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Abstract—The success of deep learning applications, within
machine learning and artificial intelligence, is pushing further
this area’s development. However, the increasing performance
and accuracy needs are usually met with higher computational re-
quirements, whose efficiency is, more often than not, disregarded.
General Purpose Graphics Processing Units (GPGPUs), being
the state-of-the-art accelerators for these applications, play a
significant role in making deep learning models widely available.
However, the large power consumption increases operational
costs and eschews resource-constrained environments from using
such devices. To mitigate this problem, the present work proposes
an approach to study the potential energy savings of reducing
the supply voltage of those devices, using an AMD Radeon
Vega Frontier Edition GPGPU. This endeavor is first applied
to synthetic benchmarks to characterize the device’s voltage
guardband and then to current deep learning models to provide
an insight into their behavior under minimum supply voltage.
Results show deep learning models can achieve energy savings
of up to 24.79% (average of 15.35%) and still guarantee their
initial accuracy. Nonetheless, the energy savings can be further
increased up to 30.16% (average of 18.37%) at the expense of
the model’s accuracy. Deep learning applications experienced an
accuracy droop up to 61.52% (average of 10.61%) when working
at near failure supply voltage.

I. INTRODUCTION

Modern applications leveraged by deep learning technolo-
gies are feasible due to hardware accelerators. In particular,
General Purpose Graphics Processing Unit (GPGPU) devices
are widely used in this context given their unique charac-
teristics. They are easier to configure taking advantage of
high-level programming languages, there is also an extensive
user base community behind these devices, and additionally,
they are largely available in data centers and cloud-based
services. Consequently, GPGPU devices are considered the
main accelerator for deep learning applications [1].

However, there is a high demand for performance improve-
ments in deep learning applications. But, more often than
not, the performance enhancement is met with increasingly
higher computational requirements. As a result, there is a
trade-off between deep learning application’s performance and
the available computing capabilities of GPGPU accelerators.

The literature on deep learning improvement techniques for
GPGPU devices is also rapidly growing. However, the majority
of these works neglect the power consumption impact of the
proposed solutions. The increasing power consumption is a
major challenge on the GPGPU device’s usage, especially
when considering resource-constrained environments. As a

result, there is a need for performance improvements to be
weighed against their energy overhead, and for a deeper dive
on lower precision techniques that impose a trade-off between
accuracy and efficiency [2].

GPGPU manufacturers design their processing units bearing
in mind a given performance standard. Naturally, each archi-
tecture will have its minimum required supply voltage for the
device to work properly. However, taking into account phe-
nomena that can negatively impact the device, manufacturers
add an extra safety margin on top. This opens up a window
to improve the GPGPU devices energy efficiency, given that
the power consumption is deeply related to the supply voltage
[3].

This thesis proposes an approach to study the potential
energy savings of GPGPU devices on modern deep learning
applications by reducing the voltage guardband margin im-
posed by the manufacturers.

However, due to the limitations of NVIDIA devices for the
prosecution of this work, it will focus on the Advanced Micro
Devices, Inc. (AMD) Radeon Vega Frontier Edition GPGPU
device.

The main goal of this thesis is to achieve energy efficiency
in deep learning applications. To accomplish this, the follow-
ing objectives are proposed:

• Characterization of AMD Radeon Vega Frontier Edition
GPGPU card voltage guardband. Motivated by the po-
tential energy saving results and the lack of literature
featuring AMD devices.

• In-depth performance and energy efficiency evaluation
regarding the proposed approach.

• Evaluation of the accuracy impact of the voltage guard-
band reduction approach on modern deep learning appli-
cations.

II. COMPUTING POWER PERFORMANCE

GPGPU devices are the main accelerators for deep learning
models, and it is widely used across such applications. At
the same time, there is a high demand for performance im-
provements on those applications. However, the performance
enhancement of deep learning applications is met with in-
creasingly higher computational requirements. Consequently,
the improvements in the deep learning field can outpace the
improvements on the GPGPU devices [2].



The literature on deep learning improvement techniques for
GPGPU devices is rapidly growing. However, the majority
of these works neglect the power consumption impact of the
proposed solutions. The increasing power consumption is a
major challenge on the GPGPU device’s usage, especially
when considering resource-constrained environments. There is
a need for performance improvements to be weighed against
their energy overhead, and for a deeper dive on lower precision
techniques that impose a trade-off between accuracy and
efficiency [2].

A. Dynamic Voltage and Frequency Scaling Techniques

Dynamic Voltage and Frequency Scaling (DVFS) is a tech-
nique used to improve a given processing unit power man-
agement. It consists of dynamically updating the processing
unit working frequency: Reducing the working frequency will
consequently trigger a supply voltage reduction.

Equation 1 translates the relationship between the pro-
cessing unit’s frequency f , supply voltage V , and power
consumption P .

P ∝ f × V 2 (1)

Since the processing unit’s frequency is proportional to its
supply voltage, the relationship on the equation 1 strongly
encourages DVFS when seeking energy efficiency.

First of all, note that DVFS is transversal to any processing
unit, including both Central Processing Unit (CPU)s and
GPGPU. Secondly, reducing the operating frequency has the
advantage of reducing the supply voltage and consequently
improving the overall energy consumption. However, this is
possible at the expense of execution performance, since a
lower frequency leads to longer execution timings [4].

Jiao et al. [5] studied how frequency scaling impacts the
performance and power consumption of a GTX 280 GPGPU.
To achieve that, they used distinct sets of applications catego-
rized into three different groups: compute-intensive, memory-
intensive, and hybrid. They observed that the DVFS impacts on
energy efficiency are dependent on the application itself. More
specifically, it is dependent on the relationship between global
memory transactions and computation instructions. Finally,
based on the application properties, both the memory and the
cores frequency of the GPGPU device would be adjusted.

Guerreiro et al. [6] proposed a new model to evaluate the po-
tential performance and power consumption improvements of
applying DVFS to a given application. They used the profiling
result of a set of synthetic benchmarks to train a machine learn-
ing model classifier. With the trained classifier it is possible to
characterize any kind of GPGPU application performance-wise
and power consumption-wise when submitted to DVFS. Their
results show that the classifier can successfully predict the
optimal frequency for each application, obtaining an average
energy saving improvement of 16 % with a maximum of 36 %.

B. Voltage operating limit

Even though DVFS techniques do achieve high energy sav-
ing potentials, its implementations focus mostly on frequency
scaling to achieve energy savings. The voltage reduction is
usually a byproduct of the frequency scaling since lower
frequencies require lower supply voltages. In other words, the
device’s supply voltage, within common DVFS implementa-
tions, is not actively managed.

However, processing unit manufacturers when designing a
processor must account for phenomenons that might negatively
impact its performance. When doing so, they usually add a
voltage guardband on top of the minimum supply voltage
required for the device to function properly. It is estimated
that the voltage guardband is approximately 20 % of the
recommended voltage by the manufacturer, i.e. 20 % of the
nominal voltage [3], [7].

Leng et al. [7] study the benefits of exploiting the voltage
guardband using a set of commercial GPGPU devices from
Nvidia. Their results show energy-saving results ranging up
to 25 %. Furthermore, they conclude that the GPGPU device’s
minimum operating voltage is dependent on the running ap-
plication.

Additionally, based on each application’s performance coun-
ters they build a model to predict a given application’s
minimum operating voltage. The prediction error of their
model ranges up to 3 % with an average of 0.5 %. As the
authors suggest, their accurate model opens up possibilities to
a dynamic voltage guardband scheme with potential energy
savings ahead.

III. VOLTAGE GUARDBAND CHARACTERIZATION

This section focus on characterizing an AMD Radeon Vega
Frontier GPGPU under a progressively lower supply voltage
using two sets of synthetic benchmarks.

Benchmarks are designed to exclusively stress a given
component of the GPGPU architecture, to explain to which
degree each architecture component impacts the voltage
guardband. The first set of synthetic benchmarks targets
the GPGPU’s memory unit – the Dynamic Random-Access
Memory (DRAM), the L2 cache, and the shared memory
– and the functional unit – integer, single precision, double
precision, and special function unit operations. The second set
of benchmarks extends the functional unit’s benchmarks from
the first set, but the instructions are organized in a way that
forces dependencies. Different degrees of dependencies were
used, ranging from 1 instruction dependency to 8 instruction
dependency for each stressed architecture component.

A. Minimum operating voltage

For each benchmark, the GPGPU’s supply voltage is
reduced starting at the manufacturer recommend voltage,
Vnominal, down to the lowest supply voltage that still guaran-
tees the program’s correctness, Vmin. An execution is consid-
ered correct when its result exactly matches the result obtained
from the same execution at Vnominal. Nevertheless, the voltage
can be reduced further below Vmin leading to execution errors,
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(b) Dependencies benchmarks.

Fig. 1. Obtained Vmin for the benchmark applications.

namely Silent Data Corruption (SDC), run-time errors, system
crashes, and indefinitely long executions. SDC occurs when
the execution finishes and no warning or error message is
triggered, but the final result is not correct, i.e. apparently
no error has occurred but the device wrote erroneous data into
memory [8]. Run-time errors, on the other hand, occur when
the program execution fails during run-time due to memory
access faults. System crashes and indefinitely long executions
require a manual system reboot to restore the GPGPU’s normal
state.

Hence, Vcrash is defined as the threshold voltage at which
the program still completes the execution, potentially with
corrupted data due to SDC, but further reducing the supply
voltage produces either a run-time error, a system crash, or an
indefinitely long execution.

AMD GPU Tool (AGT) is used to control the GPGPU’s
supply voltage with a minimum granularity of 6.25 mV. Thus,
with each step of 6.25 mV, the benchmark is executed after
a system reboot and the execution correctness is validated
against the reference execution at Vnominal. To minimize the
impact of external variables, no other process was running in
the GPGPU during the applications’ execution, and AGT’s fan
speed control was used to stabilize the temperature throughout
the experiment.

1) Synthetic benchmarks: Figure 1a plots the measured
Vmin for the studied synthetic benchmarks. SDC errors did not
occur meaning Vcrash matches Vmin results for the synthetic
benchmarks.

The first empirical conclusion is that multiple Vmin results
were obtained across the different benchmarks. The group
of benchmarks that target the Arithmetic Logic Unit (ALU),
which includes Int, SP, DP and SFU, all obtained along
with Shared a Vmin of 0.8 V at 1028.57 MHz. DRAM and
L2 benchmarks obtained a Vmin of 0.8375 V and 0.843 75 V,
respectively.

Furthermore, there are different Vmin results across different
applications, which is aligned with the expectations that Vmin

depends mostly on the application itself [7].
One key difference between the DRAM benchmark and the

remaining ones is that the first executes multiple writes to the
DRAM memory whilst the latter only write once into DRAM
at the end of their execution. According to the results, writing
to the DRAM has a high impact on Vmin.

Further analyzing the results presented in figure 1a, one
can infer that a significant voltage guardband is obtained for
all the benchmarks ranging from 12.34 % to 16.88 % with an
average of 15.68 % regarding nominal voltage of 0.9625 V.
These values are slightly below the 20 % range obtained in
previous works [7], [9], [10].

2) Dependencies benchmarks: There are 4 types of data
dependencies for each application. Each of these data de-
pendency types is identified by suffixing the name of the
application with 1_inst, 1_inst_2_inst, 3_inst and
8_inst. These suffixes are self-explanatory. For instance,
1_inst means each issued instruction has a dependency
with the last issued instruction, i.e. 1 instruction dependency.
Analogously, 8_inst means each issued instruction has a
dependency with the eighth last issued instruction, i.e. 8
instructions dependency. 1_inst_2_inst means there is
simultaneously a dependency with the last and the second last
issued instruction.

Empirically, a larger adjacency between dependent instruc-
tions implies a higher computational cost, since more stalls
have to be introduced by the processor.With that in mind, it
is expected for Vmin to be lower on 1_inst suffixed appli-
cations, when compared with 8_inst suffixed applications,
as an example. However, that conclusion cannot be inferred
from the results presented in figure 1b since mixed results
are obtained: for DP instructions the expected behavior is
observed, yet, for SP instructions, it is the opposite.

Finally, even though the Vmin variation is not as steep
as expected within the dependencies benchmark, when these
are compared, as a whole, to the synthetic benchmarks one
can observe a few differences. For Int, SP and DP, Vmin

is on average 0.853 75 V, 0.8475 V and 0.851 25 V on the
dependencies benchmarks, respectively. These values corre-
spond to an undervoltage of 11.30 %, 11.95 % and 11.55 %.
The obtained undervoltage for the dependency benchmarks
is lower than the one benchmarks obtained for the synthetic
benchmarks, which is aligned with the expectations.

B. Impacts of voltage guardband and frequency optimizations

Results show that Vmin varies depending on the program
that is executed, ranging from 0.8 V to 0.86 V, corresponding
to a variability of 0.06 V or 6.2 % when compared to Vnominal.
The goal of this subsection is to study which variables are
the main contributors to such variability, namely operating
frequency, temperature, aging, process variation, and voltage
noise.

1) Operating Frequency: To evaluate the impact the fre-
quency has upon Vmin variability, the voltage guardband
experiment was repeated under different constraints. All the
controlled variables, such as fan speed, were kept and the
GPGPU cores’ frequency was increased to a higher level using
AGT. Figure 2a shows the obtained Vmin readings at the two
studied frequency rates: 1028.57 MHz and 1107.69 MHz.

Naturally, a higher core’s frequency requires a higher
Vnominal, which is 0.9625 V and 1.0375 V at 1028.57 MHz
1107.69 MHz, respectively.
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Fig. 2. Vmin obtained for the benchmarks at 1028.57MHz and
1107.69MHz. Benchmark’s normalized Vmin at 1028.57MHz plotted
against their normalized Vmin at 1107.69MHz

Benchmarks that attained a higher Vmin result at
1028.57 MHz, also obtained a higher Vmin reading at
1107.69 MHz. Additionally, the Vmin variability on the higher
frequency experiment matches exactly the variability of the
lower frequency experiment. The difference between the min-
imum and maximum obtained Vmin is 0.06 V in both cases.

Figure 2b establishes a common ground of comparison
between both frequency experiments, by normalizing Vmin

against the nominal voltage using equation Vnormalized =
Vmin/Vnominal. There is an observable proclivity for higher
Vmin readings on lower core frequency settings, which trans-
lates into a lower voltage guardband on lower frequencies.

The linear approximations on figure 2b show that the gap
between Vnominal and Vmin is negatively impacted up to
4.62 %, with an average of 2.58 %, on the higher frequency
experiment when compared to its low frequency counterpart.
This impact has a maximum

In conclusion, results show that the frequency has virtually
no impact on the Vmin variability since both experiments
achieved the same 0.06 V Vmin variability. Nonetheless, pro-
grams running at a higher frequency tend to have a slightly
lower voltage guardband.

2) Temperature: To study how temperature impacts Vmin,
the benchmarks were executed, once again, using two different
temperature levels at a fixed frequency. The temperature was
regulated using AGT’s fan medium and high intensity control,
producing high and low frequency experiments, respectively.
Figure 3a and 3b depict the minimum, average, and maxi-
mum temperature levels for each of the benchmarks on both
experiments.

Tests using low fan intensity led the program execution to
lag indefinitely and in some cases to system failures, thus
preventing tests to reach a wider temperature range. Despite
the limitations of the temperature enforcement method, results
show an average difference of 6.8 °C between experiments.

Figure 4 plots the Vmin results from the low-temperature
experiment against the high-temperature experiment in an
attempt to study the temperature’s impact on the voltage
guardband. Vmin tends to be higher with higher temperature
values.

(a) Low-temperature (b) High-temperature

Fig. 3. Minimum, average and maximum temperature variation for both
synthetic and dependency benchmarks.
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Fig. 4. Benchmark’s Vmin at different temperatures. The distance between
the dashed lines represents the impact of the device’s temperature on Vmin.

Naturally, points plotted coincidentally on the y = x line
represent those benchmarks where the obtained Vmin is the
same in both the low-temperature and the high-temperature
experiments. From the data points linear regression, one can
infer that the temperature has an average impact of 0.0148 V
in the Vmin variability. Furthermore, the temperature had a
maximum impact of 0.0250 V on Vmin. More specifically,
Vmin was at most 0.0250 V lower on the low-temperature
experiment.

In conclusion, the impact temperature has on the Vmin

variability is not enough to explain the whole magnitude of
the Vmin variability observed, which is aligned with [7].

3) Aging: AMD Vega Frontier is built using 12.5 billion
14 nm transistors using Low Power Plus (LPP) FinFET pro-
cess technology [11]. Within the semiconductor industry, there
is an issue, known for more than 50 years, called Negative Bias
Temperature Instability (NBTI) and Positive Bias Temperature
Instability (PBTI) that negatively impacts the reliability of the
Metal Oxide Semiconductor (MOS) transistor technology [12].

NBTI/PBTI consists in the accumulation of
positive/negative charges at the transistor’s gate insulator
due to a negative/positive bias voltage, Vg , at the transistor’s
gate. This process is aggravated by temperature, hence its
name. The accumulated charges partially cancel out the
gate’s applied voltage. Consequently, the source to drain
current flow is reduced ultimately leading to the transistor’s
performance loss.

Regarding the current study, all the test executions on the
GPGPU device were completed during a period of six months,



which is relatively low when compared to the typical lifetime
of such devices of ten years [13].

During the period of this study’s tests, no evidence of
Vmin variability due to the aging process of the GPGPU
device was found. Furthermore, related work in this field
shows a performance impact of up to 2 % under real-use
conditions on International Business Machines Corporation
(IBM) microprocessors [14]. In conclusion, it is unlikely that
aging factors alone could explain the Vmin variability observed
in this study.

4) Process Variation: Production processes are liable to
degrees of variation that impact the quality of the final product.
The quality of the products themselves can be used to describe
the process quality, through which they were produced, using
two variables: accuracy and precision.

The transistor manufacturing process is also exposed to such
quality variables. These precision issues are called Process
Variation (PV) and refer to the variability of the device’s
parameters, such as the transistor’s gate width, the channel
length, or the oxide thickness, from their nominal specifica-
tions.

PV has become increasingly more severe due to the in-
creasing difficulty to precisely control the fabrication process
as the transistor size became smaller. The chip yield i.e., the
fraction of fully working chips within the wafer where they
are produced, was reduced from 90 % to 50 % and then 30 %
when the transistor size scaled from 350 nm to 90 nm and then
to 30 nm respectively [15].

Due to constraints, during this study, there was only a
single AMD Radeon Vega Frontier Edition available. Thus,
an experimental study of the PV effects on the Vmin could
not be conducted.

Nonetheless, Leng et al. [7] briefly studied the impact of PV
in the voltage guardband of Nvidea GPGPU devices. They
used only five different Nvidia GTX 780 GPGPU devices,
which, as the authors themselves suggest, is not statistically
robust. But, the results provide insights into the PV effect on
such endeavors that are useful to comprehend the root cause
of the Vmin variability.

They observed a constant offset of Vmin between each of
the tested GPGPU devices, with deviations on a few programs
as shown by figure 5a. This offset means that a given program
experiences V 1

min and V 2
min on GPGPU device 1 and 2,

respectively, but V 1
min 6= V 2

min. More precisely, Leng et al. [7]
observed a 0.07 V maximum offset between the five GPGPU
devices.

On top of the constant offset, they also observed random
Vmin deviations from each GPGPU device to the other. These
random deviations happened in different programs at each
device.

The observed Vmin variability is caused by PV, which is
known for creating both systemic and random variances on the
device’s building blocks parameters [16]. A slight variation on
the digital circuit components has the potential of changing
the circuit’s critical path. Therefore, programs that do not rely
on the critical path in one device, might do rely on it on
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other devices, thus explaining random Vmin deviations from
the constant offset.

Notwithstanding, there was Vmin variability on the tested
programs across each GPGPU device. Additionally, that vari-
ability has approximately the same magnitude, on all devices.
However, there were indeed differences in the absolute values
of Vmin, which can be attributed to PV, but PV itself cannot
explain the observed variability.

5) Voltage Noise: The voltage signals that powers a digital
circuit is not steady as one might expect because there is a de-
gree of fluctuation associated with it. This fluctuation is called
voltage noise. With this in mind, digital circuit manufacturers
increase the supply voltage above the circuit’s intrinsic voltage.
Thus creating the mentioned voltage guardband which acts as
a safe margin usually greater than 20 % [10].

The voltage guardband is also added as a protection against
phenomenons such as temperature, aging, PV, and voltage
noise. As discussed in the previous subsections temperature,
aging and PV does not explain, by themselves, the whole
extent of the Vmin variability. Thus, by exclusion, voltage
noise is the main contributor towards the Vmin variability [7].

The voltage at a given point, A, in an electrical circuit is
given by the equation 2, meaning that two factors impact the
voltage: the current draw and the current draw’s increasing
rate.

VA = VDD − I ·R− L · di
dt

(2)

Leng et al. [7] studied further how each of those factors
impacts the voltage at the same point A. Given the power
equation P = R·I2 differentiated from Ohm’s law, they tested
the hypothesis of I ·R being the dominant factor in the voltage
from equation 2. If this hypothesis holds, a program with a
high power consumption would have a high voltage noise and
consequently a higher Vmin.

Using power consumption measurements, and also the In-
structions Per Clock (IPC) as a predictor for power consump-



Fig. 6. Energy savings attained by operating at Vmin voltage on both
synthetic benchmarks and benchmarks with dependencies.

tion, no evidence of a correlation between those properties and
Vmin was found. Thus, I ·R is not the dominant factor of the
voltage noise on equation 2, and consequently di/dt is.

Leng et al. [7] proceed even further to study which program
activity is responsible for generating the most di/dt droop.
The study included Compute Unified Device Architecture
(CUDA) runtime activities, inter-kernel activities, initial-kernel
activities, and intra-kernel activities.

Their conclusion is that the greatest driver of di/dt droop
and consequently the driver o voltage noise is the intra-
kernel activities. These are related to the nature of the kernel
itself, which varies from application to application. They also
identify cache misses and pipeline stalls as a driver for di/dt
droop.

Focusing on the current study, it is possible to conclude
that the results match the established knowledge. Dependency
benchmarks obtained significantly higher Vmin results when
compared to their synthetic counterpart. Whilst recovering
from pipeline stalls, the GPGPU moves away from an idle
state creating a sudden increase of the drawn current, which
in its turn produces a voltage spike.

C. Energy gains

Energy savings are measured by comparing the consumed
energy when the GPGPU is operating at Vmin against the
same metric when the device is running at Vnominal. With
everything set up, gpowerSAMPLER [17] is used to obtain
the energy consumption metrics, depicted in figure 6.

Results show an average energy saving of 26.4 %, ranging
between the lowest energy saving percentage of 14.58 % to a
peak of 45.05 %.

It is observable that the first set of benchmarks present better
energy-savings compared to the second set. More precisely, the
first set shows an average energy saving of 33.77 % which is
significantly higher than the 22.95 % average energy saving
obtained by dependencies benchmarks.

This difference between the energy savings obtained by both
sets is deeply connected with the Vmin differences obtained.

TABLE I
DEEP LEARNING MODELS INFERENCE ACCURACY AT Vnominal .

DEEP LEARNING MODEL ACCURACY

AlexNet 83.0%
VGG-16 89.8%
VGG-19 89.8%
Inception V4 95.2%
ResNet V2 94.1%
Inception-ResNet 95.3%

Skip-Thoughts 71.2%
Sentiment 73.0%
ReactionRNN 61.3%

BERT 89.3%

In fact, the energy consumption per unit of time i.e., power
P , has the following relationship with the supply voltage V :
P ∝ f × V 2. Thus, a small variation in the supply voltage
of a GPGPU device can greatly increase the device’s energy
efficiency.

IV. VOLTAGE GUARDBAND IN DEEP LEARNING
APPLICATIONS

This section transposes the previous methodology into deep
learning applications and evaluates the energy-saving potential
against the precision loss that the voltage reduction process
might impose. It uses a heterogeneous set of pre-trained
deep learning applications, each with its own architecture and
purpose, executing inference on a given set of test data. The
focus is to evaluate the degree to which the inference accuracy
is impacted by varying the GPGPU’s supply voltage.

There was an effort to standardize the accuracy extraction
method. All Convolution Neural Network (CNN) models,
focused on image recognition, are evaluated based on their
performance on the ImageNet dataset. Whilst Recurrent Neural
Network (RNN) models and Bidirectional Encoder Repre-
sentations from Transformers (BERT), focused on Natural
Language Processing (NLP), are evaluated based on their per-
formance on Microsoft Research Paraphrase Corpus (MRPC)
dataset.

Table I depicts the obtained accuracy for all the deep
learning models, at their respective tasks, at Vnominal.

Synthetic benchmarks showed that the application itself is
the main responsible for the Vmin variation. With this in
mind, and bearing that deep learning applications are highly
demanding of computing resources, it is expected for Vmin to
be substantially higher than the benchmarks, which translates
into a lower energy-saving potential.

Also, synthetic benchmarks did not display any SDC errors,
i.e. all benchmarks either performed correctly or didn’t per-
form at all at each voltage level. This was explained based on
the application’s lower complexity. However, SDC is expected
to occur for deep learning models, allowing for precision to
energy efficiency trade-off. Therefore, the program’s correct-
ness threshold must also be updated. Each deep learning model
execution is considered correct if its accuracy is no more than
0.1 % deviated from the reference at Vnominal. Conversely,
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Fig. 7. Obtained Vmin and Vcrash for deep learning models.

an accuracy deviation greater than 0.1 % is considered as an
accuracy loss.

A. Voltage Guardband Accuracy Impact

Figure 7 depicts the Vmin and Vcrash absolute val-
ues obtained at two different GPGPU core frequencies,
1028.57 MHz, on the figure 7a, and 1107.69 MHz, on the
figure 7b, respectively.

All deep learning models excluding ReactionRNN show
a similar accuracy sensitivity to the voltage guardband re-
duction. The average Vmin is 0.900 06 V and 0.941 25 V
on the lower and higher frequency experiment respectively.
Normalizing Vmin results from both frequencies based on
the nominal value, further confirms the obtained the results
on subsection III-B1. Lower frequencies achieve higher Vmin

readings, thus resulting in a lower voltage guardband. At
1028.57 MHz, the nominal voltage set by the GPGPU manu-
facturer is 0.962 50 V resulting in an average normalized Vmin

of 0.935 71. Conversely, at 1107.69 MHz, the nominal voltage
set by the GPGPU manufacturer is 1.031 25 V resulting in
an average normalized Vmin of 0.912 73. This corresponds to
an undervoltage of 6.43 % and 8.73 % when compared to the
nominal voltage of each frequency, 0.9625 V and 1.031 25 V,
respectively.

The standard deviation of the Vmin readings is 0.021 V and
0.017 V for the lower and higher GPGPU core’s frequency
respectively. By excluding ReactionRNN results, the standard
deviation calculation decreases significantly to 0.008 V and
0.010 V respectively. This is caused by the smaller architecture
of ReactionRNN that features substantially fewer parameters
than its counterparts.

It is interesting to note that none of the RNN models
showed an accuracy loss with the voltage supply reduction.
All successful executions of these models did not incur in
accuracy loss, meaning Vcrash = Vmin.

On the other hand, CNN models along with BERT displayed
SDC occurrences resulting in an accuracy loss, hence Vcrash <
Vmin. These models allowed further decreasing of the supply
voltage by an average of 0.005 09 V and 0.013 13 V on each
frequency experiment, respectively.

In sum, the results at 1028.57 MHz reveal that there is
a voltage guardband, that can be safely reduced on deep
learning applications, ranging from 4.55 % up to 12.33 % with

TABLE II
DEEP LEARNING MODELS INFERENCE ACCURACY AT Vcrash AT

1028.57MHz AND 1107.69MHz, INCLUDING THE ACCURACY LOSS
WHEN COMPARED TO THE REFERENCE ACCURACY FROM TABLE I

DEEP LEARNING MODEL 1028.57MHz 1107.69MHz

AlexNet 81.68% (1.32%) 76.58% (6.42%)
VGG-16 38.57% (51.23%) 76.24% (13.56%)
VGG-19 28.28% (61.52%) 65.31% (24.49%)
Inception V4 95.12% (0.08%) 95.07% (0.13%)
ResNet V2 89.14% (4.96%) 86.77% (7.33%)
Inception-ResNet 93.18% (2.12%) 94.44% (0.86%)

Skip-Thoughts 71.19% (0.01%) 71.19% (0.01%)
Sentiment 72.98% (0.02%) 73.00% (0.00%)
ReactionRNN 61.30% (0.00%) 61.30% (0.00%)

BERT 84.61% (4.69%) 55.95% (33.35%)

an average of 6.43 %. The voltage guardband can be further
reduced, up to 2.60 %, thus allowing accuracy loss. Likewise,
at 1107.69 MHz the voltage guardband can be safely reduced
from 6.06 % up to 12.73 % with an average of 8.75 %. By
allowing accuracy loss, the voltage guardband can be further
decreased up to 3.03 % on some of the tested models.

B. Accuracy loss

Table II depicts the obtained accuracy at Vcrash for all
deep learning models, at their respective tasks, at both studied
operating frequencies. The table also includes, within brackets,
the accuracy loss when compared to the nominal accuracy
whose values are depicted in the table I above.

Results, when operating at the low frequency, 1028.57 MHz,
show accuracy droops up to 61.52 % with an average of
12.59 % when working at Vcrash supply voltage. Conversely,
when operating at the high frequency, 1107.69 MHz, the
accuracy droop achieved only a maximum of 33.35 % with
an average of 8.62 %.

It is also important to note that there are models that did not
experience any accuracy loss at all (Skip-Thoughts, Sentiment,
and ReactionRNN) and a few more that had only a residual
impact on the accuracy when working near failure supply
voltages (InceptionV4, and Inception-ResNet).

1) Convolutional Neural Networks: According to the pre-
vious subsection, CNN models displayed a gap between Vmin

a Vcrash. This means there is a voltage band where all
executions are completed successfully but there is at least a
0.1 % accuracy loss.

To further characterize this issue, the execution of each
CNN model is displayed in figure 8. Due to space constraints,
the high-frequency graphs were omitted. In these graphs, the y
axis presents the percentage of failed executions out of a total
of 10. While the x axis presents the undervolt percentage. The
green zone corresponds to a condition where all executions
presented an error lower than 0.1 %. The blue zone corre-
sponds to a case of complete execution, but with accuracy
losses; and the red zone represent cases of incomplete/failed
executions.
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(a) AlexNet
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(b) VGG-16
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(c) VGG-19
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(d) Inception
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(e) ResNet
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(f) Inception-ResNet

Fig. 8. CNN’s inference accuracy distribution across an increasing undervolt
percentage @ 1028.57MHz.

Empirically, one can verify from figure 8 that decreasing
the GPGPU device’s supply voltage further below Vcrash un-
dervoltage, still produces successful executions. Unfortunately,
some of those executions fail due to run-time errors, system
crashes, or indefinitely long executions.

The models with the most data corruption impact at Vcrash

are VGG-16 and VGG-19. In both frequency experiments,
these models have the greatest amount of accuracy loss. The
VGG models are characterized by their high computationally
requirements. These are the models with the most naively
stacked convolutions layers featured in this study. On the other
end of the spectrum, Inception has no data corruption on the
lower frequency experiment, having Vmin = Vcrash.

There is also an apparent tendency for lower frequencies
to display higher data corruption rates. VGG-16, VGG-19,
Inception, and ResNet all have a higher precision loss on their
lower frequency experiment.

2) Recurrent Neural Networks: Figure 9 depicts the accu-
racy loss evolution with an increasing undervoltage percentage
for RNN models.

None of the RNN models had SDC occurrences even when
the GPGPU device’s supply voltage was below Vcrash. Also,
each model has a different evolution towards failed execution.
Skip-thoughts had a less steep progression, meaning that
progressively more and more executions were failing with
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(a) Skip-Thoughts

0 2 4 6 8 10 12 14 16

Undervolt (%)

0

20

40

60

80

100

P
e
rc

e
n

t 
(%

)

V
m

in

V
c

ra
s

h

Failed Executions

Norm. Accuracy Loss

Norm. Accuracy

(b) Sentiment
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(c) ReactionRNN

Fig. 9. RNN’s inference accuracy distribution across an increasing undervolt
percentage @ 1028.57MHz.
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(a) BERT @ 1028.57MHz
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(b) BERT @ 1107.69MHz

Fig. 10. BERT inference accuracy distribution across an increasing undervolt
percentage.

the increased undervoltage. This contrasts with Sentiment and
ReactionRNN that had an abrupt change in that regard.

3) Other Neural Networks: Figure 10 depicts BERT’s
accuracy loss progression with an increasing undervoltage
percentage.

Unlike the CNN models, BERT has higher data corruption
readings on a higher frequency. It is also the only model
to have drastically different progression patterns on both
frequencies studied.

On one hand, the low-frequency experiment had most of
the data corruption incidents occurring below Vcrash with
the amount of failed executions progressively increasing after
that point. On the other hand, the high-frequency experiment
had considerably more data corruption at Vcrash and the
amount of failed executions increased abruptly after that point.
The accuracy loss at Vcrash with 1028.57 MHz is 0.41 %
compared to a 33.35 % when the device’s core frequency is
1107.69 MHz.

V. VOLTAGE GUARDBAND ENERGY IMPACT

Having Vmin and Vcrash results for each deep learning
model, it is now possible to evaluate the energy efficiency



0

5

10

15

20

25

30

35

E
n

e
rg

y
 S

a
v
in

g
s
 (

%
)

V
crash

V
min

(a) 1028.57MHz

0

5

10

15

20

25

30

35

E
n

e
rg

y
 S

a
v
in

g
s
 (

%
)

V
crash

V
min

(b) 1107.69MHz

Fig. 11. Energy savings attained by operating at Vmin and Vcrash voltage
on deep learning models.

attained. Knowing the average power consumption and also
execution time we can infer the energy consumption for each
execution through the equation 3.

E =
P

∆t
(3)

Figure 11 depicts the obtained energy saving results for the
deep learning models. Results on low frequency experiment,
guaranteeing the execution correctness, show an energy-saving
potential ranging from 6.88 % up to 24.01 % with an average
of 13.79 %. The average energy-saving potential can be further
increased by an average of 1.84 % by allowing the model’s
accuracy to drop.

Analogously, on the high frequency experiment, the energy
saving potential ranges from 12.97 % up to 24.79 % with an
average of 17.50 %. This potential can be further increased
from 3.77 % to 5.38 % with an average of 3.60 % by allowing
the model’s accuracy to drop.

Naturally, given Vmin results, ReactionRNN achieved the
highest energy consumption improvement at Vmin. This im-
provement is only surpassed at the high frequency by the
BERT model when the supply voltage is at Vcrash.

By splitting the energy saving results across the deep
learning models architectures: CNN models alone achieved
an energy consumption improvement ranging from 12.97 %
up to 20.55 % with an average of 17.50 %. Conversely, RNN
models achieved an energy consumption improvement ranging
from 16.75 % up to 24.79 % with an average of 19.43 %. While
these results are retrieved from the high-frequency experiment,
similar conclusions can be inferred from the lower frequency
experiment. Also, CNN models achieved an average energy
consumption improvement slightly below RNN. However, it
is notable that it did so with approximately half the standard
deviation error. This metric is 2.68 % for the CNN architecture
and 4.64 % for the RNN architecture.

Two variables have an impact on the overall energy con-
sumption: execution time and average power consumption. To
further comprehend how each of these metrics had an impact
on the results shown in figure 11, the graphs in figure 12
are presented. These graphs portray the improvement from
both execution time and average power consumption metrics
compared to the reference execution.
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Fig. 12. Execution time and average power consumption improvements at
Vmin and Vcrash over the same metrics at the nominal voltage.

Results also confirm the initial expectation that the average
power consumption decreases with the undervolting process,
given the known relationship between power (P ) and the
supply voltage (V ) represented in the equation 1, where
f represents the GPGPU device’s operating frequency. In
particular, the power consumption has an average improvement
of 13.83 % and 17.44 % on the low and high frequency
experiment, respectively.

Additionally, the execution time does remain stable at a
lower supply voltage compared to the reference execution at
the nominal voltage. There were executions slightly faster than
the reference and executions slightly slower than the reference,
translating into close to no impact on the energy savings.

However, the BERT results on the low-frequency experi-
ment are worthy of notice. At 1028.57 MHz, the execution
speed drastically decreased thus trumping the improvements
obtained from the lower power required. At Vcrash levels,
the execution speed dropped even lower making the Vcrash

energy-consumption higher than the result at Vmin. This
explains why the BERT model did obtain a Vcrash lower
than Vmin during inference, but there were no energy-saving
improvements displayed in figure 11.

Overall, voltage guardband exploitation provides relevant
improvements in the context of energy efficiency maximization
for deep learning applications.

VI. CONCLUSIONS

The present work proposes an approach to study the energy
savings potential of modern deep learning applications on
modern GPGPU devices, using a AMD Radeon Vega Frontier
Edition GPGPU as a case study.

First of all, the GPGPU device’s voltage guardband is
characterized using benchmarks.

Results show an undervoltage potential ranging from rang-
ing from 16.9 % to 20.7 % with an average of 15.68 % on
the synthetic benchmarks set, and ranging from ranging from
11.04 % to 12.34 % with an average of 11.60 % on the syn-
thetic benchmarks set. Thus, confirming the expectations that
dependency benchmarks would obtain higher Vmin readings,
i.e. a lower voltage guardband.

When operating at Vmin, the GPGPU device achieved a
energy efficiency ranging from 14.58 % up to 45.05 % with
an average of 26.4 %.



The benchmark results have also shown a Vmin variability
of 0.06 V corresponding to 6.2 % when compared to the
nominal voltage. An analysis, bearing in mind potential causes
for the Vmin variability, concluded that it is deeply connected
with the application itself. The device’s operating frequency,
temperature, aging, process variation, and inter-kernel execu-
tions all rendered an insufficient Vmin variability to explain
the variability magnitude observed in the benchmarks.

Knowing the application itself is the root cause of the Vmin

variability, deep learning models were introduced where the
same endeavor was repeated.

Results showed deep learning models can achieve energy
savings of up to 24.79 % with an average of 15.35 % whilst
guaranteeing the nominal accuracy. Furthermore, by working
at Vcrash, energy efficiency can be increased by an average
of 2.72 % at the expense of the model’s accuracy. When the
GPGPU is set to work at near failure supply voltages, Vcrash,
the observed accuracy droop achieved an average of 10.61 %
and a maximum of 61.52 %.

Additionally, there were executions further below Vcrash

that achieved even higher energy-saving results. Obviously,
given Vcrash definition, there were also failed executions at
those voltage levels, hence those executions were disregarded.
Nonetheless, this means Vcrash is not the ultimate limit on
the voltage guardband reduction approach when seeking lower
power consumption.
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