
Driver Drowsiness Detection with Peripheral Cardiac
Signals

Lourenço Abrunhosa Rodrigues
lourenco.abrunhosa.rodrigues@tecnico.ulisboa.pt
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Abstract

Annually around 1.35 million people die worldwide as a result of road accidents. Of these, 90% occur
because of human fault. Such faults have been continuously reduced by the development of safer road
architectures and legislation that intends to guarantee the ideal conditions for driving.

However, errors made by human drivers when driving while feeling drowsy result in a constancy of
people involved in road accidents, raising the need for a drowsiness detection system. A physiological
signal capable of early identifying such state is the heart rate variability, which can be obtained by analysis
of the consecutive time intervals between heart beats.

Using peripheral cardiac signals, signals containing cardiac rhythm information and obtained through
non-intrusive ways, it is possible to integrate such detection on a vehicle without affecting the driving task.

This work builds the pipeline to use any of three wearable devices: wrist worn PPG band, ECG
chest strap and off-the-person ECG collection through a steering wheel, to collect the inter beat intervals,
calculate HRV features and detect the drowsiness state of a driver.

A filter was developed to compensate ambient light sensitivity of PPG based devices and the intervals
detected from all signals were corrected by an algorithm created to possible wearable contact losses.
SVM models with linear kernel and C=0.3 and a selected group of HRV features had good performances
, reaching an average 0.62 Matthews correlation coefficient across 12 individuals. Simulator experiments
showed good indication that peripheral cardiac signals can be used for drowsiness detection.
Keywords: Heart Rate Variability; Wearable; Drowsiness; Peripheral Cardiac Signals; Machine Learning

1. Introduction

Annually around 1.35 million people die worldwide
as a result of road accidents[1]. Of these, 90%
occur because of human fault[2]. Such faults have
been continuously reduced by the development of
safer road architectures and legislation that intends
to guarantee the ideal conditions for driving.

However, despite all efforts, errors and distrac-
tions caused by the insistence on driving even
when feeling drowsy result in a constancy of peo-
ple involved in road accidents.

For this reason, it has become of the uttermost
importance to develop systems capable of identify-
ing driver drowsiness, to act with them to prevent in
a more personalized and effective way this danger-
ous behaviour. Several proposed systems are al-
ready available in the market, but are usually based
on extrinsic factors, as the simple measurement of
time driving, or the monitoring of driving behaviour.
Even though their implementation on the vehicle is
as non-invasive as one could desire, the fact that
they monitor only variables external to the driver

leads to performances that fall short of what such
vital system should.

On the other side, it is known that the monitoring
of physiological data allows insight on the internal
mechanisms that produce drowsy states, provid-
ing an excellent source of information to assess the
drowsiness state of any driver. However more pow-
erful information exists in these signals, the tech-
nology to read them normally implicates an higher
level of intrusion on the drivers environment, which
is why they have been kept away from this field of
application.

One of the physiological signals that has re-
vealed an interesting capability to identify an in-
dividual’s drowsiness state is Heart Rate Variabil-
ity (HRV), which is obtained through the analysis
of the series of time intervals that separate heart
beats, usually identified through QRS complexes
in an Electrocardiogram (ECG). Again, the need to
place chest electrodes to collect the ECG renders
this approach impractical, but, fortunately, less in-
vasive alternatives have been proposed to collect
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the needed information, measuring cardiac rhythm
information in a more peripheral way. These non-
invasive technologies combine the feasibility of be-
ing installed on a vehicle without disturbing the
drivers environment, with the ability to infer their
drowsiness state from an intrinsic signal, instead
of possible manifestations of such state.

This way this work defines peripheral cardiac
signals as the set of physiological signals that mea-
sure the cardiac rhythm dynamics in a non-invasive
form, that is, which collection doesn’t demand any
change in drivers routine, or that in any way forces
him to have his activity affected by the connection
with the measuring devices.

Two pieces of equipment already available seem
to meet such criteria, the CardioWheel by Car-
dioID Technologies, a steering wheel cover that
measures a bipolar derivation of ECG through the
drivers hands, and wristbands and smart watches
with an integrated Photoplethismography (PPG)
sensor.

However, while both of them exceed expecta-
tions when it comes to practicability, fitting perfectly
into anyone’s lifestyle and driving, the distancing
from the cardiac signals’ primary source demands
a more careful processing of these peripheral sig-
nals in order to extract information as trustworthy
as that collected with thoracic electrodes.

Having this, this thesis proposes to answer two
main questions, that ultimately combine to produce
a drowsiness detection system for driving environ-
ments based on peripheral cardiac signals: How
to deal with the filtering of such signals, and en-
sure confidence on the HRV features obtained from
them, and if the HRV information obtained from
these sources allows such drowsiness state clas-
sification as it does with thoracic ECG.

1.1. How to process peripheral signals?
Processing strategies differ depending on which
equipment is used, while the CardioWheel® has
filters built in, and so, returns a signal where the
QRS complexes are immediately identifiable, most
wrist band PPG sensors return a raw signal, filled
with noise, movement and light change artifacts.
For this reason an online filtering strategy is imple-
mented to extract only the pulsated component of
PPG.

Having the peaks on these signals correspond-
ing to ventricular systole (ECG) and systolic pulse
(PPG) peak detection algorithms are implemented
to store the timestamps at which heart beats oc-
curred. This stream of timestamps is then used
to calculate the series of inter-beat intervals (IBIs)
(fig. 1) that are the base of HRV calculation.

As the continuity of the peripheral cardiac sig-
nals depends on the constant contact of hands
on wheel, or the absence of too strong artifacts

Figure 1: Representation of Inter-Beat Intervals on ECG and
PPG signals. IBIs are the interval of time that sepa-
rates two consecutive heart beats.

on the PPG, it cannot be guaranteed at all mo-
ments. Thus it is possible to have missed peaks or
false detections in the stream of heartbeat times-
tamps. To solve this, an IBI correcting algorithm
is proposed, and validated, artificially removing or
adding peaks and evaluating the error remaining
after correction.

It is to note that the wearable nature of these sig-
nal’s source results in that continuous segments
may have duration a lot shorter than what state-
of-the-art HRV use, even with correction. Having in
mind that short-term HRV (sHRV) need a minimum
5 minutes of uninterrupted HR, and, in wearables,
2-3 minutes would be a much more realistic pro-
jection, the analysis conducted must be redirected
to the field of ultra-short HRV (usHRV), and, to do
so, the validity of features in this ultra short scope
will be assessed before using them in classification
models.

1.2. How to classify drowsiness from peripheral sig-
nals derived HRV?

To start building a classification model on this sub-
ject, an already existing dataset containing natural-
istic driving data, with both ECG measurement and
drowsiness annotations is used to evaluate ma-
chine learning algorithms in their capacity to cor-
rectly output drowsiness alarms from usHRV fea-
tures. This database is also used to evaluate the
need for class balancing, feature selection and al-
ternative training strategies.

After defining the optimal models and training
procedure, data collected with a driving simulator
(fig. 2) developed by CardioID/ISEL is used to
evaluate the performance of such models when
using peripheral signals as data source. This
dataset contains drowsiness annotations, hands
ECG from CardioWheel, wrist PPG measured with
the pulseOn wrist band, and chest ECG from a
Movesense chest-band. Positive results in this
section establish a system using peripheral cardiac
signals only to detect drowsiness in drivers, com-
bining the non-invasive advantages of wearables
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and built-in vehicle systems, with the deep insight
physiological signals provide.

Figure 2: Driving simulator setup: A computer simulated envi-
ronment is presented in the screen, while the driver
controls a vehicle using the pedals and Cardiowheel.
The simulator not only integrates the inputs to run
the environment, but also aggregates inputs from the
wheel movements, CardioWheel sensor, and intel re-
alssense camera to a database.

2. Background
Automobile field is one where the need for insight
on a person’s internal state is becoming already
a main topic among researchers. Through the
need to reduce road accidents and the unavoid-
able evidence that most incidents are caused by
drivers. According to a report from the Department
for Transport[3] (UK) in 2008 3% of fatal accidents
and 2% of those that result in serious injury had
fatigue as a contributory factor. However, previous
research pointed out larger number, namely 10%
of collisions [4] and 17% of road crashes[5] that re-
sult in injuries and death being sleep related. Its
is plausible that fatigue as an accident cause is
underestimated in official reports, given the lack
of specific formation of police agents to assess its
contribution when reporting accidents and the fact
that drowsy drivers involved in crashes tend to be
wide awake when interviewed because of the in-
duced stress[6]. This underestimation predicts that
a much more realistic statistic would be that around
20% of all road accidents are caused by fatigue, ei-
ther by actually falling asleep on the wheel and or
by the decreased performance that it implies.

According to an European Road Safety Obser-
vatory report from 2018[7], driving while sleepy or
fatigued has a prevalence much higher than what
would be expected or even minimally safe, surveys
demonstrate that more than a half of the popula-
tion drives while being drowsy at least once a year,
with a range of 10%-40% of them having actually
fallen asleep on the wheel. Also, studies from the
united states corroborate these results, as about
one third of the population feels impaired to per-
form their daily tasks at least once on a monthly
basis[8], which included severe reduction in driving
performance. The same report states that fatigue
related accidents result in high level injuries, and
reaffirms the 20% prevalence of fatigue as a crash
contributor. Finally, different studies focused on
measuring the increased risk resulting from driv-

ing while drowsy, finding the risk to be involved in a
car crash to be 4 to 14 times higher than for rested
individuals[9, 10, 11].

Other studies[12, 13], directly related stress with
poorer driving performance, with the observation
that, if on one side, aggressive-coping stressed
drivers tend to overtake other vehicles more of-
ten and in a more error prone manner, while non-
aggressive, but driving disliking drivers tend to be
more cautious even though they presented less
control. Moreover, following a similar procedure,
but coupling it with measurement of reaction times,
Różanowski[14] established a positive correlation
between perceived stress and poorer task perfor-
mance in driving environments, which was even
more evident in aggressive-coping drivers.

Seeing this, it becomes clear that a need for
measures that reduce these human factors pre-
ponderance in road accidents is increasingly im-
portant. The most obvious course of action would
be to remove the human from the driving process,
which is already a market direction in the form of
autonomous vehicles. However, full implementa-
tion of this technology will not occur in the next
30 years, which means that other strategies are
needed[15]. Those are the creation of systems
that monitor and act upon the stress/fatigue state
of the driver. This is advantageous because the
only question to be solved is how to measure the
internal state of the individual. Mainly three differ-
ent branches on this subject appear:

• Driving behaviour - Analysing driving pat-
terns, as angle of steering wheel corrections,
lane positioning, etc.

• Tracking face position and eye direction -
The position and movements of the head and
eyes present characteristic patterns depend-
ing on fatigue/stress state.

• Physiological signals - Physiological mani-
festations are the direct result of internal state
variations in an individual.

While the first two have very high performances
in detecting drowsy individuals, it does so when
their state is so clear, that dangerous actions might
already be happening. The physiological signals,
even though more difficult to process, can detect
drowsiness early enough to prevent any unsafe ac-
tion by the driver.

2.1. HRV
HRV is the study of variation of consecutive heart
beat intervals over time. This type of observa-
tion provides a window to perceive the balance
between systems responsible for the modulation
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of cardiac rhythm, namely the Autonomous Ner-
vous System (ANS) sympathetic and parasympa-
thetic systems and the identification of anomalous
intervals that can be correlated with cardiac dis-
ease. Because these clues may not happen at all
times, but only in specific periods of the day, the
need for continuous monitoring of heart rate ap-
peared, carrying with it the time consuming task of
analysing the accumulated data. This resulted in
the appearance of computational methods to form
indexes that would condensate all the observed
data and point out if some worrying information is
present.[16]

2.2. HRV and ANS
For this work it is specially important to establish
a relation between HRV and the balance between
sympathetic and parasympathetic systems, and to
understand how different psychological states in-
fluence that balance.

As stated in [17], the Autonomic Nervous System
(ANS) is constituted by two antagonist systems:
the sympathetic, that in a general form prepares
the organism for energy expenditure and stress re-
sponse, and the parasympathetic, that returns the
body to its basal, relaxed state.

Sympathetic system, also referred to as the ”fight
or flight” system, produces a series of alterations in
the body,such as vasodilatation of coronary arter-
ies and vasoconstriction of other vessels, as well
as increase in heart rate. This optimizes cardiac
output and oxygenation of muscles, that must be
optimally active to respond to the stress source.

Contrarily, parasympathetic system will promote
a restful state, dilating peripheral circulation and
slowing down the heart rate, so that other systemic
functions, such as digestion and lachrymal, saliva,
urine and fecal secretion take place. For that rea-
son it is called as the ”rest and digest” system.

In healthy subjects, both branches of ANS bal-
ance each other, with sympathetic predominance
representing an active acceleration of Heart Rate
(HR) and the parasympathetic dominance a pas-
sive return to the basal state, with consequent de-
celeration of (HR). These effects are observable
in HRV study, specially through frequency domain
parameters, as their continuous balancing process
produces oscillations at defined frequency ranges.

It is widely accepted in the scientific commu-
nity that two different bands of spectral analy-
sis of HRV correlate with distinct activity levels
of ANS branches[16, 18]. Specifically, high fre-
quencies (0.15 to 0.40 Hz) are commonly related
to parasympathetic activity, while low frequencies
(0.04 - 0.15 Hz) can be related to a mixture of both
activities, or, as some researchers propose[18],
sympathetic activity alone if frequency band pow-

ers are in normalized units. This allows the direct
evaluation of ANS state through HRV as a non in-
vasive form of accessing a person’s internal state.

Other HRV indexes provide additional informa-
tion, and can be divided in three main groups, de-
pending on the type of analysis needed for its cal-
culation: Time domain, frequency domain and non-
linear domain.

3. Methodology
3.1. Signal Processing
To answer the first question this work proposed, it
is necessary to extract the IBIs from each devices’
signal. While the ECG based signals allowed direct
application of methods as the Pan-Tompkins[19] to
extract R peak locations, and the CardioWheel al-
ready provided calculated intervals, the PPG signal
suffered from high sensitivity to ambient light condi-
tions, creating step like artifacts that needed to be
eliminated. For that, a filter based on moving av-
erage removal was designed, with its coefficients
calculated accordingly to equation 1.
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Where W is window length, and should equal the
sampling rate of the signal.

After filtering, an adaptive threshold peak de-
tection algorithm was implemented to locate the
PPG peaks. The algorithm parameters, threshold
slope (eq.3) and refractory period (eq.4) allowed
the detection of peaks even when the amplitude of
successive pulses varied, and the discard of false
peaks that occured too soon to be a physiologically
valid PPG peak.

Thrs[n] = Lasty − slope · (n− Lastx) (2)

slopen+1 = −0.5 ∗ lasty
Fs ∗ IBIn

(3)

RPn+1 = 0.6 · IBIn (4)

3.2. IBI corrector
It is a common practice to filter IBI values before
performing HRV analysis, as outliers can deviate
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the variability indexes from their true value, hinder-
ing any further conclusions about the recorded sig-
nals. In most cases, IBI revision is made by sim-
ply eliminating non-physiological intervals, such as
the ones shorter than 300ms (above 200 BPM) and
those longer than 1500ms (below 40 BPM). Other
approaches even define boundaries to how much
consecutive IBI can differ, discarding those that
cross so defined thresholds. However, while this
outlier elimination strategy improves results in con-
ventional HRV time windows, where several hun-
dreds and thousands of IBI are available, windows
as short as two minutes may not be able to afford
the information loss by discarding outliers.

For this reason, this work proposes a system ca-
pable of not only identify outliers, but also of recon-
structing the real IBI values from signal corrupted
with outliers, combining the reliability of HRV mea-
sures based on only physiological values, but also
maintaining all the available information, so that the
analysis is not compromised by scarcity of data.

This system is based on the ratio between con-
secutive IBI. Outliers are defined as points which
ratio crosses a defined threshold. This forms a
basis to evaluate streams of IBI using the same
sets of criteria, regardless of the absolute values
present in any record.

To define the thresholds and test the perfor-
mance of the corrector, ECG records from the
naturalistic driving experiment SleepEye[20] were
used. Signal from all available records was visually
inspected, and all segments with clean and cor-
rectly identified R peaks were converted into series
of IBIs. This way, a dataset of validated IBI streams
was ready to evaluate the corrector, consisting of
138 intact series, containing 231470 consecutive
pairs of IBIs in total.

This data was firstly used to justify a selection
of a lower threshold of 0.8, and a upper thresh-
old of 1.5. These limits were designed to be in
accordance with previous research indicating that
variations larger than 20% between IBIs indicated
outliers[21]. The use of ratios also allows identi-
fication of how many heart-beats were missed in
cases of longer IBI. Rounding the ratio to the near-
est integer would return the number of heart beats
encapsulated in the same outlier IBI.

These defined thresholds identified only 0.02%
(53) IBI as outliers.

There are three main functions the corrector has
to implement: to track the level of reliability of each
new IBI, and, having identified an outlier, decide
whether to fill a gap, our join two smaller intervals
into a physiological value.

Four thresholds are defined, physiological
bounds for IBI values, and ratio limits for normal
inter IBI variation:

• Iinf - Inferior limit of physiological IBI, set to
300ms.

• Isup - Superior limit of physiological IBI, set to
1500ms.

• rinf - Lower bound of accepted ratio, set to
0.8.

• rsup - Upper bound of accepted ratio, set to
1.5.

The algorithm rounds float ratios to the nearest
integer. This behaviour is used so that ratios larger
than rsup, there is a estimation of how many real
IBI were skipped to produce the larger outlier. As
an example, with rsup = 1.5 and a quotient of 2.8,
the system would be capable of realizing that most
likely 3 IBIs, instead of only 2, were concatenated
into a single value.

The main process consists of consuming a value
of a waiting list of IBI, and, by deeming its cor-
responding ratio to the previously accepted value,
decide whether to directly add it to the validated
results, to fill detected gaps or to sum it to an adja-
cent interval.

Before starting this process, and any time the
corrector needs to be reset, the corrector must ini-
tialize the pending list and the last value. To do
so, the corrector extracts the first IBI from the input
and checks if it is inside the physiological range. If
so, that value is defined as last, and the rest of
the available IBIs form the pending list.

To fill detected gaps, a series of estimates for the
missing IBIs are computed, using the mean value
between the partition of the longer interval and the
last accepted value (eq. 5).

new =

(
V alue

ratio
+ last

)
/2 (5)

This is done to simulate a smooth evolution
from the last accepted IBI and the partition length
needed to have a detected heart beat at the times-
tamp corresponding to the longer outlier. It allows
smooth shortening or widening of estimated inter-
vals to accommodate outliers that are not integer
multiples of the last valid value, instead of having
a sudden jump to a series of identical partitions of
that outlier.

After defining a filling value, the outlier gets this
estimated value subtracted from it, and is replaced
at the beginning of the pending list to proceed the
evaluation, if the remaining value continues to be
large enough to be an outlier, the filling process is
repeated.

Finally, if the system detects a shorter interval, it
tries to join it with an adjacent value. This serves to
correct instances where a false peak was detected,
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leading to a real IBI divided into two parts. The
corrector chooses the smallest value between the
previous (last) and following intervals, and adds
the outlier to it. Finally, it checks that such addition
does not result in a ratio above rsup, if it does, the
shorter interval is added without any processing,
as it would mean that it did not correspond to a
partitioned IBI.

To make sure that the system always produces
realistic estimates, in regards to physiology, any
time a proposed value reports a normal ratio, but
a non-physiological value, the corrector is reset
by running the initialize process on the current
pending list.

3.3. Detecting Drowsiness with HRV features
To establish a set of models capable of correctly
identify dangerous states of drowsiness, machine
learning strategies were implemented, using a
dataset from a previous naturalist driving study,
SleepEYE[20]. This study consisted of 20 individ-
uals who had their ECG measured and Karolinska
Sleepiness Scale (KSS) self-report annotated dur-
ing 90 minute drives in public roads in Sweden. Us-
ing these measurements, ECG can be transformed
in HRV features and KSS annotations can justify a
binary classification of alert/drowsy. Each individ-
ual drove twice, first in a day period, after a nor-
mally slept night, without influence of alcohol or
caffeine, and the second in the night, after spend-
ing the day awake in normal activity. This measure-
ment design intended to force alert and drowsy
data from all individuals, even though it is not guar-
anteed that each individual record does not have
a wide range of KSS scores associated with both
alert and drowsy states.

Four models were tested, Support Vector Ma-
chines (SVM), one class SVM (ocSVM), Gradient
Boosting Trees (GBT), and Artificial Neural Net-
work.

General and Individual models were tested, and,
having set that individual models were the only
viable option for this classification task, the SVM
model showed better performance than the other
three, being that one used to further select features
and test class balancing strategies. Model perfor-
mances were measured using Matthews Correla-
tion Coefficient (MCC).

3.4. Implementation of the system
To test the entire system, a simulator experiment
was designed, making 13 volunteers driving in two
sessions of 30 minutes, while collecting data with
the three devices and stating every five minutes
their drowsiness level with the Karolinska Sleepi-
ness Scale.

From each session signals’, HRV features were
calculated in windows of two minutes with 50%

overlap, and the KSS annotations were interpo-
lated to match this time windowing. The features
from each device to train and test a model for each
one of them, and the chest band based model was
also used to classify the data from the other de-
vices. To have a direct measure of how well can
these devices be used to detect drowsiness, but
also to understand if a single model can be used
for data from any source.

4. Results & discussion

This thesis studied the feasibility and technical re-
quirements of producing a peripheral cardiac sig-
nal based drowsiness detection system. Three
main dimensions of this problem were approached
and answered: how to collect these peripheral sig-
nals and convert them into streams of IBI values,
how to use those values in drowsiness detection
and whether such system could be agnostic to the
original signal measured.

The first question was answered by introducing
three different types of wearable devices capable
of collecting cardiac rhythm information: the chest
strap Movesense, the capacitive steering wheel
CardioWheel, and the wrist PPG sensor PulseOn.
While the ECG based devices provided built-in fil-
tering that allowed direct detection of R peaks and
subsequently IBI, the PPG sensor suffered from
sensitivity to external conditions, such as perceived
ambient illumination from both light and hand posi-
tion changes. This created sudden offset changes
in the signal that needed a special filter to elim-
inate, that could not depend on frequency filter-
ing due to the step nature of those artifacts. In-
stead, an online filter that mimics recursive moving
average removal was created. By applying such
filter to mimic a window of one second, resulting
signals would maintain only the oscillatory com-
ponent, where cardiac rhythm is encoded. Addi-
tionally, an adaptive threshold peak detection algo-
rithm was implemented to locate the peaks of PPG
signal. the algorithm used also a refractory period
of 0.6 times the length of the last detected inter-
beat interval to avoid false peak detection, and re-
set its threshold after 1.5 times the last detected
interval passes without a new peak detection. This
created a detection system robust against changes
in pulse amplitude, false peaks created by sudden
movement and interruptions in the signal pulses.
For the other devices, while CardioWheel directly
provided the IBI itself calculated, Pan-Tompkins al-
gorithm was used to detect R peaks in Movesense
signals, correcting the peak locations by selecting
the maximum value in a 0.4 seconds window cen-
tered in the initial estimates.

While the peak detection methods used in the
different signals proved capable of identifying the
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peaks present in them, moments of poorer con-
tact between the individual and the devices lead to
missing peaks and added artifacts that corrupted
some of the intervals collected. Even though nor-
mal procedures to treat such outliers consist of
simply eliminating them, the ultra short nature of
the analysis time windows used, 2 minutes, re-
quired a more conservative approach. Hence a
IBI corrector system was created, evaluating the
ratio between consecutive IBI to detect both miss-
ing peaks and false detections to accordingly es-
timate the location of the non-detected peak and
divide the longer IBI or two join two shorter inter-
vals into the true IBI. By testing this system on
artificially corrupted segments of visually validated
ECG, it was shown that the system is capable of re-
constructing the sequence of IBI from signals cor-
rupted with 10% missed detections and additional
10% false peaks with less than 7.5 milliseconds of
mean absolute deviation from the true signal (table
1). The system was tested to the limit of having
40% of the signal values corrupted, and still man-
aged to retrieve a stream of values with an MAD
of 38.03ms, which, while very unlikely that such a
large portion of the signal produces faulty IBI val-
ues, its still a smaller temporal deviation than the
uncertainty in IBI determination on a 25Hz signal
as the PPG is. This system is relevant to ensure
that all collected information is used to calculate
the HRV has confidently as possible, but the author
leaves also the suggestion of its usage on anal-
ysis of longer term HRV, as it maintains the true
succession pairs used in non-linear analysis as the
Poincaré plot and the traditional sample elimination
does not.

The second question, how to use the IBI values
to detect drowsiness, was answered by search-
ing the best subset of HRV features and the best
model architecture to do so. An initial set of time
and frequency domain features was used to com-
pare four decision models, SVM, ocSVM, GBT and
a ANN. In the process of testing which model per-
formed best, the author realized that a general
models, this is, a model trained to classify drowsi-
ness in any arbitrary individual was performing
poorly, independently of model architecture. This
lead to the investigation of personalized models,
which showed great improvements for part of the
population. The individuals that continued to per-
form badly showed upon further analysis of their
data that the limitations of the experiment and
sleepiness scale used for the database, SleepEye,
brought:

• Unbalance in classes, while the experiment
was designed to have both alert and sleep
deprived driving sessions, not all participants
managed to provide enough KSS ratings as-

sociated with being sleepy for the model to
properly learn the separation boundary be-
tween the two classes, even with class balanc-
ing methods applied.

• Imprecise self rating of their own state, being
KSS a subjective drowsiness scale, the confi-
dence in the annotations is proportional to the
capability each individual has to self assess
its state and correctly understand the levels of
the scale. By looking into some of the ratings
provided by subjects in this dataset, consecu-
tive values with high ranges of variation raised
the suspicion that some individuals were not
accurately reporting their KSS level.

• The fundamentally continuous nature of
drowsiness, as it is not a biological switch,
where people would be either fully alert or fully
drowsy, it is a process that sets in continu-
ously, which makes the definition of a dan-
gerous drowsiness level a rather arbitrary pro-
cess, blurring the class separation in this prob-
lem. It was observed that the best results were
obtained by individuals that reported both very
low KSS values (<4) and high ones (>7),
while those that concentrated ratings in val-
ues between 5 and 7 had the poorest perfor-
mances.

By evaluating only the population whose anno-
tations showed a good understanding of the scale,
trustworthy self report and balanced experience of
both alert and drowsy states, the models trained
and tested for each of the 12 selected individu-
als attained a mean performance across them of
0.64± 0.04 and 0.49± 0.05 MCC for SVM and GBT
respectively, while the other two models contin-
ued to perform poorly, thus being discarded. At
last, to confirm that the poorly performing individ-
uals were not the cause why the general model
failed, a new general model was trained and tested
with data from the 12 selected ones. This new
model failed, and it was shown, using t-Distributed
Stochastic Neighbor Embedding (t-SNE) represen-
tations of feature space, that the real reason for
that was that each individual forms its own cluster
in feature space, and while a frontier can be de-
fined between the alert and drowsy data of one in-
dividual, the displacement of the various subjective
clusters makes it impossible to determine a single
common boundary (figure 3).

From here, the SVM model was selected as the
best fitted to classify personalized state of drowsi-
ness. Features used in the classification were re-
vised, eliminating VLF because it did not hold sig-
nificance when calculated in a short time window
as 2 minutes, and two non-linear features were
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Table 1: MAD of IBI reconstruction with different levels of contamination.

False peak density
0.00 0.02 0.04 0.06 0.08 0.10

0.00 0.13 0.20 0.30 0.58 1.56 1.99

0.05 2.66 2.14 2.43 2.79 3.75 3.98

0.10 5.23 5.63 5.97 6.62 6.20 7.42

0.15 10.40 10.08 11.56 11.84 12.70 12.39

0.20 15.96 17.27 17.64 17.19 18.35 19.17

0.25 24.39 25.19 24.00 27.20 26.62 25.95

M
is

se
d

de
te

ct
io

n
de

ns
ity

0.30 35.93 36.19 36.84 35.79 37.37 38.03

(a) (b)

Figure 3: t-SNE representation of the dataset formed by all the well separated individuals data. While both plots distribute the
same data, (a) colors each point according to the subject the point comes from, and (b) colors the points according to
the class (0=alert, 1=drowsy) they belong to.

added: first α component of Detrended Fluctua-
tion Analysis (DFA) and Pointcaré SD2. Unsuper-
vised feature selection using MAD as the relevance
metric was applied, which resulted in the elimina-
tion of LF feature. And Finally, hyper-parameters
were fine tuned, defining an SVM with linear ker-
nel and C parameter 0.3 as the best architecture
for drowsiness detection, which attained a mean
performance of 0.62± 0.03 MCC, which indicates a
strong correlation.

This answers the question on whether IBI values
can ultimately be used to detect drowsiness, but
all these models were tested and trained with data
collected through a chest ECG, and a final ques-
tion must be analysed: can the same model detect
drowsiness, but from IBI measured from a periph-
eral signal?

The experiment conducted in this thesis aimed to
answer that. By applying the tools developed in the
rest of the work, the simultaneously collected sig-
nals (chest ECG, hands ECG and wrist PPG) were
converted into IBIs, and ultimately, HRV features
were calculated for every two minute window in
each of the signals. Unfortunately, from the 13 vol-
unteers recruited, only two managed to survive the

selection criteria applied to the SleepEye dataset.
Three individuals had only one session, two indi-
viduals had missing data in one of their sessions,
and four had reported the same state (either alert
or drowsy) throughout the two sessions, not provid-
ing the two classes needed for training and testing
the models. Additionally, two individuals had very
unbalanced class distributions, and suffered from
the same limitations found in the SleepEye data
annotations, KSS values all bellow 8, and very few
minutes reporting a 7 drowsy state.

The two individuals that survived the selection
criteria produced models with very good MCC
scores when trained and tested with data from
the same device, with all devices. Those scores
ranged from 0.62 to 0.81. And, to answer the
final question, the model trained with data from
the Movesense device, remained well performing
when applied to data from the peripheral cardiac
signals, ranging scores from 0.34 to 0.61, and
with the high note of the performance of classify-
ing PulseOn data with the model trained with its
own data or the Movesense one is the same (ta-
ble 2). Additionally, McNemar’s test was used to
compare the classifications of the entire dataset of
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each device with the Movesense trained model, for
each individual, and it showed that all crossed clas-
sifications were statistically equivalent to the base
classification, Movesense train on Movesense data
(table 3).

This results indicates that the system this thesis
proposes is very possibly feasible, and well per-
forming.

5. Conclusions
The outcomes of this thesis confidently support the
feasibility of the signal processing tools designed
for PPG signals, in terms of filtering and peak de-
tection. Bringing this signal closer to be equally
considered as a solution for cardiac rhythm mon-
itoring in the driving context. Moreover, the algo-
rithm responsible for recovering the true sequence
of IBIs showed to be robust against elevated lev-
els of signal corruption, proving itself to be a valu-
able instrument to filter outliers but simultaneously
maintain the original relations of adjacency, and
use the most of the collected information for a more
trustworthy calculus of HRV features.

The finding that personalized models outper-
formed a general one was already an idea pro-
posed by previous research, but the way such fact
could be visualized through t-SNE plots solidified it,
maybe redirecting the development of HRV based
models to take this as a starting point. One other
interesting point to develop in the future is the fact
that while individualized models proved to be the
possible way to detect drowsiness, training each
model for every new user of this system is not
doable in a market perspective. However, it is
hypothesised that a limited set of individual mod-
els can be representative of the possible ranges
of HRV for a general population. By finding such
set and combine them in a voting scheme or other
ensemble classification framework a general and
ready to apply drowsy detection system based on
HRV can be created.

This work proposed also a model architecture
that had the better and most consistent perfor-
mance across 12 different individuals, as well as a
selected set of HRV features specified for drowsi-
ness detection in two minute time windows. The
feature selection combined critical evaluation ac-
cording to their validity in a ultra-short analysis
framework, and machine learning feature selection
strategies. The definition of a model template as
this can serve as the basis for more complex en-
semble models for general classification, as stated
previously, or as a model waiting only for a train-
ing batch of data to be deployed in a personalized
strategy.

Finally, the experiment results indicated that a
peripheral cardiac signal based system for drowsi-

ness detection is feasible, and also that the same
installed system is agnostic to the signal source,
being possible the use of different wearables mea-
suring the cardiac rhythm through either ECG or
PPG.

It is expected that such findings accelerate the
incorporation of such a system in vehicles, help-
ing reduce the burden of road casualties caused
by drowsy drivers.

However, future work has to be developed to af-
firm this with certainty, firstly to compensate the
limited size of the analysed population. A new
study has to be conducted to evaluate if the find-
ings of this work hold. The reduced number of
individuals here analysed is pointed as the main
limitation of this work, however the recruitment of
volunteers during this pandemic time was mostly
nonexistent, and the recruits consisted of the Car-
dioID team and two professors involved in the de-
velopment of the Simulator. Unfortunately the time
window that aligned the readiness of the simula-
tor with the ease in lockdown measures, as well as
the calendars of each of the participants, didn’t al-
low the retake of some of the sessions to be able
to add more individuals to the final analysis.
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