

learning context and semantics of language with unsupervised pre-training. Using such language mod-

els, researchers are now introducing new ways to represent protein sequences as continuous vectors

(embeddings) that capture biophysical properties directly from unlabelled sequences. In this work, the

embeddings generated by SeqVec, a deep learning model based on the ELMo language model and

trained on the UniRef50 data set, were studied for their potential to capture protein thermostability.

Three thermostability data sets were prepared and used to train and evaluate several machine learn-

ing models for their capability to predict protein thermostability properties using only the SeqVec embed-

dings as features. Although far from perfect, experiments on wild-type proteins show that such models

produce meaningful predictions of protein melting temperature, and can isolate proteins with high ther-

mostability. Additionally, models trained to predict the effect of mutations on the protein thermostability

were capable of achieving Matthews correlation coefficients as high as 0.354 on independent testing

data, a competitive value compared with recent literature.

Using transfer-learning for protein stability prediction opens up a new form of sequence-based tools

that do not rely on biophysical features and do not require protein structure information. With this work

it was shown that this is a promising approach to protein thermostability prediction, but the lack of data

is still a large limitation.

Keywords

Machine learning; Deep learning; Language models; Protein engineering; Protein thermostability pre-

diction.
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Resumo
Os mais recentes avanços em processamento de linguagem mostram que redes neuronais artificiais

são capazes de aprender conceitos como contexto e semântica apenas com treino não-supervisionado.

Usando estes modelos de linguagem, novas formas de representar proteı́nas como vectores contı́nuos

que capturam propriedades biológicas diretamente de sequências sem anotação estão a ser desen-

volvidas. Neste trabalho, os vectores gerados pelo modelo SeqVec, inspirado no modelo de linguagem

ELMo e treinado no conjunto de dados UniRef50, foram estudados pela sua capacidade de capturar a

estabilidade térmica de proteı́nas.

Três conjuntos de dados de estabilidade térmica de proteı́nas foram preparados e usados para

treinar e avaliar diversos modelos de aprendizagem automática pela sua capacidade de previsão de

valores de estabilidade térmica utilizando apenas os vectores produzidos pelo modelo SeqVec. Ainda

longe do ideal, experiências com sequências de proteı́nas naturais mostram que estes modelos são

capazes de produzir previsões informativas, e que conseguem isolar proteı́nas com elevada estabil-

idade térmica. Adicionalmente, modelos treinados para prever o efeito de mutações na estabilidade

térmica de proteı́nas foram capazes de atingir valores de correlação de Matthews de até 0.354 em

dados independentes, um valor capaz de competir com a literatura atual.

A utilização destes métodos para a previsão da estabilidade térmica de proteı́nas abre uma nova

abordagem para a engenharia de proteinas que não requer a preparação de caracterı́sticas fisico-

quimicas nem de caracterı́sticas estruturais para descrever as proteı́nas. Com este trabalho, foi demon-

strado que esta abordagem tem bastante potencial, mas que ainda é limitada pela falta de dados

disponı́vel.

Palavras Chave

Aprendizagem automática; Aprendizagem profunda; Modelos de linguagem; Engenharia de proteı́nas;

Previsão de estabilidade térmica.
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1. Introduction

1.1 Context and Motivation

This work arises from the connection of three problems and the most recent attempts to solve them. The

economic interest in engineering proteins to increase their valuable properties, joined with the progress

in the development of computer models for human language and the rising abundance of unlabelled

protein sequence data makes learning biological function directly from sequence not only possible, but

also very interesting.

1.1.1 Computational methods for protein engineering

Protein engineering aims to obtain proteins with useful properties for technology, science and medicine.

As the amino acid sequence determines the protein’s properties [1], by performing specific amino acid

modifications, new proteins have already been designed and optimized, with applications in chemical

and pharmaceutical biosynthesis, regenerative medicine, food industries and waste biodegradation [2].

To guide the protein mutation process, protein engineering constantly looks for models to correctly pre-

dict protein properties such as function, catalytic activity and stability [3].

Traditionally, protein engineering is based on the rational design strategy, which faces overwhelming

amounts of possible mutations to model [3] and from which most are not functional or can produce

unaccounted effects in stability [4], and on the directed evolution strategy, which rarely finds beneficial

mutations [5] in an iterative approach of trial and error, with expensive and time-consuming screening

procedures [3].

New, emerging, directed evolution methods use Machine Learning (ML) models to learn functional

properties from the entire fitness landscape, and then apply this knowledge to guide protein mutations

towards higher protein fitness levels [3]. This approach is very appealing for protein engineering due

to its generalizability: while traditional protein engineering methods are limited to the specific protein

families in which they were developed, these models can quickly make predictions about new enzyme

variants which were previously unknown, only by applying the knowledge they learned from the data

used to train the model [2]. Used extensively in bioinformatics [6], this approach has already seen

success in predicting protein structure, function, catalytic activity, solubility and stability, and can be

applied in combination with the directed evolution strategy (Figure 1.1) by reducing the experimental

effort and improving the exploration of the sequence space of the traditional method [3]. These models

are already known to be capable of handling complex relationships in sequence data, and are only

limited by the quality and quantity of data available used in the training steps [2].

One of the protein properties with industrial interest is the thermostability of enzymes. Enzymes

are the primary catalytic agents of cells, responsible for conducting most chemical reactions, and are

1



Figure 1.1: Traditional directed evolution procedure and Machine Learning (ML)-guided directed evolution. (a)
Traditional directed evolution generation and screening process consists of iterative cycles of trial and error. (b) The
screening process of traditional directed evolution improvements as a series of local searches in the protein fitness
landscape. (c) ML guided directed evolution chooses mutations based on information learned from all candidates.
(d) ML guided directed evolution initially learns the entire fitness landscape (green circles) to then quickly converge
towards fitness improvements (violet stars) [3].

frequently applied in chemical, biotechnology and medical industries as catalysts for diverse reactions.

Increasing the thermostability of enzymes is useful to facilitate certain purification steps based on heat

treatments and to allow the use of higher reaction temperatures, making for a faster and more sterile

process, and is also associated with a higher stability do denaturing agents [3], [7].

Numerous protein thermostability models and ML predictors have already been developed, but their

performance is still far from ideal, as protein stability modelling is a very difficult task and for which there

exists limited data [8].

1.1.2 Using unlabelled protein sequence data

Technological improvements in protein sequencing are currently causing an exponential increase in

the size of protein sequence databases such as UniProt [9]. Despite the large amounts of available

genomes and proteomes, this information is only as useful as the quality of its annotation, which is

dependent on the available tools for their analysis [10]. As a consequence of cheaper sequencing

procedures, biological databases are growing faster than the computing power required for annotation

of their information [11]

This continuous growth of sequenced genomes is, in its majority, a result of sequencing of very

similar and close to identical strains of the same species, where 90% of the proteins have a larger than
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90% identity, which presents a large challenge for databases [9]. The most frequently used approaches

for protein annotation are based on local alignment tools, but these still take several minutes to process

a single protein [12] or have significant hardware requirements [13]. This methodology also can not

accurately model highly divergent natural sequences with similar functions, nor highly similar sequences

with different properties, and can not be applied to the many proteins that have no known homologs and

remain uncategorized as attempts to address these challenges are frequently limited to individual protein

families and lack in generalizability [10]. The large number of proteins with no evolutionary information

is also a problem, and processing data sets from metagenomic samples is already a major challenge

for mainstream protein annotation methods. As databases double in size every two years, this process

quadruples in difficulty, resulting in a constant need for faster solutions [11].

A possible solution for this issue is being found in ML models used for Natural Language Process-

ing (NLP). Analogously to how a sentence’s meaning is determined by the words that compose that

sentence, a protein’s structure, function and its properties are also determined by the amino acid se-

quence that composes that protein [10], and as proteins are one of the most important cellular elements,

responsible for most functions necessary for life, a model that successfully predicts protein properties

directly from its amino acid sequence is of extreme value [11].

Figure 1.2: Results obtained by the UniRep Multiplicative Long-Short Term Memory (mLSTM) model on protein bi-
ology modelling. This deep learning model successfully learns content-rich protein and amino acid representations
directly from protein sequence. (a) Principal Component Analysis (PCA) of amino acid embeddings shows clusters
representative of properties. (b) t-Distributed Stochastic Neighbour Embedding (t-SNE) of proteome-average em-
beddings of model organisms shows clusters with evolutionary information. (c) t-SNE of protein embeddings show
clusters representative of structural classes [14].

Already some efforts in making the connection between sequence and function are being made, with

NLP models that find high-level protein representations, called embeddings, that are closely associated

with the protein function and properties (Figure 1.2). The abundance of protein sequence databases

supplies a large data set to train such models, and the hypothesis that these models can be applied to

model protein sequences and learn the biological rules that dictate protein properties directly from the

amino acids is seeing a lot of support [10], [11], [14], [15], [16], [17].

Additionally, high-dimensional protein representations learned by a deep learning algorithm that ac-
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curately model the functional outcome of a protein sequence can also be used for protein engineering,

as proteins can simply be compared by the distance of these representations in the feature space. This

allows for the evaluation of which mutations are interesting and increase protein fitness, at accessible

computational requirements [10].

The need for better models of protein thermostability makes it a very promising area on which to

assess the performance of the protein representations learned by language models trained on biological

data, as no such study was published.

1.2 Objectives and proposed framework

This thesis aims to explore the potential of the application of Sequence-to-vector (SeqVec), a Bidirectional

Long-Short Term Memory (biLSTM) model based on the Embeddings from Language Models (ELMo)

NLP model and pre-trained on the UniRef50 data set, as published by [11], in protein thermostability

engineering. For this, a data science approach was followed, with the goal of predicting protein ther-

mostability directly from protein sequence, without user-defined, evolutionary or structural features, and

using only the high-dimensional protein representations learned by the SeqVec model to develop pro-

tein thermostability models. First, protein thermostability data was collected and compiled; then, the

data was explored in detail and processed accordingly; lastly, several machine learning predictors were

chosen, applied and evaluated.

1.3 Thesis outline

The rest of this dissertation is organized as follows. In the next chapter, Background, relevant topics

from protein biology are introduced, protein thermostability engineering state of the art is discussed,

and the concepts from machine learning necessary for this project are presented. The dissertation then

details the methodology, results and discussion sections of each experiment separately, where: the first

experiment, Validation of the SeqVec model aims to explore the embeddings for biological meaning

and develop a proof-of-concept secondary structure predictor; the second experiment, Thermostability

prediction with the ProTherm wild-type data set, presents the first effort in thermostability prediction

using the SeqVec embeddings; the third experiment details the process of Prediction of thermosta-

bility changes with the ProTherm single-mutants data set; the fourth experiment aims to study

The effect of mutations in the SeqVec embeddings; the fifth and final experiment, Thermostability

prediction with the Meltome Atlas wild-type data set, presents a final attempt at modelling protein

thermostability directly from sequence using the SeqVec embeddings. The last chapter in this the-

sis, Conclusions and future work, summarizes the achievement of the objectives of this thesis and

presents an overview of the project, together with some notes on future work based on this dissertation.
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2. Background

2.1 Biology background

Proteins are responsible for almost every biological process that happens in a cell and are the most

abundant biological macromolecules, presenting an extensive diversity of functions and properties [18].

The genetic information stored in a cell’s deoxyribonucleic acid is expressed through proteins, making

them the most important machinery of life [11].

2.1.1 Amino acids and the protein sequence

Proteins are composed of amino acids, linked by covalent bonds in a linear sequence. All proteins, from

all biological domains and kingdoms, are polymers that use the same set of 20 different amino acids,

which are identified by their different side-chains. Some proteins also include nonstandard amino acids,

which are usually derivatives of the common amino acids [19].

Table 2.1: The five groups of common amino acids, identified by the polarity and charge (at physiological pH) of
their side chains, and their most relevant properties. Adapted from [18].

Amino acid 1-letter code Group Properties
Glycine G
Alanine A
Proline P
Valine V

Leucine L
Isoleucine I
Methionine M

Nonpolar,
aliphatic
R groups

Hydrophobic, tend to cluster
together in the protein’s interior,

establishing hydrophobic
interactions that stabilize

the protein

Phenylalanine F
Tyrosine Y

Tryptophan W

Aromatic
R groups

Relatively hydrophobic, also
participate in hydrophobic interactions
but have a larger side-chain volume

Serine S
Threonine T
Cysteine C

Asparagine N
Glutamine Q

Polar,
uncharged
R groups

Relatively hydrophilic,
frequently form hydrogen bonds

with water

Lysine K
Arginine R
Histidine H

Positively
charged
R groups

The most hydrophilic,
basic character

Aspartate D
Glutamate E

Negatively
charged R groups

The most hydrophilic,
acid character

All amino acids are composed by a central carbon atom, to which are bonded a carboxyl group, an

amino group, a single hydrogen atom, and a variable side chain, also called the R group, which is used

to group the 20 common amino acids in different classes according to its chemical properties. Usually,

this classification is performed by the polarity and charge (at pH 7) of the amino acid, which determines

their solubility in water [18], [19]. Based on this property, five main classes of amino acids are usually
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described, as summarized in Table 2.1 [18]. Other authors group amino acids in just three classes:

nonpolar, uncharged polar and charged polar amino acids [19], while other authors classify the amino

acids in a more detailed approach, with more properties of the R group [20].

The formation of peptides, polypeptides, oligopeptides and proteins is done by sequentially linking

amino acids, which are joined to each other in a linear structure by peptide bonds. The linked amino

acids in a protein, no longer in their complete, isolated form, are now usually called amino acid residues.

These amino acid sequences can have a wide variety of sizes, from very small peptides with very few

monomers to very large macromolecules [18].

2.1.2 Amino acid interactions and the protein structure

Although composed by a sequence of amino acids, a protein is more than a simple linear structure.

There are four degrees of protein structure, from which the sequence of amino acid residues is only

the first. The secondary structure is the stable conformation of amino acid residues in several, distinct

structural patterns. Upon folding of the polypeptide, emerges the tertiary structure, which describes

the entire Three-dimensional (3D) conformation of the protein, and some proteic complexes are formed

by more than one polypeptide subunit, with a characteristic spatial arrangement called the quaternary

structure [18].

Figure 2.1: Elements of protein secondary structure. (a) Side view of the α helix, detailing the repeating pattern
with 3.6 residues in length and the hydrogen-bonds responsible for this arrangement. (b) Top view of the α helix,
detailing the positions of the R groups. (c) Top and side views of the anti-parallel β sheet, detailing the hydrogen-
bonds and the positions of the R groups. (d) Top and side views of the parallel β sheet, detailing the hydrogen-bonds
and the positions of the R groups. Adapted from [18].

The diversity of protein backbone conformations comes from the fact that many of the peptide bonds

in a protein are free to rotate in space, guided by the laws of physics towards the most stable global

conformation, called the native state of the protein [19]. This makes hydrophobic and ionic amino acid

interactions, and the hydrogen and disulfide bonds between them, the most important forces in stabilizing

the structural patterns of the protein’s secondary structure, from which the most common types are the α

helix and the β sheets and turns (Figure 2.1), both held together by hydrogen bonds between amino acid
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residues in the protein sequence that arise from the type and spacial orientation of their R-groups [18].

Several elements of secondary structure can be connected together in different motifs (also called

a supersecondary structure), and can originate independently stable self-contained patterns called do-

mains [20]. All of these amino acid residue interactions originate a specific three-dimensional arrange-

ment characteristic of each protein, which is called the tertiary structure. Different amino acid sequences

give rise to different conformations and different protein properties [18].

The function of proteins is also a consequence of its conformation. Each fibrous protein has long

polypeptide backbones in specific repeating secondary structure patterns to correctly guarantee rigidity

or flexibility [18], and each ligand-binding protein and each enzyme can discriminate between closely

related molecules due to both steric and physical complementarity between the binding site of the protein

and the individual ligand, as a result of the specific amino acids that make up the protein’s binding site

(or the enzyme’s active site) [20]. This complex process involves a sequence of reaction intermediates,

and where the structure of the protein and the structure of each intermediate play an important role in

the physical and chemical interactions necessary for this transformation [18], making protein structure

fundamental in determining protein function (Figure 2.2).

Figure 2.2: The relationship between the first three levels of protein structure, and how they are responsible for
protein function. (a) the primary structure of Chymotrypsin, detailing the disulfide bonds (yellow) that hold the
three polypeptides together. (b) the surface area of Chymotrypsin, detailing the residues of the active site of the
enzyme (red) and the location where the substrate binds to the protein (green). (c) The polypeptide backbone of
Chymotrypsin, detailing the multiple secondary structure elements and the disulfide bonds in the three-dimensional
space. (d) Detailed view of Chymotrypsin’s active site and its complementarity with the substrate. (e) The three-
dimensional structure of Hexokinase in its free conformation. (f) The three-dimensional structure of Hexokinase
upon binding of D-glucose (red), detailing the resulting conformational change. Adapted from [18].
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2.1.3 Protein folding and stability

Although the amino acid sequence of a protein is known to determine its tertiary structure and function,

the process through which a protein folds into its native state is extremely complex and is still only

mildly understood, making it difficult to model [18]. Some models describe this folding as a hierarchical

process, in which secondary structure elements emerge before long distant interactions similar to the

assembly of a puzzle [20], while other models characterize it as a spontaneous collapse of the peptide

chains, guided by amino acid interactions [18].

The folding process of some proteins can also be assisted by chaperone proteins, which interact

with the intermediates of this process to facilitate the correct folding of the protein, or even provide the

unique micro-environment in which a specific folding step is made possible. Moreover, after the folding

process, some proteins can only exert their functions after specific post-translational modifications, such

as acetylation, phosphorilation and methylation reactions, that alter local properties of the structure and

conformation of the protein [18].

Figure 2.3: Protein denaturation and protein renaturation. (a) Thermal denaturation of proteins, observed by mon-
itoring of the percentage of signal in a circular dichroism experiment. The melting temperature of a protein is
defined as the temperature value at which half of the proteins in solution are denatured. In this example, the melting
temperature of the Apomyoglobin (red) is shown to be higher than that of Ribonuclease A (blue), indicating that
the former is more thermostable. (b) Chemical denaturation of proteins, also monitored by circular dichroism. (c)
Simplified scheme of how a denaturing agent interacts with the amino acids in the protein, leading to loss of three-
dimensional conformation. In this case, the protein is capable of reestablishing the correct structure in a process
called renaturing. Adapted from [18].

8



As proteins need to have the correct conformation in order to carry out their functions, a loss of 3D

conformation can lead to the loss of protein function. This process, called denaturation, can happen

as a result of changes in the protein’s environment in different forms: as an increase in temperature

that breaks the weak hydrogen bonds responsible for the native conformation, as an extreme change

in pH affecting the charge of the amino acid residues and thus altering electrostatic forces, and by

various organic solvents such as alcohols or detergents that disrupt hydrophobic interactions [18], [20].

As such, the stability of a protein can be described as a measure of how resistant its structure is to

these changes (Figure 2.3). However, the connection between sequence, structure and stability is not

direct, since proteins with very different heat resistances can have very similar structures [18], and

other neighbouring molecules, including other proteins, in dense cellular environments, can also result

in complex interactions that can alter the stability of the native state of a protein [21].

Figure 2.4: Protein folding thermodynamics depicted as an energy landscape. Several characteristic conformational
states are detailed as free-energy funnels, indicating a higher stability. These states are separated by energy
barriers with frequent depressions on the sides of the funnels that represent semistable folding intermediates [18].
The z axis is also representative of the percentage of amino acids in native conformation, and the width of the
energy well at any point is correlated of the entropy in that intermediate state. These conformations are called
molten globules, as these collapsed states are not entirely fixed [18]. Also note that the fully unfolded protein is
quite stable, due to a large number of interactions with the surrounding water molecules. Adapted from [4].

The protein conformation that is most thermodynamically stable is the one having the lowest Gibbs

free energy (G). However, the reduced G difference between the folded and unfolded states (∆G)

makes the native conformation of most proteins only slightly stable [18]. Held by electrostatic forces, this

conformation is mostly stabilized by the weak interactions between the amino acids, namely hydrophobic

interactions predominating in the protein’s interior and hydrophilic interactions predominating on the

protein’s exterior by forming a solvation layer with the sorrounding water molecules. Although ionic

interactions are stronger, they do not greatly stabilize proteins [19], as well as hydrogen bonds in the

protein, but disulfide bonds show a great role in this stabilization [19].
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The thermodynamics of protein folding can be represented as free-energy funnels, where different

protein conformations can be compared for stability (Figure 2.4), but given the high complexity of the

protein folding process, protein stability modelling is still a very difficult task [4]. The extreme importance

of proteins in biology and the growing use of enzymes for industrial purposes makes modelling the

correct 3D conformation of proteins an ongoing challenge of great interest.

2.2 Protein thermostability engineering state of the art

Protein engineering uses amino acid mutations to increase the usefulness of proteins. However, this

process can have the unwanted side effect of causing structural changes in the protein that can affect

protein stability. Either to evaluate if a mutation will disrupt the stability of the designed protein, or to

design proteins with higher stability, the development of computational tools for prediction of protein

stability is greatly pursued in protein engineering [8].

Empirical approaches such as random extension of the protein terminals and chemical modification

with polymers have been outperformed by site specific mutations [7], but due to the slow and costly pro-

cess of experimental screening for thermostability of mutation libraries, in silico methods are generally

preferred. These are usually based on phylogenetics, structural analysis, free energy calculations, or

machine learning, with a recent trend towards machine learning-based predictors. As the performance

of these methods is tied to the amount of available high-quality data, there is a growing demand for

systematic collection, validation and organization of protein thermostability databases [22].

2.2.1 Obtaining protein thermostability data

Protein stability is usually described by the free Gibbs energy difference between the folded and the

unfolded states of the protein, ∆G [23], defined in Equation (2.1) as a function of the gas constant R,

the absolute temperature T and the equilibrium constant of the unfolding transition K, calculated as the

concentration of folded proteins divided by the concentration of unfolded proteins in equilibrium [24].

This can be used to characterize the thermostability of the protein, but also the stability of proteins in

extreme environments in general, since protein structure integrity in extreme temperatures is correlated

to integrity in extreme pH values and to the application of chemical denaturants [18]. The experimental

determination of the free Gibbs energy of unfolding of a protein is usually done using Circular Dichroism

(CD) spectroscopy, fluorescence spectroscopy or Differential Scanning Calorimetry (DSC) [25].

∆G = −RTlnK (2.1)

The CD technique is based on a spectroscopic evaluation of the conformation of proteins. Proteins

are optically active molecules, in the sense that they absorb the components of circularly polarized
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light differently [26]. By analyzing of the CD spectrum at a given temperature, the fraction of folded

and unfolded protein in solution can be determined, and by collecting these values as a function of

temperature, the ∆G can be obtained by fitting the experimental values to the modified Gibbs-Helmholtz

equation at constant pressure Equation (2.2) [23].

∆G = ∆H(1− T

TM
−∆Cp[(TM − T ) + T ln(

T

TM
)] (2.2)

where ∆H is the enthalpy change (considered to be independent from temperature), TM is the melting

temperature of the protein and ∆Cp is the change in the heat capacity due to the unfolding. These values

are obtained by fitting a nonlinear least squares method, and from which the ∆G is determined [24].

The fluorescence spectroscopy technique is based on the analysis of the response of tryptophan

residues in the protein to fluorescent light, as this response is dependent on the accessibility of the

tryptophan residues to the surface of the protein. Similarly to CD spectroscopy, by studying the fluores-

cence spectra of a protein with tryptophan residues at different temperatures, the fraction of unfolded

and folded protein in solution can be determined as a function of temperature [27], allowing a similar

mathematical calculation of the value of ∆G [28].

The DSC technique is also based on the Gibbs-Helmholtz equation Equation (2.2), but analyses the

excess heat capacity of a solution as a function of temperature. The unfolding of a protein is described

by a sharp endothermic peak centered at the melting temperature. By integration of this curve, the value

of the transition enthalpy, ∆H and the value of the change in heat capacity as a result of the mutation,

∆Cp, are calculated directly, allowing the determination of the ∆G value (Figure 2.5) [23].

Figure 2.5: Data obtained by a differential scanning calorimetry experiment. The excess heat capacity of a solution
(y-axis) is measured at different temperatures (x-axis), in which the two-state unfolding of a globular protein can be
followed. The observed endothermic peak is centered at the protein’s melting temperature, which can be integrated
for calculation of the transition enthalpy. The difference in heat capacity as a result of the unfolding can also be
obtained from this experiment. Adapted from [23].

The free Gibbs energy of unfolding parameter is also widely used to describe the effect that amino

acid mutations have in the thermostability of the protein, by analysing the difference in free Gibbs energy
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of unfolding change caused by the mutation, ∆∆G [25]. The most frequently used definition, given in

Equation (2.3), describes a mutation that caused an increase in stability by a positive ∆∆G value [8].

∆∆Gwt→mt = ∆Gmt −∆Gwt (2.3)

Two major issues arise from the experimental calculation of the change in free Gibbs energy of

unfolding: the fitting of enthalpy change as a function of the temperature assumes that the unfolding of

the protein follows a two-state equilibrium, and does not consider stable folding intermediates [23], and

the value of ∆G can only be measured directly in the denaturation transition zone, the area where there

are both native and unfolded proteins in solution. As ∆G is dependent on the environmental conditions,

its values in physiological conditions need to be obtained by extrapolation [20].

Although there is an abundance of protein sequence and also protein structure data, data on protein

stability is still not widely available, as this data is not only difficult to gather but also difficult to organize

in coherent and well-curated databases. With the rising use of high-throughput techniques, more effort

is being put into obtaining and processing this data more uniformly, and also in quantities more suitable

for the development of protein thermostability models. [2].

2.2.2 Protein thermostability databases

The most widely referenced database of protein thermostability information is the ProTherm database

[2], [22]. The last publlished description of this database, from 2006, mentions 7014 wild-type proteins,

8202 single-mutant proteins, 1277 double-mutants and 620 multiple-mutant proteins, retrieved from a

collection of 1497 scientific articles, totalling 17113 entries from 771 different proteins [25]. The database

contains protein information such as identifiers and mutation details, experimental conditions information

such as temperature, pH, buffers and experimental methods, and thermodynamic data such as the free

Gibbs energy of unfolding (∆G), difference of ∆G caused by the mutations (∆∆G), concentration of

denaturing agents for chemical denaturation and melting temperature (Tm) for thermal denaturation,

melting temperature change caused by the mutations (∆Tm), and enthalpy and heat capacity changes

caused by the mutations (∆H and ∆Cp) [25].

This database contains now over 25000 records, but it is becoming more evident that the ProTherm

database is not actively maintained and suffers from numerous issues such as inaccurate or incomplete

annotations, and even wrong values [22], [29]. Adding to this, different experimental conditions for the

same record also impact some machine learning predictors [30], [31].

To deal with these problems, different attempts were made to manually filter and curate this database.

Several papers make their own data sets available to the scientific community, from which the PoPMuSiC-

2.0 [30] and the I-Mutant2.0 [32] readily available data sets are frequently mentioned [31], [8]. Other

efforts to compile a curated database for training of machine learning predictors are recently gaining
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some attention, such as ProtaBank [33], a repository with several mutation data sets for diverse protein

engineering applications, including the previously mentioned protein thermostability data sets collected

and processed by different authors, and the FireProtDB [22] database, which attempts to keep a manu-

ally curated version of the ProTherm database.

In sum, the best protein thermostability databases are still very limited in size, where in fact the

FireProtDB and ProTherm databases have only 1329 manually curated single-point mutations from 79

proteins, and 1564 single-point mutations from 99 proteins after cleanup, respectively [2].

Organisms can also be categorized in psycrophilic, mesophilic and thermophilic, according to their

Optimal Growth Temperature (OGT). With this in mind, the ProtDataTherm database collected all avail-

able protein sequences from microorganisms that have been categorized based on their growth tem-

perature. This database contains over 14 million protein sequences with a UniProt [9] identifier, from

which over 30 thousand also have a secondary structure Protein Data Bank (PDB) identifier [34], clus-

tered by Pfam protein family identifiers and their corresponding thermostability categories: psycrophilic

if OGT<20°C, mesophilic if 20°C<OGT<40°C and thermophilic if 40°C<OGT [35]. With multiple protein

families with sequences belonging to multiple thermostability categories, this database can be used to

compare engineered protein designs with homologues with higher thermostability and for analysis of

modulating factors of thermostability, across different protein families and within specific families [35].

This database has already been successfully used to to develop a pattern recognition algorithm that

suggests thermostability improving mutations [35], and to classify an organism’s OGT by proteomic

analysis [36], but although it is described as an emerging protein thermostability database, it has not yet

been used for the development of protein thermostability prediction methods.

Another effort to record the proteome stability of a large number of proteins from several organisms

across the tree of life is the Meltome Atlas. This data set contains the melting curves of over 48000

proteins, with high-quality annotations obtained by a systematic mass spectrometry approach [37], but

is yet to be used in protein thermostability engineering methods.

2.2.3 Computational methods for protein thermostability enhancement

Protein engineering methods for thermostability enhancement that do not require structural information

are preferred due to their applicability in proteins for which this data is unavailable [7]. These sequence-

based methods are founded on the consensus concept for protein thermostability engineering [38],

where a Multiple Sequence Alignment (MSA) across homologous proteins is used to determine non-

consensus residues, which are substituted by consensus ones. Limited by the contradictory effect of

some of the suggested mutations, these methods can be improved by including amino acids interactions,

by reducing the MSA to thermophilic homologues and by incorporating structure information [7].

When the structure information of the protein is available, fragile regions of the protein can be identi-
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fied and strengthened by introducing, for example, hydrogen bonds or disulfide bridges. These methods

are limited to proteins with such information, and are limited by the experimental conditions at which

crystallographic data is obtained, the time-consuming and inaccurate modelling of large molecular sys-

tems and by not taking into account solvent molecules and long range electrostatic interactions [7].

Although quite useful, computational protein thermostability enhancement methods only suggest

amino acids to mutate and protein locations to modify, and do not actually predict the outcome that

these changes will have on the protein.

2.2.4 Computational methods for protein thermostability prediction

Protein thermostability engineering methods that accurately predict the effect of any mutation on the sta-

bility of a protein are of great interest, because with information about the protein sequence or structure,

these methods can be used to predict the difference in free energy of unfolding or melting temperature

caused by amino acid mutations (Figure 2.6) [7]. Protein thermostability predictors are either based

on energy function calculations or on machine learning algorithms, but even the best thermostability

predictors still need further improvement [7].

Figure 2.6: Performance of different protein thermostability prediction algorithms, evaluated in an independent
testing set for prediction of the ∆∆G value of mutations. From the correlation coefficient (r) and the equation of
regression (y) of each model, we can observe that the best results, which belong to the CC/PBSA and the EGAD,
are still far from ideal. Adapted from [39].

Methods based on energy functions derive their models from physical-based potentials that use

fundamental analyses of the forces between atoms, such as EGAD [40] and CC/PBSA [41] that use

different force-field models to generate and score the structures, or from knowledge-based potentials

that use statistical analyses of different protein properties, such as FoldX [42] and Hunter [39]. There

are also hybrid models, such as Rosetta [43], which is one of the most used methods to reproduce native
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protein structures from sequence [39].

Methods based on ML use different approaches to generate the features describing each protein and

each mutation, sometimes including energy potentials, and also diverge in choice of learning algorithm.

There are sequence-based methods that consider the amino acids in the protein to generate physico-

chemical properties and scoring matrices, such as I-Mutant [32], MUpro [44], iPTREE-STAB [45], and

structure-based methods that also incorporate 3D protein-structure information to generate features

related to secondary structure and atomic interactions, such as PoPMuSiC [30] and DUET [46]. In

general, structure-based methods outperform sequence-based methods [8], and several efforts have

also been employed to integrate multiple of the previously mentioned methods, from which the iStable2.0

algorithm shows the most promising results, achieving the best prediction performance in literature with

a Matthews Correlation Coefficient (MCC) score of 0.708 on independent testing data (Table 2.3) [8].

However, the performance of each of these models depends on the data used to train and test

them. Another recent thermostability prediction model based on convolutional neural networks with

physicochemical features of the amino acid substitution achieved a MCC of 0.56, and performed a

comparison with other previously mentioned models. In their test data, the PoPMuSiC and I-Mutant

models achieved MCC values of only 0.20 and 0.25, respectively [47]. This makes a comparison of

different models inadequate if different data sets are used.

Table 2.3: Summary of the performance of several protein thermostability predictors on the data set S630, a protein
thermostability data set obtained from ProTherm, curated and published by [30] for testing of prediction models. The
iStable2.0 model, which integrates other protein thermostability prediction models including those in the presented
table, outperforms even the best models. Adapted from [8].

Tool Classification Regression Features used Algorithm
Acc MCC PCC used

Structure iStable2.0 0.892 0.708 0.714 Integrating various models XGBoost
-based I-Mutant2.0 0.837 0.547 0.669 Mutation details and neighbouring residues SVM
models DUET 0.776 0.358 0.458 Statistical potential energy function and

Geometric and physicochemical properties
SVM

PoPMuSiC 0.757 0.291 0.424 Linear combinations of statistical potentials MLP
Sequence iStable2.0 0.873 0.652 0.695 Integrating various models XGBoost

-based I-Mutant2.0 0.819 0.491 0.546 Mutation details and neighbouring residues SVM
models iPTREE-STAB 0.810 0.443 0.496 Mutation details and neighbouring residues DT

MUpro 0.756 0.248 – Mutation details and neighbouring residues MLP

Protein thermostability prediction is by itself a very difficult task, and is further limited in performance

due to the lack of high-quality data, as even the best thermostability prediction models have serious

overfitting issues [48] and are very biased to mutations with negative effects in stability, as these are the

most abundant records in the databases [49]. Given the wide range of enzyme mechanisms, reactions,

experimental conditions, families and properties, it is not easy to choose, apply and explain a ML model

for protein engineering as it implies a certain level of understanding in data science [2].
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2.3 Data science background

With the open and widespread use of the Internet, data collection has seen an explosive growth [50].

Data science aims to extract knowledge from data by developing strategies and methods to analyze

the increasing amount of data that is generated daily [51]. The process of learning what information is

stored in big data collections is called data mining, and usually makes use of Machine Learning (ML)

algorithms [52].

A ML application can usually be identified as one of the classic machine learning problems, from

which the unsupervised and supervised learning problems are the most frequent. In unsupervised

learning problems, the data records are not identified by any particular label, and uses algorithms that

focus on the structure of the data, identifying for example clusters, frequent patterns and association

rules, and are out of the scope of this thesis. In supervised learning problems, the data records are

labelled, further described as classification problems if the labels are discrete classes, or as regression

problems if the labels are continuous variables, and uses algorithms that can be trained to predict the

label of new records [51], [52].

2.3.1 The data science process

The choice and application of a machine learning model to a data science project is only one of the

steps in the process of knowledge discovery from data. The data science process encompasses three

main steps, summarized in Figure 2.7, namely: data preparation, training of the ML algorithm, and a

performance evaluation [2].

In the first step of data collection and processing, data sets are often cleaned of noise and inconsis-

tent data, as well as irrelevant data that is removed in a data selection process. Some applications also

require the data to be transformed, using summary or aggregation operations that reduce the level of

detail, normalization operations that map the values to different, more informative, ranges, and balanc-

ing operations that aim to remove or generate new records so that all classes are adequately present

in the data set. This step also involves the use of data visualization and representation techniques,

which usually require the mapping of high-dimensional data to a two-dimensional or three-dimensional

observable space [51], with resource to techniques such as Principal Component Analysis (PCA), t-

Distributed Stochastic Neighbour Embedding (t-SNE) or Uniform Manifold Approximation and Projec-

tion (UMAP) [53], [54], [55]. The processed data is then usually split in a training set and in a testing set,

which are then used in the second and third steps of the construction of a ML model [2].

In the second step, the training of the predictor is performed. In this stage, underfitting and over-

fitting need to be limited, by finding the best trade-off between a model that can learn the required

dependencies in data while preventing the learning of noise in the data. [2].
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Figure 2.7: Summary of the workflow and challenges associated with the construction of a ML model. Step 1 details
the data gathering and processing stage, where experimental conditions, missing values, erroneous annotations and
data imbalance need to be accounted for. Step 2 details the training of the model, where underfitting and overfitting
are the main issues. Step 3 details the evaluation of the model, where data contamination needs to be avoided,
and the correct performance metrics need to be evaluated and statistical sampling can be used to explain skewed
estimates. Adapted from [2].

Different model hyperparameters and different predictors are usually attempted and chosen by a

K-fold cross-validation procedure where the training set is partitioned into K subsets, which are then

cycled in a training of the models on K − 1 subsets and evaluation on the remaining subset, and from

which the model with the best average performance is chosen. Cross-validation has the added benefits

of maximizing the use of the available training data while preventing overfitting to the data set, and of

allowing an unbiased choice of models [51]. Depending on the choice of model and data available, an

additional dimensionality reduction step, by feature selection (using methods such as the filter and the
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wrapper) or feature extraction (using methods such as PCA), may need to be applied to avoid the curse

of dimensionality, which sees reduced performances in ML models that use large numbers of features

compared to the number of data samples [56].

In the third step, the trained ML model is evaluated for its performance on unseen data, using

the testing set to draw conclusions on the model’s generalizability. Choosing the correct metrics and

correctly dealing with skewed estimates and data contamination is paramount in analysing ML models

[2]. This stage of the process involves a detailed comparison between different models, where the use

of adequate data visualization and representation techniques provides additional information to discuss

the success of the model. In addition to the performance metrics, model simplicity can also be a decisive

factor, where simple models are generally favoured against overly complex models, to avoid overfitting

issues [51].

The performance of a ML predictor depends severely on the availability of large amounts of quality

data to train the model but also depends greatly on the choice of prediction algorithm, for which there

exists a great diversity. While a linear predictor can facilitate the analysis of the model and draw con-

clusions about the predictions, sometimes only a complex non-linear model can accurately capture the

required relationships in the data. [2].

2.3.2 Supervised machine learning algorithms

A trained ML model takes data records as inputs, which are described by different features, and outputs a

prediction of each record’s label. In classification problems, the model uses a decision function to identify

the classes of the records, which is usually obtained by optimization of a loss function. In regression

problems, the training of the model is also usually performed by optimization of a loss function, but

in these problems the model learns a mathematical relationship between the data features and the

output [56]. Different algorithms use different loss functions, and obtain different results (Figure 2.8).

The k-Nearest Neighbours (k-NN) classifier is a form of lazy learning, because no model is actually

constructed. This algorithm predicts the class of an input vector x as the most voted class among its k

nearest training points, and all computation time is spent in the classification step. Although it can be

used to learn decision functions with irregular shapes, the extended classification time and issues with

noisy data are the main disadvantages of this algorithm [51]. The hyper-parameter k has a great impact

on the performance of the classifier, and depends on each application, although in general increasing

its value removes the effects of noise in data, but can also lead to less strict decision boundaries [57].

The k-NN regression is based on the classification algorithm, and estimates the outcome variable of a

record by a local interpolation of the values of the k nearest training records [57].

The simplest ML models are based on linear relationships in data. The linear regression finds

the linear relationship between the features and the target variable that minimizes the Sum of Squared
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Errors (SSE). The coefficients w of this equation are obtained by minimizing an ordinary least squares

loss function [57].

To deal with overfitting, regularization is usually applied with this model. By adding a l2 regularization

term α||w||22, called the Ridge regression, the coefficients of the model are also minimized, and by

adding a l1 regularization term α||w||1, called the Lasso regression, the optimization problem produces

sparse coefficients, which can be useful to handle high-dimensional data. In these formulations, the

hyperparameter α determines the regularization strength [56].

Either of these models can also be generalized to include polynomial features, where the design

matrix is now extended with additional columns, defined by the degrees of the features to be included.

Called the polynomial regression, this approach is usually employed to model more complex, non-

linear relationships between the features and the output variable [56].

Another notable extension of the linear regression, which by optimization of the SSE estimates the

mean value of the outcome variable, is the quantile regression, which estimates a chosen quantile of

the target variable. It can be implemented to predict the confidence intervals of the linear regression,

or can also be used to estimate the median value of the outcome variable, by minimization of the sum

of absolute errors. It is usually employed because it is more robust to outliers, or to take into account

skewed data distributions [58].

For classification, a frequently used linear model is the the logistic regression classifier, which

aims to approximate a probability distribution of each class when given the features, modelling the

outcome of a record according to a logistic function [56]. This model is fit to the data by optimizing the

conditional log-likelihood function, using a gradient descent algorithm [57].

The Support Vector Machine (SVM) classifier is based on a more complex approach to decision

functions. It finds the decision function that best separates the classes by using a set of training records

to calculate the hyperplane with the maximum margin between the nearest points of the two different

classes, called the support vectors. These algorithms require a long training time, but can reach high

accuracy metrics and are quite resistant to overfitting. The explicit decision function can also be quite

useful for interpretation of the learned model, and the ease of application of the kernel method, by

mapping the data to higher dimensional feature spaces implicitly during training, can be used to produce

non-linear decision functions at no additional computation time [51].

The training of this algorithm involves a C hyperparameter, which dictates the strength of the penalty

given to records on the wrong side of the decision function, and also involves a manual choice of the

kernel. Usually, the Radial Basis Function (RBF) and the polynomial kernels are applied, but their choice

is not always clear and can have serious impacts on performance [57]. The SVM regression is adapted

to continuous labels by including error penalties in the optimization problem [56].
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A different approach to classification uses logical inference of the classes during training, developing

rules during training to be used to predict the classes of new records. The Decision Tree (DT) algorithm

generates a flowchart of the decisions that produce the predictions, which can be used for interpretation

of the models [59]. The generation of a DT is based on an iterative procedure where the data is split

according to the variable that leads to the most informative split, usually calculated according to the

information gain criteria or the Gini impurity criteria [57]. The process then continues in a top-down

approach through the several generated branches.

These algorithms are very robust to different data types and scales, and can manage large data

sets without extensive computational times. They can, however, suffer from bias to imbalanced classes,

and although they are prone to overfitting, several pruning algorithms and stopping criteria have been

developed to address these issues [51]. DT regression can also be performed, and in this case the

model finds local linear regressions that approximate the mean value of the data in different segments,

both found during the iterative training of the algorithm [57].

Figure 2.8: The decision functions of two different ML models on the same classification problem. (a) By coding
the classes as a binary variable, a decision boundary can be obtained by the linear regression xT β̂ = 0.5, which
separates the classes by a straight line. (b) By implementing a k-NN algorithm that predicts the class of a record
as the majority vote of its 15-nearest neighbours, a non-linear decision function can be obtained. With a non-linear
decision boundary fewer records are misclassified. Adapted from [56].

The more complex Artificial Neural Networks (ANNs) are models based on arrangements of per-

ceptrons, their functional units [59]. A perceptron has a linear part, where a weighted sum of its inputs

is calculated, followed by a non-linear activation function that determines the output of the unit based

on this sum [60]. The Multi-Layered Perceptron (MLP) model is one of the simplest implementations

of ANNs, consisting of a feed-forward network of fully connected perceptron layers, with at least one

hidden layer. By arranging multiple perceptrons organized in layers and using continuous and differen-

tiable activation functions, a MLP can be used to deal with linearly non-separable data and very complex

tasks [51]. The Rectified Linear Unit (ReLU) activation function, defined as y = max(0, x), is frequently
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used for perceptrons in the hidden layers due to its resistance to exploding and vanishing gradients [61],

but other sigmoid or hyperbolic tangent are also widely applied. These models are difficult to analyze

due to their black box nature [51], but by using different architectures, activation functions and loss

functions, ANNs can be applied for a wide variety of learning problems of high difficulty [56].

Training of these models is done in a highly distributed process using the backpropagation algorithm.

With this algorithm, the weights of the connections in the network are tuned iteratively by passing the

training data through the network, where a chosen loss function is minimized by means of a gradient

descent algorithm. Multiple passages of the training data can be applied, called training epochs, al-

lowing the model to use each training record multiple times. This training is usually studied by leaving

out a partition of the training data for validation, where after each epoch the model is evaluated for its

performance in the validation data to prevent overfitting to the training data by applying too many train-

ing epochs. Also important to the training of these models is the learning rate of the gradient descent

algorithm, where a small learning rate can cause the training to progress too slowly or become limited

to the first local minimum it finds, and a large learning rate can cause the algorithm to skip over mini-

mum values of the loss function [52]. For binary classification, the binary cross-entropy loss function is

frequently used, while for regression problems the Mean Squared Error (MSE) can be used [62].

The naı̈ve Bayes classifier is also frequently used. This model is based on the Bayes’ theorem of

conditional probability, and assumes that each feature has an independent effect on a given class to

estimate the conditional likelihood of a record belonging to every class, and predicts the class of the

record as the most probable one [59]. Although very simplistic and easy to implement, it can achieve

good prediction performances, and can also be extended to include conditional dependencies between

the features, using Bayesian networks and Markov logic networks [51].

No single model is ideal to any given application. Different models may perform better on different

data sets of the same problem, or two models may perform quite well in a particular scenario although

they learn different information. When a model’s decision function systematically deviates from the true

labels, it is said to be biased, and a model is said to have large variance if its decision boundary is

different with different training data sets [63]. Ensemble classifiers, such as the Random Forests (RFs)

model, aim to solve these issues by combining multiple simple models, and are effective at reducing

overfitting and variance, and improving the efficiency of the use of the data and robustness of the model

to noise and outliers [51], but the choice of algorithm is always particular to each application, taking into

account the available data and each model’s strengths and weaknesses.

2.3.3 Evaluation of supervised machine learning models

Classification models are usually evaluated in terms of the Confusion Matrix (CM), which counts the

number of True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN) predic-
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tions. From this, the Accuracy (Acc), which measures the percentage of records correctly predicted

from the total number of predictions, and error rate, which measures the percentage of records wrongly

predicted from the total number of predictions, are usually calculated if the data is balanced [2].

However, if the data is imbalanced, metrics such as the recall (also called TP rate or sensitivity),

precision and specificity (also called TN rate) are used instead. These take into account the different

representation of each class in the data set, and prevent a biased evaluation of the model [2]. The

precision measures the ability of the model to correctly label a positive record (Equation (2.4)), and the

recall measures the ability of the model to find all the positive records (Equation (2.5)), and these can

be measured by the F1 score, which is an average of the model’s precision and recall. This measure

is adequate for imbalanced data sets in binary classification [64]. The specificity, also called TN rate is

used to measure the capacity of the model to find all the negative records (Equation (2.7))

Precision =
TP

TP + FP
(2.4)

Recall =
TP

TP + FN
(2.5)

F1 = 2× Precision×Recall
Precision+Recall

(2.6)

Specificity =
TN

TN + FP
(2.7)

Additionally, the MCC is also frequently used for binary classification with imbalanced data because

it takes into account all the parameters of the CM of the predictions (Equation (2.8)) [8].

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.8)

Additional statistical sampling techniques can also be performed for evaluation of the model, such

as Receiver Operating Characteristic (ROC) curve and Precision-Recall Curve (PRC) analysis [65]. The

ROC curve displays the performance of a classifier with different decision thresholds, by representing

the TP rate of the model at different FP rates. Calculation of the ROC Area Under Curve (AUC) value

summarizes the entire plot in a single value, and is also sometimes useful for comparison of different

models. The PRC, which provides a description of the model’s precision as a function of its recall at

decreasing decision thresholds, is also useful if the precision of the model is of interest, specifically in

cases where the positive class is under-represented [65].

Regression models are usually evaluated in terms of Root Mean Squared Error (RMSE), coefficient

of determination r2 and correlation coefficients such as the Pearson Correlation Coefficient (PCC).

The RMSE is the squared root of the mean squared error, an average of the squared errors that

corresponds to the expected value of the SSE, and is a measure of the accuracy of the model (Equa-
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tion (2.9)). The r2 score is the coefficient of determination, and measures the goodness of the fit by

evaluating the proportion of variance of the dependent variable that is explained by the model, and is

calculated as a proportion between the SSE and the variance of the target variable (Equation (2.10)).

The Explained Variance Score (EVS), very similar to the r2 score, also measures the proportion of ex-

plained variance of the model, but takes into account the mean error of the model (Equation (2.11)), and

together with the r2 score can be used to measure the bias of the predictions [57].

RMSE(y, ŷ) =

√√√√ 1

n

n−1∑
i=0

(yi − ŷi)2 (2.9)

r2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

= 1−
SSE
n

V ar{y}
(2.10)

EVS(y, ŷ) = 1− V ar{y − ŷ}
V ar{y}

= 1−
SSE−ME

n

V ar{y}
(2.11)

In these formulations, y are the true values and ŷ are the predictions, n is the number of samples,

SSE is the sum of squared errors, V ar is the variance and ME is the mean error. The concept of

variance can be interpreted as the expected value of the squared deviation from the mean value [57].

The PCC is used to measure the linear relationship between the predictions and the true values

(Equation (2.12)), and can be used as a measure of the dispersion of the predictions. The Spearman

Correlation Coefficient (SCC) can also be used to allow possible nonlinear (but monotonic) relationships

between the predictions and the true values to be measured, in which case the PCC would not be

high but a correlation could exist nonetheless. This correlation coefficient is also more resistant to

outliers. After ranking the records in ascending order of the true values, the SCC is calculated by

Equation (2.13) [66].

rp(y, ŷ) =

∑
(y − ȳ)(ŷ − ¯̂y)√∑
(y − ȳ)2(ŷ − ¯̂y)2

(2.12)

rs(y, ŷ) =
cov{ry, rŷ}
σry × σrŷ

(2.13)

where cov{ry, rŷ} is the covariance of the ranks of the true values and the predicted values, and σry

and σrŷ are the standard deviations of the true values and the predictions, respectively [66].

2.3.4 Recent advances in natural language processing

Ever since the first perceptron model was published [60], Artificial Neural Networks (ANNs) have been

pushed to state of the art performances in very complex computational tasks such as image and video
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recognition, and speech and text processing [67]. The building blocks of ANNs are layers of perceptrons,

with different kinds of connections and operations. By using dense, fully connected layers, an ANN

can model any continuous function [68], and by using convolutional layers, an ANN can learn complex

features from the inputs [69]. Several other layer operations such as pooling, flattening and normalization

can be used with different purposes, and different mathematical operations can be used to connect

distant units in the network, which can be combined to achieve the previously mentioned modelling

tasks (Figure 2.9) [67].

Figure 2.9: The Alexnet convolutional neural network for image classification. This feed-forward model takes as
input a 224 by 224 pixels image with a depth of 3, for each of the colours in a pixel, and has 8 perceptron layers. The
first five layers are convolutional with different kernel sizes to learn complex features of the image such as edges
and shapes, while the last three layers are fully connected. Different pooling operations that reduce the depth of the
arrays are performed between these layers, and the layers communicate with different parts of the image throughout
the process. Adapted from [69].

However, to model sequential inputs such as text, a feed-forward architecture is not enough. The best

Natural Language Processing (NLP) models make use of deep neural network architectures that can

learn distant relationships between words in a sentence. State of the art results in sequence modelling,

language modelling and machine translation have been held by Recurrent Neural Networks (RNNs),

namely the Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) models, until the recent

development of the Transformer model. These models can learn context, syntax and semantics of

language due to their memory and attention capacity, respectively [70], [71], [72], [73].

Like all RNNs, the LSTM model possesses feedback connections between the layers, which allows

the model to retain information during the processing of a sequential input, such as a sentence. This

model, however, builds upon the simple feedback loop, and introduces several layers that increase its

capacity to model long-distance relationships. An LSTM unit is described by a cell state, its memory

component that is updated based on a new input vector and on the output of the previous pass, also

called the hidden state. To update its cell state, the LSTM has a forget gate, which chooses the in-

formation that can be reset, an input gate, which chooses the information that will be stored, and an

output gate, which chooses the information to send to the next unit. Different sigmoid and hyperbolic
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tangent activation functions connect these gates to the operations used to update the cell state and to

produce the output of each unit [74]. Several variations to the LSTM have been published, with more

complex designs that have additional gates or peephole connections between the gates and the cell

state (Figure 2.10), and more simplified designs, such as the GRU model that has the input and the

forget gate coupled in a single update gate, are also widely used [75]. These models are, however, lim-

ited by the long training times, large memory requirements, and difficulty to capture very long-distance

relationships [70].

Figure 2.10: Schematic of the LSTM model with an additional block input gate and peephole connections, detailing
the processing of an input, as it flows through the gates together with the previous hidden state (here noted as
recurrent). The cell state is updated according to the result of the gate operations on the input and the previous
hidden state, and its hidden state output is then used for the processing of the next input. Adapted from [74].

To combat these issues, the Transformer model relies entirely on an attention mechanism, without

recurrence, which allows for more parallelization. This model has two main blocks: an encoder and a

decoder. In the encoder, the entire sequence of inputs is mapped to an embedding space, taking into

account their context and using attention mechanisms to determine the importance of each input. The

decoder then takes these attention vectors, and constructs the outputs with information about which of

the inputs it should focus on, which allows the model to capture long-distance relationships quite effec-

tively [70]. However, due to their complexity, Transformer models have even longer and more memory

intensive training steps. The most recent efforts have produced different kinds of attention models that

take into account the memory limitations of the original Transformer network, such as the agglomerative

attention model [76] and the Reformer model [77].

The most recent and successful applications of these models to NLP have been in the form of Bidirec-

tional Long-Short Term Memory (biLSTM) networks, such as the ELMo model [71], increasingly larger

left-to-right transformers, such as the Generative Pre-trained Transformer (GPT)-3 with up to 175 bil-
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lion parameters [78], and Bidirectional Transformer networks, with less parameters but larger training

data requirements such as the Bidirectional Encoder Representations from Transformers (BERT) model

(Figure 2.11) [72].

Figure 2.11: The pre-training of the BERT, GPT and ELMo language models, detailing how the processing of each
input uses information from the other inputs in the sequence. The first one is based on Bidirectional Transformers,
the second one uses a left-to-right Transformer network and the ELMo model uses independently trained biLSTMs.
Adapted from [72].

The training of these models is done in two steps. In the first step, called pre-training, a self-

supervised training is performed using large amounts of text data, where the model is tasked to predict a

masked word in a sentence. Some models predict a masked word given the entire sentence, while other

models read the sentence sequentially, predicting the next, masked, word. This step requires an exten-

sive training data set, but self-supervision allows the use of unlabelled text data, which is more readily

available. In the second step, called fine-tuning, the model is now trained for a specific supervised task,

using the word representations it produces to perform diverse language understanding tasks. For this,

a labelled data set is required so that the model can learn to classify the word representations accord-

ingly, and although this training can be performed with a smaller data set, each different task requires a

different labelled data set which is not always easily available. This supervised training step can also be

performed using a separate model, that takes as inputs the word representations of the pre-trained (but

not fine-tuned) language model. This allows for an easier development of diverse models to fit specific

cases, which is usually called transfer-learning [11], [71], [72].

The success of these models in language tasks has also led to the successful use of transfer-

learning, with language models trained on biological sequences, in several protein engineering tasks [17]

2.3.5 The ELMo language model and the SeqVec protein sequence model

ELMo is an auto-regressive model trained on big unlabelled text data sets such as Wikipedia to predict

the next word in a sentence given all previous words in that sentence, and was shown to accurately

learn syntax and semantics of language. This model is based on a biLSTM network with three layers,

that produces a vector to represent each word, called an embedding. The embeddings of each word

include information from all three layers, and are contextualized in the sentence, meaning that the same

word can have different embeddings if it belongs to different sentences [71].
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SeqVec is an adaptation of the ELMo model to deal with protein sequences (composed of amino

acids), instead of sentences (composed of words) [11]. SeqVec was developed to evaluate the possible

application of ELMo to proteins, and is trained on the UniRef50 [9] data set to predict the next amino

acid in the protein sequence, given all previous amino acids in that protein sequence.

As described by the authors, three obstacles arise from this application. Firstly, protein sequences

can have very different lengths, and are also much longer than the average English sentence. This

requires more memory, and some long-distance relationships might not be captured by the underlying

LSTM layers. The second obstacle is due to the large difference in tokens: only 20 standard amino acids,

compared to all possible words in the English language. A smaller vocabulary for a task with comparable

complexity makes this application more difficult. Finally, UniRef50 is close to 10 times larger than the

largest NLP data set. This means that the model will need to be capable of absorbing much more

information. After applying the necessary changes to handle these obstacles, the SeqVec model was

found to capture secondary structure elements, regions of protein disorder and subcellular localization

of the proteins, in spite of these difficulties [11].

Figure 2.12: Schematic of the SeqVec deep learning model, as it takes a protein sequence as input and outputs
contextualized high-dimensional representations for each of the amino acids in the sequence. This architecture,
adapted from the ELMo language model for protein sequences, has an uncontextualized convolutional layer followed
by two Bidirectional Long-Short Term Memory (biLSTM) layers that learn high-dimensional embeddings of each
amino acid, taking into account their position in the sequence and capturing information from the other amino acids.
This network was trained on the UniRef50 data set to predict the next amino acid in the protein sequence, and was
shown to capture aspects of protein biology only with self-supervised training. Adapted from [11].

The process of embedding a protein sequence is as follows: first, the amino acid sequence is padded

with special tokens that indicate the start and the end of the sentence. Then, a context-independent

Character-level Convolutional Neural Network (CharCNN) layer, which is usually applied in NLP to obtain

vectors of fixed length from words with varying lengths, is here used solely to map each amino acid to

a 1024-dimensional feature space without information from neighboring amino acids. Then, the output

of this layer is used as input by a biLSTM layer that processes the amino acids sequentially, introducing

context-specific information. Another biLSTM layer uses the output of this layer as direct input, and tries

to predict the next amino acid in the sequence. Note that although the inference step of the biLSTM
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layers incorporates the embedding of both the forward and the backward pass (in order to capture

the context of the amino acid in both directions of the protein sequence), the forward pass needs to

be trained separately from the backwards pass to prevent the model from knowing the masked word

during training. The forward-pass of the processing of an example sequence by this model is shown in

Figure 2.12.

Figure 2.13: Dimensionality of the embeddings produced by SeqVec after processing a protein sequence. Each
amino acid is represented by a 1024-dimensional embedding, and the embedding of a protein sequence with
length L is a L by 1024-dimensional array. To represent a protein sequence by a single embedding independent of
protein length, the average of the amino acid embeddings is used, resulting in a single 1024-dimensional array that
represents a protein by a single point in this high-dimensional feature space. Adapted from [79].

Producing three 1024-dimensional vectors upon processing of an amino acid through the model, the

authors sum the outputs of the three layers in a single 1024-dimensional vector that describes each

amino acid residue in the sequence. As such, the process of embedding a protein sequence of length L

results in a L by 1024-dimensional array of all the residue embeddings. Following the procedure usually

performed in NLP, a protein sequence is represented in the embedding space by the average over all

amino acid residue embeddings of the protein (Figure 2.13) [11]. The protein embeddings can then be

used as features for diverse modelling tasks, but this ML approach has not yet been implemented in

thermostability prediction.
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3. Validation of the SeqVec model
Aiming to explore the biological meaning of the SeqVec embeddings and to validate the original paper’s

results, a data set was prepared for the visualization of biological properties in the embedding space

and for the implementation of a secondary structure prediction algorithm.

3.1 Materials and Methods

3.1.1 Protein Data Bank secondary structure data set processing

The secondary structure data set from PDB was obtained directly from the database’s website [34], and

contains a total of 458764 protein sequences and their corresponding secondary structure information

in the form of a FASTA file. To reduce the data set size while correctly evaluating the embeddings across

the entire spectrum of available proteins, the Cluster Database at High Identity with Tolerance (CD-HIT)

web suite [80] was used to remove proteins with high similarity from the data set. CD-HIT is a biological

sequence clustering algorithm that is based on short word filtering and a greedy incremental clustering

algorithm. It is used to manage large data sets by grouping homologous biological sequences and

storing a representative sequence for each group [80]. The algorithm was applied with predefined

parameters at a 50% sequence identity cut-off, producing a data set with 32948 representative protein

sequences. The Structure Integration with Function, Taxonomy and Sequence database [81] was then

used to obtain the Enzyme Commission (EC) numbers of the proteins in this data set, from which 26999

proteins with a EC number were stored and processed by SeqVec.

Two approaches were used to work with the three outputs of SeqVec. First, as proposed by the

original authors, the outputs of the three layers were summed, to form a single feature vector with 1024

dimensions that describes each amino acid in the sequence. This was used for the study of protein

function, where the protein embeddings were obtained by the sequence average of the amino acid

embeddings. However, since the first layer involves no contextual information, and the third layer is

optimized for the prediction task used in the training, using just the embedding of the middle layer of

SeqVec to describe each amino acid was also studied, and better results were usually observed. This

was used with the first 100 proteins (by alphabetical order, with a total of 23969 amino acid residues) to

study the capacity of the embeddings to capture amino acid properties.

3.1.2 Machine learning models implementation

From the previously mentioned subset of 100 proteins, the amino acids of 15 of these proteins were

isolated (3314 residues (14%)) from the remaining 20 655 residues (86%) of the other 85 proteins, to be

later used as an independent testing set for a k-NN machine learning model trained in the 85 proteins to

predict the secondary structure of each amino acid. These data partitions are described in Table 3.1.
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Table 3.1: Description of the data partitions of the secondary structure data set prepared in Section 3.1.1, used for
the separate training and evaluation of the k-NN machine learning algorithm, evidencing the imbalanced represen-
tation of the different classes in the data sets.

Training subset Testing subset
Label Description Count Percentage Count Percentage

H Alpha helix 6306 30.5% 1372 41.4%
B Isolated beta-bridge 248 1.20% 28 0.84%
E Extended strand 4268 20.7% 448 13.5%
G 3-helix (3/10 helix) 734 3.55% 118 3.56%
I 5-helix (pi helix) Not represented Not represented
T Hydrogen bonded turn 2205 10.8% 363 11.0%
S Bend 1996 9.66% 239 7.21%
- None 4898 23.7% 746 22.5%

Since the performance of this algorithm is severely impacted by high dimensionality [51], PCA was

fit to the training set (with a 40.2% explained training data variance) and used to reduce both data

partitions to 100 components. In spite of the reduced explained variance percentage, experiments with

this classifier using different numbers of principal components did not show significant improvements.

The models were evaluated in terms of CM analysis, Accuracy (Acc), F1 score and ROC curve analysis.

For this experiment, the F1 score was extended to multi-class classification by using the F1 score of

each class to find a weighted average of this score that takes into account the number of records of

each label, and the ROC analysis was implemented by producing the ROC curves of each class in a

one-vs-rest approach.

The only hyper-parameter of this model, k, was determined with a cross-validation approach as

described in Appendix A.1.2, where the optimal value of 25 nearest neighbours was chosen based on

a mean cross-validation F1 score average of all classes, weighted according to the number of records

with each label, of 0.508, the best score observed (Figure A.9).

3.2 Results

3.2.1 SeqVec successfully captures protein and amino acid properties

To confirm the capacity of the SeqVec model to capture biological properties, the embeddings generated

from the protein sequences in the data set obtained in Section 3.1.1 were projected to two-dimensions by

t-SNE (preceded by PCA to 100 components, with 78.84% explained data variance), and were visualized

according to their EC class (Figure 3.1). The representation obtained shows several small isolated

clusters that are representative of enzyme class, with a mixed and uninformative central cluster.
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Figure 3.1: t-SNE projection to two dimensions of the protein embeddings from the data set obtained in Sec-
tion 3.1.1, coloured by EC number of the proteins (x-axis: t-SNE 1; y-axis: t-SNE 2). The projection shows small
isolated clusters that are representative of protein function.

Figure 3.2: t-SNE projection to two dimensions of the amino acid embeddings from the data set obtained in Sec-
tion 3.1.1 (for each figure, x-axis: t-SNE 1; y-axis: t-SNE 2). (a) Colouring by amino acid type shows a clear
distinction between most amino acids. (b) Colouring by amino acid physicochemical properties shows that similar
amino acids tend to cluster together. (c) Colouring by amino acid size shows that amino acids of similar size are
more similar in the embedding space. (d) Colouring by the secondary structure label of the amino acids shows
some separation between different structures.
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The same two-dimensional projection procedure was done on the amino acid embeddings (by t-SNE,

preceded by PCA to 100 dimensions with 39.68% explained data variance), showing that these group

each amino acid type in mostly separate clusters, indicating that the model learns how to identify each

amino acid (Figure 3.2 a). The small differences between embeddings of the same amino acid are due

to the different protein sequence contexts captured by the model. Colouring the same plot by amino acid

properties demonstrates that amino acids with similar physicochemical properties tend to be closer in

the embedding space than amino acids with different properties (Figure 3.2 b), confirming that SeqVec

correctly models aspects of biochemistry. Additionally, the same embeddings were also coloured by

amino acid size and by the secondary structure in which the amino acid is found, revealing that these

properties are also captured by the model, as amino acids with similar size are mostly grouped together

in the embedding space, and also that the larger embedding clusters are mostly separated in smaller

clusters that are representative of the secondary structure label of the amino acids (Figure 3.2 c and d).

3.2.2 SeqVec embeddings can be used for secondary structure prediction

To evaluate the applicability of the SeqVec embeddings for protein engineering prediction tasks, a

k-NN classification algorithm was applied to predict the secondary structure label of amino acids (Sec-

tion 3.1.2). Evaluation of this model in the testing set produced an accuracy score of 57.8% and an

F1 score (weighted average based on class support) of 54.9%. Analysis of the model’s CM and ROC

curves show a good performance of the model for the most common labels and that it can still maintain

a better than random performance on the most difficult classes (Figure 3.3).

Figure 3.3: Performance of the k-NN secondary structure predictor on the testing set. (a) Confusion matrix, detailing
the predictions of each label according to their true labels; (b) ROC curves of each class, obtained by a one-vs-rest
approach, detailing the TP rate as a function of the FP rate at different decision thresholds. Although the predictions
are very biased to the most represented classes, the model performs better than a random prediction for all labels,
and has very good performances in the two most common secondary structures.
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3.3 Discussion

As was observed by the authors of the SeqVec model, the unsupervised embeddings learned by the

ELMo model trained on protein sequences contain biological information which can be used to model

aspects of protein biochemistry [11]. Such conclusions were also obtained by other authors of relevant

deep learning protein embedders such as UniRep [14], D-SPACE [10], the bidirectional transformer as

published by [15], and the transfer-learning repository published by [17].

The obtained t-SNE projection of the protein embeddings from the PDB data set is similar to the

authors’ results with the same procedure on the SCOPe data set. The performance of SeqVec in protein-

level prediction tasks, such as cell location and structural class, was shown by the authors to be close to

current state of the art methods. By obtaining equivalent results in this small experiment, the previously

mentioned conclusions of the authors are further cemented, given the generalizability of the results to

different data sets.

On the other hand, the authors’ application of the SeqVec residue-level embeddings for amino acid

prediction tasks was not as good as current state of the art methods, with no further visualization anal-

ysis. In our exploration efforts we observed that, with a similar procedure as above, the SeqVec amino

acid embeddings show the capacity to learn the physico-chemical properties of the amino acids, as well

as some indication that they can be used for secondary structure prediction tasks, with clusters repre-

sentative of the secondary structure labels. However, due to time limitations, this experiment used a

reduced data set, with only 100 proteins, and although it was processed to remove protein sequences

with at least 50% sequence similarity, it may not be representative of the diverse range of proteins that

are found in nature.

The success of the k-NN algorithm implemented to predict the secondary structure label of the

SeqVec amino acid residue embeddings is also dependent on an analysis of its performance metrics,

and on a comparison with other established methods. We obtained an accuracy score of 57.8% that is

inferior to the best application of SeqVec by the authors, which implements a deep learning model with

evolutionary profiles together with the amino acid embeddings, and obtained an accuracy of 64.1%, and

even this method was inferior to the state of the art secondary structure prediction method NetSurfP-2.0,

which was applied by the SeqVec model’s authors and obtained an accuracy score of 71.1%. Another

of the previously mentioned transfer-learning effort used for secondary structure prediction is the bidi-

rectional transformer, which shows similar performances, with an accuracy score of 60.8%.

First, the different data sets used for the training of the models need to be discussed. In our experi-

ment, 85 random proteins with at most 50% sequence identity were used as a training set for the model,

while the implementation of SeqVec for secondary structure prediction was trained on a data set with

over 10000 different proteins, and this can already partly explain the inferior performance of our model.
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On the other hand, the previously mentioned SeqVec implementation, as well as its comparison with the

NetSurfP-2.0 model, were evaluated in a subset of the CASP12 data set with only 21 proteins, equiva-

lent in size to our test set of 15 randomly chosen proteins with the reduced sequence identity guarantee

of diversity. Also, one of the secondary structure labels was not presented to our model in either stage,

which made this prediction task relatively more simple than the previously mentioned models. Addition-

ally, although the F1 score is not discussed by the original authors, our use of the weighted average of

the F1 score is expected to be overinflated, as this score is usually higher for the most frequent classes

and was not adequately applied. A micro or macro average approach should have been used instead.

Second, the chosen ML algorithm needs to be compared to the complex deep learning method with

evolutionary information of the SeqVec implementation, as well as with the convolutional and LSTM neu-

ral networks of NetSurfP-2.0. The k-NN is one of the simplest ML algorithms available, and was chosen

to see to what extent could the secondary structure be predicted by only looking at the neighbours in

the embedding space. The reduced training set and the accentuated class imbalance can impact this

algorithm severely, which is the most likely cause for the inferior performance observed in our imple-

mentation. The fact that deep learning models trained with simple amino acid encoding methods by the

SeqVec authors could reach at most 54.5% accuracy further supports this. It is, however, interesting that

a simple k-NN algorithm that uses the SeqVec protein embeddings as features can compete with such

models, as it suggests that the distance between two embeddings can be used to extract conclusions

about their properties.

Finally, the individual class performances should also be compared, which was not done by the

SeqVec authors. The three most represented classes are also the most accurately predicted, which

was expected with the k-NN model. This could have been handled by using the class-weighted imple-

mentation of k-NN, but was not considered. Alternatively, by reducing the number of neighbours, k, the

model could be less susceptible to class imbalance, but this hypothesis was not tested since this hyper-

parameter was determined by cross-validation. We could also formulate this problem as a three-class

secondary structure prediction instead, which labels the records as helix, strand and other. This simpler

prediction task is also usually performed, with increases in the accuracy of over 10% in the previously

mentioned papers, and similar results are expected in our application.

Additionally, more effort could have been performed to explore individual protein sequences and

their secondary structure prediction, because certain patterns might have arisen that could explain why

this amino acid prediction task was not considered optimal by the authors, facilitating further efforts to

improve this method for protein annotation.
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4. Thermostability prediction with the ProTherm

wild-type data set
The first effort to develop a model of protein thermostability directly from protein sequences was at-

tempted with the ProTherm database. Using its wild-type data set, a ML regression model was im-

plemented, using only the SeqVec protein embeddings as features, to test whether these encode ther-

mostability information.

4.1 Materials and Methods

4.1.1 ProTherm wild-type proteins thermostability data set processing

The ProTherm database [25] is the main reference of most protein thermostability prediction models,

and to date contains over 10000 records of wild-type proteins and their thermodynamic information,

namely the free Gibbs energy of unfolding, ∆G, and the conditions of each experiment.

However, there are frequently multiple records per protein, and a closer inspection reveals that only

518 different proteins are present. Not only that, but some records are missing a ∆G annotation, and

so only a total of 794 records, coming from a reduced sample of 119 different PDB identifiers, could be

used.

In order to correctly use this database for the development of sequence-based thermostability pre-

diction regression models, each record needs to be described by only one ∆G value, and all ∆G values

also need to be in the same units. For these reasons, all ∆G records were converted to kcal/mol,

and the mean ∆G value of each protein across all available experimental conditions was calculated,

producing a data set with a ∆G distribution shown in Figure A.1.

The amino acid embeddings were obtained for each protein as the outputs of the middle layer of

SeqVec, from which the protein embeddings were generated as the sequence average embedding of

each protein. These were used to study the capacity of SeqVec to capture protein thermostability.

4.1.2 Machine learning models implementation

The data set obtained in Section 4.1.1 was discretized into 5 bins of equal ∆G intervals, and a random,

stratified stratified split was performed, where 85% of the data was used for the training of a Lasso linear

regression model, and the remaining 15% for an independent evaluation of the model on unseen data.

Given the small amount of data and the fact that each protein is described by a 1024-dimensional

vector, PCA was applied to reduce the dimensionality of the data to 50 dimensions, fit to the training

set (with an explained data variance of 94.33%) and used to reduce both partitions. The models were
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applied using the PCA-reduced protein-level embeddings as features to predict the outcome variable

∆G, and were evaluated in terms of RMSE, r2 score and EVS.

The constant α that is multiplied to the regularization term was manually chosen as 0.1, after several

experiments with different values. No cross-validation hyper-parameter tuning was performed, given

that in no attempt could we obtain promising results. This model was also generalized with polynomial

features of degrees 2, 3 and 4, to model non-linear relationships in data, but more complex regression

models were not attempted due to the small amount of data available and because data exploration

efforts did not show much potential to capture the protein’s ∆G value directly from these embeddings.

Considering the poor performances obtained with this implementation, additional approaches to in-

corporate the experimental conditions were implemented:

Removing the effect of T and pH on the data set: For all records in the data set, a linear regres-

sion of ∆G was fitted using just the T and pH as features, and then the residual of each record was

removed from the data set.

Individually removing the effect of T and pH for each protein: For each protein, a linear regres-

sion of ∆G was fitted using just the T and pH of the records as features. The ∆G value for each

protein was set as its individual regression’s prediction at 25 °C and pH 7.

Using T and pH as additional features: Using all 794 records, T and pH were used as additional

features for the machine learning model.

Calculating a weighted mean ∆G value for each protein: For each protein, the difference between

the experimental condition of each record and the reference state of 25 °C and pH 7 was considered.

Adapted from [30], records closer to this state were given a higher weight by applying Equation (A.1)

to calculate the ∆G value. The presence of denaturing additives was ignored due to incoherent units

in the database.

4.2 Results

4.2.1 SeqVec embeddings do not capture free Gibbs energy of unfolding

The protein embeddings generated from the wild-type thermostability data set prepared in Section 4.1.1

were projected to two-dimensions by t-SNE (predeced by PCA to 100 dimensions, with an explained

data variance of 99.59%) and also by PCA directly (Figure 4.1 (a) and (b), respectively), and coloured

by their ∆G label. Upon observation of the projections, neither the t-SNE nor the PCA approach show

promising results, with no separation between proteins with different ∆G values. This suggests that the

embeddings do not capture protein thermostability directly from the sequences in this data set.
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Figure 4.1: Two-dimensional projections of the protein embeddings obtained from the wild-type thermostability data
set processed in Section 4.1.1 by (a) t-SNE (x-axis: t-SNE 1; y-axis: t-SNE 2); (b) PCA (x-axis: PCA 1; y-axis: PCA
2). Inspection of both figures shows that the protein embeddings do differentiate significant differences between
proteins with high ∆G and low ∆G values.

4.2.2 Wild-type protein thermostability prediction was not successful

A linear regression model with different polynomial features was applied (Section 4.1.2) and evaluated

for its capacity to predict the ∆G value directly from the protein embeddings. The best performing model

used polynomial features of degree 3, and could achieve a test RMSE of 4.474, but the test set r2

score of -0.036 and EVS of -0.027 are very poor. The negative predictive power of this model was

compared to a baseline model, where a constant prediction of the data set’s average ∆G produced a

test RMSE of 4.088. This indicates that using the SeqVec protein embeddings to train a thermostability

prediction model directly from sequence is not directly possible, which was studied further with additional

approaches to including the experimental conditions (Section 4.1.2). The results of all attempts are

summarized in the following Table 4.1.

The inclusion of the temperature and pH as additional features for the model produced the best re-

sults, with the lowest test RMSE and the highest r2 and EVS scores of all the experiments, as expected

since it uses all 794 records in the data set and includes large amounts of repeated protein sequences.

The second baseline indicates that the temperature and pH by themselves do not include any relevant

information for the prediction of protein thermostability, which can also be observed by the dispersed

(and uncorrelated) plotting of the ∆G values as a function of each of these conditions (Appendix A.2.1).

It is also noteworthy that the experiment where the effect of the experimental conditions was globally

removed from the data set produced very similar ∆G values for all records, producing an almost con-

stant prediction of the ∆G values, inaccurate in the testing set. In addition, removing the effect of the

experimental conditions from each protein separately produced the worst model in this experiment, as

a result of records with extreme experimental conditions being assigned unexpected ∆G values during

the data processing. We can also observe that using the weighted average of each protein’s ∆G values

produced better results than a simple average calculation of this value, with similar RMSE values, but
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positive r2 and EVS values in the testing set, which were only achieved by the second baseline and the

model which included the experimental conditions.

Table 4.1: Performance of the free Gibbs energy regression models using different pre-processing approaches
to take into account the experimental conditions. Calculating a weighted mean of ∆G that gives more weights to
experiments closer to physiological conditions was considered the best approach, because it was the only approach
with positive r2 and EVS that did not use repeated records.

Model
Features
degree

RMSE train RMSE test r2 train r2 test EVS train EVS test

Average ∆G baseline 1 6.898 4.088 -1.621e-04 -0.015 1.110e-16 2.220e-16
T and pH only baseline 1 6.771 4.009 0.036 0.024 0.036 0.049

Mean ∆G 3 3.612 4.474 0.194 -0.036 0.194 -0.027
Weighted mean ∆G 2 3.950 4.592 0.190 0.035 0.190 0.048

Remove T and pH effect
from the entire data set

1 1.249 7.860 0.000 -0.229 0.000 0.000

Remove T and pH effect
from each protein

1 6.515 8.455 0.139 -0.175 0.139 -0.171

Including T and pH as
additional features

3 4.680 3.643 0.546 0.461 0.546 0.463

Figure 4.2: Scatter plots of the predicted free Gibbs energy of unfolding values (y axis) and their true values (x
axis). The performance on the training set (left) shows that the regression fit is not dispersed, but the trend is too
horizontal and indicates that the SeqVec features do not accurately capture the ∆G values of the proteins. The
performance on the testing set (right) further proves this, showing an uninformative trend.

In a final effort to extract conclusions from this model, scatter plots of the predictions of this model in

the training set and in the testing set were produced (Figure 4.2), from which we can observe a positive

correlation and overall positive slope in both data sets, indicating that this model can in fact capture

some thermostability information. However, the decrease in performance between training data and

testing data, and the almost horizontal regression fit in the testing data further prove the difficulty of

developing such a machine learning protein thermostability predictor from this data set.

38



4.3 Discussion

Prediction of the free Gibbs energy of unfolding of wild-type proteins is not usually performed directly

from sequence, as this procedure is usually based on additional structural information, or based on

physicochemical models of amino acid interactions (Section 2.2.4). In this experiment, the ProTherm

database of wild-type proteins proved to be unusable for the development of a ML model that uses

the SeqVec features to predict protein thermostability directly from sequence. This can be a result of

three steps of the process: inadequate data processing, inadequate features or inadequate regression

models.

The preparation of the ProTherm data set of wild-type proteins and their respective free Gibbs energy

of unfolding annotations confirmed the main problems highlighted with this database by other authors:

incomplete annotations, wrong values and different experimental conditions. The multiple efforts to

remove and/or incorporate the experimental conditions from the data set proved unsuccessful, because

of the previously mentioned issues as well as because of the small amount of records available. Not

much could have been done with only 119 different protein sequences.

Visualization of the SeqVec protein embeddings generated from the processed data set did not

suggest that these were capable of capturing elements of protein thermostability. This should not be

a result of the reduced data set size, because similar t-SNE projections during the development of the

previous experiment, using reduced samples of the data available, produced similar results to those

obtained using the entire secondary structure data set. Most likely, the SeqVec embeddings do not

capture the thermostability information required for the development of a ML prediction model. The use

of a larger data set is required to affirm this, as the correlation obtained by the polynomial regression

with the SeqVec protein embeddings was positive, and although mostly horizontal, indicates that perhaps

with more records a more accurate predictor could be developed.

Finally, using the experimental conditions as additional features for the model could, in fact, be more

adequate than averaging the replicates. This method allows the use of more records, and should not

have been discarded because of this, since the use of experimental conditions as predictive features is

also frequently used in literature on thermostability engineering (Section 2.2.4).
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5. Prediction of thermostability changes with

the ProTherm single-mutants data set
Instead of modelling protein thermostability directly from sequence, the prediction of changes to protein

thermostability as a result of point mutations is more frequently used in protein engineering. To assess

the usefulness of the SeqVec embeddings in the development of such a model, a thermostability data

set was compiled. The amino acid embeddings of the obtained protein sequences were explored for the

development of predictive features for several ML models, from which the most promising were studied

in detail.

5.1 Materials and Methods

5.1.1 ProTherm single-mutants thermostability data set processing

The ProTherm database also contains to date over 12000 records of single-mutant proteins and their

thermostability properties, namely the change in free Gibbs energy of unfolding caused by a muta-

tion, ∆∆G, with detailed experimental conditions. With similar problems to the wild-type data set, this

database has a reduced number of records with ∆∆G information, and most of those do not possess

the temperature, pH or denaturing additives detailed correctly.

However, as the largest and most commonly used protein thermostability database, most prediction

models published to date use data from ProTherm, some of which making their pre-processed data

sets publicly available. Looking to use as much data as possible, we used the protein thermodynamic

data sets made available by the iStable 2.0 [8] and the PremPS [31] prediction models. These data

sets are described in Table 5.1, and to our knowledge are the largest and most updated data sets from

ProTherm.

Table 5.1: Data sets of protein thermostability changes upon single mutations collected for this work. The data sets
S3568 and S640 were obtained from [8] and the data sets S2648 and S921 were obtained from [31].

Data set S3568 Data set S640 Data set 2648 Data set S921
Count Percentage Count Percentage Count Percentage Count Percentage

Positive labels
(∆∆G > 0)

898 25.2% 173 27.0% 568 21.5% 287 31.2%

Negative labels
(∆∆G < 0)

2669 74.8% 467 73.0% 2080 78.5% 634 68.8%

Number of
proteins

150 - 39 - 131 - 195 -

As all data sets originate from the same database, there is a large overlap between them. With

this in mind, duplicate records were removed, and a unique ∆∆G value per record was calculated.
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After this processing step (Appendix A.2.2) we are left with 3706 unique records from 305 different

proteins, without redundancy from experimental conditions. This data set was named S3706, and its

∆∆G distribution is shown in Figure A.3.

The SeqVec model was used to process the wild-type and the mutant sequences of the records

in this data set, from which the amino acid residue embeddings were obtained as the output of the

middle layer of the model. These were used for the development of different combinations of features to

describe each mutation record, that were then used to implement several ML algorithms to predict the

thermostability change caused by the mutations.

5.1.2 Machine learning models implementation

The S3706 data set was manually split in a partition with 3272 mutation records, called S3272, for the

training of sequence-based protein thermostability ML models, and another with 434 records, called

S434, used for an unbiased evaluation of the models (Table 5.3). The test set was composed solely of

mutation records originating from S921, as this was the most varied data set, with records from almost

as many different proteins as the training set. Note that this split was done manually to avoid a random

split, so that the models could be evaluated in entirely different wild-type protein sequences.

Table 5.3: Description of the data partitions of the data set S3706 prepared in Section 5.1.1, used for the separate
training and evaluation of the machine learning algorithms, evidencing the imbalanced representation of the positive
and negative classes of records.

Entire data set (S3706) Training subset (S3272) Testing subset (S434)
Count Percentage Count Percentage Count Percentage

Total number
of records

3706 - 3272 - 434 -

Number of records with
positive label (∆∆G > 0)

855 23.1% 648 19.8% 171 39.4%

Number of records with
negative label (∆∆G < 0)

2851 76.9% 2588 79.2% 263 60.6%

Total number
of proteins

305 - 155 - 150 -

Since this data set is related to single mutations in proteins, each mutation record is represented

by a pair of protein sequence embeddings, and on a first approach a simple subtraction between the

wild-type and the mutant embedding vectors was used to describe each mutation. However, a total of

10 different feature sets were generated, representing each record by different combinations of its pair

of embeddings. These are described in detail in Table 5.5.

As in the previous experiment, due to the small amount of available data and its high-dimensionality,

PCA was applied, where the first 250 principal components were chosen for each feature set. This

choice was made with the first feature set, where over 90% of the data is explained with 250 dimensions,
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and was maintained for the other feature sets, despite the different dimensionalities, with the objective

of exploring better feature combinations without increasing the complexity of the models, at the cost of

having a lower explained data variance percentage on the feature sets with more dimensions.

Table 5.5: Description of the different feature sets produced to represent the mutation records in the high-
dimensional embedding space, with the full dimension size and the percentage of explained data variance in the
PCA-reduced features. The Diff 5 feature set produced the best results.

Feature set
name

Wild-type and mutant protein
sequences represented by

Mutation record
represented by

Full dimension
of each record

PCA reduction to 250
dimensions explained

data variance (%)

Diff Average of all residue embeddings
Subtraction of MT to WT
protein representation

1024 91.14

Diff 0
Residue embedding at

substitution location
Subtraction of MT to WT
protein representation

1024 88.87

Diff 2
Average of residue embeddings

in a window of 2 residues to each
side of the mutation location

Subtraction of MT to WT
protein representation

1024 84.49

Diff 5
Average of residue embeddings

in a window of 5 residues to each
side of the mutation location

Subtraction of MT to WT
protein representation

1024 83.35

Diff 10
Average of residue embeddings

in a window of 10 residues to each
side of the mutation location

Subtraction of MT to WT
protein representation

1024 83.48

Diff 20
Average of residue embeddings

in a window of 20 residues to each
side of the mutation location

Subtraction of MT to WT
protein representation

1024 85.10

Concat Average of all residue embeddings
Concatenation of MT to WT

protein representations
2048 99.81

ConcatDiff Average of all residue embeddings
Concatenation of Diff to WT

protein representations
2048 99.58

MeanSTD
Mean and standard deviation

of all residue embeddings
Subtraction of MT to WT
protein representation

2048 92.36

Moments
Mean, standard deviation, variance,

minimum and maximum value of
all residue embeddings

Subtraction of MT to WT
protein representation

5120 78.64

These features were explored for their usefulness with a base set of classifiers constituted by a

logistic regression with predefined parameters, a SVM with linear kernel, polynomial kernels of degree

1, 2 and 3, and with a RBF kernel, and a k-NN algorithm with 1, 3, 5, 9, 15, 25 and 50 nearest neighbours.

These models were chosen based on two decisive factors: model complexity and training time required,

both due to the limited data available in order to avoid overly complex models that would risk overfitting

the training set, and also because this allows a simpler hyper-parameter tuning.

With each feature set, the base set of classifiers was trained on the S3272 data set and tested on

the S434 data set, from which the model with highest MCC was chosen to compare the feature sets.

From this experiment, the Diff 5 feature set showed the best overall results, with a high MCC and highest

precision scores when used with the logistic regression, and was the only feature set used further. These
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models were also evaluated in terms of Acc, recall (TP rate), specificity, F1 score and ROC AUC, but

these metrics were not analyzed in detail (Table A.1).

In parallel, attempting to improve the prediction performance further, the same comparison of fea-

tures was performed with two different data pre-processing procedures. In the first procedure, aiming to

remove unnecessary data and only train the model on relevant records, the mutations with an insignif-

icant change to ∆∆G (between -1 and 1 kcal/mol) were removed from the training set. In the second

procedure, aiming to balance the training data set, the reverse mutations were simulated and added to

the data set, by switching the wild-type and mutant sequences, and inverting the ∆∆G value. By training

the same basic classifiers on the filtered data set, evaluation of the models on the isolated testing set

shows a general increase in precision but at the cost of a lower MCC (Table A.2), and when the bal-

anced training set was used, a general increase in MCC was observed in the testing set, but at a lower

precision (Table A.3). These processing procedures were not studied further.

With the original training data set S3272 and the Diff 5 feature set, the two best performing classifiers

were the logistic regression and the linear SVM models. A cross-validation procedure as described in

Appendix A.1.2 was then applied using the training data set, with none of the additional pre-processing

measures above, to determine the best hyper-parameter values for the two algorithms, based on the

mean cross-validation MCC.

For the logistic regression, the l1 and l2 penalties were both attempted with different regularization

strengths, from which a l2 penalty with a C value of 1438.45 provided the best mean cross-validation

MCC of 0.150 (Figure A.10).

For the linear SVM, the primal formulation and the dual formulation of the problem were both at-

tempted as well as the standard SVM loss function and its squared formulation, and the l1 and l2 reg-

ularization types were both applied with different regularization strengths, from which a squared loss

function with a l1 penalty and a C value of 50 provided the best mean cross-validation MCC of 0.133

(Figure A.11).

The fine-tuned models were also studied in terms of the CM, ROC curve analysis, and by a PRC

analysis. However, most of the analysis of the models was based on the MCC and precision score. The

first one was chosen because it is the most suitable metric to handle the imbalance in the data sets,

and because the MCC takes into account the four parameters of the confusion matrix, encompassing

in a way the Acc, TP rate and TN rate, where a model that is capable of accurately predicting the two

classes will have a MCC close to 1. The second one was chosen because the effect of mutations in

protein stability is most frequently negative and the prediction of a negative record as positive is not

desired. By evaluating the precision score of a model, which takes into account the FP predictions to

calculate the proportion of positive predictions that are correct, its capacity to correctly label the rare

positive records can be determined.

44



To contrast the previous classification algorithms, the MLP model was also implemented, in an at-

tempt to model more complex relationships in the data. This model was implemented using 1 and 2

hidden layers, again due to the limited size of the data set. Another exploratory effort using the RF

model was also attempted due to its feature selection capacity, tendency to resist overfitting and ro-

bustness to hyper-parameter changes, but this did not show promising results and will not be discussed

further.

The MLP was implemented with the ReLU activation function on all neurons except those in the

output layer. The output layer of the MLP classifiers consisted of a single neuron with sigmoid activation

function. In this work, the binary cross-entropy loss function was chosen, a frequently used loss function

for binary classifiers, and the optimization algorithm used for the MLP models was the Adam algorithm,

a stochastic gradient descent method. This frequently used and memory efficient algorithm is based

on an adaptive estimation of both first-order and second-order derivatives of the gradients of the loss

function [62].

Several hyper-parameters could be chosen and fine-tuned. A batch size of 50 was used in all ex-

periments, with which a small model with 20 neurons in a single hidden layer was used to experiment

different learning rates and training epochs, where it was soon observed that using more than 3 epochs

resulted in serious overfitting issues, which was followed by leaving out 15% of the training set in a

random stratified split for validation of the training process (Figure A.12). However, by using just 1 or 2

training epochs, the models performed very poorly, so the predefined learning rate of 0.001 was used,

which resulted in the least overfitting when 3 training epochs were performed. The choice of number

of hidden layers and neurons was made by applying the cross-validation procedure described in Ap-

pendix A.1.2, from which an MLP architecture with two hidden layers of 128 neurons each achieved the

best mean cross-validation MCC of 0.167 (Figure A.13).

A baseline model was also developed. This model uses very simple features to describe the protein

mutations: for both the wild-type and the mutant amino acid, a one-hot-encoding label of the amino acid

types and of the physicochemical properties (aliphatic, aromatic, polar neutral, acidic, basic or unique),

their molecular weights and hydrophobicity values, and the BLOSUM62 value for the substitution were

used. The BLOSUM amino acid substitution matrix is frequently used in local sequence alignment tools

such as the Basic Local Alignment Search Tool [82] to score a amino acid substitution according to the

probability that this substitution happens in homologous protein sequences, and where a higher score is

given to more biologically frequent mutations. Due to the extensive use of categorical features, the DT

algorithm was chosen and applied with the predefined parameters (from which the most relevant is the

Gini impurity calculation for information gain, which is more computationally efficient).
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5.2 Results

5.2.1 Combining the embedding pairs to describe mutation records

Using SeqVec to embed the wild-type and the mutant sequence of each mutation record in the data

set obtained in Section 5.1.1, we obtain two embeddings to describe each mutation. The effect of the

mutations in the proteins was first described as the difference between the wild-type and mutant em-

beddings (named Diff in Table 5.5), which can be projected into two dimensions by t-SNE (Figure 5.1,

a) (preceded by a PCA with 100 principal components, with an explained data variance of 74.7%). This

projection can also be obtained by performing PCA to two dimensions (Figure 5.1, b). Upon observation

of the t-SNE plot, some separation between mutations with a positive and a negative effect in thermosta-

bility can be observed, indicating that these features are somewhat representative of the ∆∆G value of

the mutations, but this is not found in the PCA projection.

Figure 5.1: Projection to two dimensions of the mutation records, represented by the difference between the wild-
type sequence embedding and the mutant sequence embedding by: (a) t-SNE (x-axis: t-SNE 1; y-axis: t-SNE
2); (b) PCA (x-axis: PCA 1; y-axis: PCA 2). The t-SNE projection reveals that there is some separation between
mutations with a positive and a negative effect on thermostability.

A few preliminary experiments with the logistic regression, SVM and k-NN classifiers showed poor

thermostability prediction performances when using this feature set (Section 5.1.2). The mutation

records were then described by the Diff 5 feature set, which represents each protein by the average

of the embeddings of the amino acids in a window of 5 residues in each direction from the mutation, and

then represents each mutation record by the difference between the wild-type and the mutant features.

With this feature set, the same two-dimensional projection procedure as above shows a better sep-

aration of classes in both the t-SNE (Figure 5.2, a) and the PCA (Figure 5.2, b) plots, which was not

obtained before, and suggests that these features are more representative of the effect of the mutations

in protein thermostability. Also, with these features, the base set of classifiers (Section 5.1.2) achieved

better performances (Table 5.7).
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Figure 5.2: Projection to two dimensions of the mutation records, represented by the Diff 5 feature set by: (a) t-SNE
(x-axis: t-SNE 1; y-axis: t-SNE 2); (b) PCA (x-axis: PCA 1; y-axis: PCA 2). The t-SNE projection shows a better
separation between mutations with a positive and a negative effect on thermostability, and only with this feature set
could the same be observed with a PCA projection.

Table 5.7: Performance of the basic set of classifiers on the testing set S434, trained on the data set S3272 with the
mutation records, represented by the Diff 5 feature set. The models were evaluated for accuracy, recall, specificity,
precision, MCC, F1 and ROC AUC scores. From this comparison, the logistic regression and the linear SVM
algorithms show the most promising results, with overall best precision and MCC metrics.

Model Acc Sens Spec Prec MCC F1 score ROC AUC
Log reg 0.66 0.15 0.99 0.93 0.28 0.25 0.78

Linear SVM 0.66 0.20 0.96 0.78 0.27 0.32 0.77
Poly 1 SVM 0.61 0. 1. 0. 0. 0. 0.71
Poly 2 SVM 0.61 0. 1. 0. 0. 0. 0.46
Poly 3 SVM 0.61 0. 1. 0. 0. 0. 0.8
RBF SVM 0.61 0. 1. 0. 0. 0. 0.72

1-NN 0.60 0.29 0.8 0.48 0.10 0.36 0.54
3-NN 0.63 0.29 0.86 0.57 0.18 0.39 0.63
5-NN 0.63 0.22 0.89 0.58 0.16 0.32 0.68
9-NN 0.64 0.22 0.92 0.63 0.20 0.33 0.68
15-NN 0.63 0.14 0.94 0.62 0.14 0.23 0.69
25-NN 0.63 0.09 0.98 0.75 0.16 0.16 0.70
50-NN 0.62 0.02 1. 1. 0.12 0.05 0.72

The logistic regression algorithm achieved the second best precision score (of 0.93 on the testing

set), the third best MCC (of 0.28 on the testing set), and also one of the best ROC AUC scores (of 0.78 on

the testing set) of all attempts. The linear SVM achieved the second best MCC of 0.27, while maintaining

a reasonable precision score of 0.78. These models were chosen for an additional hyperparameter

tuning.
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5.2.2 The precision-MCC trade-off

Having chosen the best feature set and the most promising classifiers, the hyperparameters of the

logistic regression and the linear SVM were tuned by cross-validation in the training set (Appendix A.1.2).

The tuned logistic regression was able to achieve a MCC of 0.331, but at a cost on the precision score

which decreased to 0.753. The tuned linear SVM also achieved a higher MCC of 0.318, but was capable

capable of maintaining a similar precision score of 0.774. These models were also evaluated in terms

of CM, PRC curve and ROC curve analysis (Figure 5.3 and Figure 5.4), with no large differences in

performances except for the better PRC of the second model, with which the precision can be maintained

at 1.0 for the largest decrease in the decision threshold.

These models were compared to a DT baseline model with basic features, which also performed

better than random in the testing set, with an Acc of 0.64, TP rate of 0.15, precision of 0.73, MCC of

0.20, F1 score of 0.24 and ROC AUC of 0.68 (and additional CM, ROC and PRC curves in Figure A.14).

The two obtained models both outperformed this baseline, especially in terms of the PRC.

Figure 5.3: Confusion Matrix (CM) (left), Precision-Recall Curve (PRC) (middle) and Receiver Operating Charac-
teristic (ROC) curve (right) of the tuned logistic regression, evaluated on the testing set S434 to predict the protein
thermostability changes of single mutations. The CM shows a large bias towards negative mutations, but the PRC
shows that the model is accurate in its most confident positive predictions. The ROC curve does not produce a
meaningful analysis, although it shows that the model outperforms the DT baseline.

To contrast with the simple decision boundaries of the two previous linear models, an MLP was

also implemented (Section 5.1.2). Compared to the previous models, the MLP shows the highest MCC

found in all experiments (of 0.354 in the testing set), but shows a large decrease in precision (of 0.690

in the testing set). The very reduced positive predictive power of this model is evidenced by its PRC,

which shows the inability of the model to accurately predict the positive records in which it has the most

confidence (Figure 5.4, middle). This model, however, also outperforms the DT baseline.

The achieved MCC values are quite behind the state of the art iStable 2.0 prediction model, which

achieved a value of 0.708 for the same metric, but are better than the PoPMuSiC model with a MCC of

0.291 and the MUpro model, with a MCC of 0.248 [8].
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Figure 5.4: Confusion Matrix (CM) (left), Precision-Recall Curve (PRC) (middle) and Receiver Operating Charac-
teristic (ROC) curve (right) of the tuned linear SVM, evaluated on the testing set S434 to predict the protein ther-
mostability changes of single mutations. As with the logistic regression, this CM also shows a large bias towards
negative mutations, while the PRC also shows that the model is accurate in its most confident positive predictions.
The ROC curve does not produce a meaningful analysis, although it also shows that the model outperforms the DT
baseline.

Figure 5.5: Confusion Matrix (CM) (left), Precision-Recall Curve (PRC) (middle) and Receiver Operating Charac-
teristic (ROC) curve (right) of the tuned MLP, evaluated on the testing set S434 to predict the protein thermostability
changes of single mutations. This model produced the less biased CM, but its PRC shows a very poor performance
in predicting the positive class correctly, barely outperforming the DT baseline. This model also produced the worse
ROC AUC.

5.2.3 Mutations to similar sequences are more accurately predicted

Given the importance of a correct classification of the positive records, the performance of the SVM

model, which produced the best PRC, was studied as a function of protein sequence similarity. For this,

the Basic Local Alignment Search Tool (BLAST) tool was used to query each of the wild-type protein

sequences in the testing set against all the wild-type protein sequences in the training set. As expected

from the diversity of protein sequences in the testing set, this procedure shows a varied percentage of

sequence identities between the best matches (Figure A.15).

Using the result of the previous procedure, different subsets of the testing set were created, based

on the sequence similarity percentage with the best match in the training set. A total of 4 subsets were

generated, with sequence identities of 20 to 30%, 40 to 50%, 50 to 70% and 90 to 100%. The tuned

linear SVM, which previously achieved the best precision, was evaluated on each of these subsets, and
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the PRC curves were generated. These were re-scaled, from the range of values between 1 and the

expected random prediction value, to a range of values between 1 and 0, since the representation of the

classes was different in the subsets (Figure 5.6).

Figure 5.6: Precision-Recall Curves (PRCs) of the tuned linear SVM predictor of protein thermostability changes of
single mutations, evaluated on different subsets of the testing set S434 with increasingly higher sequence identity
percentages with the training set S3272. We can observe a trend of increasing precision performances when the
model is tested on increasingly more similar sequences to those used during training.

A significant correlation between the sequence similarity and the precision of the model was ob-

served, where a testing set with very similar sequences to the training set was more accurately pre-

dicted. This suggests that the model is more accurate in predicting mutations to protein sequences

similar to those it was trained on.

5.3 Discussion

Unlike the prediction of the thermostability of wild-type proteins, the prediction of the effect that a mu-

tation will have on a protein is not only more frequently studied, but also provides better results. This

approach has more supporting literature, and the ProTherm database of mutation records is more exten-

sive than for wild-type records. Overall, the SeqVec embeddings provided predictive features to develop

ML models of ∆∆G changes upon single mutations that provide better performances than some well

established models but still fall behind state of the art. This comparison is, however, not straightforward.

First, the data sets used in this experiment for the training and the testing of the machine learning

models were different from those used by other models. Since different models frequently use different

data sets, only the review papers that train and test each model with the same data sets present a

valid comparison, and this was not the case since we compiled our own data sets. Even so, the data
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sets presented in this work are the largest collection of thermostability records with no experimental

condition redundancy, nor repeated records, and were thoroughly studied to prevent the testing set from

containing proteins also present in the training set, which makes the performance of our models on

independent data more reliable. On the other hand, considering the detailed data processing performed

in this experiment, an additional processing step could have been useful where, as described by [30],

mutant sequences with a ∆∆G above 5 kcal/mol were removed, as well as those involving a proline

substitution, as these are likely to induce significant structural changes. This was not taken into account

in the development of the data set.

The detailed performance evaluation of our models, namely the PRC, is also something that is not

frequently seen in literature, and that allows the study of the model’s most confident predictions. In

protein engineering, it is desirable to perform as least mutations to a protein as possible, in order to

avoid altering its fitness. Since each protein can be mutated in a wide number of different ways, from

which only a few will result in real positive stability changes, a thermostability predictor does not need to

accurately predict a lot of the records correctly (which would translate into a high MCC), as long as the

ones it predicts as positive are correct (high precision score). If the most confidently predicted positive

records are correct, such a model can still be interesting for application in a protein thermostability

engineering procedure, and this was the reason for which the linear SVM was studied further.

The additional study of the Precision-Recall Curves (PRCs) in testing subsets of different sequence

identities was also useful for this evaluation. Although it would have been ideal to see a model that can

predict the positive class correctly independently of sequence identity to the training set, observing a

correlation between sequence similarity and higher precision confirms that the model is learning bio-

logically significant features that describe the effect of the mutations in the proteins, and can accurately

generalize this knowledge to similar proteins.

It is also noteworthy that the models developed in this experiment used solely the SeqVec embed-

dings as features, with no additional structural features, nor even the explicit amino acid sequence of

the protein. This approach, very different from the sequence or structure-based models seen in litera-

ture, skips the difficult step of generation of complex protein features of those models, which sometimes

rely on other physicochemical models themselves. Capable of achieving MCC values that are relevant

for recent literature, this opens a completely new approach to protein thermostability prediction with the

helpful advantages associated with transfer-learning, namely the possibility to compare different proteins

or mutations in the high-dimensional feature space.

A way to conclude about the usefulness of the embedding space for direct comparison of mutations

could have been based on the two-dimensional projections generated for the features. The t-SNE plot

showed some clustering that could be representative of specific amino acid substitutions, and an addi-

tional study of these could lead to useful conclusions about a positive or negative effect, depending on
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their context in the entire protein sequence.

Finally, although several metrics were calculated, the comparison of the models was based on their

MCC in the testing set. This proved to be adequate, as most models, with all feature sets, achieved an

Acc score of over 60%, meaning that this metric would not have been useful with this data imbalance.

The MCC was shown to successfully capture the most frequently used performance metrics recall,

specificity and F1 scores in a single value, making it the most useful metric to directly compare different

models, where models with higher values of these also produced a higher value of MCC. In an additional

note, the ROC curves of the models did not show significant differences between them, meaning that

the ROC AUC measure is also not suitable for the comparison of the models by itself.

Overall, a trade-off between increasing the MCC at a decrease on the precision score, and vice versa,

was observed. In no attempt could the models maintain both of these scores elevated, suggesting that,

when using the SeqVec features for the prediction of protein thermostability upon point mutations, a

choice needs to be made on a very precise model that misses a lot of potential positive mutations (to

which the obtained linear SVM would be more appropriate), or a model that can overall separate the

two classes of mutations but might suggest some negative mutations as positives (to which the logistic

regression or the MLP model are more appropriate). The additional pre-processing steps attempted

further proved this, as the filtering step increased the precision of the models but reduced their capacity

to differentiate the two classes, and the balancing step increased the MCC values but at a cost on

precision.

In general, it was expected that this experiment would find better results, as the prediction of the

effect that a mutation can have in protein thermostability is more easily modelled than the prediction of

protein thermostability directly from sequence. However, the competitive performances obtained by this

implementation makes this experiment a success.
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6. The effect of mutations in the SeqVec em-

beddings
Seeing that the effect of a mutation in the thermostability of a protein is better modelled by SeqVec when

only the embeddings of amino acids close to the mutation are used to generate the protein embedding,

it became interesting to study the effect that mutations have in the embeddings of the entire amino acid

sequence.

6.1 Materials and Methods

6.1.1 Describing the effect of a mutation in the embeddings

To describe the effect of a mutation in the amino acid embeddings, the euclidean distance between

the wild-type and the mutant sequence amino acid embeddings of each protein was used, originating a

sequence of euclidean distance values with the same length as the protein, describing the effect of the

mutation in the embeddings throughout the sequence.

This was used to study the mutation records in the S3706 data set (Section 5.1.1), as well as a mu-

tagenesis data set, prepared from this data set to simulate a larger amount of mutations, with additional

information about binding site locations in the proteins.

6.1.2 Mutagenesis data set preparation

A subset of 84 proteins from the S3706 (Section 5.1.1) data set was used to compose another single-

mutants data set, used to study the capacity of SeqVec to model long-distance relationships between

amino acids. These proteins were chosen arbitrarily from the S3706 data set with two criteria: availability

of binding-site information in the PDB database, and sequence length smaller than 250 amino acids.

For each protein, a single-mutant sequence was generated by changing each amino acid in the protein

individually, generating the same number of single-mutant sequences as the protein’s sequence length.

For example, with protein 1ANK, with a sequence length of 214 amino acids, 214 different single-mutant

sequences were generated.

Although each amino acid could be mutated to any of the other 19 standard amino acids, only one

mutation was simulated for each amino acid. The mutant amino acid was chosen according to the

BLOSUM62 matrix [83]. Each amino acid was mutated according to the highest scoring substitution,

or randomly between the highest scoring substitutions, under the hypothesis that this would make the

mutations as equivalent as possible, and allow us to focus entirely on the mutation location and its effect

on the protein sequence as a function of the position. For each wild-type and mutant sequences, the
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amino acid embeddings were obtained as the sum of the output of the three layers of SeqVec. The

distribution of euclidean distances in this data set is detailed in Appendix A.2.3.

This effect was studied both in terms of distance in the amino acid sequence and also in terms of 3D

distance between the amino acids in the wild-type protein conformation. This information was obtained,

for each protein, from the mmCIF files obtained from PDB, which contain the Cartesian coordinates of

each atom in the protein. By calculating the distance between the central carbon atoms of the amino

acid residues, a distance matrix was produced for each protein and used to calculate the distances

between each amino acid and the mutation location of all sequences.

6.1.3 The Wilcoxon rank-sum statistical test

Also called the Mann–Whitney U test, the Wilcoxon rank-sum statistical test was used to verify the

statistical relevance of differences in the euclidean distances between the embeddings. It tests the null

hypothesis that two sets are uniformly mixed (P (x > y) = P (x < y)), against the alternative hypothesis

that samples from one of the sets are more likely to be larger than the other, and is adequate for the

comparison of continuous variables [84].

This test assumes that both sets of variables are from the same distribution, and after arranging the

two sets in order, counts the number of times that a sample from one set is larger than a sample from the

other set. By comparing this value with the expected value of this count, obtained from the distribution

assumption of each of the sets, this test returns a U test statistic that represents this difference and the

associated p-value, which measures the significance level with which the null hypothesis is rejected [66].

6.2 Results

6.2.1 Distant amino acid embeddings capture the effect of a mutation

Firstly, the mutation records in the S3706 data set were explored, from which a few arbitary records

were plotted in terms of euclidean distance between the wild-type and the mutant sequence embeddings

(Section 6.1.1), showing that the highest difference was usually concentrated in and close to the mutation

location, but that in some cases there was also an effect in distant amino acids (Figure 6.1, a). This

prompted an effort to visualize all of the records (Figure 6.1, b), showing that quite frequently there is

also a strong effect in amino acids distant from the mutation. Note that except for the mutated amino

acid in the center of the x axis, all other amino acids are of the same type in the wild-type and in the

mutant sequences, showing the capacity of the SeqVec model to capture the different contexts, as a

consequence of a mutation in another amino acid of the protein.
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Figure 6.1: The euclidean distance between the wild-type sequence amino acid embeddings and the mutant se-
quence amino acid embeddings (y axis) as a function of the sequence position of the mutation (x axis). (a) The
mutation W22F in protein 1AJ3 shows a strong effect in amino acids close to this location, but also an effect in
another area of the sequence. (b) By plotting all mutation records of the data set S3706, this effect becomes more
disperse but still relevant.

6.2.2 Mutations to binding sites cause a stronger effect in the embeddings

In an attempt to evaluate this effect in an unbiased form, a mutagenesis data set was generated (Sec-

tion 6.1.2), in which 84 proteins with binding sites information were individually mutated in each amino

acid. This experiment was performed under the hypothesis that this mutagenesis approach does not in-

duce bias towards different substitutions, making the mutation effect only dependent on its position in the

sequence. As such, a mutation to a binding site is expected to have a stronger effect in the embeddings,

and is also expected to affect amino acids throughout the sequence more strongly.

Figure 6.2: The euclidean distance between the wild-type sequence amino acid embeddings and the mutant se-
quence amino acid embeddings (y axis) as a function of the sequence position of the mutation (x axis) of the
mutagenesis data set prepared in Section 6.1.2, centered horizontally in the location of the mutation and coloured
orange if the mutation was performed in a binding site, and blue otherwise. Quite often, there is a widespread effect
throughout the entire amino acid sequence.

By using the same euclidean distance procedure to describe the effect that a mutation in the se-

quence has in each of the amino acid embeddings, this result was plotted in terms of relative sequence
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distance to the mutation, in which a widespread effect is seen throughout the amino acid embeddings

(Figure 6.2). This effect is clearly stronger in amino acids closer to the mutation, and gradually weaker

with an increasing distance, except for certain cases were the mutation caused a disruption throughout

the sequence.

Although some of the records in the previous figure seem to indicate that a mutation in a binding site

causes a higher euclidean distance between embeddings, this was investigated further by comparing

this effect in distance segments in both directions (Figure 6.3). This allows the study of the statistical

relevance of this hypothesis (Section 6.1.3), where a Rank-Sums (RS) test shows that mutations in

binding sites indeed cause a higher euclidean distance between embeddings throughout the sequences,

as evidenced by the positive RS test statistic in every segment, and the p-values very close to zero

obtained in all segments.

Figure 6.3: Boxplot representation of the euclidean distance value between wild-type sequence amino acid embed-
dings and mutant sequence amino acid embeddings (y axis) in segments of 20 amino acids of sequence distance
to the mutation (x axis). For each segment, the RS test statistic is shown, showing that the effect of a mutation in a
binding site (orange) is stronger than that of mutations out of the binding sites (blue).

By performing a collective RS test, over all segments, to compare the distributions of the euclidean

distance between the embeddings of the binding site mutations and the non-binding site mutations, a

factor of 53.237 with a p-value close to zero is obtained, further confirming the hypothesis that binding

site mutations cause a significantly stronger effect in the embeddings.

6.2.3 3D distance is captured by the amino acid embeddings

Additionally, these results can also be plotted in terms of three-dimensional distance between the amino

acids (Figure 6.3), were we can now see that the stronger effect of the binding site mutations is only
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noticed by embeddings of amino acids close in space to the mutation. This is evidenced by the fact

that the RS test statistic becomes negative for larger 3D distances, with p-values close to zero in all

segments.

Figure 6.4: Boxplot representation of the euclidean distance value between wild-type sequence amino acid em-
beddings and mutant sequence amino acid embeddings (y axis) in segments of 6 angstrom of distance in space to
the mutation (x axis). For each segment, the rank-sum test statistic is shown, indicating that the effect of a mutation
in a binding site (orange) is stronger than that of mutations out of the binding sites (blue) only if the amino acid is
close to the mutation.

Since amino acids of the protein binding site are usually close in space in the final conformation of the

protein, and since it was previously concluded that a mutation to a binding site causes a stronger effect

in the embeddings, seeing this effect concentrated in amino acids that are close together suggests that

the SeqVec embeddings capture the protein conformation and the three-dimensional distance between

amino acids.

6.3 Discussion

In this experiment we studied the effect of mutations in the SeqVec embeddings. Under the hypothesis

that the simulated mutations were equivalent, and did not induce bias to specific amino acid changes,

the euclidean distance between the amino acid residue embeddings of the wild-type and the mutant

sequences suggests that the SeqVec embeddings can both capture long-distance effects of the mutation

in the protein sequence, but also the three-dimensional conformation of the protein and the interactions

between amino acids in the protein, as evidenced by the difference observed when mutations were

performed to binding sites.

However, given the diversity of three-dimensional protein structures observed in nature, the assump-

57



tion that the simulated mutations are equivalent in amino acid type changes is far from ideal. Proteins

are known to be highly divergent in sequence and highly similar in function, and sometimes the oppo-

site is also observed, where highly similar proteins perform far from identical functions [18]. The effect

of a mutation can range from completely disrupting the protein structure and incapacitating the protein

from executing its function, to barely affecting the protein, and although simulating the amino acid sub-

stitutions based on the BLOSUM concept for biologically significant amino acid changes was the best

solution for this experiment, the use of a curated deep mutational scanning data set would have been

more suitable. This was, however, out of the scope of this thesis, and the experiment was performed

with the limitation that performing mutations to very similar amino acids might not result in large effects

in the context of the other amino acids.

Using the euclidean distance between embeddings to represent their differences could also induce

some wrong conclusions, as it does not capture the notion of closeness between two high-dimensional

vectors. The cosine similarity could have been used instead but even with this measure capturing

distances in high-dimensional data is difficult [85]. On the other hand, the secondary structure prediction

experiment applied a k-NN algorithm using the euclidean distance with success, so the chosen metric

is expected to be accurate.

Although the SeqVec model was not used for protein engineering nor was it studied for the prediction

of mutational effects, the UniRep model [14] was applied to predict the stability of naturally occurring

proteins and of de novo designed proteins using deep mutational scanning data sets, achieving better

results than well established methods such as Rosetta [43], and was also able to predict the functional

effects of mutations to proteins, as well as modelling the fitness landscapes of diverse proteins. This

model was also capable of predicting mutations that increase certain properties such as protein fluores-

cence, which was also observed with the D-SPACE model [10]. Additionally, the bidirectional transformer

from [15] was used to successfully predict amino acid residue contact points as well as to predict en-

zyme activity changes upon mutations. Our results with the SeqVec model are in agreement with the

observations that such unsupervised models can compete with state of the art models of protein biology.
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7. Thermostability prediction with the Meltome

Atlas wild-type data set

With the publication of the Meltome Atlas, an extensive and uniform data set of protein thermostability

is made available [37]. Considering the obstacles faced in the prediction of thermostability directly from

sequence with the ProTherm database, another attempt to develop such a model was performed, using

SeqVec to embed the protein sequences of the Meltome Atlas, and studying the embeddings for their

capacity to capture the melting temperature of the proteins.

7.1 Materials and Methods

7.1.1 The cross-species Meltome Atlas data set processing

The Meltome Atlas is the largest and most recent effort to map the thermal stability of the proteome of

multiple organisms across the tree of life. Using a proteomic approach based on mass spectrometry,

this data set contains the melting curves of 48691 proteins from 13 organisms ranging from archaea to

humans and that have melting temperatures from 30 to 90°C [37].

From this data, we used all proteomes except those coming from human cell lines, choosing to use

only proteins that were clearly identified with a UniProt database entry code [9], with a total of 34501

unique protein sequences. However, some of these did not have a melting temperature annotation.

These so-called non-melter proteins are annotated only by a melting curve AUC value, and although the

AUC information was found to be correlated with the melting temperature information of each proteome

(Figure A.6), this value depends on the temperature range of each experiment, as a non-melter at

a low-temperature range could perhaps melt at a higher temperature, and as such would require a

normalization or inference pre-processing step to allow the comparison of different proteomes directly.

We decided not to use these proteins because only the melting temperature is independent across each

experiment, allowing a direct comparison between all proteomes.

To deal with sequences with more than one record, only data referring to cell lysate experiments

was used, and for all other repeated sequences, across different tissues, strains and organisms, the

mean melting temperature value was used. After these processing steps, a data set with 27354 unique

protein sequences with a unique melting temperature value was obtained, with a melting temperature

distribution shown in Figure A.7. The protein sequences were processed by SeqVec, from which the

protein-level embeddings were generated as the sequence average of the amino acid residue embed-

dings of each protein, obtained as the output of the middle-layer of the SeqVec model.
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7.1.2 Machine learning models implementation

The cross-species data set of wild-type protein melting temperatures obtained in Section 7.1.1 was split

in two random, shuffled and stratified partitions (obtained by dividing the original data set in 10 quantiles,

and performing a random, shuffled split on each), where 85% of the data was used for training of ML

models that use the SeqVec protein embeddings to predict the melting temperature values, and the

remaining 15% was left out for an independent testing of the performance of the models on previously

unseen data. As with previous experiments, PCA was also used to reduce the dimensionality of the

features, to 100 principal components, fit to the training set with an explained variance of 86.4%, and

used to reduce both data set partitions.

In this experiment, five different machine learning regression models were applied: the Lasso linear

regression, the quantile linear regression, the k-NN regression model, the SVM regression model and

an MLP regression model, following the same ideas as in Section 5.1.2. These models were evaluated

in terms of RMSE, r2 score, EVS, and in terms of PCC and SCC.

The Lasso linear regression model was applied both directly and with polynomial powers of degree 2

of the features. A few manual attempts showed that a high α value for regularization strength decreased

the performance of the model, so this parameter was set to 0.001 in all experiments. The quantile

regression was implemented using an iteratively reweighted least squares method to minimize the sum

of absolute errors of the estimation of the mean of the melting temperature of the proteins [86], in an

attempt to handle the tail with high melting temperature values in the data distribution (A.2.4) while

maintaining the simplicity of a linear estimator [58].

The k-NN regression model was implemented with a k of 5, the predefined parameter value, since

the performance of this model was not improved after several attempts with different values.

The SVM regressor was implemented with a linear kernel, with which a regularization strength C of

100 was chosen manually. This value was later used with a polynomial kernel of degree 2 and a RBF

kernel, and was not studied further because the following MLP model outperformed even the best SVM

model, which was obtained with the RBF kernel.

The MLP regression model was implemented as described in Section 5.1.2, but with a different

output layer. This model possesses a single neuron in the output layer without activation function, which

outputs the sum of the inputs from the previous layer. This output was optimized to predict the melting

temperature of the proteins, using the MSE loss function.

Similar to the previous application for classification, a small architecture with a single hidden layer

with 20 neurons was used to determine the best learning rate and number of training epochs. However,

since this application has more training data available, the model could be trained for more epochs, and

so a learning rate of 0.001 was established and an early stopping callback was implemented with a

patience setting of 20 epochs. By isolating a random and stratified partition of 15% of the training data,
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a validation set was constructed to follow the validation loss of the training of the model, with which a

number of epochs of 23 was generally found to result in the least overfitting (Figure A.16).

After choice of learning rate and number of training epochs, the architecture of the MLP model

was tuned with a cross-validation procedure as described in Appendix A.1.2, from which a MLP with 2

hidden layers of 256 and 20 neurons each resulted in the best mean cross-validation MSE of 48.759

(Figure A.17).

A baseline feature set was also developed. Based on the results obtained by the authors of the

Meltome Atlas, five protein features were generated to describe the melting temperature of the records:

sequence length, amino acid count by type, amino acid frequency by type, polar amino acid frequency

and hydrophobic amino acid frequency. A linear regression model was fit to the training data using

each of these features, from which the amino acid frequency by type vector produced the best results

(based on the RMSE and PCC in the testing set, in Table A.4). During the evaluation of the previously

mentioned ML models with the SeqVec embeddings, their performance with this feature set was used

for comparison.

7.2 Results

7.2.1 Thermophile protein embeddings differ from mesophile embeddings

The protein embeddings generated from the protein sequences in the melting temperature data set

(Section 7.1.1) were projected to two dimensions by t-SNE (preceded by PCA to 157 dimensions, with

90% explained data variance) (Figure 7.1, a), and by PCA directly (Figure 7.1, b). Although the PCA

projection does not show any separation between proteins with different melting temperature ranges,

the t-SNE projection reveals that proteins from thermophile organisms are different from the mesophile

proteins and are grouped together in well-defined clusters, while the mesophile proteins are dispersed

throughout the embedding space.

Colouring this same t-SNE projection by the organism of each protein, we find that the thermophile

organisms are the only ones that are in well-defined clusters in the embedding space, while all other

organisms are spread throughout the feature space (Figure A.8). This suggests that SeqVec can identify

thermophile proteins from a varied data set of protein sequences from multiple organisms.

7.2.2 SeqVec features are correlated with properties related to thermostability

Protein properties such as sequence length, frequency of polar amino acids and frequency of hydropho-

bic amino acids were found to be correlated with higher protein stability by the data set’s authors [37].

Attempting to study if any of the 1024 SeqVec features encode for these propeties, an analysis of the
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Figure 7.1: Projection to two dimensions of the protein embeddings obtained from the data set prepared in Sec-
tion 7.1.1, coloured by melting temperature: (a) t-SNE (x-axis: t-SNE 1; y-axis: t-SNE 2); (b) PCA (x-axis: PCA
1; y-axis: PCA 2). Observation of the t-SNE projection shows that the embeddings of thermophile proteins are
clustered together, and isolated from the remaining proteins.

protein embeddings was performed, by calculating the PCC between each of the SeqVec features and

each of the three mentioned protein properties.

Figure 7.2: Scatter plot of three SeqVec features and three protein features known to be correlated with ther-
mostability. The positive PCCs of some of the features from SeqVec and thermostability features indicate that the
embeddings model aspects of protein thermostability. The SeqVec features were chosen as the ones with highest
PCC with each of the three features: sequence length, frequency of polar amino acids and frequency of hydrophobic
amino acids.

Several of the embedding features are found to be correlated with such protein properties, from which

the highest correlations achieved PCC values of 0.382, 0.501 and 0.588 with sequence length, frequency

of polar amino acids and frequency of hydrophobic amino acids, respectively (Figure 7.2). This result

suggests that the SeqVec model learns meaningful properties of protein biology, further proposing that

SeqVec embeddings can be used to model aspects of protein thermostability directly from its amino acid

sequence.
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7.2.3 The embeddings can be used to train a melting temperature predictor

After splitting the data set in a training and a testing partition, the protein embeddings of the training data

set were used to train several machine learning regression models to predict the melting temperature

of each protein sequence (Section 7.1.2). Their performance in the training and testing sets is shown

in Table 7.1. The polynomial regression, as well as the RBF SVM and the MLP produced very positive

results, with PCC values of over 0.70, and the most reduced test RMSE values.

Table 7.1: Performance of several machine learning regression models trained to predict the melting temperature
of the protein embeddings. The models were evaluated for RMSE, r2, EVS, PCC and SCC on the training and on
the testing data, from which the PCC on the testing set was used to choose the MLP as the best performing model.

Model with
SeqVec features

RMSE
train

RMSE
test

r2

train
r2

test
EVS
train

EVS
test

PCC
train

PCC
test

SCC
train

SCC
test

Lasso reg 8.35 8.14 0.33 0.36 0.33 0.36 0.58 0.60 0.31 0.33
Quantile reg 8.74 8.56 0.27 0.29 0.28 0.30 0.55 0.58 0.36 0.38
Poly 2 reg 7.28 7.24 0.49 0.49 0.49 0.49 0.70 0.70 0.43 0.43

5-NN 6.67 8.22 0.57 0.35 0.58 0.35 0.78 0.60 0.62 0.35
Linear SVR 8.75 8.56 0.27 0.29 0.28 0.30 0.55 0.58 0.36 0.38
Poly 2 SVR 10.3 10.3 -0.02 -0.02 0.00 0.00 0.13 0.13 0.27 0.27
RBF SVR 6.42 7.04 0.61 0.52 0.61 0.52 0.79 0.72 0.66 0.51

MLP 6.06 7.05 0.65 0.52 0.65 0.53 0.81 0.74 0.59 0.48

Although the MLP model shows some signs of overfitting, due to the decrease in performance be-

tween the training set and the testing set evaluation metrics, this model showed the highest PCC value

of 0.74 in the testing set, the most widely used parameter to evaluate protein thermostability regres-

sion models. With a close to best test RMSE value of 7.04, this model was considered the best model

obtained in this experiment and was studied further.

For this model, the r2 and EVS scores show a positive predictive power, and their similar values

suggest that the model is unbiased. The performance of this model was also studied by visualization

of the predictions (Figure 7.3). From this figure we can observe that the SeqVec protein embeddings

can be used to train a MLP to predict the melting temperature directly from sequence that is capable

of modelling the stability of wild-type proteins, as this regression model has the capacity to predict

the melting temperature of the most stable proteins in the data as significantly different from the melting

temperature of the more frequent mesophile proteins, while also achieving a good PCC. This is observed

in the training set as well as in the testing set.

To compare the SeqVec protein features to hand-crafted features, a baseline feature set that de-

scribes each protein by a vector with the frequency of each amino acid in the sequence was developed,

and used to train and test the same MLP architecture. This baseline model produced very similar results

(Table A.5), with barely any difference in performance metrics compared to using the SeqVec embed-

dings. With a test PCC value of 0.73 and a test SCC value of 0.43, as well as a similar test RMSE
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Figure 7.3: Scatter plots of the melting temperatures predicted by the MLP model developed with the protein
embeddings (y axis), and their true values (x axis). The performance on the training set (left), as well as the
performance on the testing set (right), show a very positive correlation and trend, indicating that the SeqVec protein
embeddings can be used to develop a ML wild-type protein thermostability predictor.

of 7.14, the hand-crafted features provide very similar predictive performances, which suggest that the

SeqVec features are not an improvement to protein thermostability prediction directly from sequence.

An additional visualization of the predictions of the MLP model with the baseline features (Figure A.18)

shows that the plot is quite similar, although slightly more dispersed.

7.2.4 The captured thermostability information is too general

To further explore the capacity of the SeqVec embeddings to capture thermostability information directly

from the protein sequence, three additional experiments were performed using the previous MLP model.

First, with the proteins of each individual organism, a train/test split was performed, and the model

was trained on a single organism to predict the melting temperature of the remaining proteins of that

same organism. Second, in a leave-one-out approach, the proteins of all except one organism were

used to train the model, and the isolated organism was used to evaluate the model. Third, in a one-

vs-all approach, each individual organism was used to train the model, which was then evaluated on all

organisms individually. In all experiments, an early stopping callback was implemented with a patience

setting of 10 (with a subset of the training data used for validation of the training) to take into account the

different data set sizes in each experiment, and the performances were evaluated in terms of RMSE, r2

score, EVS, PCC and SCC in the train and test data, from which the RMSE and the PCC were defined

as the most important parameters.

The first experiment aims to see if the performance of the model is maintained on all organisms, and

its results are found in Figure 7.4. There is a general decrease in performance between the training and
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Figure 7.4: Train and test RMSE, r2, EVS, PCC and SCC performance metrics of the MLP model with the protein
embeddings for melting temperature prediction, upon training and evaluation on individual organisms. A general
decrease in performance can be observed when individual organisms are used to develop the model, and a signifi-
cantly worse performance was observed with the O. antarctica protein embeddings.

testing predictions, which was not observed in the previous experiment. This suggests that the use of a

larger, more varied data set, produces a better training ground for the model and that, overall, the model

is not capable of differentiating the melting temperatures found in the proteins of individual organisms.

Additionally, while in most individual organisms the performance is comparable, the prediction of the

melting temperature of proteins from O. antarctica was significantly worse than on the other organisms.

In general, prediction on most organisms has a negative or very reduced r2 score and EVS, but can

maintain a RMSE close to the training data, and PCC and SCC values that show a moderate correlation

between the predictions and their true values. This was not the case with proteins from O. antarctica

because all the correlation coefficients were very close to zero, showing that although the RMSE follows

the same pattern as with the other organisms, the predictions were very dispersed and uncorrelated to

the experimental values.

The second experiment aims to determine the generalization capacity of a melting temperature pre-

dictor that uses the SeqVec features, by evaluating the performance of the model on a new organism,

and its results are shown in Figure 7.5. This experiment showed that this prediction model is not accu-

rate when applied to proteins from organisms it was not trained on. Ideally, the model would be capable
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of maintaining the performance metrics when evaluated on a different organism, but this was not ob-

served due to the negative r2 score and EVS throughout all test organisms. The correlation coefficients

were also both reduced in all cases, except for certain organisms such as C. elegans, D. melanogaster

and D. rerio that show the best PCC and SCC values of this experiment, which are still lower than

the correlations on the training data. Additionally, analysis of the RMSE, r2 score and EVS values

of the evaluation organisms shows a clear distinction between evaluating the model on thermophiles

and mesophiles/psycrophiles, in which the model shows severely worse values when evaluated on the

thermophiles.

Figure 7.5: Train and test RMSE, r2, EVS, PCC and SCC performance metrics of the MLP model with the protein
embeddings for melting temperature prediction, upon training on all organisms except one, which was used for
evaluation. The results show that the predictions are not accurate on organisms in which the model was not trained
on.

The reduced performances in this experiment were studied further, and the prediction plots were

generated, in which the reduced PCC in the left-out organisms can be clearly explained. As an example,

the experiment where M. musculus proteins were isolated from the training and were used as the testing

set are shown in Figure 7.6. Although centered in the line of perfect prediction, the predictions on the test

proteins are severely dispersed, an unexpected result considering the good correlation in the training

data. This suggests that the model is only learning how to identify the organisms.
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Figure 7.6: Scatter plots of the melting temperatures predicted by the MLP model developed with the protein
embeddings (y axis) and their true values (x axis), on a training set without proteins from M. musculus, which
were used as the testing set. The performance on the training set (left) suggests that the model can accurately
differenciate between proteins with different melting temperatures, but its performance in the testing set (right)
shows that it is not accurate enough to correctly predict the melting temperatures of proteins with similar melting
temperatures belonging to an organism outside of the training set.

The third experiment aims to further evaluate the generalization capacity of this model, by training

the model on a single organism and then evaluating it on the other organisms, and its results are shown

in Figure 7.7. This experiment shows similar results to the previous experiment: there is a significant

decrease in the PCC in the predictions on the training and testing sets, and there is a clear distinction

between the RMSE of a model trained on mesophiles/psycrophiles and evaluated in thermophiles and

vice versa.

Figure 7.7: Train and test PCC and RMSE performance metrics of the MLP model with the protein embeddings for
melting temperature prediction, upon training on individual organisms and testing on all the others. These results
further prove that this model is not capable of adequate generalization, especially towards thermophile proteins.
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The results of these experiments suggest that the SeqVec protein embeddings only superficially

describe the thermostability of the proteins, because although the first regression model trained on all

organisms shows very promising results, this model is incapable of generalization to different organisms.

To further discuss this hypothesis, this model was compared to two baseline models.

The first baseline model uses the same protein baseline features as in Section 7.2.3, where the

proteins are described by a vector with the frequency of each amino acid type in the protein sequence.

The same MLP model was subjected to the same generalization experiments, where significantly worse

performance metrics were observed (Appendix A.3.3). The second baseline is a naive linear regression

that simply uses the average melting temperature of the organism of the protein as a single feature.

When the entire data set is used for a train/test split, in the same procedure as in Section 7.2.3, this

naive baseline shows a test RMSE of 4.50 and a test PCC of 0.895 (Table A.6), which are better metrics

than those of either the baseline features model or the SeqVec features model. This naive model also

shows lower RMSE values in the leave-one-out experiment (Figure A.22).

Although it was previously concluded that the SeqVec embeddings did not improve upon hand-crafted

features, the first baseline model provided worse generalization capabilites. However, even a simple

linear regression of the average melting temperature of the available proteomes provided better error

and correlation metrics than all of the development models.

7.3 Discussion

The publication of the Meltome Atlas, with a large amount of coherent and well-annotated records from

diverse organisms, provided the requirements that the ProTherm database previously failed to meet.

The SeqVec protein embeddings generated from this data set proved to be capable of modelling aspects

of protein thermostability directly from sequence, but their use in the development of ML resulted in

poor performances, only capable of differentiating between different organisms. This information is too

general and can not be applied in a protein engineering approach.

Although protein thermostability modelling is not usually performed on wild-type proteins, the ob-

tained SeqVec protein features could be used to accurately differentiate proteins originating from ther-

mophile organisms from other organisms less resistant to high temperatures, suggesting that this ELMo

adaptation can identify the characteristics that make a protein resistant to high temperatures. Although

it can be argued that thermophile organisms have different protein sequences and that this was the only

difference captured by SeqVec, the positive correlation between some of the SeqVec features and other

thermostability-related properties can be used to further confirm the previous conclusion.

The ML models trained with the protein embeddings to predict the melting temperature of previously

unseen proteins produced generally positive results when using the entire data set. However, the best

performing MLP predictor with the SeqVec features was only slightly better than an identical model using
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a simple baseline feature set that describes each protein by an amino acid frequency vector, and this

model was also found to lack in generalizability. Since this experiment used a large enough data set,

the reduced performance of the models can only be explained by the features used. It is noteworthy,

however, that this experiment was based on the PCA-transformed protein embeddings, with only 100

dimensions. This was the only experiment performed in this thesis where enough data was available

to discard this step. Additionally, since the algorithm chosen was the MLP, the feature reduction could

have been performed by an initial layer of the perceptron. This was not studied, and could be somewhat

responsible for the reduced performances obtained. Performing a filtering step with CD-HIT to remove

sequences of high similarity from the data set could also have produced better results, but was not

attempted.

The issues with this model were not unexpected due to the difficulty of the task at hand, but with

the surprisingly similar success of the baseline features we are forced to conclude that the SeqVec

features do not provide a revolutionary approach for the development of new protein thermostability

engineering methods that can predict the melting temperature directly from protein sequence. This is

further evidenced by the high dispersion of the predictions around the average melting temperature of

each organism, where simply predicting this value resulted in lower prediction errors. However, this high

dispersion was not studied in detail.

By developing a model that uses the SeqVec embeddings together with the hand-crafted features

that were here only used as baselines, more meaningful conclusions could have been drawn, perhaps

showing that with additional features, a useful ML prediction model could be developed with the SeqVec

embeddings. But at the end of this experiment, with a model that predicts a general melting temperature

value, randomly spread around the organism’s average melting temperature, the delicate task that is

protein design becomes impossible, and a more specific model that can accurately differentiate between

very similar proteins, and not just isolate the thermophile proteins, is still to be developed.
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8. Conclusions and future work
The objective of this thesis was to study the application of deep language models for protein sequence

modelling. For this, the SeqVec model was used to produce the protein features that were then used to

implement several ML models for the prediction of protein thermostability properties.

The first experiment with the SeqVec model produced successful protein secondary structure mod-

els, and in all experiments the protein embeddings showed a capacity to model aspects of protein

thermostability. The positive literature results on the application of deep language models for protein

engineering, coupled with the advantages that these models have over conventional protein engineering

methods, prove that this is an approach to biological sequence modelling with a lot of potential. It is,

however, still behind state of the art performance, and would undoubtedly benefit from the preparation

of larger and more well-curated databases of protein properties.

The results obtained in the development of ML models for protein thermostability prediction directly

from wild-type sequences using the SeqVec protein embeddings revealed that such models are capable

of identifying features related with thermostability, but are not yet adequate for the prediction of melting

temperatures. The use of the ProTherm database confirmed its frequently mentioned issues, but not

even with the larger Meltome Atlas could this prediction achieve performances useful for protein engi-

neering. This is a difficult prediction task, with various factors influencing protein thermostability, that is

not expected to be improved by introducing the use of transfer-learning with language models trained on

protein sequences.

More frequently used in protein thermostability engineering, is the prediction of the effect that a

mutation will have on the protein’s free Gibbs energy of unfolding. Using the SeqVec features, we

developed ML models that achieved higher Matthews correlation coefficients than some well established

models. Our models also achieved useful precision metrics, proving that transfer-learning methods can

compete with current literature. Our approach to training and evaluation of the models was built on top

of a detailed processing of the data, which included several steps to guarantee that there was no data

leakage, a problem that is frequently observed in the development of some of those models, and used

a sequence-based approach that bypasses the hand-crafting of features for this task. The application

of these models to guide mutagenesis studies is expected to see an increase in use and a substantial

increase in performance if more data is made available for their training.

However, an accurate comparison of the developed models with state of the art literature in protein

engineering can only be performed if the models are trained and tested on the same data sets. In

addition to a comparison between the models, an application of the predictors developed in this thesis to

case-studies should be performed, to evaluate their performance in different protein families and dismiss

frequent issues in ML such as overfitting and bias that are usually observed in protein thermostability

predictors. Our models were only broadly evaluated in the testing sets, with no detailed observation of
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their behaviour on proteins for which very detailed information exists, and this could be valuable to guide

further development of the use of transfer-learning for protein engineering.

The mutagenesis experiment developed in this thesis was also very superficial, and more meaningful

conclusions are expected to be drawn if such an experiment would be performed with deep mutagenesis

studies data sets of protein mutations. The use of these data sets, coupled with the positive results we

observed when SeqVec embeddings were used for single mutations, suggest that this model can be

used successfully for other protein engineering tasks for which extensive data is available, but that

is still unfortunately not available for protein thermostability. This experiment could also have been

taken a step further and simulated particular mutations that are frequently performed to increase the

thermostability of proteins, as is the case of mutations that introduce disulfide bonds. A study of this

specific effect in the embeddings could have lead to more meaningful conclusions on the applicability of

the SeqVec embeddings for other protein engineering approaches, as well as its use to predict protein

tertiary structures for other applications.

The use of transfer-learning also allows the use of the learned protein representations for different

purposes. One of which is the protein fitness, of high interest for protein engineering. By coupling a

thermostability predictor and a function predictor, the expensive and time-consuming process of assess-

ing the suggested protein designs could be reduced to only assessing mutations that are expected to

increase thermostability while also maintaining protein function.

Finally, in this thesis only the SeqVec model was studied for its potential in the development of mod-

els of protein thermostability. SeqVec is based on the ELMo language model, which is already falling

behind transformer-based models such as BERT in language tasks. Already the UniRep pre-trained

LSTM-based model is available for public use, as well an adaptation of BERT for protein sequences,

and if the application of these models for biological data follows their trend in human language process-

ing, the use of transformer-based networks for these tasks will see an improvement in performance.

Additional procedures that were discussed but not implemented were the fine-tuning of the SeqVec

model for specific protein families or organisms, or an additional fine-tuning step of the entire model

for thermostability prediction (instead of using separate ML algorithms), which is how the previously

mentioned papers perform the modelling tasks. The use of more complex ML models to handle the

high-dimensionality of the representations learned by these language models is also worthy of mention,

where the use of convolutional or recurrent neural networks to find better representations of a protein

from their sequence of amino acid embeddings could produce more meaningful features than a simple

average.
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A. Appendix

A.1 Additional implementation details

A.1.1 Software used

All computational work was done using the Python software [87] version 3.6.10. For data manipulation,

the libraries pandas [88] and NumPy [89] were used. The library Biopython [90] was also used to work

with the protein sequence files. All plots were generated using the Matplotlib [91] library. The library

SciPy [66] was used to perform all statistical tests. SeqVec is implemented in PyTorch [92] version 1.2.0,

and the implementation of all machine learning models was done using Python’s machine learning library

Scikit-learn [57], except for the MLPs that were implemented with the Keras module from TensorFlow

[62] version 1.15.0 and the quantile regression that was implemented with the Statsmodels [86] library.

All models were applied with the predefined parameters except when explicitly noted otherwise.

t-SNE was used exclusively for data visualization, and was implemented using the Multicore t-SNE

[93] library, using the predefined parameters (namely, a perplexity of 30.0). PCA was used for data

visualization and for feature reduction in the training of the ML models, and was implemented using the

Scikit-learn [57] library. Linear Discriminant Analysis (LDA) was also tried for feature reduction but did

not provide good results, and was not studied further. Other feature selection methods such as filters

and wrappers were not attempted due to their long application times and to avoid a complex feature

engineering step, in order to provide an unbiased exploration of the SeqVec embeddings.

A.1.2 Cross-validation hyper-parameter tuning procedure

Cross-validation was implemented with three objectives: to maximize the use of the available training

data, to prevent overfitting to the training data set, and to avoid using the testing data set for a biased

choice of models. The models with pre-defined parameters that showed the most potential were fine-

tuned with this method and then evaluated in the unbiased testing set data.

In this work, the hyper-parameter tuning of each model was performed using an exhaustive grid

search method. Upon training and evaluation of all models in all folds, this method chooses the best

hyper-parameter combination as the one with the best average performance over all the folds. After

choosing the best model hyper-parameters, this model is trained on the entire training data set, and is

then evaluated in terms of its performance in the previously unused testing data set. The PCA feature

reduction step was also fit and performed individually on each fold. For all implementations of this

procedure in this work, the entire cross-validation process was done using the training data set, which

was split in 7 random, shuffled, and stratified folds.
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A.2 Additional data processing details

A.2.1 Wild-type protein thermostability data set processing

Figure A.1: Histogram of the distribution of free Gibbs energy of unfolding in the processed ProTherm wild-type
data set obtained in Section 4.1.1.

Figure A.2: Free Gibbs energy of unfolding values as a function of temperature (left) and pH (right) in the processed
ProTherm wild-type data set obtained in Section 4.1.1. The ∆G values in the data set are not correlated with any
of the experimental conditions.
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A.2.2 Single-mutants protein thermostability data set processing

The protein thermostability prediction models PoPMuSiC-2.0 [30] and I-Mutant 2.0 [32], published the

data sets S1948 and S2648, respectively, named after the number of records in the set. These data

sets are frequently used by more recent models, and although both claim to be redundancy-free, S1948

contains multiple T and pH values for some mutations. The S2648 data set has a single ∆∆G value

for each different mutation, calculated with Equation (A.1) as a weighted mean value where records

obtained closer to 25 °C and pH 7 were given higher weights.

∆∆GM = (

n∑
i=1

wpH
i wT

i w
add
i ∆∆Gi)/(

n∑
i=1

wpH
i wT

i w
add
i ) (A.1)

where wpH
i , wT

i and wadd
i are the weights given to each record i for a given protein, according to pH,

temperature and denaturing additives, respectively, and are obtained by Equation (A.2).

wpH
i = 1− |pHi − 7|

7
, wT

i = max(0; 1− |Ti − 25|
25

) ,


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i =

m∏
j=1

(1− Cij
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j

) if m > 0

wadd
i = 1 if m = 0

(A.2)

where n is the number records of ∆∆G for a given mutation, m is the number of additives in solution in

experiment i, Cij is the concentration of additive j in experiment i, and Cmax
j is the maximal concentra-

tion of additive j in all experiments in the dataset.

Two mutation records were considered duplicates if they have the same PDB identifier, PDB chain,

wild-type amino acid, mutation location in the PDB sequence and mutant amino acid, and overall we

found 4000 unique records. To calculate a unique ∆∆G value per record that is independent of ex-

perimental conditions, Equation (A.1) was used ignoring the information about denaturing additives.

However, for each mutation, if one of the duplicates was from S2648 or S921, this value was used di-

rectly, as these were already processed accordingly. Overall, 2579 records came directly from S2648,

911 records came directly from S921, 186 records came directly from S630 and 168 records came di-

rectly from S3568. 65 records were obtained with Equation (A.1), and the remaining 91 records were

labelled as conflicting, because throughout the data sets had both positive and negative ∆∆G values.

After removing duplicate and conflicting records, we obtained a data set with 3909 unique records.

The PDB identifier of each protein was used to obtain the protein sequences. To generate the mutant

sequence, the mutation location was used to change the wild-type sequences in the data set. To take

into account several exceptions with the PDB amino acid numbering scheme, the mmCIF files of each

protein, which contain all the protein information in the form of a PDBx dictionary file, were used to find

missing amino acids, the sequence start index and gaps to locate the amino acid to mutate as shown in
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Equation (A.3). The information about the wild-type amino acid was used to double check this process,

but still a few exceptions needed to be solved manually, as these are related to heterogeneous amino

acids, missing residues not accounted for, incoherent sequence start indexes and extra amino acids that

are not numbered.

Sequence position = PDB position+missing amino acids− start index− gaps (A.3)

After obtaining the wild-type and mutant protein sequences, the data set revealed 203 repeated

sequence pairs, which come from different PDB identifiers and chains that correspond to an equal

amino acid sequence, which were also removed.

Figure A.3: Histogram of the distribution of free Gibbs energy of unfolding changes upon single mutations in the
processed data set S3706 obtained in Section 5.1.1.
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A.2.3 Mutagenesis data set processing

Figure A.4: Histogram of the distribution of the euclidean distances between amino acid embeddings of wild-type
and mutant sequences of mutations to binding sites in the mutagenesis data set obtained in Section 6.1.2.

Figure A.5: Histogram of the distribution of the euclidean distances between amino acid embeddings of wild-type
and mutant sequences of mutations outside binding sites in the mutagenesis data set obtained in Section 6.1.2.
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A.2.4 Protein melting temperatures data set processing

Figure A.6: Area under the melting curve as a function of the melting temperature of each protein in the Meltome
Atlas data set before processing in Section 7.1.1. From an analysis of this plot, a correlation between the AUC
and the melting temperature is observed, but this correlation is individual for each organism, as it depends on the
temperature range at which the experiments were performed.
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Figure A.7: Histogram of the distribution of melting temperature values in the processed Meltome Atlas data set
obtained in Section 7.1.1.

Figure A.8: t-SNE projection to two dimensions of the protein embeddings obtained from the data set prepared in
Section 7.1.1, coloured by organism. Observation of this projection shows that the proteins of most organisms are
dispersed through the space, except those from thermophile organisms that are mostly clustered together, indicating
that the embeddings are not different from organism to organism, but different according to their thermostability.
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A.3 Additional model development information

A.3.1 Secondary structure prediction

Figure A.9: Cross-validation hyper-parameter tuning process of the k-NN secondary structure predictor. The opti-
mal value for the parameter k was determined to be 25, from the possible values 1, 2, 3, 5, 10, 15, 25, 50, 75, 100.
This choice was based on the mean test set F1 score average of all classes, weighted according to the number of
records with each label, which was 0.508, the best obtained in all experiments.

A.3.2 Thermostability change upon mutation prediction

Table A.1: Performance of the basic set of classifiers on the testing set S434, trained on the data set S3272 as
obtained in Section 5.1.2, using the different features generated to represent the mutation records. The classifiers
were evaluated for accuracy, recall, specificity, precision, MCC, F1 and ROC AUC scores on the testing set S430.
For each feature set, the predictor with the highest MCC was chosen, and shown here.

Feature set Best model Acc Sens Spec Prec MCC F1 score ROC AUC
Diff 3-NN 0.65 0.27 0.89 0.62 0.21 0.38 0.64

Diff 0 Log reg 0.69 0.26 0.97 0.85 0.34 0.39 0.76
Diff 2 Linear SVM 0.68 0.26 0.96 0.80 0.32 0.40 0.76
Diff 5 Log reg 0.66 0.15 0.99 0.93 0.28 0.25 0.78

Diff 10 Linear SVM 0.65 0.15 0.98 0.86 0.26 0.25 0.79
Diff 20 Linear SVM 0.65 0.12 1. 0.95 0.27 0.22 0.79
Concat 50-NN 0.61 0.02 1. 1. 0.10 0.03 0.29

ConcatDiff 9-NN 0.60 0.06 0.95 0.43 0.02 0.10 0.45
MeanSTD 15-NN 0.62 0.08 0.98 0.68 0.13 0.14 0.63
Moments Linear SVM 0.66 0.20 0.96 0.78 0.27 0.32 0.73
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Table A.2: Performance of the basic set of classifiers on the testing set S434, trained on the data set S3272
without insignificant mutation records, using the different features generated to represent the mutation records. The
classifiers were evaluated for accuracy, recall, specificity, precision, MCC, F1 and ROC AUC scores on the testing
set S430. For each feature set, the predictor with the highest MCC was chosen, and shown here. A general increase
in precision is observed with all features, but at a cost of reduced MCC performances.

Feature set Best model Acc Sens Spec Prec MCC F1 score ROC AUC
Diff 5-NN 0.63 0.06 0.99 0.85 0.16 0.12 0.61

Diff 0 Log reg 0.66 0.15 0.99 0.93 0.28 0.25 0.76
Diff 2 Linear SVM 0.64 0.11 0.98 0.79 0.20 0.19 0.76
Diff 5 Linear SVM 0.65 0.11 1. 1. 0.27 0.2 0.77

Diff 10 Linear SVM 0.62 0.05 1. 1. 0.17 0.09 0.77
Diff 20 3-NN 0.62 0.10 0.97 0.65 0.13 0.17 0.62
Concat Linear SVM 0.60 0.14 0.89 0.46 0.05 0.22 0.38

ConcatDiff 25-NN 0.62 0.04 0.99 0.78 0.11 0.08 0.34
MeanSTD 9-NN 0.61 0.01 1. 1. 0.08 0.02 0.58
Moments Log reg 0.63 0.07 1. 1. 0.21 0.13 0.74

Table A.3: Performance of the basic set of classifiers on the testing set S434, trained on the data set S3272
balanced with the reverse mutations, using the different features generated to represent the mutation records. The
classifiers were evaluated for accuracy, recall, specificity, precision, MCC, F1 and ROC AUC scores on the testing
set S430. For each feature set, the predictor with the highest MCC was chosen, and shown here. A general increase
in most metrics, including the MCC values is observed with all features, but at a cost of reduced precision metrics.

Feature set Best model Acc Sens Spec Prec MCC F1 score ROC AUC
Diff 1-NN 0.75 0.82 0.70 0.64 0.51 0.72 0.76

Diff 0 5-NN 0.76 0.78 0.75 0.67 0.52 0.72 0.81
Diff 2 9-NN 0.75 0.75 0.75 0.66 0.49 0.70 0.81
Diff 5 Poly 3 SVM 0.75 0.73 0.77 0.67 0.49 0.70 0.82

Diff 10 Poly 3 SVM 0.76 0.75 0.78 0.68 0.52 0.72 0.83
Diff 20 Poly 3 SVM 0.77 0.73 0.79 0.70 0.52 0.71 0.82
Concat Poly 3 SVM 0.73 0.49 0.88 0.72 0.41 0.59 0.77

ConcatDiff Linear SVM 0.71 0.62 0.76 0.63 0.38 0.62 0.75
MeanSTD 1-NN 0.71 0.78 0.66 0.60 0.43 0.68 0.72
Moments 25-NN 0.76 0.68 0.81 0.70 0.50 0.69 0.80

Figure A.10: Cross-validation hyper-parameter tuning process of the logistic regression predictor of protein ther-
mostability changes upon mutations. The optimal mean test MCC of 0.150 was obtained with an l2 penalty and a C
value of 1438.45.
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Figure A.11: Cross-validation hyper-parameter tuning process of the linear SVM predictor of protein thermostability
changes upon mutations. The optimal mean test MCC of 0.133 was obtained with a squared hinge loss, an l1
penalty and a C value of 50.

Figure A.12: Training history of the MLP predictor of protein thermostability changes upon mutations. This exper-
iment trained the model for 17 epochs, and followed the training loss (blue) and the validation loss (orange) of the
model at the end of each epoch. Serious overfitting issues can be observed when more than 3 training epochs were
applied.

Figure A.13: Cross-validation hyper-parameter tuning process of the MLP predictor of protein thermostability
changes upon mutations. Different number of neurons and layers were attempted, and the optimal mean test
MCC of 0.167 was obtained with two hidden layers of 128 neurons each.
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Figure A.14: Performance of the DT model with baseline features on the testing set S434. The confusion matrix
shows a large bias towards the negative class, and the PRC shows the reduced precision of the model. The ROC
curve is also worse than most of the models that used the SeqVec features.

Figure A.15: Sequence identity between each of the sequences in the testing set S434 and their first, second and
third best matches in the training set S3272, obtained by using the BLAST tool in Section 5.2.3.
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A.3.3 Melting temperature prediction

Figure A.16: Training history of the MLP predictor of protein melting temperature. This experiment trained the
model for 23 epochs, and followed the training loss (blue) and the validation loss (orange) of the model at the end
of each epoch. The availability of more data allowed the use of more training epochs before overfitting became an
issue, and the value 23 was chosen after several attempts revealed that this value generally resulted in the least
overfitting.

Figure A.17: Cross-validation hyper-parameter tuning process of the MLP predictor of protein melting temperature.
Different number of neurons and layers were attempted, and the optimal mean test RMSE of 28.759 was obtained
with two hidden layers of 256 and 20 neurons each.
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Table A.4: Performance of a linear regression protein melting temperature model with different baseline features
on the testing set. Representing each protein by an amino acid frequency vector produced the best baseline
performance, with the lowest test RMSE value, and highest coefficient of determination r2, EVS and correlation
coefficients.

Baseline
features

RMSE
train

RMSE
test

r2
train

r2
test

EVS
train

EVS
test

PCC
train

PCC
test

SCC
train

SCC
test

Sequence
length

10.1 10.12 8.90e-3 1.12e-2 8.90e-3 1.12e-2 9.44e-2 1.06e-1 1.23e-1 1.39e-1

Amino acid
count vector

9.62 9.53 1.14e-1 1.23e-1 1.14e-1 1.23e-1 3.36e-1 3.51e-1 2.26e-1 2.47e-1

Amino acid
frequency vector

9.07 8.88 2.13e-1 2.38e-1 2.13e-1 2.38e-1 4.61e-1 4.88e-1 2.00e-1 2.20e-1

Polar amino
acid frequency

9.75 9.66 8.86e-2 9.99e-2 8.86e-2 9.99e-2 2.98e-1 3.17e-1 1.24e-1 1.38e-1

Hydrophobic amino
acid frequency

10.09 10.04 2.44e-2 2.68e-2 2.44e-2 2.68e-2 1.56e-1 1.64e-1 4.88e-2 4.41e-2

Table A.5: Train and test set performance of the melting temperature prediction MLP model implemented with the
baseline feature set.

Model RMSE
train

RMSE
test

r2

train
r2

test
EVS
train

EVS
test

PCC
train

PCC
test

SCC
train

SCC
test

MLP with
amino acid
freq. vector

7.22 7.14 0.50 0.51 0.53 0.53 0.73 0.73 0.43 0.43

Figure A.18: Scatter plots of the melting temperatures predicted by the MLP model developed with the baseline
feature set, and their true values. The performance on the training set (left) and on the testing set (right), show a
worse prediction fit than when the SeqVec protein embeddings are used.
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Figure A.19: Train and test RMSE, r2, EVS, PCC and SCC performance metrics of the MLP model with the baseline
feature set for melting temperature prediction, upon training and evaluation on individual organisms.
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Figure A.20: Train and test RMSE, r2, EVS, PCC and SCC performance metrics of the MLP model with the
baseline features for melting temperature prediction, upon training on all organisms except one, which was used for
evaluation.

Figure A.21: Train and test PCC and RMSE performance metrics of the MLP model with the baseline features for
melting temperature prediction, upon training on individual organisms and testing on all the others.
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Table A.6: Performance of several naive baselines for melting temperature prediction on all species.

Naive baseline
features

RMSE
train

RMSE
test

r2
train

r2
test

EVS
train

EVS
test

PCC
train

PCC
test

SCC
train

SCC
test

Species
one-hot-encoding 4.53 4.50 0.80 0.80 0.80 0.80 0.90 0.90 0.72 0.72

Organism OGT 5.50 5.45 0.71 0.71 0.71 0.71 0.84 0.84 0.63 0.62
Organism average

melting temperature 4.53 4.50 0.80 0.80 0.80 0.80 0.90 0.90 0.72 0.72

All of the above 4.53 4.50 0.80 0.80 0.80 0.80 0.90 0.90 0.72 0.72

Figure A.22: Train and test RMSE values of a naive melting temperature linear regression baseline in the same
leave-one-out experiment with the processed Meltome Atlas data set. The error values are better than those
obtained by the MLP model with the SeqVec features.
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